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ABSTRACT

Aims. The Zernike wavefront sensor (ZWFS) is a concept belonging to the wide class of Fourier-filtering wavefront sensors (FFWFSs).
The ZWFS is known for its extremely high sensitivity and low dynamic range, which makes it a unique sensor for second stage adap-
tive optics systems or quasi-static aberration calibration sensors. This sensor is composed of a focal plane mask made of a phase
shifting dot that is fully described by two parameters: its diameter and depth. We aim to improve the performance of this sensor by
changing the diameter of its phase shifting dot.
Methods. We begin with a general theoretical framework, providing an analytical description of the FFWFS properties. We then
predict the expected ZWFS sensitivity for different configurations of dot diameters and depths. The analytical predictions are then
validated with end-to-end simulations. From this, we propose a variation of the classical ZWFS shape that exhibits extremely appeal-
ing properties.
Results. We show that the ZWFS sensitivity can be optimized by modifying the dot diameter and it can even reach the optimal the-
oretical limit, though with the trade-off of low spatial frequency sensitivity. As an example, we show that a ZWFS with a 2 λ/D dot
diameter (where λ is the sensing wavelength and D the telescope diameter), hereafter called a Z2WFS, exhibits a sensitivity twice
higher than the classical 1.06 λ/D ZWFS for all the phase spatial components except for tip-tilt modes. Furthermore, this gain in sen-
sitivity does not impact the dynamic range of the sensor, and the Z2WFS exhibits a similar dynamical range as the classical 1.06 λ/D
ZWFS. This study opens the path to the conception of a diameter-optimized ZWFS.

Key words. instrumentation: adaptive optics – telescopes

1. Introduction

The role of a wavefront sensor (WFS) is to encode the phase
information at the entrance of an optical system into inten-
sities on a detector. For ground-based astronomy, WFSs are
mostly used for active or adaptive optics (AO) in conjunction
with a wave-front control strategy in order to compensate for
optical aberrations induced by the atmosphere or the telescope
itself. In the context of astronomy, one of the main drivers for
a WFS design is its sensitivity, or in other words, its ability
to provide an accurate measurement in the presence of noise.
Sensitivity is therefore a useful metric for assessing WFS per-
formance in terms of photon noise, which is related to key
quantities in the AO field: loop speed and sky-coverage. Exist-
ing WFSs can be separated into two main categories, usually
defined as focal plane WFSs, for which the measurements are
done in a focal plane (such as the Shack-Hartmann WFS), and
pupil plane WFSs, for which the measurements are done in a
pupil plane. Among this latter category, the Fourier filtering
WFS (FFWFS) represents a wide class of sensors of particu-
lar interest thanks to their superior sensitivity. From a general

point of view, an FFWFS consists of a phase mask located in an
intermediate focal plane that performs an optical Fourier filter-
ing. As such, the Zernike phase mask (Zernike & Stratton 1934;
Bloemhof & Wallace 2003; Dohlen et al. 2006; Wallace et al.
2011) forms an FFWFS, hereafter a Zernike WFS (ZWFS). In
this case, the filtering element is a phase shifting dot that is, for
a given substrate, fully described by two parameters: its diam-
eter and its depth (or phase shift). In a classical implementa-
tion, the ZWFS phase dot has a diameter of 1.06 λ/D (where λ
is the sensing wavelength and D the telescope diameter) and a
phase shift of π/2. This ZWFS is known to be one of the most
sensitive WFSs (Guyon 2005). Its drawback being its limited
dynamic range, it has therefore been mostly implemented as a
second-stage WFS or as a quasi-static aberration calibration sen-
sor, such as on VLT/SPHERE (N’Diaye et al. 2016; Vigan et al.
2019). In this paper we show that the classical implementation
of the ZWFS with a phase dot diameter of 1.06 λ/D is actu-
ally not optimal: by using a larger dot diameter, the sensitivity
of the ZWFS can be significantly improved, at the expense of
lower spatial frequency sensitivity, and can even reach a perfor-
mance close to the theoretical limit. For this reason, Sect. 2 starts
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from a theoretical study of the ZWFS based on a general con-
volutional formalism for FFWFSs (Fauvarque et al. 2016). This
analytical work shows that the sensitivity of the ZWFS can be
improved by increasing its dot diameter. We then confirm the
theoretical results with end-to-end simulations in Sect. 3, and we
show that a gain in sensitivity by a factor of two can be reached
without impacting the dynamic range of the sensor. Conclusions
are given in Sect. 4.

2. Theoretical analysis of the ZWFS sensitivity with
a convolutional approach

2.1. Definition of FFWFS sensitivity

Following the formalism introduced by Fauvarque et al. (2016),
the raw intensities recorded by an FFWFS are processed with a
return-to-reference operation. This simply consists in removing
from the FFWFS recorded intensities map I(φ) the one corre-
sponding to the reference phase I0 (usually a flat wavefront). We
also posit that all the intensities are normalized by the number of
photons. The resulting quantity is called the tared intensities:

∆I(φ) = I(φ) − I0. (1)

One of the most important performance criteria for a sen-
sor is its behavior in terms of noise propagation. This crite-
ria is encoded in a quantity called sensitivity, which depends
on the energy in the columns of the interaction matrix (IM;
Rigaut & Gendron 1992). For a given WFS, each column of the
IM is built as the linear response of the sensor to a given mode φi,
which is usually obtained experimentally through a “push-pull”
method:

δI(φi) =
I(εφi) − I(−εφi)

2ε
, (2)

where ε is the amplitude of the mode. The sensitivity s for a
given mode φi is then defined through the Euclidean norm:

s(φi) =
||δI(φi)||2
||φi||2

. (3)

For a given uniform noise distribution σn, the noise propa-
gation coefficient σWFS for a mode φi is then related to the sen-
sitivity by the following relationship:

σ2
WFS = σ2

ns(φi)−2 . (4)

For ground-based astronomy, where WFSs are usually
implemented within an AO loop, the sensitivity is a critical met-
ric as it describes how the system performs in the presence of
noise. Optimizing the WFS sensitivity has always been one of
the main motivations in the conception of new WFSs.

Finally, it should be noticed that we chose to visualize the
FFWFS sensitivity as a two-dimensional map along the spatial
frequencies of the wavefront. This consisted in calculating sen-
sitivity with respect to the Fourier modes φi (close to what was
done in Jensen-Clem et al. 2012), which are simply defined by
the sum of a cosine and a sine carrying a given spatial frequency
f . The following quantity then encodes the sensitivity:

s f =

√
s
(

cos f
)2

+ s
(

sin f
)2
. (5)

2.2. A convolutional approach to computing FFWFS
sensitivity

The FFWFS sensitivity can be computed based on a convolu-
tional model, as described in Fauvarque et al. (2019). This model
assumes that the sensor can be fully characterized by an impulse
response IR that links the entrance phase to the measured tared
intensities:

∆I(φ) ≈ IR ? φ , (6)

where ? stands for the classical convolutional product. A con-
venient aspect of the convolutional approach is the fact that one
can compute the transfer function TF of an FFWFS. FFWFSs
can be described by two parameters: their phase masks m and
their weighting functions ω, which describe the energy distribu-
tion in the focal plane during one acquisition time of the sensor.
We note that this function is normalized to 1 in order to ensure
energy conservation. Assuming that ω is a real function and that
ω and m are both centro-symmetric, which is generally the case
for most of the known FFWFSs, TF is expressed through the
following simple formula:

TF = 2Im
[
m ? mω

]
, (7)

where Im is the imaginary part and the bar is the complex
conjugate operator. From the knowledge of an FFWFS trans-
fer function, it is then possible to compute the sensitivity with
respect to spatial frequencies thanks to the formula given in
Fauvarque et al. (2019):

s f ≈
√
|TF|2 ? PSF

∣∣∣∣
f
, (8)

where the quantity PSF is the point spread function of the sys-
tem. Its energy corresponds to the incoming flux and is normal-
ized to 1.

At this point, it is important to note that the sensitivity is
bounded. Since the mask transmission, |m|, cannot be greater
than 1 (|m| ≤ 1), Eq. (7) implies that TF| f ≤ 2. Hence, given
Eq. (8), we conclude that, in the frame of our normalizations,
the sensitivity cannot be greater than 2:

∀ f , s f ≤ 2 . (9)

This is an important result as it defines the theoretical limit for
the sensitivity of an FFWFS.

2.3. Application to the ZWFS

The convolutional formalism introduced in the previous section
was then applied to the ZWFS in order to find a simple formula
of its sensitivity according to the mask parameters. As previously
mentioned, the ZWFS mask is defined by two free parameters.
The first is the depth (phase shift) of the dot δ; for the classical
ZWFS, δ = π/2. The second is its diameter p; for the classical
ZWFS, p = 1.06 λ/D. As described in N’Diaye et al. (2013), the
dot diameter value was chosen in order to get an equivalent flux
inside and outside the focal plane dot. This configuration with
p = 1.06 λ/D also allows a uniform reference intensity distribu-
tion to be obtained. The purpose of this section is to demonstrate
that this choice of p = 1.06 λ/D is actually not optimal, and that
the sensitivity can be improved with a larger dot.

For the sake of clarity, we carried out this study in one dimen-
sion. As such, the spatial frequency vector f becomes the scalar
frequency f . We further assumed that the weighting function ω,
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Fig. 1. Simplified description of the ZWFS. (a): simplified one-
dimensional framework for convolutional derivations; in black, the dot
diameter is equal to p and the phase shift is equal to δ. In green, the
PSF is approximated by a normalized top-hat function with a diameter
a. (b): transfer function of the ZWFS for two cases; in red the dot size
is smaller than the PSF, and in blue the dot is larger than the PSF. The
optimal case appears for p = a and not p = a/2, as done for the classical
ZWFS.

which corresponds to the PSF, can be described as a top-hat func-
tion of diameter radius a. This simplified geometry is summa-
rized by Fig. 1a. From this simplified geometry, we then com-
puted TF| f and plot this quantity in Fig. 1b. The full derivation
can be found in Appendix B.

From Fig. 1b one can distinguish two cases. The first is p ≥ a
(i.e., the dot diameter is larger than the PSF characteristic size).
Frequencies above (p + a)/2 reach the sensitivity 2 sin(δ). Fre-
quencies below (p − a)/2 are at 0. The second is p < a: the dot
diameter is smaller than the PSF size. Frequencies over p have a
value of 2p/a× sin(δ), which is smaller than the theoretical limit
of 2.

From this simplified model one can first conclude that a
phase shift of δ = π/2 will maximize the sensitivity, as expected.
But surprisingly, it shows that for this phase shift a dot radius of
p = a offers a sensitivity of the optimal value for almost all the
modes. At this point it is important to remember that the value
of TF| f directly sets the sensor sensitivity through Eq. (8). It is
therefore possible to design a ZWFS that reaches the theoretical
sensitivity value. As a comparison, the classical ZWFS config-
uration (N’Diaye et al. 2013) uses p = a/2, which leads to a
suboptimal TF value of 1 for frequencies above p.

Although this simplified study uses strong assumptions, it
shows that the ZWFS can be further optimized compared to its
classical form. In the next section we demonstrate that these sim-
plified results are accurate and will enable us to build the most
sensitive sensor ever proposed.

3. Toward an optimal ZWFS

Following the results from the convolutional approach, the goal
of this section is to make use of numerical simulations to con-
firm the sensitivity of the ZWFS with respect to its dot diameter,
and eventually to propose an optimal configuration. For that, we
consider different configurations for a dot diameter ranging from
0 to 5 λ/D. The phase shift is set to δ = π/2 for the rest of this
Letter.

3.1. Impact of the dot diameter on the ZWFS sensitivity

As a first step, we want to illustrate the impact of the dot diam-
eter on sensitivity for a spatial frequency located outside of
the dot (horizontal part of the curves in Fig. 1b). For that pur-
pose, we arbitrary chose a spatial frequency with six cycles over
the pupil (left insert of Fig. 2), which is far enough from the

Fig. 2. Cosine phase (left insert, linear scale) corresponding to a spatial
frequency of six cycles in D and its corresponding PSF speckles (right
insert, logarithmic scale, in blue). This frequency lies outside of the dot
footprint, here 5 λ/D (in red).

Fig. 3. Sensitivity evolution for a frequency outside of the dot with
increasing dot diameter. The sensitivity is in strong accordance with
the proportion of the PSF energy located inside the dot, as predicted by
the convolutional approach.

maximum diameter dot value (5 λ/D, i.e., a radius of 2.5 λ/D).
This configuration is illustrated in the right insert of Fig. 2. The
sensitivity results for this spatial frequency are shown in Fig. 3.

As predicted by the convolutional approach, Fig. 3 shows
that the sensitivity for a high spatial frequency increases with
the dot diameter. This behavior has been discussed briefly in pre-
vious literature (Ruane et al. 2020) without further analysis. It is
explained here thanks to the convolutional model. It is also inter-
esting to notice that the sensitivity growth closely follows the
PSF encircled energy in the dot diameter, confirming the analyt-
ical results presented in Fig. 1. For a classical ZWFS, with a dot
diameter of 1.06 λ/D, the sensitivity is actually far from optimal.

However, one cannot just increase the dot diameter incon-
siderately because the sensitivity to frequencies lying inside the
dot would drop to 0 (Fig. 1). We illustrate this effect in Fig. 4,
where we plot the sensitivity curves with respect to a wide
range of spatial frequencies for the three dot diameter config-
urations p = 1.06, 2, and 5λ/D. For p = 5λ/D, the sensi-
tivity to high-spatial frequencies (those larger than five cycles
per pupil) almost reaches the theoretical limit of 2; however, the
sensitivity becomes close to 0 for low-spatial frequencies (those
smaller than three cycles per pupil). There is therefore a trade-off
between enhanced sensitivity and unseen modes. In the follow-
ing, we propose the configuration with p = 2λ/D and call this
specific configuration the Z2WFS.

As a remark, we also emphasize that the reference intensi-
ties (i.e., the intensity distribution for a flat wavefront) change
with the value of p. This is illustrated in Fig. 5 for the previ-
ous three different values of p. The classical ZWFS shows a flat
reference illumination, while the Z2WFS appears to be less uni-
form. This spatial distribution could involve practical issues in
terms of detector dynamics or for complex pupil shapes, such as
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Fig. 4. Sensitivity curves for different dot diameters. This figure has to
be compared with the convolutional approach in Fig. 1.

Fig. 5. Reference intensities of the ZWFS for different dot diameters.
(a) p = 1.06 λ/D. (b) p = 2 λ/D. (c) p = 5 λ/D.

central obscuration or spiders. These potential practical imple-
mentation issues are beyond the scope of this paper. In this Letter
we only assume a full aperture pupil with monochromatic light
for the sake of clarity. It is to be noted that there is no sticking
point here; the formalism and results developed here are main-
tained with a central obscuration in the pupil.

3.2. Comparison with other FFWFSs

In this section we compare the Z2WFS with other well-know
FFWFSs: the classical ZWFS with p = 1.06 λ/D, the non-
modulated pyramid WFS (PyWFS) (Ragazzoni 1996), the mod-
ulated PyWFS (here with a modulation radius of 3 λ/D), and a
flattened pyramid WFS (FPyWFS) proposed by Fauvarque et al.
(2015) with a pupil overlapping rate of 75%. Spatial frequencies
basis (i.e., Fourier basis) was chosen for this comparison. Results
are given in Fig. 6. First, we retrieved well-know results, such as
the gain of around a factor of two in sensitivity between the clas-
sical ZWFS and the PyWFS. We can also highlight the behavior
of the FPyWFS, which shows oscillating sensitivity and peaks
for some specific frequencies, as described in Fauvarque et al.
(2015). (The explanation of the PyWFS class behavior through
to the convolutional approach is also given in Appendix C.) The
Z2WFS is clearly the most sensitive sensor, except for extremely
low frequencies. As expected from Fig. 3, it has a sensitivity
twice better than the classical ZWFS for almost all modes and is
four times more sensitive than the non-modulated PyWFS.

Fig. 6. Sensitivity curves for different FFWFSs. We can distinguish the
ZWFS class and the PyWFS class. The Z2WFS overtakes all the other
sensors.

Fig. 7. Evolution of the low order Zernike mode sensitivities with
respect to the dot diameter. We can see that the Z2WFS sensitivity is
lower for the tip-tilt modes but higher for all the others. The classical
ZWFS is not even optimized for the tip-tilt modes.

The behavior at low spatial frequencies deserves some fur-
ther analysis: we plot in Fig. 7 the sensitivity with respect to the
tip-tilt and focus modes (which are the lowest frequency Zernike
modes) for the ZWFS class with a dot diameter ranging from 0
to 5 λ/D. For the tip-tilt modes, the Z2WFS is half as sensitive
as the classical ZWFS, but the Z2WFS provides better results
for the focus. Even if the Z2WFS is less sensitive for tip-tilt than
the classical ZWFS, it is important to note that it remains as sen-
sitive as the non-modulated PyWFS, which is around 0.4. As a
remark, it is interesting to see that the sensitivity curve for the
tip-tilt follows the PSF shape: for the edge of the dot lying on
a dark area of the PSF, the sensitivity drops to 0. By taking a
Z1.5WFS (p = 1.5 λ/D), one could have a better sensitivity for
all the frequencies compared to the classical ZWFS, but a lower
gain overall compared to a Z2WFS.

We have demonstrated that a Z2WFS has significantly
improved sensitivity and approaches the ideal FFWFS behavior.
When compared to the classical ZWFS, the gain in sensitivity
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Fig. 8. Capture range of different FFWFSs. The Z2WFS has the same
capture range as the classical ZWFS.

for all modes, except the tip-tilt, is a factor of two. In the next
section we investigate if this gain in sensitivity comes at the cost
of dynamic range.

3.3. Dynamic range

To complete our study we now compare the dynamic range of
the Z2WFS with the classical ZWFS. A drastic loss in dynamic
range with increasing dot diameter could indeed prevent a prac-
tical utilization of the Z2WFS. To calculate this quantity with
respect to a given mode φi, we evaluated its capture range Cφi .
To calculate it, we looked at the lowest amplitude value (in abso-
lute value) such that:

d∆I(aφi)
da

∣∣∣∣∣
a0

= 0 . (10)

We then defined the capture range as Cφi = 2a0, where the fac-
tor 2 allows one to take negative and positive amplitudes into
account in the capture range calculation.

The capture range can be larger than the pure linearity
regime. However, we decided to use this definition for two rea-
sons: first because it defines the amplitude below which we
are ensured that a closed loop system will eventually converge.
Indeed, even if the measurement is no longer linear, there is still
a one-to-one correspondence with the input signal. Secondly,
the ZWFS measurements are often processed through nonlin-
ear reconstructors (N’Diaye et al. 2013; Steeves et al. 2020) that
can be perfectly applied to a Z2WFS or other variations of the
ZWFS.

Capture range values for cosine phase modes at frequen-
cies ranging from zero to five cycles in diameter are given in
Fig. 8 for Zernike and python WFSs. The PyWFS class has a
better capture range over all spatial frequencies, matching the
fact that sensitivity and dynamic range are competing properties.
This graph also confirms the great benefit in terms of dynamic
range provided by the modulation of the PyWFS. More impor-
tantly, we see that the Z2WFS exhibits the same capture range
as the classical ZWFS for high frequencies and is even higher
for the lowest frequencies where the Z2WFS sensitivity falls
below that of the classical ZWFS. The Z2WFS is therefore more

sensitive than the classical ZWFS while exhibiting the same cap-
ture range.

4. Conclusion

In this paper we have provided a physical description of the sen-
sitivity behavior for the ZWFS class, and in particular we have
studied the sensitivity evolution for different dot diameters. We
have shown that it is possible to significantly improve the cur-
rent sensitivity of the ZWFS, at the expense of the lower spatial
frequencies, simply by increasing the dot diameter. The result-
ing sensitivity can even almost reach the fundamental limit of
FFWFSs. We further studied the specific case of a dot diame-
ter of 2 λ/D, called a Z2WFS, which exhibits an average factor
of two gain in sensitivity (with a loss in sensitivity compared to
the classical ZWFS only for the tip-tilt modes), without any loss
in the dynamic range with respect to the classical ZWFS. This
new sensor thus becomes the most sensitive WFS available for
ground-based astronomy. It still exhibits the low dynamic range
of the ZWFS, but, as for the PyWFS, modulation schemes can
be imagined. For instance, one way to increase its linearity range
is to dynamically change the dot diameter during one integra-
tion time of the sensor camera. Future studies will investigate
its practical implementation and the impact of chromaticity on
wavefront sensing.
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Appendix A: Convolutional approach: General
framework

In the infinite pupil approximation and assuming that the weight-
ing function (energy distribution at the focal plane) ω is a real
centro-symmetric function and that the focal-plane mask func-
tion m is also centro-symmetric, the transfer function of an
FFWFS may be written as:

TF = 2Im
[
m ? mω

]
. (A.1)

We only consider in this formalism a pure phase mask for the
Fourier filter function m because the global context is the search
for WFS sensitivity; as such, we did not consider amplitude-
mask, which would result in a waste of photons. Therefore, they
are pure phase masks that can be written as m = ei∆. Moreover,
we continued to carry out these mathematical developments in
one dimension. The previous Eq. (A.1) becomes:

TF| f = 2
∫
R

du ω|u sin
(
∆|u − ∆| f−u

)
, (A.2)

where u is expressed in units of λ/D. We chose to approximate
the weighting function as a rectangular and normalized function
with a diameter a:

ω|u =
1
a
I[−a/2;a/2]

∣∣∣
u . (A.3)

The normalization allows one to respect the energy conserva-
tion. Furthermore, a may be seen as the characteristic size of the
energy distribution at the focal plane. Here, a is therefore the typ-
ical size of the modulation of the PyWFS class and corresponds
to the PSF characteristic length when modulation is inactive. In
other words, the weighting function allows us to take the finite
size of the pupil into account despite the “infinite pupil approxi-
mation” needed in the convolutional approach.

Appendix B: Zernike WFS class

For the ZWFS, we consider the following mask: a centered dot
with a diameter of p and a depth δ. Thus, the phase of the filtering
mask equals:

∆|u = δ I[−p/2;p/2]
∣∣∣
u . (B.1)

The problem being symmetric, the derivation of Eq. (A.2) is
only done for positive frequencies, f ≥ 0. We can distinguish
two cases: when the size of the dot is bigger than the PSF (i.e.,
p ≥ a) or not (i.e., p < a).
Case 1. The dot is larger than the PSF: p ≥ a.

Case 1.1 f ≥ p+a
2 .

We have ∆|u = δ and ∆| f−u = 0.

TF| f =
2
a

∫ a/2

−a/2
du sin

(
∆|u − ∆| f−u

)
=

2
a

∫ a/2

−a/2
du = 2 sin(δ) .

(B.2)

Case 1.2 f < p+a
2 .

In this case, ∆|u − ∆| f−u depends on f . We get:

TF| f = max
(
2 sin(δ) −

1
a

(p + a − 2 f ) sin(δ), 0
)

(B.3)

= max
((

2 f + 1 −
p
a

)
sin(δ), 0

)
. (B.4)

Fig. B.1. ZWFS mask in one dimension with a uniform modulation
representing the PSF (in blue), the centered mask ∆|u (black), and the
shifted mask ∆| f−u (red).

Case 2. The dot is smaller than the PSF: p < a.
Case 2.1: f ≥ p.

We again have ∆|u = δ and ∆| f−u = 0. Consequently, the
transfer function equals:

TF| f =
2
a

∫ a/2

−a/2
du sin

(
∆|u − ∆| f−u

)
(B.5)

=
2
a

∫ p/2

−p/2
du sin(δ) =

2p
a

sin(δ) . (B.6)

Case 2.2: f < p.
The ∆|u − ∆| f−u still depends on f . Equation (A.2) becomes:

TF| f =
2
a

∫ a/2

−a/2
du sin

(
∆|u − ∆| f−u

)
(B.7)

=
2
a

∫ f

− f
du sin(δ) =

2 f
a

sin(δ) . (B.8)

The plot corresponding to these results is given earlier in the
Letter (Fig. 1).

Appendix C: Pyramid WFS class

We derived Eq. (A.2) for the PyWFS class once more. The phase
of the filtering mask now equals:

∆|u = α|u| . (C.1)

Here, α equals 2πθ/λ, where θ is the pyramid apex angle and λ
is the sensing wavelength. Equation (A.2) then becomes:

TF| f = 2
∫
R

du ω|u sin
(
α(|u| − | f − u|)

)
. (C.2)

In the sine, we have:

α(|u| − | f − u|) =


−α f u ∈] −∞; 0]
α(2u − f ) u ∈]0; f [
α f u ∈ [ f ;∞[

. (C.3)

Moreover, ω is centro-symmetric so it is possible to reduce the
integration interval:

TF| f = 2
∫ f

− f
du ω|u sin

(
α(|u| − | f − u|)

)
. (C.4)
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Fig. C.1. In blue (resp. green): case of a weighting function with a small
(resp. large) characteristic length; in red, the function of Eq. (C.3).

Figure C.1 allows us to visualize the functions involved in the
previous equation. Notably, it appears that the value of the char-
acteristic length of the weighting function over two (i.e., a/2,
the modulation radius when this device is active) plays a major
role in the integration and can be seen as a cutoff frequency.
Equation (C.4) becomes:

TF| f =
2
a

[∫ 0

−min(a/2, f )
sin(−α f )du +

∫ min(a/2, f )

0
sin

(
α(2u − f )

)
du

]
(C.5)

=
2
a

[
sin(αmin(a/2, f )) sin[(min(a/2, f ) − f )α]

α

−min(a/2, f ) sin(α f )
]
. (C.6)

Finally, we get the transfer function of the pyramid class depend-
ing on its two optical parameters, namely the pyramid apex angle
and the weighting function characteristic size.

TF| f =

{
−2 f sin(α f )

a f ≤ a/2
sinc(αa/2) sin[(a/2 − f )α] − sin(α f ) f > a/2

.

(C.7)

We can now use this formula to explain the sensitivity with
respect to the spatial frequencies of the PyWFS class.

Firstly, we are interested in the influence of the apex angle
parameter on the sensitivity. In other words, we studied the
difference between classical and flattened pyramids. To do so,
we assumed that the modulation is inactive. Consequently, the
parameter a is related to the PSF size. Considering a pupil diam-
eter of D, a sensing wavelength of λ, and a imaging focal of foc,
we have:

a =
λ foc

D
. (C.8)

To distinguish between flattened and classical pyramids, we just
have to identify the limit apex angle θlimit that allows the pupil
images to be totally separated. It can be linked with the pupil
diameter and the imaging system focal length via the following
formula:

θlimit =
D
foc

. (C.9)

Consequently, if θ is below θlimit, there is an overlap of the pupil
images and the pyramid is therefore a flattened one, whereas a

Fig. C.2. Graphical visualization of the transfer function, i.e., Eq. (C.7),
for the PyWFS configurations of Fig. 6: non-modulated PyWFS in yel-
low, modulated PyWFS in purple, and FPyWFS in green.

θ above θlimit implies a complete separation of the pupil images
and thus a classical pyramid. If we use the a and α variables,
these two cases can be summarized in the following way:

aα < π Flattened pyramid (C.10)
aα ≥ π Classical pyramid. (C.11)

Such a distinction allows us to explain why the sensitivity of
the flattened pyramid may be larger in absolute value than that
of the classical pyramid. As a matter of fact, the sinc function
in Eq. (C.7) may be significant for some frequencies when aα
is small (i.e., for flattened pyramids). Keeping in mind that the
sensitivity is linked with the TF via the convolution product of
Eq. (8), this shows why the FPyWFS sensitivity may reach 2
when the classical pyramid optimally attains 1. Moreover, the
small α implies large oscillations with respect to the spatial
frequencies (see the green curve in Fig. C.2). This is relevant
regarding the observed sensitivity, which does oscillate (dotted
green curve in Fig. 6).

By contrast, if aα is large (i.e., if pupil images are completely
separated), the sinc function can be neglected and the transfer
function summarized as:

TF| f =

{
−2 f sin(α f )

a f ≤ a/2
− sin(α f ) f > a/2

. (C.12)

This function can be seen as the transfer function of the classi-
cal pyramid. We notice that it oscillates more rapidly than the
flattened pyramid one (yellow and purple curves in Fig. C.2).
However, these oscillations disappear when we look at the cor-
responding sensitivity curves (Fig. 6). Such a peculiarity can be
explained by Eq. (8): to get the sensitivity curve, the transfer
function is convoluted with the PSF, which in this case is larger
than the oscillation period. As a result, the transfer function is
smoothed and the sensitivity follows the TF envelope.

Concerning this envelope, we can observe two regimes. The
first one goes from the null spatial frequency to the modulation
radius a/2; it is linear with f . The second corresponds to spa-
tial frequencies above the modulation radius; it is constant and
equal to 1. We identify here the typical behavior of the classi-
cal pyramid (modulated or not) with its two regimes, slope and
phase sensors, separated by a cutoff frequency corresponding to
the modulation radius (Vérinaud 2004).

The convolutional approach therefore demonstrates its capa-
bility to describe the sensitivity of pyramid sensors. It indeed
allows a unique formula to be obtained, which explains both
the enhanced and oscillating sensitivity of the FPyWFS and the
dual behavior slope-phase sensors of the classical modulated
PyWFS.
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