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ABSTRACT

Ultrasonic inspection of coarse-grained steels is a common challenge in various industrial fields. This
task is often difficult because of acoustic scattering that creates structural noise in the ultrasonic sig-
nals and images. This drives inspections using low-frequency probes at the cost of a lower resolution
of standard delay and sum (DAS) imaging techniques, such as the well-known total focusing method
(TFM). The purpose of this paper is to present and evaluate the performances of an image recon-
struction technique that aims at improving the resolution when inspecting industrial coarse-grained
materials. An image deconvolution problem (with spatially varying blur) is formulated, relying on
a forward model that links the TFM image to the acoustic reflectivity map. A particular attention is
paid to the estimation of the PSF used for the deconvolution approach in an experimental context.
The experiments are based on an austenitic-ferritic sample insonified using array probes at 3MHz
and 5MHz placed in contact. The goal is to resolve two close reflectors corresponding to side drilled
holes (SDH) with diameter 0.4mm spaced by 0.4mm edge to edge and positioned at different depths
(10, 20, 30, 40mm). This configuration corresponds to a critical case where the distance between the
two reflectors is significantly inferior to the Rayleigh distance, that is the resolution limit of a DAS
imaging system. These are typical cases where the employed frequency is actually too low and where
a higher frequency probe should be used, which is not possible in practice, because it would affect
the detection capability due to higher noise level. As predicted by the Rayleigh criterion, TFM is not
able to separate the reflectors. The proposed image reconstruction method successfully resolves the
majority of the reflectors with a rather accurate distance estimation. In the context of coarse-grained
structure inspection, this approach enables the use of low-frequency probes, in order to improve the
signal-to-noise ratio, while keeping high resolution capability.

1. Introduction
Ultrasonic imaging is a common procedure for nonde-

structive testing (NDT) of essential elements in many fields
such as aeronautics, power generation or oil and gas industry.
In the power generation domain, stainless steel materials are
commonly employed because of their good resistance to high
temperatures and mechanical stress. Such materials often
have a coarse-grained structure. During ultrasonic testing
(UT), their highly heterogeneous structure creates scattering
of the ultrasonic waves, which generates structural noise in
the ultrasonic signals and images. Scattering then creates
acoustic attenuation, impacting the high frequency content
of the propagated ultrasonic waves [1]. For this reason, rel-
atively low frequency probes (around 2 − 3 MHz) are used
in this type of situation [2, 3], which limits the resolution of
the imaging system.

In the present paper, the goals are twofold. First, our aim
is to increase the contrast and denoise the image in order to
improve the flaw detection capability. A second objective
consists in improving the resolution, that is, the capability to
separate close reflectors. Delay and sum (DAS) techniques
are standard software beamformers that perform synthetic
focusing in every point of the region of interest [4]. The total
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focusing method (TFM) [5, 6] is a DAS technique applied to
full matrix capture (FMC) data—the full set of inter-element
responses of the probe. TFM achieves good image quality
because of its high number of recorded signals. Neverthe-
less, like all DAS techniques, it suffers from poor resolution
and contrast in many cases. This is particularly true when in-
specting coarse-grained materials, because of the employed
low-frequency probes and of the structural noise corrupting
the images.

Several techniques based on the Decomposition of the
Time Reversal Operator (DORT) have been proposed [7, 8,
9], which mainly aim to increase the signal-to-noise ratio
(SNR). Regularized inversion methods are efficient to ad-
dress both resolution and SNR issues [10]. Inversion of the
raw radio-frequency (RF) datawas proposed in [11, 12], which
is efficient but relatively slow due to the large amount of
data. Other recent inverse methods that directly process the
beamformed (BF) images can be seen as image deconvolu-
tion methods [13, 14]. In this case, it was shown that the
computation speed could be dramatically increased because
BF datasets are much smaller than RF datasets, while the
resulting loss in image quality was found to be quite moder-
ate [14]. In this paper, we present an image deconvolution
method based on [14] for the ultrasonic imaging of coarse-
grained steel, and we study its ability to improve the resolu-
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tion in the context of sub-wavelength reflectors detection in
scattering material.

The paper is organized as follows. In Section 2, the ac-
quisition process and the associated standard beamforming
method are detailed. Then, the image deconvolution method
proposed in [14] is described in Section 3. In Section 4, the
method is evaluated and compared to TFM imaging for in-
spection of an austenitic-ferritic stainless steel sample con-
taining close side drilled holes (SDH) with 0.4mmdiameter.
Finally, conclusion and perspectives are given in Section 5.

2. Data acquisition and standard TFM
beamforming
The acquisition scheme of TFM is called full matrix cap-

ture (FMC). It consists in recording the elementary signals
from all transmitter-receiver pairs of the array. If Nel is the
number of elements in the array, the data are denoted yij(t),
where i = 1…Nel is the transmitter index, j = 1…Nel is
the receiver index, and t stands for time. The total number
of A-scans for a single dataset is hence N2

el. In FMC, ul-
trasonic waves are transmitted independently by each trans-
ducer and collected by all of them, which is considered as a
heavy procedure. Nevertheless, it contains a wide variety
of exploitable information (longitudinal and shear modes,
mode conversions, surface waves, etc.) [15].

The standard way to beamform the FMC data is the TFM
beamformer. The intensity of the TFM image at any point
with coordinates (x, z) is computed as:

oTFM(x, z) =
Nel
∑

i=1

Nel
∑

j=1
yij

(

�i,j(x, z)
)

, (1)

where �i,j(x, z) is the time of flight from transmitter i to the
point (x, z) and back to receiver j. Similarly to other DAS
beamformers, the TFM consists in synthetically focusing the
ultrasonic signals at all points of the region of interest.

Let y denote a column vector gathering all A-scans and
let oTFM denote a column vector collecting the pixel values
of the beamformed TFM image. Equation (1) is a linear op-
eration that can be written as:

oTFM = By, (2)

where B ∈ ℝNxNz×N2
elNt is called the beamforming opera-

tor [12]. For each pixel in the region of interest, the corre-
sponding row in B selects the nearest indices corresponding
to the times of flight in all A-scans involved in the summa-
tion (1). In this work, a binary operator B is considered,
but an interpolation law between closest indices could be
used [4] as well as an apodization law considering directivity
patterns [6].

Note that Equation (2) gives a general expression of DAS
beamforming. It can describemany acquisition schemes such
as plane waves [16] and diverging waves [17]. In the next
sections of this paper, we consider an FMC/TFM framework,
but it can basically be applied to any acquisition scheme.

3. Deconvolution of TFM images
3.1. Forward data model

The FMC data y presented in Section 2 can be modeled
as a discrete linear model [12]:

y = Hto + nt, (3)

whereHt ∈ ℝN2
elNt×NxNz is the waveformmatrix containing

ultrasonic elementary signatures at the times of flight corre-
sponding to all combinations of A-scans and pixels. Vector
o represents the unknown (vectorized) reflectivity map of
the media and nt stands for noise and model errors, and it is
assumed to be zero-mean, white and Gaussian.

As shown in [14], model (3) can be projected in the space
domain in order to define a forward model between the re-
flectivity map and the TFM image. Indeed, applying the
beamforming operator B to Equation (3) gives:

oTFM = BHto + Bnt = Hso + ns, (4)

with Hs = BHt and ns = Bnt. Retrieving the reflectivity
map o from the TFM image oTFM is similar to an image
deconvolution problem. Matrix Hs ∈ ℝNxNz×NxNz repre-
sents a non-stationary 2D convolution operator, where the
Point Spread Function (PSF) is different for each pixel be-
cause of the acquisition geometry. Each column of Hs cor-
responds to the PSF associated with a point-like reflector in
the reflectivity map. Vector ns corresponds to the Gaussian
white noise component nt on which the TFM beamforming
has been applied. The resulting noise statistics is still Gaus-
sian but not white, in particular the covariance of ns also de-
pends on the acquisition geometry [14]. A whitening strat-
egy can be classically employed in order to deal with colored
noise. It consists in applying a “pre-whitening" operator to
model (4), such that the resulting noise term can be consid-
ered as white [18]. The resulting model then reads:

owTFM = Hw
s o + nws , (5)

where owTFM is the whitened TFM image and Hw
s is the (ap-

proximate) whitened forward operator. In [14], an interpo-
lation model is proposed which achieves fast and accurate
computation of this model.

3.2. Waveform model
The forward model (5) requires the knowledge of the

two-dimensional PSF at each point, which depends on the
inspection geometry (via the matrix B in Equation (2)) and
on the time-domain ultrasonic waveform ℎ that propagates in
the medium (upon which matrixHt is built in Equation (3)).

In the following, we consider an identical waveform for
all transducersmodeled as an asymmetric Gaussianwavelet [19]:

ℎ(t,�) = e(t, �, r, m) cos(2�fot + �), (6)

where � = [�, r, m, f0, �] collects the wavelet parameters:
f0 is the center frequency, � is the phase shift, and the asym-
metric envelope function e(t, �, r, m) is defined as:

e(t, �, r, m) = e−�(1−r tanh(mt))t
2
. (7)
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The envelope function has two different decay rates: �(1+r)
for negative t and �(1 − r) for positive t. The parameter m
tunes the transition rate between the two parts. Such asym-
metric model may accurately represent an ultrasonic wave-
form envelope, which generally decays more slowly than it
raises.

In practice, the parameters � must be estimated through
a calibration procedure prior to inspection. In the case of
coarse-grained materials, this is a difficult challenge due to
structural noise, so that A-scans are very noisy. Therefore,
we propose to estimate the parameters of the ultrasonicwave-
form from the TFM image, that coherently sums the ultra-
sonic echoes, so that the SNR is increased. We consider the
TFM image of a pointwise reflector located at coordinates
(xPSF, zPSF) in the material. Then, the A-scan signals can be
written as:

yij(t) = ℎ
(

t − �i,j(xPSF, zPSF),�
)

, (8)

where ℎ(t,�) is defined in (6). Then, the parameters � are
adjusted by fitting the data oTFM with the image predicted by
combining the TFM model (1) and model (8):

min
�

‖

‖

‖

‖

‖

‖

oTFM(x, z) −
∑

i,j
ℎ
(

�i,j(x, z) − �i,j(xPSF, zPSF),�
)

‖

‖

‖

‖

‖

‖

2

.

In this paper, we use the Levenberg-Marquardt algorithm to
solve this non-linear least squares optimization problem.

3.3. Inversion procedure
Ultrasonic transducers have a limited frequency range

and consequently, the TFM image lacks information, in par-
ticular at high frequencies that contain the image details. Re-
trieving the reflectivity map from the whitened TFM image
is an ill-posed problem [10]. Here, a classical regularization
framework is employed, which consists in adding a penal-
ization function to the least-squares misfit criterion to mini-
mize:

os = argmin
o

JLS(o) + �(o). (9)

The term JLS(o) is the standard least-squares criterion which
is appropriate since the data have been whitened :

JLS(o) ∶=
‖

‖

‖

owTFM −Hw
s o

‖

‖

‖

2
. (10)

The term �(o) corresponds to the penalization function. We
adopt a sparse regularization strategy to enhance high-
frequency information in the solution. Spatial smoothness is
also favored in order to reconstruct ultrasonic reflectors with
some spatial extent. As a result, we get a hybrid penalization
function:

�(o) = �1 ‖o‖1 + �2 ‖Do‖2 , �1, �2 > 0, (11)

where Do is the image gradient and �1 and �2 are regular-
ization parameters that balance between the data fitting term
JLS(o) and the regularization term �(o). The tuning of these
parameters is addressed in [12, 14]. The minimization of
criterion (9) is performed using the Fast Iterative Shrinkage
Thresholding Algorithm (FISTA) [20].

(a)

(b)

Figure 1: Picture of the sample used for experiments with
5MHz probe (a) and with 3MHz probe (b). The single SDH
(respectively, the pairs of SDH) at 10mm and 20mm depths
are circled in red (respectively, in blue).

4. Experimental results
4.1. Description of the experiments

The sample used for this study is represented in Fig-
ure 1. It is composed of austenitic-ferritic stainless steel
with a coarse-grained structure. The sample contains SDH
with 0.4mm diameter, either isolated or paired, located at
depths of 10, 20, 30 and 40mm. The positions of the flaws
are shown in the scheme of Figure 2. The distance between
two close SDHs is equal to 0.4mm edge-to-edge, that is,
0.8mm center-to-center. The velocity of longitudinal waves
has been measured at 5 700 m/s.

The RF data are acquired with the Pioneer system which
is an open platformwith fast acquisition speed (TPAC,West-
Chester, USA). Each probe is placed in contact with the sam-
ple using coupling gel (see Figure 1). The sampling fre-
quency is 50MHz and the quantization corresponds to 14 bits.
The acquisition procedure consists in FMC, detailed in Sec-
tion 2. Two different probes are used in this study. The first
has 64 elements and a central frequency of 5MHz, and the
second has 128 elements and a central frequency of 3MHz
(Imasonic, Voray-sur-l’Ognon, France). Their specifications
are given in Table 1. Both probes have complementary prop-
erties. Indeed, a higher frequency probe (> 5 MHz) would
be generally better suited to image such small defects in an
homogeneousmaterial. Nevertheless, higher frequencies are
more strongly affected by scattering noise, so that a lower
frequency probe would be preferred in order to achieve suf-
ficient SNR enabling the detection of flaws, but then decreas-
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Figure 2: Scheme of the inspected piece, composed of series of single and double side drilled holes at di�erent depths.

(a) (b)

Figure 3: Zoom on the TFM images obtained with 5MHz probe (a) and with 3MHz probe (b) around z = 20mm, and principle
of SNR estimation. The reference scatterer is the single SDH circled in blue and the noise region is framed in blue.

ing the resolution of TFM imaging. Therefore, these experi-
ments aim to study how the proposed inversion method, de-
noted by INV in the following, is able to achieve high reso-
lution images with lower frequency probes.

In order to characterize the noise level for each problem
(that is, for each probe and at the different inspection depths),
we define the SNR from the TFM images as:

SNR = 10 log
oTFM(xSDH, zSDH)2

Pnoise
, (12)

where (xSDH, zSDH) are the coordinates corresponding to the
maximum amplitude of the single SDH andPnoise is themean
power in the noise region. Figure 3 illustrates the SNR def-
inition at depth 20mm, for the TFM images obtained with
each probe. As discussed above, one can clearly see that the
noise level is higher for 5MHz data (SNR ∼ 20.9 dB) than
for 3MHz data (SNR ∼ 23.6 dB).

The difficulty of each problem is also measured in terms
of resolution through the Rayleigh criterion  defined as:

 = 0.61�
sin �

, (13)

with � denoting the wavelength and with tan � = D∕(2z),
where D is the full aperture of the array and z is the reflec-

# probe 1 2

Number of elements 64 128
Center frequency (MHz) 5 3

Pitch (mm) 0.6 0.8
Elevation (mm) 10 14
Wavelength (mm) 1.14 1.90

Table 1

Properties of the two probes used for inspection.

tor depth.  corresponds to the resolving limit of a stan-
dard DAS beamformer [21]. In all following examples, the
edge-to-edge distance between the two reflectors is close or
inferior to the Rayleigh criterion. We focus on the capability
of the TFM and INV to detect and separate the flaws, with
depths varying from 10 to 40mm.

4.2. TFM image acquisition
As shown in Figure 1, the apertures of the two probes

are too small to acquire the full data set from a single ac-
quisition. Thus, the probes are successively located above
each set of SDHs (see Figure 2). For each position, the cor-
responding TFM image is acquired. The imaged zone along
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Figure 4: Example of PSF estimation from the SDH located at z = 20mm obtained with 5MHz data (top row) and with 3MHz
data (bottom row) using the data shown in Figure 3. The �rst column displays the TFM image centered on the re�ector. The
second column represents the synthetic PSF reconstructed at the same location by �tting the ultrasonic waveform model. The
third column shows the error between the TFM reconstruction and the estimated PSF. Images (a) and (b) have the same dynamic
scale. Images (d) and (e) have the same dynamic scale.

the x direction corresponds approximately to the aperture of
each probe, that is, 40mm for the 5MHz probe and 100mm
for the 3MHz probe. The imaged zone along the z direction
covers the range [zSDH−5mm, zSDH+5mm] for the 5MHz
probe, and [zSDH − 5mm, zSDH + 10mm] for the 3MHz
probe, with zSDH the depth of the considered SDH. In all
experiments, the pixel size is 0.05 × 0.05mm2. The full
images have therefore 801 × 201 pixels (40 × 10mm2) for
5MHz probe, and 2001 × 301 pixels (100 × 15mm2) for
3MHz probe.

4.3. Estimation of the PSF model
Figure 4 (top row) shows the TFM data and the esti-

mated PSF with 5MHz probe on the single SDH located at
z = 20mm. The TFM signature of the SDH looks highly
distorted due to the high level of noise. Figure 4 (bottom
row) shows the estimated PSFwith 3MHz probe on the same
SDH located at z = 20mm. The data have a more regular
shape, therefore the main lobes of the ultrasonic waveform
are better reconstructed and the estimation error is smaller.

The corresponding time-domain ultrasonic waveform es-
timated from the 5MHz data is shown in Figure 5(a), and is
almost symmetrical (r ≈ 0). The estimated waveform with
3MHz probe is shown in Figure 5(b). In this case, the es-
timated decay rate is 4.5 times larger on the left part than
on the right part, proving the relevance of the asymmetric
model.

Finally, for each TFM image, themodel (5) with spatially
variant PSF along the x direction is considered, based on
the PSF obtained in Section 4.3 and taking the acquisition
geometry into account (details can be found in [14]).

4.4. Results with the 5 MHz probe
Wenowpresent the results obtainedwith the 5MHz probe.

The computation of the 801 × 201-pixel TFM beamformed
image required 0.12 s, and the inversion procedure required
an additional 0.44 s. The estimation of the time-domainwave-
form parameters and of the 2D PSF are not included in the
computation time, since they can be performed in advance
within a calibration step. For each pair of SDHs, image
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Figure 5: Ultrasonic waveform estimated from the SDH lo-
cated at 20mm depth with 3MHz probe (-), asymmetric Gaus-
sian envelope of the estimated ultrasonic waveform (-), sym-
metric Gaussian envelope for the left part �(1 + r) (-- --), sym-
metric Gaussian envelope for the right part �(1 − r) (-- -).

zooms of 121 × 121 pixels are displayed, corresponding to
6 × 6 mm2. In order to quantify the separation between the
flaws, we use the Peak to Center Intensity Difference (PCID)
value [22], denoted 
 , which is the difference in dB between
the maximum amplitude due to the two reflectors and the
minimum amplitude in the area between them. This PCID is
computed on the line profile obtained by averaging the pixel
values over the z axis in each 121 × 121-pixels image. Two
reflectors are considered as resolved if their PCID is lower
than −6 dB [22].

Reconstructed images are shown on the top part of Fig-
ure 6, together with the line profile corresponding to the aver-
age intensity over the corresponding z values. For the SDH
pair at 10mm depth (Figure 6(a)), with SNR = 30.4 dB,
the TFM image shows two distinct maxima, with PCID 

slightly below −6 dB, so the two SDHs can be considered as
resolved. This observation is consistent with the fact that, in
this configuration, the center-to-center distance (0.80mm)
is very close to the Rayleigh criterion ( = 0.79 mm). The
INV image shows a clear separation between the two reflec-
tors, and the distance between them is estimated at 0.95mm,
which is close to the true distance (0.80mm).

Results for the pairs of SDHs at 20mmand 30mmdepths
are presented in Figures 6(b) and 6(c), respectively. Here,
the SNR equals 20.9 dB and 14.9 dB, and the Rayleigh cri-
terion equals 1.01mm and 1.30mm, respectively, so that the
problems are more difficult than at z = 10mm. Similar con-
clusions can be drawn for both cases: as expected, TFM is
not able to resolve the reflectors, whereas the INV method
can separate them (
 < −6 dB). The estimated distance be-
tween reflectors is 0.90mm and 0.95mm, respectively.

Finally, results for the deepest SDHs (z = 40mm) are
displayed in Figure 6(d). In this configuration, one has
 = 1.63 mm, which is twice the distance between the re-
flectors. Due to the high noise level (SNR = 14.2 dB), none
of the two methods is able to separate the reflectors.

Numerical results are summarized in Table 2. The pair

5MHz data TFM INV

z SNR  
 d 
 d
(mm) (dB) (mm) (dB) (mm) (dB) (mm)

10 30.37 0.79 −1.94 0.85 −∞ 0.95
20 20.90 1.01 0 NR −∞ 0.90
30 14.94 1.30 0 NR −∞ 0.95
40 14.16 1.63 0 NR 0 NR

3MHz data TFM INV

z SNR  
 d 
 d
(mm) (dB) (mm) (dB) (mm) (dB) (mm)

10 29.02 1.18 0 NR −∞ 0.50
20 23.56 1.25 0 NR −25.33 0.70
30 20.99 1.35 0 NR −20.96 0.85
40 16.83 1.48 0 NR −14.80 0.75

Table 2

Results for the 5MHz probe (top) and the 3MHz probe (bot-
tom): data characteristics, PCID 
 and estimated distance d
between the two re�ectors, when detected. The true distance
between re�ectors is 0.80mm. NR stands for "Not Resolved".

at 40mm seems to be the separation limit of the proposed
method for this configuration (probe and reflector distance).

4.5. Results with the 3 MHz probe
The bottom part of Figure 6 similarly displays the re-

sults obtained with the 3MHz data. Note that the recon-
structed image is much larger in this case (2 001 × 301 pix-
els), therefore the computation time for the INV method is
now about 20 s (the computation of the TFM image required
0.23 s). For the first SDH pair at z = 10mm, due to the lower
frequency of the probe, the Rayleigh criterion is now in-
creased to = 1.18mm, and the TFM is not able to resolve
the reflectors. On the contrary, the INV method achieves a
good separation. Note, however, that the distance between
the SDHs is underestimated (0.50mm). For data at depths
20mm and 30mm (see columns (b) and (c) in Figure 6), for
which  = 1.25mm and 1.35mm respectively, the SDH
pairs are well resolved with the INV method, contrary to the
TFM.Moreover, the distances between the SDHs in the INV
image are quite accurate, 0.70mmand 0.85mm respectively.
Finally, Figure 6(d) shows that the SDHs can still be resolved
by INV since localmaxima are found in the image. However,
in the last two cases, several artifacts are visible, which may
be due to a lower accuracy of the PSF estimation.

Results are summarized in Table 2. We note that, for the
three last depths, the distance between the flaws is accurately
estimated. Compared to results with 5MHz data, better per-
formance is achieved with INV, in consistence with the ob-
servation that images are less corrupted by structural noise
for lower frequencies.

5. Conclusion
We have presented a deconvolution method for resolu-

tion improvement in NDT applications. In particular, we
have shown that it is well adapted to the inspection of coarse-
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Figure 6: Results obtained with 5MHz data (5MHz probe, top panel) and with 3MHz data (3MHz probe, bottom panel). In
each case, the �rst row displays the TFM images obtained around each pair of re�ectors at depths 10mm (a), 20mm (b), 30mm
(c) and 40mm (d). The second row displays the INV images. The third row represents the image intensity averaged along the z
axis, for the TFM image (−) and for the INV image (−).
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grained structures, that is a frequent problem in several in-
dustry sectors. The method is based on the deconvolution of
delay-and-sum beamformed images e.g., TFM, but it could
be applied to other acquisition schemes. Experimental re-
sults have shown that the resolution capability is increased
compared to TFM, going beyond the limit of the Rayleigh
criterion. In presence of high-level structural noise, the pro-
posed method is able to separate close reflectors up to about
three times the Rayleigh criterion.

This method advantageously enables the use of lower-
frequency probes (around 3MHz) for the inspection of coarse-
grained steel samples, for which the ultrasonic pulse prop-
agates farther in the inspected material and therefore pro-
vides data with better signal-to-noise ratio. The loss in res-
olution is then compensated by taking an accurate forward
model into account and by enforcing the sparsity of the re-
constructed reflectivity image.

The computation time of the proposed method increases
with the size of the reconstructed image. In the proposed ex-
periments, a very small pixel sizewas used (0.05× 0.05mm2)
in order to achieve high resolution, so that reconstructing the
100 × 15mm2 image with the 3MHz probe required about
20 s. The computation time could be significantly reduced
by reconstructing the images only locally in regions of in-
terest that could be identified from the TFM image. Note
that the computational complexity of the method does not
depend on the number of transducers, since it works on the
precomputed TFM data.

An interesting perspective will concern the applications
to more complex reflectors and to real flaws such as porosi-
ties and cracks. Indeed, such kind of flaws are supposed to be
modeled by more complex point-like responses (i.e. PSFs),
which have to be experimentally determined. For the results
presented in this paper, the elementary waveform has been
estimated for each depth. An accurate modeling of the el-
ementary waveform deformation during the propagation in
coarse-grained materials [1, 2] would also achieve a reliable
forward model, without resorting to an empirical calibration
step.
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