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Abstract  

Most shorebirds depend on coastal habitats for much of their life cycle. The quality and 

diversity of feeding areas during the wintering period directly condition their winter survival, 

subsequent migration, and breeding success. During their wintering in France, shorebirds use 

intertidal areas for feeding, both in daylight and at night, depending on the availability of 

mudflats during the tidal cycle. In this context, we studied whether the bar-tailed godwit 

(Limosa lapponica) shows contrasting foraging behaviors and distributions between day and 

night in response to differences in visual capacities, prey availability, potential predation risk, 

and human activities. We carried out a fine-scale GPS tracking of birds at one of their main 

wintering sites along the French Atlantic coast. We predicted smaller foraging home ranges at 

night because of limits for godwits to detect prey visually, suggesting more sediment probing 

and less movement. Godwits used the entire time window when they have access to intertidal 

areas, but they faithfully selected distinct diurnal and nocturnal feeding areas using a low 

number of patches. This variability in space use highlights differences in selection of habitats, 

such as seagrass beds selected by most of the tracked godwits by day and used much less at 

night. In addition, distinct feeding distributions of monitored birds revealed interindividual 

variability in habitat selection, even more by night, most likely to reduce intraspecific 

competition. We therefore urge greater consideration of the night distribution of birds, rarely 

evaluated in shorebirds studies, to define areas and habitats of importance to future management 

and conservation measures. 

 

Keywords: Coastal ecology, coastal habitats, intertidal mudflats, GPS tracking, nocturnal 

foraging, Limosa lapponica 
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Introduction 1 

According to the principle of optimal foraging, animals tend to maximize their net energy intake 2 

per unit time (Stephens and Krebs 1986) and thus forage in the best conditions to catch maximal 3 

prey with minimal energy lost. In most birds, vision is the main sense used both day and night 4 

(Martin 2012). Therefore, the majority of bird species are active during daylight, that is, when 5 

visual conditions are best for foraging (Martin 1990). However, foraging may also be 6 

influenced by, for instance, predation risk, competition, food availability, weather conditions, 7 

and human disturbance, and birds have to adapt their behavior to devise the optimum strategy 8 

toward survival (McNamara and Houston 1980; Abrahams and Dill 1989).  9 

In coastal shorebirds feeding in intertidal areas, the quality of wintering sites, and 10 

especially of feeding areas, directly affects their winter survival, subsequent migration, and 11 

breeding success (Pitelka 1979; Piersma et al. 1993; Gunnarsson et al. 2005; West et al. 2005; 12 

Gunnarsson et al. 2006; Morrison et al. 2007). The spatiotemporal distribution of birds in 13 

intertidal areas therefore depends on prey diversity and abundance (Kelsey and Hassall 1989; 14 

VanDusen et al. 2012) as well as their availability (Colwell and Landrum 1993) to maximize 15 

the rate of energy intake over the exposure period in such areas (van Gils et al. 2003; Goss-16 

Custard et al. 2007; Quaintenne et al. 2010). Studies on wintering shorebird activity showed a 17 

tidal pattern of space use linked with the tidal effect on the availability of intertidal trophic 18 

resources (Puttick 1984; Colwell and Landrum 1993; Granadeiro et al. 2006). Thus, shorebirds 19 

wintering on sites subject to the tidal cycle will use intertidal foraging areas when available at 20 

low tides, that is, both during daylight and night (McNeil et al. 1992; McNeil and Rodriguez 21 

1996). This sustained feeding behavior during nocturnal low tides could allow the birds to (1) 22 

benefit from better feeding opportunities (prey activity and availability), according to the 23 

preference hypothesis (Dugan 1981; Evans 1987; Mouritsen 1994), or (2) meet daily energetic 24 

requirements not satisfied in daylight, according to the supplementary hypothesis (McNeil and 25 
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Rodriguez 1996; Smith et al. 1999; Sitters 2000). However, in addition to different diurnal and 26 

nocturnal foraging conditions, bird visual capacities, such as prey availability or predation risk 27 

(Dugan 1981; Evans 1987), could constrain bird foraging patterns and behaviors. Consequently, 28 

they should adjust their foraging activity, technique, and space use between daytime and 29 

nighttime (Mouritsen 1993; Rojas et al. 1999; Kuwae 2007). Species that can switch from sight 30 

to tactile feeding, such as the dunlin (Calidris alpina), the Eurasian oystercatcher (Haematopus 31 

ostralegus), the black-tailed godwit (Limosa limosa), or the Tringa species (Mouritsen 1994; 32 

McNeil and Rodriguez 1996; Lourenço et al. 2008) could take advantage of nocturnal feeding. 33 

Sight-feeding shorebirds could also benefit from night feeding because of the moonlight 34 

(McNeil et al. 1992) and/or physiological adaptations improving their nocturnal vision 35 

(Pienkowski 1983; Rojas et al. 1999) to maintain a high intake rate during nighttime 36 

(Pienkowski 1983; Lourenço et al. 2008). Furthermore, the higher activity and accessibility of 37 

prey at night in intertidal mudflats (McNeil et al. 1995; Esser et al. 2008), combined with the 38 

aforementioned bird capacities, could explain such an interest in nocturnal foraging behavior 39 

to satisfy wintering energetic requirements.  40 

Both diurnal and nocturnal foraging areas are therefore important for wintering 41 

shorebirds. However, most studies focused on their daylight activity and distribution, 42 

disregarding possible important areas used only during nighttime yet also essential for adapted 43 

conservation and management measures to protect these vulnerable species. In that context, we 44 

studied the diurnal and nocturnal spatial distributions of the bar-tailed godwit (Limosa 45 

lapponica lapponica) wintering on Ré Island (Pertuis Charentais, Atlantic French coast), a site 46 

of national importance for the species. The population of L. l. lapponica is estimated at 120,000 47 

(Delany et al. 2009), and France sees 5.8% of wintering godwits, among which about 650 (>1% 48 

of national numbers) are recorded on Ré Island in January (J-C. Lemesle, Pers. Com.). The bar-49 

tailed godwit is characterized by increasing trends of the wintering population at the European 50 
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scale (BirdLife International 2015), and its numbers have been stable in France in the last 12 51 

years (Schmaltz et al. 2019). Nonetheless, large fluctuations of the population have been 52 

observed in recent decades in France, including significant decreases during the 1980s and 53 

1990s (Triplet et al. 2010) likely due to degraded wintering habitats and increasing human 54 

disturbance (Goeldner-Gianella 2005; Delany et al. 2009; BirdLife International 2017). In this 55 

context, we tested the hypothesis that the bar-tailed godwit shows contrasting foraging 56 

behaviors and distributions between day and night. Indeed, visual capacities, prey availability, 57 

predation risk, and human activities are all factors influencing the behavior of birds, and their 58 

variability between day and night could lead to differences in their distribution. We predicted 59 

smaller foraging home ranges at night because of birds’ difficulty in visually detecting prey 60 

(Turpie and Hockey 1993), suggesting more sediment probing and therefore less movement 61 

(Pienkowski 1983; Lourenço et al. 2008). To achieve these objectives, we conducted a fine-62 

scale GPS tracking of wintering habitat use and investigated the birds’ (1) spatial distribution 63 

and foraging home ranges, (2) feeding movements, (3) habitat selection, and (4) their variation 64 

between daytime and nighttime. 65 

  66 
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Methods 67 

Study site 68 

Fieldwork was carried out in the Pertuis Charentais, which includes the largest area of intertidal 69 

mudflats on estuarine systems in France (Goeldner-Gianella 2005), during the wintering period 70 

(from November to March) of shorebirds in 2015–2016 and 2016–2017 (Fig. 1). We focused 71 

on Ré Island, one of the main wintering sites for bar-tailed godwits in the Pertuis Charentais. 72 

On Ré Island, godwits are known to roost in the former saltpans of the National Nature Reserve 73 

of Lilleau des Niges and use two main feeding areas on soft substrates (Aubouin 2014; Duijns 74 

et al. 2014). The first feeding site is a mudflat inside a semienclosed bay classified according 75 

to the Ramsar Convention since 2003, the “Fier d’Ars” (46°13'18''N; 1°30'29''W) (Fig. 1). A 76 

part of the “Fier d’Ars” (the western part of the bay and the high-tide roosts in saltmarshes) is 77 

also included in the Nature Reserve. The second main feeding site is “La Loge” (46°14'25''N; 78 

1°28'42''W), a sandflat on the exposed coast north of the Island and where the foreshore remains 79 

uncovered by the tide for about four hours only, thus reducing food availability (Fig. 1). “La 80 

Loge” is part of the Ramsar labeled site “Marshes of the Fier d’Ars” but does not benefit from 81 

any protection status, and recreational activities on the beach in the summer, as well as in the 82 

winter to a lesser extent, are frequent during the day. 83 

Capturing and tracking godwits 84 

Bar-tailed godwits were captured using mist nets during nonmoonlight nights inside the Nature 85 

Reserve. Godwits were immediately marked with a metal ring and a unique color ring 86 

combination, and body mass (accuracy within 1.0 g), wing length (nearest 1 mm), tarsus length 87 

(nearest 0.5 mm) and bill length (nearest 0.5 mm) were measured using standard methods 88 

(Prater et al. 1977; Evans 1986). When possible, the sex (bill length: 69–90 mm for males and 89 

86–110 mm for females; mass: 230–383 g for males and 280–455 g for females) and age (fringe 90 
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of median covert feathers is pale with brown tips in juveniles, white in adults; primary flight 91 

feathers are worn in juveniles, new in adults) of individuals were determined (Pyle 2008; 92 

Demongin 2020). The heaviest godwits captured, which were all females, were fitted with a 93 

GPS-VHF logger (STERNA VHF-SRD with solar charger, Ecotone, Gdánsk, Poland; 35 × 16 94 

× 10 mm, 7.5 g) when the mass of the tag remained less than 3% of the bird body mass. In total, 95 

15 individuals (11 in 2015 and 4 in 2016) were equipped with a GPS logger. Juvenile females, 96 

potentially not faithful to the study site during winter, were not selected. Tags (accuracy of ±10 97 

m) were fixed on birds with a 2 mm Teflon harness (on the lower back) according to the “leg-98 

loop” method (Mallory and Gilbert 2008) and were programmed to record positions every 30 99 

minutes. Six of the 15 individuals provided a sufficient number of positions over the winter and 100 

were retained for analyses. Three individuals provided data during both winters, two others 101 

during winter 2015–2016, and a last one during winter 2016–2017. For individuals with two 102 

winter surveys, we retained the data of the winter with the best balance of GPS fixed numbers 103 

between day and night. Thus, we used the data of winter 2015–2016 for BTG01, BTG02, 104 

BTG04, and BTG05, and the data of winter 2016–2017 for BTG03 and BTG06. The monitoring 105 

period extended from November to March for four individuals and from December to March 106 

for the other two (Table 1). The data were stored and processed from a PostgreSQL/PostGIS 107 

database. 108 

Habitat mapping 109 

For each bird monitored, sediment core sampling was performed around the centroid of several 110 

feeding areas defined by GPS locations collected during the first two months after the birds 111 

were fitted with transmitters (see below for details). This sampling method, carried out on a 112 

grid of 9 cores spaced by 10 meters and arranged around the central reference point of the 113 

station, should describe the availability and quality of trophic resources (distribution and 114 

density of benthic macrofauna) at the feeding areas used by godwits. The samples were 115 
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collected by foot at low tide according to methods described in Bocher et al. (2007) and 116 

Bijleveld et al. (2012). Each sample consisted of a 15 cm diameter sediment core (0.01 m²), 117 

with a depth of 15 cm (maximum depth reached by foraging birds according to mean bill length 118 

of females), sieved over a 1 mm mesh size on site. Annelids were immediately preserved in 119 

70% ethanol, and mollusks were stored at –20°C until sorted at the laboratory. Mudsnails 120 

(Hydrobia ulvae), a potentially small and abundant prey, were sampled through an additional 121 

core (70 mm diameter) of 0.0037 m², to a depth of 5 cm, and sieved in the laboratory over a 0.5 122 

mm mesh. A larger sediment core sampling for mudsnails would be a time-consuming process. 123 

In the laboratory, the organisms were identified to the species level as often as possible, and 124 

mollusks were measured within a 0.1 mm accuracy.   125 

Mean grain size (mm) and percentage of silt (fraction < 63 µm) of a sediment core for each 126 

sampling station (depth of 5 cm) was determined using a Malvern Mastersizer 2000 diffraction 127 

laser (particle sizes analyzed from 0.04 to 2,000 µm) to characterize the granulometry of the 128 

substrate. The results of the sediment’s particle size characteristics helped define each sampling 129 

station in terms of habitat type and thus build a habitat map for the two study areas. 130 

Finally, the benthic macrofauna data, sediment characteristics, and field observations allowed 131 

us to build a fine-scale map of intertidal habitat typology in the study site using the European 132 

Nature Information System (EUNIS) classification of coastal habitats as a reference (Bajjouk 133 

et al. 2015). Seagrass beds were delimitated on site using GPS Trimble GeoXH during summer 134 

2012. 135 

Home ranges and habitat selection 136 

The estimation of the utilization distribution (UD), that is, the probability of finding each bird 137 

at any location (Calenge 2015), was used to analyze diurnal and nocturnal space use by godwits. 138 

Kernel density estimates (KDE) (Van Winkle 1975; Worton 1989) were used to describe UD 139 
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(Laver and Kelly 2008) with the “kernelUD” function from the R package “adehabitatHR” 140 

(Calenge 2015). The spatial distribution of bird locations and the corresponding time spent in 141 

an area are considered by KDE method to estimate the home ranges (at 95% isopleth) and core 142 

areas (at 50% isopleth) of each individual (Worton 1989). To estimate the kernel home ranges, 143 

a compromise between the undersmoothing of least-square cross-validation (LSCV) and the 144 

over-smoothing of reference bandwidth (ad hoc) was used: a smoothing factor of 70% of the 145 

minimum reference value obtained by the “ad hoc” bandwidth (Kie et al. 2010; Schuler et al. 146 

2014). Using a single smoothing factor (h = 80), calculated on the set of GPS data and used to 147 

estimate bird kernels, allowed us to compare UDs between individuals. Considering the 148 

accuracy of the GPS positions (± 10 m), the grid size was set to 20 m. After estimating global 149 

UDs, the specific foraging distribution and resting distribution were computed. Field 150 

observations allowed to define a spatial delimitation on upper intertidal areas above which birds 151 

were mainly at rest and not foraging. Thus, foraging distribution was estimated from the GPS 152 

positions of birds located, at low tide, on intertidal areas below an elevation of 3.3 m relative to 153 

the hydrographic zero. In the same way, resting distribution was computed from the GPS 154 

positions of birds located on saltpans, ponds in marshes, or upper intertidal areas above an 155 

elevation of 3.3 m. Sunrise and sunset data from the R package “GeoLight” were used to 156 

distinguish diurnal and nocturnal positions and allowed for the computation of birds’ foraging 157 

and resting distribution by differentiating day and night.  158 

UDs were then used to investigate the importance of foraging habitats through habitat selection 159 

analysis. For this, we considered a second-order selection (design II), that is, a same availability 160 

of habitats for all birds and an analysis of habitat selection at the individual scale (Johnson 161 

1980). A minimum convex polygon (MCP) of foraging points from all monitored birds 162 

provided an estimation of available foraging habitats for godwits. Individual kernel home 163 

ranges and the habitat typology of the study area were then superimposed to perform habitat 164 
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selection analysis through Manly’s selection ratios (Manly et al. 2002) and using the R package 165 

“adehabitatHS” (Calenge 2011). We explored the interindividual variability of habitat selection 166 

through an Eigen analysis of selection ratios (Calenge and Dufour 2006), a multifactorial 167 

method. These analyses and other statistical tests (ANOVA, paired t-tests and chi-squared tests) 168 

were performed with the software R (3.6.1). 169 

  170 
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Results 171 

Day and night feeding areas 172 

Godwits showed an extreme fidelity to their feeding grounds along the wintering period (from 173 

November to March), with a limited number of prospected areas per individual, both during 174 

daylight and night. The mean sizes of diurnal feeding home ranges (dFHR, kde 95%) and 175 

diurnal feeding core areas (dFCA, kde 50%) were 224 ± 77 ha (min–max: 125–321 ha) and 45 176 

± 18 ha (22–68 ha), respectively (Table 1, Fig. 2). The mean sizes of nocturnal feeding home 177 

ranges (nFHR, kde 95%) and nocturnal feeding core areas (nFCA, kde 50%) were, compared 178 

with diurnal ones, much smaller with 128±72 ha (36–226 ha) and 23 ± 12 ha (8–34 ha), 179 

respectively (dFCA/nFCA: t = 6.535, df = 5, p-value = 0.001; dFHR/nFHR: t = 9.0391, df = 5, 180 

p-value < 0.001). In addition, the overlaps between diurnal and nocturnal home ranges were 181 

low at an individual scale (Table 1). The mean individual day–night overlap was 35 ± 14% 182 

(min–max: 12%–54%) between dFHR and nFHR and 18 ± 11% (min–max: 5%–34%) between 183 

dFCA and nFCA (Table 1).  184 

Rhythm of feeding activity 185 

The recorded bird foraging positions indicated that godwits could start foraging mainly between 186 

2 and 3 hours before the low tide and 3 and 4 hours after the low tide, both during daylight and 187 

night (Fig. 3). From 2 hours before and 3 hours after low tide, birds spent about 95%–100% of 188 

their time on foraging areas during daylight and 90%–95% during the night except BTG05 with 189 

80%–85% and 75%–80%, respectively. The proportion of time spent on the foraging area 190 

during the ebb tide (c. 6 hours) increased continuously during daylight, from 5%–10% to 10% 191 

and 15% during the first 2 hours, to 50% during the third hour. At night, godwits spent a steady 192 

proportion of time on the foraging area (around 0%–5%) during the first 2 hours of the ebbing 193 

tide but suddenly went up to 40% between the third and fourth hours. On average, godwits 194 
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therefore joined the foraging areas earlier by daylight, spending significantly more time on 195 

intertidal areas during the day than at night during the fourth and third hour before the low tide, 196 

with an average of 11% and 12% of additional time (Fig. 3). Similarly, godwits remained longer 197 

on mudflats at the end of the daylight rising tide compared to the nighttime, with 6% and 7% 198 

additional time spent on the foraging areas over the third and fourth hour after low tide, 199 

respectively, although differences were not significant (Fig. 3). Finally, considering the entire 200 

tidal cycle (from -6 hours to 6 hours around low tide), bar-tailed godwits spent a higher percent 201 

of their time on foraging grounds by day than by night (paired t-test: t = 5.35, df = 5, p-value = 202 

0.003).  203 

Daylight and night local movements 204 

The distances measured between the two successive recorded locations on the feeding areas 205 

were shorter at night than during daylight for all individuals (t-value = –3.82, p-value < 0.001; 206 

meanNight = 298 m, meanDay = 411 m). In proportion, godwits systematically made more 207 

small movements (or displacements) at night than during the daylight. For nocturnal 208 

movements, 0–50 m distance class was the most represented, and most direct distances recorded 209 

between two consecutive locations (30 min) were less than 100 m (Fig. 4). By day, most 210 

distances between points on the feeding area exceeded 100 m, and the most represented distance 211 

class was 100–150 m (Fig. 4).  212 

Habitat diversity and structure 213 

In total, 11 locations, as potential feeding habitats, were identified in the intertidal areas of the 214 

study site (Fig. 5). The “Fier d’Ars” area included a large diversity of habitats, with a clear 215 

dominance of seagrass beds (A2.6111 – 27% of the total intertidal site surface), bare mudflat 216 

(A2.313 – 19%), and oyster parks (A2.32 – 8%) on the muddy foreshore at the center of the 217 

bay (Fig 5.b). Habitat A2.6111 was characterized by a fine muddy sand substrate with an 218 

abundance of Zostera noltei and infaunal species dominated by polychaetes (Scoloplos armiger 219 
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and Arenaria marina), oligochaetes, and mollusks (Cerestoderma edule, Macoma balthica, and 220 

Hydrobia ulvae). Habitat A2.313 corresponded to a littoral sandy mud, mainly characterized by 221 

polychaetes (Hediste diversicolor) and bivalves (M. balthica and Scrobicularia plana). A2.32 222 

was a muddy substrate mainly characterized by a low diversity of polychaetes and oligochaetes, 223 

covered with artificial oyster grow-out tables. Another habitat well represented in the “Fier 224 

d’Ars” was an intertidal muddy sandflat dominated by polychaetes (Eteone longa, S. armiger) 225 

and capitellidae combined with the bivalve C. edule (A2.242 – 6%). Saltmarsh creeks in the 226 

A2.5 coastal saltmarshes (A2.325 – 17%) surrounded the muddy bay while rocky elements, that 227 

is, bedrock and boulders dominated by mussels and/or barnacle communities (A1.11 – 1%) and 228 

habitats with littoral rock features (A1.41 – 6%) characterized the bay entrance. 229 

The site of “La Loge” contained specific habitats not found on “Fier d’Ars” with clearly sandy 230 

characteristics (Fig. 5.c). These habitats were A2.221 (17% of the total study intertidal site 231 

surface), a barren coarse sandbank that can only shelter an extremely small number of 232 

oligochaetes because of the constant mobility of the coarse sediment, and A2.231 (38%), a 233 

littoral fine sand dominated by polychaetes including Nephtys cirrosa and S. armiger. The 234 

northern part of “La Loge” was described by habitats A1.41 (composed of rocky elements and 235 

sheltering littoral rockpool communities – 21%) and A2.242 (dominated by polychaetes E. 236 

longa, S. armiger, and capitellidae, combined with the bivalve C. edule – 18%). 237 

Foraging habitat selection 238 

During daylight, godwits did not use available foraging habitats randomly but showed a 239 

significant habitat selection, both at an individual scale (χ² = 47563.98, df = 9.0, p < 0.001) and 240 

when combining the six birds monitored (χ² = 51039.79, df = 54.0, p < 0.001). In the diurnal 241 

feeding core areas, the seagrass bed habitat (A2.6111) was selected by four godwits (BT01, 242 

BTG02, BTG03, and BTG04) (Fig. 6). For BTG05 and BTG06, the most represented habitats 243 

were the sandflat dominated by C. edule and polychaetes (A2.242) and the mudflat dominated 244 
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by H. diversicolor and S. plana (A2.313), respectively. Habitat A2.313 was also a prevailing 245 

habitat in the core feeding areas of BTG02 and BTG05. Hence, habitat A2.6111 appeared 246 

preferentially used by godwits on average, followed by A2.242 and A2.313 (global selection 247 

ratios > 1) (Fig. 7). Conversely, habitat A1.31 (fucoids on sheltered shores) was globally 248 

avoided by the studied birds (global selection ratios < 1) although standard errors indicate their 249 

marginal use by some birds. The six remaining habitats were clearly avoided (global selection 250 

ratios and SE < 1).  251 

During nighttime, the birds also showed significant habitat selection when considering all birds 252 

(χ² = 38081.9, df = 54.0, p < 0.001) and individuals independently (χ² = 31774.09, df = 9.0, p 253 

< 0.001). Habitats in the nocturnal feeding core areas were more specific, with strong individual 254 

patterns. The feeding core areas of BTG01, BTG02, BTG03, BTG04, BTG05, and BTG06 were 255 

mainly composed of habitats of oyster parks (A2.32), bare mudflat (A2.313), intertidal muddy 256 

sandflat (A2.242), littoral fine sand (A2.231), bare mudflat (A2.313), and seagrass beds 257 

(A2.6111), respectively, highlighting a strong interindividual variability (Fig. 6). This 258 

observation was confirmed by the result of the Manly selectivity measure, which did not allow 259 

a clear identification of a habitat preferentially used by the six birds. Indeed, habitats of littoral 260 

fine sand (A2.231), intertidal muddy sandflat (A2.242), bare mudflat (A2.313), oyster parks 261 

(A2.32), and seagrass beds (A2.6111) all appeared selected (global selection ratios > 1) but 262 

with large standard errors that well illustrate the nonidentical use of habitats by all birds (χ² = 263 

941.584; df = 45.0; p < 0.001) (Fig. 7). Although seagrass beds (A2.6111) remain globally the 264 

most selected habitat at night (Fig. 7), we note that all individuals showed a significant decrease 265 

of its use between day and night, with a proportion decreasing from an average of 48% to 19%, 266 

except BTG06, which showed an opposite trend (Fig. 6).   267 

The Eigen analysis emphasized these differences between diurnal and nocturnal habitat 268 

selection. During daytime, the reported positions of four individuals (BTG01, BTG02, BTG03, 269 
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and BTG04) in the space described by habitats highlighted their preferential use of seagrass 270 

beds (A2.6111) (Supplementary Material Fig. S1). The other two birds stood out from this first 271 

group, with BTG06 clearly selecting the sandflat habitat dominated by C. edule and polychaetes 272 

(A2.242) and BTG05 in an intermediate position between A2.6111 and A2.242. At night, each 273 

individual selected a specific foraging habitat with five different habitats, thus preferentially 274 

used by godwits at night (A2.242, A2.231, A2.313, A2.6111, and A2.32). 275 

Roost selection  276 

Godwits’ use of roosts differed markedly between day and night. The number of roosts used by 277 

individuals was not different between day and night, with one to three main roosts according to 278 

the estimation of roost core areas (isopleth 50) (Fig. 8). However, the location clearly varied 279 

between diurnal and nocturnal stages with a mean overlapping rate of 32% for roosting home 280 

ranges (RHRs) and 8% for roosting core areas (RCAs) (Supplementary Material Table S1). By 281 

day, during high neap tide, birds preferentially roosted on the upper foreshore and used less 282 

significantly the saltpan roosts beyond dikes. At night, individuals clearly selected the saltpans 283 

of the Nature Reserve as roosts and avoided free intertidal areas during high neap tide. During 284 

spring tide, they could not stay on flooded intertidal areas and returned on saltpan roosts either 285 

by day or night.  286 

  287 



14 
 

Discussion 288 

By analyzing the nycthemeral use of habitats by wintering bar-tailed godwits at an 289 

extremely fine spatial scale, the present study revealed distinct foraging activities in shorebirds 290 

between day and night. Previous studies showed that shorebirds could use different feeding and 291 

roosting areas depending on the time of day and according to predation risk, disturbance, and 292 

density/activity of preys (Burton and Armitage 2005; Piersma et al. 2006). Here, we went 293 

further and showed that bar-tailed godwits faithfully selected distinct diurnal and nocturnal 294 

feeding areas using a low number of main feeding patches (CA), both during daylight and 295 

nighttime, with a relatively small feeding area by individuals. Moreover, birds moved less when 296 

prospecting at night, resulting in smaller nocturnal feeding home ranges. This variability in 297 

space use underlined differences in habitat selection, such as seagrass beds strongly selected by 298 

most of the tracked godwits by day and much less used at night. In addition, the distinct feeding 299 

distributions of the monitored females revealed interindividual variability in habitat selection.  300 

We noted that all our tracked birds were females, and there could be large differences in diet 301 

and patterns of space use between males and females during day and night. 302 

Our study highlights that bar-tailed godwits spent as much time on feeding areas at night as 303 

during the day, devoting most of it to feeding activities from two hours before to three hours 304 

after low tide, that is, during the entire time window of mudflat availability. As observed in 305 

black-tailed godwits (Lourenço et al. 2008), this result highlights the importance of nocturnal 306 

feeding in the acquisition of daily energy needs by wintering bar-tailed godwits. Night foraging 307 

activity has been reported in most shorebird species wintering on tidal coasts although the 308 

relative importance of nocturnal activity depends on the species (Dugan 1981; McNeil and 309 

Rodriguez 1996). Many species favor feeding activity during the day, with visual capabilities 310 

allowing for higher intake rate and consequently providing the major part of the daily energy 311 

needs for birds (Dodd and Colwell 1996; Kam et al. 2004; Lourenço et al. 2008). Night foraging 312 
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was therefore mainly considered as “supplementary” in previous studies, that is, used when 313 

diurnal prey intake is not enough to offset the increased energy demands of less favorable 314 

wintering conditions (McNeil and Rodriguez 1996; Smith et al. 1999; Sitters 2000). However, 315 

some shorebirds could fill a significant part of their energy requirements during the night 316 

(Turpie and Hockey 1993; Lourenço et al. 2008) because of physiological adaptations such as 317 

better nocturnal vision for Charadriidae (high rod–cone ratio in the eyes) (De Azuje et al. 1993; 318 

Rojas et al. 1999) or higher tactile sensitivity for Scolopacidae as in godwits (Cunningham et 319 

al. 2013), which facilitate nocturnal foraging. 320 

In our study, the space used by wintering godwits differed between day and night, both 321 

during feeding and resting periods, as reported for other shorebirds in previous studies (Rompré 322 

and McNeil 1996; Piersma et al. 2006; Rogers et al. 2006). Birds were highly faithful to their 323 

daylight feeding grounds, with extremely restricted feeding core areas recorded over the winter. 324 

Their nocturnal feeding core areas were even more restricted and mostly spatially distinct from 325 

the daytime ones. These results contrast with the observations of Burton and Armitage (2005) 326 

on redshanks (Tringa tetanus), which also used separate diurnal and nocturnal foraging areas 327 

but with larger core areas and home ranges at night. In addition, the distinct distributions of bar-328 

tailed godwits between day and night were associated with a change in habitat selection, notably 329 

with a strong decrease in the use of seagrass beds at night, as well as an increased use of oyster 330 

parks and sandflats. Various factors that we consider below, mainly related to the characteristics 331 

of wintering habitats, could explain these differences in space use between day and night. 332 

Contrary to studies that highlighted an avoidance of nearshore areas by shorebirds during 333 

their nocturnal foraging in response to increased predation risks (Sitters et al. 2001; Burton and 334 

Armitage 2005; Piersma et al. 2006), we did not find that upper intertidal areas were less used 335 

by godwits at night. Conversely, a portion of monitored birds tended to focus on strategic points 336 

of the upper foreshore during nocturnal feeding, near anthropogenic illuminations. Studies 337 
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highlighted a positive effect of artificial light on the nocturnal foraging of shorebirds by 338 

recreating full-moon conditions across the nearby intertidal areas that allow birds to maintain a 339 

sight-based foraging behavior at night and improve their prey intake rate (Santos et al. 2010; 340 

Dwyer et al. 2013). On Ré Island, public lighting points at the edge of the bay increase the level 341 

of ambient light across mudflat areas and could attract birds by allowing them to feed by sight 342 

(Lourenço et al. 2008; Santos et al. 2010).  343 

Recreational and harvesting activities represent another form of disturbance related to 344 

anthropogenic activities, which has already been shown to affect the habitat use and foraging 345 

activity of wintering or migrating shorebirds (Lafferty 2001; Colwell et al. 2003; Navedo and 346 

Masero 2007; Burger and Niles 2013). For instance, studies emphasized that recreational 347 

activities on the foreshore, as well as shellfish harvesting activities, could induce a reduction of 348 

foraging time, flight behavior, or even a complete avoidance of the disturbed foraging areas 349 

(De Boer and Longamane 1996; Thomas et al. 2003; Navedo and Masero 2007; Burger and 350 

Niles 2013). This pattern is what we observed for some godwits on Ré Island, which avoided 351 

oyster parks (A2.32) and beaches (A2.231) during daytime while they commonly used these 352 

habitats at night. With a high predominance of polychaetes in the macrobenthic community, 353 

these habitats constitute attractive feeding areas for godwits, but the presence of oyster farmers, 354 

shell fishers, and walkers during the day constitutes a significant level of disturbance (Burton 355 

and Armitage 2005; Dias et al. 2008).  356 

Contrasting foraging methods between day and night were also found to affect the spatial 357 

distribution of shorebirds. For instance, Mouritsen (1993) found that the dunlin (C. alpina) 358 

switched from visual feeding during the day to tactile feeding during the night, as did black-359 

tailed godwits which showed a higher rate of stitches and sweeps at night and a majority of 360 

pecks during the day (Lourenço et al. 2008). Generally, the bill of the Scolopacidae species 361 

benefits from a high number of touch-sensitive nerve endings which favors tactile feeding (De 362 
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Azuaje et al. 1993). Hence, we can assume that bar-tailed godwits switch from sight feeding 363 

during the day to probing at night and, as observed in dunlins (C. alpina) by Mouritsen 364 

(Mouritsen 1994), this change in behavior may induce the use of distinct feeding habitats based 365 

on prey availability. This could be related to the dominance of polychaetes, more active and 366 

likely more available at night (Last and Olive 2004; Kuwae 2007) in habitats A2.32 and A2.231, 367 

which could explain the nocturnal use of these habitats by godwits. We did not have available 368 

data to compare diurnal and nocturnal prey density, but studies underlined that polychaete 369 

worms, the favored preys of bar-tailed godwits (Duijns et al. 2013), may be closer to the 370 

sediment surface at night (McNeil et al. 1992; Esser et al. 2008). Such a density of prey 371 

available in the top layer of the sediment could explain the nocturnal preference of polychaete-372 

dominated habitats by godwits, as observed in dunlins and redshanks (Mouritsen 1994; Burton 373 

and Armitage 2005). Beyond their influence on the location of godwits’ feeding areas, the 374 

differences in prey availability and foraging methods between day and night also seemed to 375 

affect the size of foraging areas.  376 

On night foraging sites, higher prey availability could lead to better intake rates (Zharikov 377 

and Skilleter 2003), resulting in an area-restricted search for tactile predators through increased 378 

spatial turning rates (Dias et al. 2009). Godwits could thus use sinuous low-speed searches in 379 

more profitable patches at night (Nolet and Mooij 2002) and prefer faster direct searches with 380 

more step rates during the day as observed in black-tailed godwits (Lourenço et al. 2008). This 381 

pattern of feeding behavior could explain the differences observed in our study in the distances 382 

separating two successive foraging locations between day and night.  383 

At high tide, results showed marked differences in the use of roosts between day and night 384 

during neap and spring tides. Indeed, at daytime, godwits selected upper mudflat roosts as soon 385 

as they were available, that is, during neap tides. However, at night, birds always used saltpans 386 

in whatever tidal heights. In a previous study based on daytime observations, Rosa et al. (2006) 387 
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showed that wintering shorebirds, including bar-tailed godwits, preferentially select mudflats 388 

to roost, and move to saltpan roosts when the upper foreshore became unavailable during 389 

highest tides. This study also highlighted the effect of both raptor presence, higher in saltpans 390 

than in mudflats, and visibility, lower in saltpans, on daytime shorebird roost choice (Rosa et 391 

al. 2006). Others studies reported the anti-predator strategy of shorebirds avoiding some 392 

specific roosting areas by nighttime because of higher predation risks (Hilton et al. 1999; 393 

Rogers et al. 2006). Hence, in addition to their availability, the roost choice by shorebirds 394 

between day and night in the present study could be influenced by the predation risk (Handel 395 

and Gill 1992; Rohweder 2001). Birds would favor mudflats at day, less prone to overflying 396 

raptors and offering better visibility of approaching predators (Rosa et al. 2006), and saltpans 397 

at night, with a water barrier against nocturnal predators such as foxes or mustelids (Cramp et 398 

al. 1983; Sitters et al. 2001). Further studies are nonetheless needed to validate this hypothesis 399 

and better explain the pattern of use of roost sites on Ré Island, including the monitoring of 400 

predator activities.  401 

Our results showed that all monitored bar-tailed godwits used the entire time window during 402 

which they have access to foraging grounds, both during the day and the night. Nocturnal 403 

foraging thus appears crucial along the winter to allow godwits to meet their daily energy 404 

requirements and is not only a “supplement” for diurnal foraging. However, nocturnal foraging 405 

is probably not preferential since we did not observe more use of feeding areas at night than 406 

during the day. We hypothesize that differences in biotic and abiotic environmental conditions 407 

(human disturbance, predation risk, feeding methods, and prey availability) between day and 408 

night all together incite birds to develop specific feeding strategies and behaviors, including the 409 

selection of contrasting habitats. Bar-tailed godwits also tended to specialize in their habitat use 410 

and thus in prey at an individual scale, even more by night, most likely to reduce intraspecific 411 

competition. Roost choice also depended on the time of day. The visibility of approaching 412 
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predators and proximity to feeding sites, when possible, seemed to be important to the choice 413 

of daytime roosts. Finally, these results provide an important knowledge of the nonbreeding 414 

survival strategies of bar-tailed godwits on the French Atlantic coast. We therefore urge greater 415 

consideration of the night distribution of birds, rarely evaluated in shorebird studies, to define 416 

areas and habitats of importance in management and conservation. The day–night connectivity 417 

in shorebirds’ space use needs to be integrated into all spatial management plans where human 418 

activities can deal with natural protected areas or their proximities. 419 
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Figure captions 

Fig. 1 Map of the Pertuis Charentais (Central French Atlantic coast) and localization of the 

study areas on Ré Island. Dark gray corresponds to the mainland and light gray to the intertidal 

area 

Fig. 2 Diurnal and nocturnal feeding home ranges of six bar-tailed godwits during the 

nonbreeding period on Ré Island. Feeding home ranges were calculated as 50% (core areas) 

and 95% (home ranges) kernel density contours 

Fig. 3 Mean proportion of time spent by six Bar-tailed godwits on mudflats, i.e. foraging, by 

day and by night during the tide cycle. Significant differences between Day and Night, for each 

slot time around the low tide, are illustrated by the symbols ‘*’ when p<0.05 and ‘***’ when 

p<0.001.  

Fig. 4 Day and night distribution of distances between two successive locations (30 min.) 

Fig. 5 Habitat typology at (a) Ré Island, (b) “La Loge,” and (c) “Fier d’Ars” 

Fig. 6 Day and night proportion of habitat types on feeding core areas (50% kernel density 

contour) of each bar-tailed godwit 

Fig. 7 Results of the selection ratio analysis highlighting habitat selection by six bar-tailed 

godwits on 10 intertidal habitat types by (a) daytime and (b) nighttime 

Fig. 8 Diurnal and nocturnal roosting home ranges of six bar-tailed godwits during the 

nonbreeding period on Ré Island. Roosting home ranges were calculated as 50% (core areas) 

and 95% (home ranges) kernel density contours 

 

 


