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Introduction

Ultrasonic imaging is a common procedure for nondestructive testing (NDT) of essential elements in many fields such as aeronautics, power generation or oil and gas industry. In the power generation domain, stainless steel materials are commonly employed because of their good resistance to high temperatures and mechanical stress. Such materials often have a coarse-grained structure. During ultrasonic testing (UT), their highly heterogeneous structure creates scattering of the ultrasonic waves, which generates structural noise in the ultrasonic signals and images. Scattering then creates acoustic attenuation, impacting the high frequency content of the propagated ultrasonic waves [START_REF] Papadakis | Ultrasonic attenuation caused by scattering in polycrystalline metals[END_REF]. For this reason, relatively low frequency probes (around 2 -3 MHz) are used in this type of situation [START_REF] Hirsekorn | Ultrasonic methods to detect and evaluate damage in steel[END_REF][START_REF] Anderson | Assessment of Crack Detection in Heavy-Walled Cast Stainless Steel Piping Welds Using Advanced Low-Frequency Ultrasonic Methods[END_REF], which limits the resolution of the imaging system.

In the present paper, the goals are twofold. First, our aim is to increase the contrast and denoise the image in order to improve the flaw detection capability. A second objective consists in improving the resolution, that is, the capability to separate close reflectors. Delay and sum (DAS) techniques are standard software beamformers that perform synthetic focusing in every point of the region of interest [START_REF] Perrot | So you think you can DAS? A viewpoint on delay-and-sum beamforming[END_REF]. The total ORCID(s): focusing method (TFM) [START_REF] Chiao | Analytic evaluation of sampled aperture ultrasonic imaging techniques for NDE[END_REF][START_REF] Holmes | Post-processing of the full matrix of ultrasonic transmit-receive array data for nondestructive evaluation[END_REF] is a DAS technique applied to full matrix capture (FMC) data-the full set of inter-element responses of the probe. TFM achieves good image quality because of its high number of recorded signals. Nevertheless, like all DAS techniques, it suffers from poor resolution and contrast in many cases. This is particularly true when inspecting coarse-grained materials, because of the employed low-frequency probes and of the structural noise corrupting the images.

Several techniques based on the Decomposition of the Time Reversal Operator (DORT) have been proposed [START_REF] Aubry | Random matrix theory applied to acoustic backscattering and imaging in complex media[END_REF][START_REF] Shahjahan | A random matrix approach to detect defects in a strongly scattering polycrystal: How the memory effect can help overcome multiple scattering[END_REF][START_REF] Villaverde | Ultrasonic imaging of defects in coarse-grained steels with the decomposition of the time reversal operator[END_REF], which mainly aim to increase the signal-to-noise ratio (SNR). Regularized inversion methods are efficient to address both resolution and SNR issues [START_REF] Idier | Bayesian Approach to Inverse Problems[END_REF]. Inversion of the raw radio-frequency (RF) data was proposed in [START_REF] Guarneri | A sparse reconstruction algorithm for ultrasonic images in nondestructive testing[END_REF][START_REF] Laroche | An inverse approach for ultrasonic imaging from full matrix capture data: Application to resolution enhancement in NDT[END_REF], which is efficient but relatively slow due to the large amount of data. Other recent inverse methods that directly process the beamformed (BF) images can be seen as image deconvolution methods [START_REF] Besson | A physical model of non-stationary blur in ultrasound imaging[END_REF][START_REF] Laroche | Fast non-stationary deconvolution of ultrasonic beamformed images for nondestructive testing[END_REF]. In this case, it was shown that the computation speed could be dramatically increased because BF datasets are much smaller than RF datasets, while the resulting loss in image quality was found to be quite moderate [START_REF] Laroche | Fast non-stationary deconvolution of ultrasonic beamformed images for nondestructive testing[END_REF]. In this paper, we present an image deconvolution method based on [START_REF] Laroche | Fast non-stationary deconvolution of ultrasonic beamformed images for nondestructive testing[END_REF] for the ultrasonic imaging of coarsegrained steel, and we study its ability to improve the resolu-tion in the context of sub-wavelength reflectors detection in scattering material.

The paper is organized as follows. In Section 2, the acquisition process and the associated standard beamforming method are detailed. Then, the image deconvolution method proposed in [START_REF] Laroche | Fast non-stationary deconvolution of ultrasonic beamformed images for nondestructive testing[END_REF] is described in Section 3. In Section 4, the method is evaluated and compared to TFM imaging for inspection of an austenitic-ferritic stainless steel sample containing close side drilled holes (SDH) with 0.4 mm diameter. Finally, conclusion and perspectives are given in Section 5.

Data acquisition and standard TFM beamforming

The acquisition scheme of TFM is called full matrix capture (FMC). It consists in recording the elementary signals from all transmitter-receiver pairs of the array. If el is the number of elements in the array, the data are denoted ( ), where = 1 … el is the transmitter index, = 1 … el is the receiver index, and stands for time. The total number of A-scans for a single dataset is hence 2 el . In FMC, ultrasonic waves are transmitted independently by each transducer and collected by all of them, which is considered as a heavy procedure. Nevertheless, it contains a wide variety of exploitable information (longitudinal and shear modes, mode conversions, surface waves, etc.) [START_REF] Zhang | Defect detection using ultrasonic arrays: The multi-mode total focusing method[END_REF].

The standard way to beamform the FMC data is the TFM beamformer. The intensity of the TFM image at any point with coordinates ( , ) is computed as:

TFM ( , ) = el ∑ =1 el ∑ =1 , ( , ) , (1) 
where , ( , ) is the time of flight from transmitter to the point ( , ) and back to receiver . Similarly to other DAS beamformers, the TFM consists in synthetically focusing the ultrasonic signals at all points of the region of interest. Let denote a column vector gathering all A-scans and let TFM denote a column vector collecting the pixel values of the beamformed TFM image. Equation ( 1) is a linear operation that can be written as:

TFM = , ( 2 
)
where ∈ ℝ

× 2
el is called the beamforming operator [START_REF] Laroche | An inverse approach for ultrasonic imaging from full matrix capture data: Application to resolution enhancement in NDT[END_REF]. For each pixel in the region of interest, the corresponding row in selects the nearest indices corresponding to the times of flight in all A-scans involved in the summation [START_REF] Papadakis | Ultrasonic attenuation caused by scattering in polycrystalline metals[END_REF]. In this work, a binary operator is considered, but an interpolation law between closest indices could be used [START_REF] Perrot | So you think you can DAS? A viewpoint on delay-and-sum beamforming[END_REF] as well as an apodization law considering directivity patterns [START_REF] Holmes | Post-processing of the full matrix of ultrasonic transmit-receive array data for nondestructive evaluation[END_REF].

Note that Equation (2) gives a general expression of DAS beamforming. It can describe many acquisition schemes such as plane waves [START_REF] Montaldo | Coherent plane-wave compounding for very high frame rate ultrasonography and transient elastography[END_REF] and diverging waves [START_REF] Bae | A study of synthetic-aperture imaging with virtual source elements in b-mode ultrasound imaging systems[END_REF]. In the next sections of this paper, we consider an FMC/TFM framework, but it can basically be applied to any acquisition scheme.

Deconvolution of TFM images

Forward data model

The FMC data presented in Section 2 can be modeled as a discrete linear model [START_REF] Laroche | An inverse approach for ultrasonic imaging from full matrix capture data: Application to resolution enhancement in NDT[END_REF]:

= + , (3) 
where ∈ ℝ

2 el

×

is the waveform matrix containing ultrasonic elementary signatures at the times of flight corresponding to all combinations of A-scans and pixels. Vector represents the unknown (vectorized) reflectivity map of the media and stands for noise and model errors, and it is assumed to be zero-mean, white and Gaussian.

As shown in [START_REF] Laroche | Fast non-stationary deconvolution of ultrasonic beamformed images for nondestructive testing[END_REF], model (3) can be projected in the space domain in order to define a forward model between the reflectivity map and the TFM image. Indeed, applying the beamforming operator to Equation (3) gives:

TFM = + = + , (4) 
with = and = . Retrieving the reflectivity map from the TFM image TFM is similar to an image deconvolution problem. Matrix ∈ ℝ × represents a non-stationary 2D convolution operator, where the Point Spread Function (PSF) is different for each pixel because of the acquisition geometry. Each column of corresponds to the PSF associated with a point-like reflector in the reflectivity map. Vector corresponds to the Gaussian white noise component on which the TFM beamforming has been applied. The resulting noise statistics is still Gaussian but not white, in particular the covariance of also depends on the acquisition geometry [START_REF] Laroche | Fast non-stationary deconvolution of ultrasonic beamformed images for nondestructive testing[END_REF]. A whitening strategy can be classically employed in order to deal with colored noise. It consists in applying a "pre-whitening" operator to model [START_REF] Perrot | So you think you can DAS? A viewpoint on delay-and-sum beamforming[END_REF], such that the resulting noise term can be considered as white [START_REF] Friedlander | System identification techniques for adaptive signal processing[END_REF]. The resulting model then reads:

w TFM = w + w , ( 5 
)
where w TFM is the whitened TFM image and w is the (approximate) whitened forward operator. In [START_REF] Laroche | Fast non-stationary deconvolution of ultrasonic beamformed images for nondestructive testing[END_REF], an interpolation model is proposed which achieves fast and accurate computation of this model.

Waveform model

The forward model ( 5) requires the knowledge of the two-dimensional PSF at each point, which depends on the inspection geometry (via the matrix in Equation ( 2)) and on the time-domain ultrasonic waveform ℎ that propagates in the medium (upon which matrix is built in Equation ( 3)). In the following, we consider an identical waveform for all transducers modeled as an asymmetric Gaussian wavelet [START_REF] Demirli | Asymmetric Gaussian chirplet model and parameter estimation for generalized echo representation[END_REF]:

ℎ( , ) = ( , , , ) cos(2 + ), (6) 
where = [ , , , 0 , ] collects the wavelet parameters:

0 is the center frequency, is the phase shift, and the asymmetric envelope function ( , , , ) is defined as:

( , , , ) = -(1-tanh( )) 2 . ( 7 
)
The envelope function has two different decay rates: (1+ ) for negative and (1 -) for positive . The parameter tunes the transition rate between the two parts. Such asymmetric model may accurately represent an ultrasonic waveform envelope, which generally decays more slowly than it raises.

In practice, the parameters must be estimated through a calibration procedure prior to inspection. In the case of coarse-grained materials, this is a difficult challenge due to structural noise, so that A-scans are very noisy. Therefore, we propose to estimate the parameters of the ultrasonic waveform from the TFM image, that coherently sums the ultrasonic echoes, so that the SNR is increased. We consider the TFM image of a pointwise reflector located at coordinates ( PSF , PSF ) in the material. Then, the A-scan signals can be written as:

( ) = ℎ -, ( PSF , PSF ), , (8) 
where ℎ( , ) is defined in [START_REF] Holmes | Post-processing of the full matrix of ultrasonic transmit-receive array data for nondestructive evaluation[END_REF]. Then, the parameters are adjusted by fitting the data TFM with the image predicted by combining the TFM model ( 1) and model ( 8):

min ‖ ‖ ‖ ‖ ‖ ‖ TFM ( , ) - ∑ , ℎ , ( , ) -, ( PSF , PSF ), ‖ ‖ ‖ ‖ ‖ ‖ 2 .
In this paper, we use the Levenberg-Marquardt algorithm to solve this non-linear least squares optimization problem.

Inversion procedure

Ultrasonic transducers have a limited frequency range and consequently, the TFM image lacks information, in particular at high frequencies that contain the image details. Retrieving the reflectivity map from the whitened TFM image is an ill-posed problem [START_REF] Idier | Bayesian Approach to Inverse Problems[END_REF]. Here, a classical regularization framework is employed, which consists in adding a penalization function to the least-squares misfit criterion to minimize:

= arg min LS ( ) + ( ). (9) 
The term LS ( ) is the standard least-squares criterion which is appropriate since the data have been whitened :

LS ( ) ∶= ‖ ‖ ‖ w TFM -w ‖ ‖ ‖ 2 . ( 10 
)
The term ( ) corresponds to the penalization function. We adopt a sparse regularization strategy to enhance highfrequency information in the solution. Spatial smoothness is also favored in order to reconstruct ultrasonic reflectors with some spatial extent. As a result, we get a hybrid penalization function:

( ) = 1 ‖ ‖ 1 + 2 ‖ ‖ 2 , 1 , 2 > 0, (11) 
where is the image gradient and 1 and 2 are regularization parameters that balance between the data fitting term LS ( ) and the regularization term ( ). The tuning of these parameters is addressed in [START_REF] Laroche | An inverse approach for ultrasonic imaging from full matrix capture data: Application to resolution enhancement in NDT[END_REF][START_REF] Laroche | Fast non-stationary deconvolution of ultrasonic beamformed images for nondestructive testing[END_REF]. The minimization of criterion ( 9) is performed using the Fast Iterative Shrinkage Thresholding Algorithm (FISTA) [START_REF] Beck | A fast iterative shrinkage-thresholding algorithm for linear inverse problems[END_REF]. 

Experimental results

Description of the experiments

The sample used for this study is represented in Figure 1. It is composed of austenitic-ferritic stainless steel with a coarse-grained structure. The sample contains SDH with 0.4 mm diameter, either isolated or paired, located at depths of 10, 20, 30 and 40 mm. The positions of the flaws are shown in the scheme of Figure 2. The distance between two close SDHs is equal to 0.4 mm edge-to-edge, that is, 0.8 mm center-to-center. The velocity of longitudinal waves has been measured at 5 700 m/s.

The RF data are acquired with the Pioneer system which is an open platform with fast acquisition speed (TPAC, West-Chester, USA). Each probe is placed in contact with the sample using coupling gel (see Figure 1). The sampling frequency is 50 MHz and the quantization corresponds to 14 bits. The acquisition procedure consists in FMC, detailed in Section 2. Two different probes are used in this study. The first has 64 elements and a central frequency of 5 MHz, and the second has 128 elements and a central frequency of 3 MHz (Imasonic, Voray-sur-l'Ognon, France). Their specifications are given in Table 1. Both probes have complementary properties. Indeed, a higher frequency probe (> 5 MHz) would be generally better suited to image such small defects in an homogeneous material. Nevertheless, higher frequencies are more strongly affected by scattering noise, so that a lower frequency probe would be preferred in order to achieve sufficient SNR enabling the detection of flaws, but then decreas- ing the resolution of TFM imaging. Therefore, these experiments aim to study how the proposed inversion method, denoted by INV in the following, is able to achieve high resolution images with lower frequency probes.

In order to characterize the noise level for each problem (that is, for each probe and at the different inspection depths), we define the SNR from the TFM images as:

SNR = 10 log TFM ( SDH , SDH ) 2 noise , ( 12 
)
where ( SDH , SDH ) are the coordinates corresponding to the maximum amplitude of the single SDH and noise is the mean power in the noise region. Figure 3 illustrates the SNR definition at depth 20 mm, for the TFM images obtained with each probe. As discussed above, one can clearly see that the noise level is higher for 5 MHz data (SNR ∼ 20.9 dB) than for 3 MHz data (SNR ∼ 23.6 dB). The difficulty of each problem is also measured in terms of resolution through the Rayleigh criterion  defined as:

 = 0.61 sin , ( 13 
)
with denoting the wavelength and with tan = ∕(2 ), where is the full aperture of the array and is the reflec- Center frequency (MHz) Properties of the two probes used for inspection.

tor depth.  corresponds to the resolving limit of a standard DAS beamformer [START_REF] Simonetti | Localization of pointlike scatterers in solids with subwavelength resolution[END_REF]. In all following examples, the edge-to-edge distance between the two reflectors is close or inferior to the Rayleigh criterion. We focus on the capability of the TFM and INV to detect and separate the flaws, with depths varying from 10 to 40 mm.

TFM image acquisition

As shown in Figure 1, the apertures of the two probes are too small to acquire the full data set from a single acquisition. Thus, the probes are successively located above each set of SDHs (see Figure 2). For each position, the corresponding TFM image is acquired. The imaged zone along = 20 mm. The TFM signature of the SDH looks highly distorted due to the high level of noise. Figure 4 (bottom row) shows the estimated PSF with 3 MHz probe on the same SDH located at = 20 mm. The data have a more regular shape, therefore the main lobes of the ultrasonic waveform are better reconstructed and the estimation error is smaller.

Estimation of the PSF model

The corresponding time-domain ultrasonic waveform estimated from the 5 MHz data is shown in Figure 5(a), and is almost symmetrical ( ≈ 0). The estimated waveform with 3 MHz probe is shown in Figure 5(b). In this case, the estimated decay rate is 4.5 times larger on the left part than on the right part, proving the relevance of the asymmetric model.

Finally, for each TFM image, the model ( 5) with spatially variant PSF along the direction is considered, based on the PSF obtained in Section 4.3 and taking the acquisition geometry into account (details can be found in [START_REF] Laroche | Fast non-stationary deconvolution of ultrasonic beamformed images for nondestructive testing[END_REF]).

Results with the 5 MHz probe

We now present the results obtained with the 5 MHz probe. The computation of the 801 × 201-pixel TFM beamformed image required 0.12 s, and the inversion procedure required an additional 0.44 s. The estimation of the time-domain waveform parameters and of the 2D PSF are not included in the computation time, since they can be performed in advance within a calibration step. For each pair of SDHs, image zooms of 121 × 121 pixels are displayed, corresponding to 6 × 6 mm 2 . In order to quantify the separation between the flaws, we use the Peak to Center Intensity Difference (PCID) value [START_REF] Fan | A comparison between ultrasonic array beamforming and super resolution imaging algorithms for non-destructive evaluation[END_REF], denoted , which is the difference in dB between the maximum amplitude due to the two reflectors and the minimum amplitude in the area between them. This PCID is computed on the line profile obtained by averaging the pixel values over the axis in each 121 × 121-pixels image. Two reflectors are considered as if their PCID is lower than -6 dB [START_REF] Fan | A comparison between ultrasonic array beamforming and super resolution imaging algorithms for non-destructive evaluation[END_REF].

Reconstructed images are shown on the top part of Figure 6, together with the line profile corresponding to the average intensity over the corresponding values. For the SDH pair at 10 mm depth (Figure 6(a)), with SNR = 30.4 dB, the TFM image shows two distinct maxima, with PCID slightly below -6 dB, so the two SDHs can be considered as resolved. This observation is consistent with the fact that, in this configuration, the center-to-center distance (0.80 mm) is very close to the Rayleigh criterion ( = 0.79 mm). The INV image shows a clear separation between the two reflectors, and the distance between them is estimated at 0.95 mm, which is close to the true distance (0.80 mm).

Results for the pairs of SDHs at 20 mm and 30 mm depths are presented in Figures 6(b) and 6(c), respectively. Here, the SNR equals 20.9 dB and 14.9 dB, and the Rayleigh criterion equals 1.01 mm and 1.30 mm, respectively, so that the problems are more difficult than at = 10 mm. Similar conclusions can be drawn for both cases: as expected, TFM is not able to resolve the reflectors, whereas the INV method can separate them ( < -6 dB). The estimated distance between reflectors is 0.90 mm and 0.95 mm, respectively.

Finally, results for the deepest SDHs ( = 40 mm) are displayed in Figure 6(d). In this configuration, one has  = 1.63 mm, which is twice the distance between the reflectors. Due to the high noise level (SNR = 14.2 dB), none of the two methods is able to separate the reflectors.

Numerical results are summarized in Table 2. The pair Results for the 5 MHz probe (top) and the 3 MHz probe (bottom): data characteristics, PCID and estimated distance between the two reectors, when detected. The true distance between reectors is 0.80 mm. NR stands for "Not Resolved".

at 40 mm seems to be the separation limit of the proposed method for this configuration (probe and reflector distance).

Results with the 3 MHz probe

The bottom part of Figure 6 similarly displays the results obtained with the 3 MHz data. Note that the reconstructed image is much larger in this case (2 001 × 301 pixels), therefore the computation time for the INV method is now about 20 s (the computation of the TFM image required 0.23 s). For the first SDH pair at = 10 mm, due to the lower frequency of the probe, the Rayleigh criterion is now increased to  = 1.18 mm, and the TFM is not able to resolve the reflectors. On the contrary, the INV method achieves a good separation. Note, however, that the distance between the SDHs is underestimated (0.50 mm). For data at depths 20 mm and 30 mm (see columns (b) and (c) in Figure 6), for which  = 1.25 mm and 1.35 mm respectively, the SDH pairs are well resolved with the INV method, contrary to the TFM. Moreover, the distances between the SDHs in the INV image are quite accurate, 0.70 mm and 0.85 mm respectively. Finally, Figure 6(d) shows that the SDHs can still be resolved by INV since local maxima are found in the image. However, in the last two cases, several artifacts are visible, which may be due to a lower accuracy of the PSF estimation.

Results are summarized in Table 2. We note that, for the three last depths, the distance between the flaws is accurately estimated. Compared to results with 5 MHz data, better performance is achieved with INV, in consistence with the observation that images are less corrupted by structural noise for lower frequencies.

Conclusion

We have presented a deconvolution method for resolution improvement in NDT applications. In particular, we have shown that it is well adapted to the inspection of coarse- grained structures, that is a frequent problem in several industry sectors. The method is based on the deconvolution of delay-and-sum beamformed images e.g., TFM, but it could be applied to other acquisition schemes. Experimental results have shown that the resolution capability is increased compared to TFM, going beyond the limit of the Rayleigh criterion. In presence of high-level structural noise, the proposed method is able to separate close reflectors up to about three times the Rayleigh criterion.

This method advantageously enables the use of lowerfrequency probes (around 3 MHz) for the inspection of coarsegrained steel samples, for which the ultrasonic pulse propagates farther in the inspected material and therefore provides data with better signal-to-noise ratio. The loss in resolution is then compensated by taking an accurate forward model into account and by enforcing the sparsity of the reconstructed reflectivity image.

The computation time of the proposed method increases with the size of the reconstructed image. In the proposed experiments, a very small pixel size was used (0.05 × 0.05 mm 2 ) in order to achieve high resolution, so that reconstructing the 100 × 15 mm 2 image with the 3 MHz probe required about 20 s. The computation time could be significantly reduced by reconstructing the images only locally in regions of interest that could be identified from the TFM image. Note that the computational complexity of the method does not depend on the number of transducers, since it works on the precomputed TFM data.

An interesting perspective will concern the applications to more complex reflectors and to real flaws such as porosities and cracks. Indeed, such kind of flaws are supposed to be modeled by more complex point-like responses (i.e. PSFs), which have to be experimentally determined. For the results presented in this paper, the elementary waveform has been estimated for each depth. An accurate modeling of the elementary waveform deformation during the propagation in coarse-grained materials [START_REF] Papadakis | Ultrasonic attenuation caused by scattering in polycrystalline metals[END_REF][START_REF] Hirsekorn | Ultrasonic methods to detect and evaluate damage in steel[END_REF] would also achieve a reliable forward model, without resorting to an empirical calibration step.
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 1 Figure 1: Picture of the sample used for experiments with 5 MHz probe (a) and with 3 MHz probe (b). The single SDH (respectively, the pairs of SDH) at 10 mm and 20 mm depths are circled in red (respectively, in blue).

Figure 2 :Figure 3 :

 23 Figure 2: Scheme of the inspected piece, composed of series of single and double side drilled holes at dierent depths.

Figure 4 :

 4 Figure 4: Example of PSF estimation from the SDH located at = 20 mm obtained with 5 MHz data (top row) and with 3 MHz data (bottom row) using the data shown in Figure 3. The rst column displays the TFM image centered on the reector. The second column represents the synthetic PSF reconstructed at the same location by tting the ultrasonic waveform model. The third column shows the error between the TFM reconstruction and the estimated PSF. Images (a) and (b) have the same dynamic scale. Images (d) and (e) have the same dynamic scale.

Figure 4 (

 4 Figure4(top row) shows the TFM data and the estimated PSF with 5 MHz probe on the single SDH located at = 20 mm. The TFM signature of the SDH looks highly distorted due to the high level of noise. Figure4(bottom row) shows the estimated PSF with 3 MHz probe on the same SDH located at = 20 mm. The data have a more regular shape, therefore the main lobes of the ultrasonic waveform are better reconstructed and the estimation error is smaller.

Figure 5 :

 5 Figure 5: Ultrasonic waveform estimated from the SDH located at 20 mm depth with 3 MHz probe (-), asymmetric Gaussian envelope of the estimated ultrasonic waveform (-), symmetric Gaussian envelope for the left part (1 + ) (----), symmetric Gaussian envelope for the right part (1 -) (---).

Figure 6 :

 6 Figure 6: Results obtained with 5 MHz data (5 MHz probe, top panel) and with 3 MHz data (3 MHz probe, bottom panel). In each case, the rst row displays the TFM images obtained around each pair of reectors at depths 10 mm (a), 20 mm (b), 30 mm (c) and 40 mm (d). The second row displays the INV images. The third row represents the image intensity averaged along the axis, for the TFM image (-) and for the INV image (-).

Table 1

 1 

		5	3
	Pitch (mm)	0.6	0.8
	Elevation (mm)	10	14
	Wavelength (mm)	1.14 1.90

Table 2

 2 

		5 MHz data		TFM	INV	
	z	SNR					
	(mm) (dB) (mm)	(dB) (mm)	(dB)	(mm)
	10	30.37	0.79	-1.94	0.85	-∞	0.95
	20	20.90	1.01	0	NR	-∞	0.90
	30	14.94	1.30	0	NR	-∞	0.95
	40	14.16	1.63	0	NR	0	NR
		3 MHz data		TFM	INV	
	z	SNR					
	(mm) (dB) (mm)	(dB) (mm)	(dB)	(mm)
	10	29.02	1.18	0	NR	-∞	0.50
	20	23.56	1.25	0	NR	-25.33	0.70
	30	20.99	1.35	0	NR	-20.96	0.85
	40	16.83	1.48	0	NR	-14.80	0.75
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