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Abstract

A post hoc analysis of the Diabeloop WP7 multicentre, randomized controlled trial

was performed to investigate the efficacy of the Diabeloop Generation-1 (DBLG1)

closed-loop system in controlling the hypoglycaemia induced by physical activity

(PA) in real-life conditions. Glycaemic outcomes were compared between days with

and without PA in 56 patients with type 1 diabetes (T1D) using DBLG1 for

12 weeks. After the patient announces a PA, DBLG1 reduces insulin delivery and, if

necessary, calculates the amount of preventive carbohydrates (CHO). Daily time

spent in the interstitial glucose range less than 70 mg/dL was not significantly dif-

ferent between days with and without PA (2.0% ± 1.5% vs. 2.2% ± 1.1%), regard-

less of the intensity or duration of the PA. Preventive CHO intake recommended

by the system was significantly higher in days with PA (41.1 ± 35.5 vs. 21.8

± 28.5 g/day; P < .0001), and insulin delivery was significantly lower (31.5 ± 10.5

vs. 34.0 ± 10.5 U/day; P < .0001). The time spent in hyperglycaemia and the

glycaemic variation coefficient increased significantly on days with PA. In real-life

conditions, the use of DBLG1 avoids PA-induced hypoglycaemia. Insulin adjust-

ments and preventive CHO recommendation may explain this therapeutic benefit.

K E YWORD S

artificial pancreas, closed-loop system, continuous glucose monitoring, glycaemic control,
hypoglycaemia, insulin pump therapy, physical activity, physical intervention, randomized
controlled trial, type 1 diabetes

1 | INTRODUCTION

The ideal goal of insulin therapy for type 1 diabetes (T1D) is to nor-

malize blood glucose levels, without increasing exposure to

hypoglycaemia. A meta-analysis of 27 randomized controlled trials

(RCTs) by Weisman et al.1 showed that closed-loop (CL) artificial pan-

creas systems allow staying within the glycaemic target for a signifi-

cantly longer time compared with conventional pump therapy

(continuous subcutaneous insulin infusion with blinded continuous

glucose monitoring [CGM] or unblinded sensor-augmented pump

[SAP] therapy). However, CL systems often do not protect against

sudden drops in blood glucose caused by moderate intensity physical

exercise (PE).2-4

In 12 patients under glycaemic control with a Medtronic-derived

CL system, Patel et al.5 showed that a simple method to prevent

hypoglycaemia was to eat a snack just before and in the middle of the

PE period (see also de Bock et al.6). Turksoy et al.7 reported that con-

suming an appropriate amount of carbohydrates (CHO) combined

with predictive hypoglycaemia alarms can prevent most hyp-

oglycaemic events.

The Diabeloop Generation-1 (DBLG1) CL system is a hybrid,

single-hormone CL device, which has a self-learning algorithm that

regulates insulin delivery as a function of CGM, CHO intake and PA

lasting more than 15 minutes.8,9 We have previously shown that

DBLG1 completely suppressed exercise-induced hypoglycaemia in

14 free-living patients consuming unrestricted diets for 3 days.9

Regular physical activity (PA) is beneficial for patients with T1D

because it improves well-being and fitness, reduces cardiovascular risk

and helps with reaching target lipid profile and glycaemic goals.10,11 A

previous 12-week randomized study in 63 free-living patients eating

an unrestricted diet (Diabeloop WP7 trial) showed that DBLG1

improves glucose control compared with SAP systems.8 Unlike SAP

systems, DBLG1 records PA data in its internal memory. Therefore,

the Diabeloop WP7 database was accessed to compare

hypoglycaemia on days with and without PA.

2 | METHODS

2.1 | Study design

Post hoc analysis of the Diabeloop WP7 study, a 12-week, multicentre,

open-label, randomized, controlled, crossover trial of DBLG1 in

68 patients with T1D under real-life conditions8 (ClinicalTrials.gov

NCT02987556), was performed. The trial involved 12 French centres,

from March 2017 until August 2018. A full description of the study is

presented in Benhamou et al.8 Briefly, participants were adult patients

with T1D and an HbA1c of 10% or less, who were treated with wearable

insulin pump therapy. Patients were randomly assigned (1:1) to receive

DBLG1-driven insulin therapy or sensor-assisted pump therapy over

12 weeks, followed by an 8-week washout period and the subsequent

crossover intervention. Only the CL crossover period was analysed.
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Similar to other studies in real-life conditions, participants were free to

decide the characteristics of their PA. They were only asked to announce the

duration and intensity (mild, moderate, intense) of each PA session,

60 minutes before starting it.8 We have previously shown12 that the patient's

self-assessment of PA intensity is reliable. Thus, patients who perform PA at

50% of VO2 max self-rate it as moderate and those performing PA at 75% of

VO2 max self-rate it as intense. When the patient declares a PA at least

2 hours before its onset, and if the glycaemic forecast is lower than 160 mg/

dL (at the beginning of PA), a preventive CHO intake is requested depending

on (a) the intensity of the PA and (b) the deviation from the glycaemic target.

2.2 | The Diabeloop system

A Cellnovo (or Kaleido) insulin patch pump is managed by the Dia-

beloop application installed on an android smartphone, and is con-

nected to a Dexcom G5 Mobile CGM system using Bluetooth Low

Energy technology (for technical details, see8,9,13,14).

DBLG1 comprises the announcement of PA and the software cal-

culation of a preventive CHO intake. The latter is calibrated according

to the duration and intensity of the PA to be performed.8,9 The CGM

provides one glycaemia value every 5 minutes to the system. The

self-learning algorithm rapidly optimizes insulin delivery during hyp-

oglycaemic or hyperglycaemic challenges (in approximately 7 hours; it

takes approximately 7 days to perform long-term optimization).

2.3 | Outcome measures

The Diabeloop database was accessed to extract the following data

(recorded during the DBLG1 periods): (a) days with or without recorded

PA, (b) PA duration and intensity, (c) time between the announcement

and the start of the PA (notifications made at the beginning or after the

session were considered “without announcement”), (d) daily time

(24 hours) and overnight time spent in the interstitial glucose range less

than 70 mg/dL (time below range [TBR]), (e) preventive CHO intake

recommended by DBLG1, (f) preventive CHO intake estimated and

recorded by the patient, (g) insulin delivery, (h) mean CGM and varia-

tion coefficient. Cut-points for each glycaemic range were those used

in the Diabeloop WP7 RCT8 and defined in the consensus report of

outcome measures for artificial pancreas clinical trials.15

2.3.1 | Primary outcome measure

The primary outcome was the difference in TBR between days with

and without PA.

2.3.2 | Secondary outcome measures

Secondary outcomes included the following comparisons between days

with and without PA: TBR as a function of the intensity, duration and

delay of PA announcement, preventive CHO, insulin delivery, mean

glycaemia estimated from interstitial glucose and variation coefficient,

time spent in the normoglycaemic range (TIR 70-180 mg/dL) and in the

hyperglycaemic range of more than 180 mg/dL (time above range [TAR]).

2.4 | Statistical analysis

Data are presented as mean ± standard deviation (SD). Statistical

comparisons of the primary outcome (TBR between days with and

without PA) were made using two methods: (a) a mixed model for

repeated measures, with corrections for baseline HbA1c and centre,

and (b) an ordinal logistic model with multinomial distribution (1%

TBR classes, cumulative logit link function), with corrections for base-

line HbA1c and Centre. For preventive CHOs (system-recommended

and patient-declared), statistical comparisons were made with the

Wilcoxon test (days with vs. days without PA) or with the Kruskal-

Wallis test (PA intensity, duration and delay of announcement). Other

statistical comparisons were made with the above mixed model.

3 | RESULTS

3.1 | Participants

Sixty-three patients completed both CL 12-week treatment periods

and were included in the study.8 Their mean age was 48.2

± 13.4 years, 62% were female and they had a medium-high educa-

tion level. Mean diabetes duration was 28 ± 13.6 years; mean HbA1c

level was 7.6% ± 0.9% (59.4 ± 9.8 mmol/mol).

3.2 | Registered PA events

The Diabeloop database registered 1256 PA events. Seven patients

did not record any PA, and were excluded from the analysis. The

remaining 56 participants recorded 19.9 ± 24.1 PA events/patient.

There were 938 days with at least one PA event announced and

4260 days with no announced PA. Patients announced in advance

71.4% of their PA sessions. One PA session was announced the day

before (21.6 hours) and the remaining sessions were announced with

an average upstream time of 79.4 ± 82.8 minutes (min-max

1-596 minutes; median 59 minutes) (Table S1 and Figure S1). The

duration of PA was 82.3 ± 58.3 minutes (min-max 8–480 minutes;

median 60 minutes) (Table S2 and Figure S2), with intensity, “mild”
(40%), “moderate” (41%) or “intense” (19%), respectively.

3.3 | Primary outcome

According to the mixed model for repeated measures, TBR was not

significantly different between days with or without PA announced to

the software (2.0% ± 1.5% vs. 2.2% ± 1.1%, respectively; P = .282)
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(Figure 1, top panel). One patient spent 1 day with TBR = 0% and

most patients were in the TBR range of >0% to 4% range. Statistical

analysis with the ordinal logistic model (with 1% TBR classes) con-

firmed that there was no more TBR with PA than without PA (Figure

S3). In fact, the TBR was significantly lower with PA than without PA

(P = .0065).

3.4 | Secondary outcomes

TBR was not significantly influenced by: (a) PA intensity (TBR = 1.6%

± 1.8% [N = 36] for mild, 2.0% ± 1.4% for moderate [N = 50] and

2.2% ± 1.7% [N = 34] for intense; P = .209; N indicates the number

of patients) or (b) PA duration (TBR = 1.9% [N = 13] for <30 minutes,

2.1% [N = 46] for 30-60 minutes, 1.9% [N = 44] for 60–90 minutes,

2.0% [N = 52] for >90 minutes; P = .953). The time elapsed between

the announcement and the onset of PA did not significantly influence

the TBR (1.7% ± 0.3%, 2.3% ± 0.3%, 2.2% ± 0.3% and 2.3% ± 0.3%

for announcement at 60 or more minutes before PA, 30–60 minutes

before PA, <30 minutes before PA and at the start of PA, respectively;

P = .285). Overnight TBR was not significantly different after days with

or without PA (1.2% ± 0.2% vs. 1.6% ± 0.2%, respectively; P = .507).

Preventive CHO intake was significantly higher with PA than

without PA (Figure 1, middle panel). This was the case for the preven-

tive CHO recommended by DBLG1 (31.1 ± 29.9 vs. 18.4 ± 25.4 g/

day, P < .0001), as well as for the preventive CHO recorded by the

patient (41.1 ± 35.5 vs. 21.8 ± 28.5 g/day, P < .0001) (Figure 1,

middle panel). Recorded CHO intake increased with increasing

PA duration (e.g. 49.4 ± 38.3 vs. 37.8 ± 30.3 g/day for >90-

and <30-minute periods, respectively; P < .001). The mean delay

between the intake and the PA onset was 36.4 ± 57.0 minutes (min-

max 1-1295 minutes; median 59 minutes). The same patient who

announced a PA session the day before (21.6 hours) announced the

intake at the same time.

Total insulin delivery was significantly lower on days with PA

(31.5 ± 10.5 U/day) compared with days without PA (34.0 ± 10.5 U/

day; P < .0001) (Figure 1, bottom panel). Similar results were obtained

with basal insulin (10.5 ± 0.5 U/day vs. 11.1 ± 0.5 U/day on days with

and without PA, respectively; P < .001), and for bolus insulin (21.0

± 1.0 U/day vs. 23.0 ± 1.0 U/day; P < .001). The HbA1c covariate had

a positive and significant effect on basal, bolus and total insulin doses

(2.7 ± 5.9, 4.9 ± 8.7 and 7.5 ± 13.4, respectively; P < .001 for each

variable; Centre had no effect).

Figure S4 shows the median sensor IQRs of CGM levels: mean

value was slightly, but significantly higher with PA (158.6 ± 12.0 mg/

dL) than without PA (156.3 ± 12.0 mg/dL; P = .044). The average

CGM coefficient of variation was higher with PA (32.0% ± 3.7%) than

without PA (30.9% ± 3.7%; P = .019).

An increase in the daily time spent in TAR was observed with PA

(28.7% ± 9.3%) versus without PA (26.8% ± 8.6%, P = .017). A very

small, but significant decrease was found in the daily time spent in TIR

with PA (69.1% ± 8.2%) compared with TIR without PA (70.9%

± 8.2%, P = .017).

4 | DISCUSSION

No more hypoglycaemia was found on days with PA compared with

days without PA when using DBLG1 for 12 weeks, regardless of the

duration or intensity of the PA. This finding was accompanied by an

increase in preventive CHO intake and a reduction in insulin delivery.

A small but significant increase in hyperglycaemic time was found in

days with PA.

Various approaches have been used to prevent or manage

hypoglycaemia, and help people with T1D to engage in safe and regu-

lar PA.2-4 These include education concerning the timing and type of

PA.2,4 The PEAK group11 issued a consensus statement on glucose

targets, insulin dose adjustments and nutritional issues. The American

F IGURE 1 Time spent in hypoglycaemia during days with or
without physical activity, and associated changes in carbohydrate
(CHO) intake and insulin delivery. (Top) Time spent in hypoglycaemia
(interstitial glucose <70 mg/dL). (Middle) Preventive CHO intake.
“DBLG1” indicates preventive CHO intake recommended by the
system. “Patient” indicates preventive CHO intake recorded by the
patient. (Bottom) Insulin delivery
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Diabetes Association recommends that adults with T1D engage in at

least 150 minutes of moderate to vigorous aerobic activity per

week.16 This objective was partially achieved in our study, where

patients underwent PA sessions (mostly mild to moderate) of an aver-

age duration of 136.5 minutes per week.

Current guidelines recommend limiting PA-induced

hypoglycaemia by reducing or suppressing insulin delivery. In patients

using insulin pumps, manually reducing the subcutaneous insulin infu-

sion within 60-90 minutes before starting PA lowers “insulin on

board” and reduces the occurrence of hypoglycaemia.11,17,18 This

seems difficult to achieve in real-life conditions19 because it implies

anticipating PA sessions at least 1 hour before the start of exercise

(only a small benefit was observed with insulin administration adjust-

ments made 5 minutes before20). Moreover, marked reductions in

blood glucose are not prevented simply by reducing insulin delivery.5

In such a case, a CHO supplement5-7 or an unrestricted diet9 prevents

exercise-induced hypoglycaemia. The control of PA-induced

hypoglycaemia by DBLG1 was associated with a calibrated increase in

preventive CHO intake (mean value = 20 g) and a small but significant

reduction of insulin delivery (�2.5 units).

The participants in our study consumed a preventive CHO of

around 30% more than that recommended by DBLG1, and this

may have contributed to the increase in hyperglycaemic time on

days with PA versus days without PA (28 minutes). Activation of

counter-regulatory mechanisms during intense anaerobic or

aerobic PA may also have played a role in the observed

hyperglycaemia.21,22

The present post hoc analysis of the Diabeloop WP7 trial clearly

confirms and extends previous studies5-7,9 that have shown that PA-

induced hypoglycaemia can be avoided by adding CHO supplements

or an unrestricted diet (Table 1). Dual-hormone systems (insulin and

glucagon) can prevent PA-hypoglycaemia,3 but increase the cost

and complexity of insulin pump devices.

4.1 | Study limitations

The study limitations were similar to those of other real-life studies. In

particular, participants were free to decide the characteristics of their

PA, and only the duration and intensity (mild, moderate, intense) of

each PA session were documented in the Diabeloop database. Partici-

pants did not sufficiently observe the CHO intake recommended by

DBLG1. Preventive CHO may favour weight gain. We were unable to

compare the performance of DBLG1 with that of standard care,

because only DBLG1 recorded upcoming PA announcements (dura-

tion and intensity of PA). The post hoc nature of this analysis pre-

cluded the assessment of statistical power. Physiological factors that

may contribute to glycaemic control during PA were not studied

(e.g. counter-regulations involving the autonomic nervous system

and/or glucagon).23 Besides TIR (CGM 70-180 mg/dL), TBR (CGM

<70 mg/dL) and TAR (CGM >180 mg/dL), other glycaemic excursions

were not analysed. The algorithm of the CL system does not

distinguish PA performed in the postprandial versus the post-

absorptive state.

In conclusion, when using DBLG1 in real-life conditions, there is

no more hypoglycaemia on days with PA compared with days without

PA. This absence of supplementary hypoglycaemia was independent

of the PA intensity and duration or the delay in notification. Small but

significant increases in hyperglycaemic time and glycaemic variability

were found on days with PA. Future studies should take this concern

into account, in order to improve the algorithms of CL systems com-

prising the announcement of PA.
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