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Abstract 23 

Over-representation analysis (ORA) is one of the commonest pathway analysis approaches used 24 

for the functional interpretation of metabolomics datasets. Despite the widespread use of ORA 25 

in metabolomics, the community lacks guidelines detailing its best-practice use. Many factors 26 

have a pronounced impact on the results, but to date their effects have received little systematic 27 

attention in the field. We developed in-silico simulations using five publicly available datasets 28 

and illustrated that changes in parameters, such as the background set, differential metabolite 29 

selection methods, and pathway database choice, could all lead to profoundly different ORA 30 

results. The use of a non-assay-specific background set, for example, resulted in large numbers 31 

of false-positive pathways. Pathway database choice, evaluated using three of the most popular 32 

metabolic pathway databases: KEGG, Reactome, and BioCyc, led to vastly different results in 33 

both the number and function of significantly enriched pathways. Metabolomics data specific 34 

factors, such as reliability of compound identification and assay chemical bias also impacted 35 

ORA results. Simulated metabolite misidentification rates as low as 4% resulted in both gain of 36 

false-positive pathways and loss of truly significant pathways across all datasets. Our results 37 

have several practical implications for ORA users, as well as those using alternative pathway 38 

analysis methods. We offer a set of recommendations for the use of ORA in metabolomics, 39 

alongside a set of minimal reporting guidelines, as a first step towards the standardisation of 40 

pathway analysis in metabolomics. 41 

 42 

  43 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 24, 2021. ; https://doi.org/10.1101/2021.05.24.445406doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.24.445406
http://creativecommons.org/licenses/by/4.0/


 3 

Author summary 44 

Metabolomics is a rapidly growing field of study involving the profiling of small molecules 45 

within an organism. It allows researchers to understand the effects of biological status (such as 46 

health or disease) on cellular biochemistry, and has wide-ranging applications, from biomarker 47 

discovery and personalised medicine in healthcare to crop protection and food security in 48 

agriculture. Pathway analysis helps to understand which biological pathways, representing 49 

collections of molecules performing a particular function, are involved in response to a disease 50 

phenotype, or drug treatment, for example. Over-representation analysis (ORA) is perhaps the 51 

most common pathway analysis method used in the metabolomics community. However, ORA 52 

can give drastically different results depending on the input data and parameters used. In this 53 

work, we have established the effects of these factors on ORA results using computational 54 

simulations applied to five real-world datasets. Based on our results, we offer the research 55 

community a set of best-practice recommendations applicable not only to ORA but also to other 56 

pathway analysis methods to help ensure the reliability and reproducibility of results.  57 
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Introduction 58 

Pathway analysis (PA) plays a vital role in the interpretation of high-dimensional molecular 59 

data. It is used to find associations between pathways, which represent collections of molecular 60 

entities sharing a biological function, and a phenotype of interest [1]. Based on existing 61 

knowledge of biological pathways, molecular entities such as genes, proteins, and metabolites 62 

can be mapped onto curated pathway databases, which aim to represent how these entities 63 

collectively function and interact in a biological context [2]. Originally developed for the 64 

interpretation of transcriptomic data, PA has now become a popular method for analysing 65 

metabolomics data [3,4]. There are several inherent differences between transcriptomic and 66 

untargeted metabolomics data, however, which must be considered when performing PA with 67 

metabolites. Firstly, metabolomics datasets tend to cover a much lower proportion of the total 68 

metabolome than transcriptomic datasets do of the genome. Hence, metabolomics datasets tend 69 

to contain far fewer metabolites than transcripts found in transcriptomic datasets. Secondly, 70 

mapping compounds to pathways is not as straightforward as the equivalent mapping with 71 

genes and proteins, and there is often a significant level of uncertainty surrounding metabolite 72 

identification, both with respect to structures and database identifiers in any metabolomics 73 

dataset.  74 

 There are several methods for PA, which can be classed into three broad categories: 75 

over-representation analysis (ORA), functional class scoring (FCS), and topology-based methods 76 

[5]. In this paper, we focus on ORA, one of the most mature and widely used methods of PA both 77 

within the metabolomics [6,7] and transcriptomics [8] communities. ORA has found widespread 78 

use in the identification of significantly impacted pathways in numerous metabolomics studies 79 

[9–13]. It works by identifying pathways or metabolite sets that have a higher overlap with a set 80 

of molecules of interest than expected by chance. The approach typically uses Fisher’s exact test 81 

to examine the null hypothesis that there is no association between the compounds in the 82 

pathway and the outcome of interest [14]. 83 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 24, 2021. ; https://doi.org/10.1101/2021.05.24.445406doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.24.445406
http://creativecommons.org/licenses/by/4.0/


 5 

To perform ORA, three essential inputs are required: a collection of pathways (or custom 84 

metabolite sets), a list of metabolites of interest, and a background or reference set of 85 

compounds. Pathway sets can be obtained freely from several databases, for example, the Kyoto 86 

Encyclopaedia of Genes and Genomes (KEGG) [15], Reactome [16], BioCyc [17], or MetExplore 87 

[18] databases, or commercial counterparts such as the Ingenuity PA (IPA) database [19]. The 88 

list of metabolites of interest is generated by the user, most commonly obtained from 89 

experimental data and by using a statistical test to find metabolites whose levels are associated 90 

with an outcome (e.g. disease vs. control), and selecting a threshold (e.g. on the p-values) to 91 

filter the list. The background set contains all molecules which can be detected in the 92 

experiment. For example in transcriptomic studies, this consists of all genes or transcripts 93 

which can be quantified. In targeted metabolomics, the background would contain all 94 

metabolites detectable by the assay; in untargeted metabolomics, all annotatable metabolites. p-95 

values for each pathway are calculated using a right-tailed Fisher’s exact test based on the 96 

hypergeometric distribution. The probability of observing at least k metabolites of interest in a 97 

pathway by chance is given by equation 1: 98 

𝑃(𝑋 ≥ 𝑘) = 1 − ∑
(𝑀

𝑖
)(𝑁−𝑀

𝑛−𝑖
)

(𝑁
𝑛

)

𝑘−1

𝑖=0

 

 

(1) 

 99 

where N is the size of background set, n denotes the number of metabolites of interest, M is the 100 

number of metabolites in the background set annotated to the ith pathway, and k gives the 101 

number of metabolites of interest which are annotated to the ith pathway. A visual 102 

representation of ORA is shown in Fig 1. Finally, multiple testing correction (to allow for the fact 103 

that, typically, the calculation is made for multiple pathways, rather than just one pathway) can 104 

be applied to obtain a final list of significantly enriched pathways (SEP).  105 
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  106 

 Despite the widespread use of ORA in metabolomics [4] the community lacks a set of 107 

guidelines detailing its best use practices. Varying ORA inputs can result in large changes to 108 

outputs, which raises the question of how such parameters should be chosen in order to obtain 109 

the most reliable results. Moreover, as ORA was initially developed for use with transcriptomic 110 

data and later adapted for use on metabolomic data, there are certain considerations 111 

particularly important to metabolomics that may affect ORA results, such as the level of 112 

compound identification. Our aim here, therefore, is to investigate the robustness of ORA in 113 

typical metabolomics analysis, by examining the impact of varying the input data and 114 

parameters. The factors examined are: the background set, selection of significant metabolites, 115 

pathway database choice, organism-specific pathway sets, metabolite misidentification, and 116 

chemical bias of the assay. Using five experimental datasets, we vary the inputs, each time 117 

comparing to the original or standard settings, thus demonstrating the effect of these choices on 118 

the output lists of significant pathways. Based on our modelling, we offer a set of 119 

recommendations for ORA applied to metabolomics data, as well as a set of minimal reporting 120 

Fig 1: Over Representation Analysis (ORA) Venn diagram representing ORA parameters corresponding to Equation 1. N 
represents compounds forming the background set, which covers part of the full metabolome. M represents compounds in 
the pathway of interest. n represents compounds of interest (i.e. differentially abundant metabolites), and k represents the 
overlap between the list of compounds of interest and compounds in the pathway. 
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recommendations which we hope can help contribute to future best-practice guidelines. It is 121 

hoped that this research will promote a deeper understanding of the use ORA in metabolomics, 122 

allowing researchers to better interpret their data in a pathway context.  123 

 124 

Results 125 

Nonspecific background sets result in erroneously high levels of enriched pathways  126 

First, we examined several factors which are common to all ORA applications, beginning with 127 

the background set. Five experimental datasets have been used throughout this work (Table 1, 128 

see Methods), on which the following results are based.  129 

The term background set (of size N, see Eqn. 1) is used to describe all the compounds 130 

identifiable using a particular assay. For example, for a targeted approach, this corresponds to 131 

the compounds assayed; for an untargeted approach, this corresponds to all annotatable 132 

compounds. For mass-spectrometry (MS) studies, the background set would ideally refer to the 133 

library of chemical standards used in metabolite annotation. Despite being a key parameter of 134 

ORA, specifying the background set is an often-overlooked step. The use of a generic, non-assay-135 

specific background set implies that non-observed compounds are considered in the Fisher’s 136 

exact test formula, which, by definition, will always be absent from the list of metabolites of 137 

interest (of size n, Eqn. 1). We investigated the effect of using a nonspecific background set, 138 

consisting of all compounds annotated to at least one KEGG pathway, compared to an assay-139 

specific background set, consisting only of compounds identified and present in the abundance 140 

matrix of each dataset. The nonspecific KEGG human background set contained considerably 141 

more compounds (3373) than any of the example datasets. 142 

A clear discrepancy was observed in many of the pathway p-values when using the 143 

nonspecific vs. specific background set (Fig. 2a). A greater proportion of pathways had lower p-144 

values when using the nonspecific background set than the specific version. Interestingly, some 145 

pathways were significant at p ≤ 0.1 when using one background set but were not significant 146 

using the other, as evident in the upper right and lower left quadrants of Fig 2a. We also 147 
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investigated the number of significantly enriched pathways (SEP) before and after multiple 148 

testing correction (using Benjamini-Hochberg False Discovery Rate (BH FDR)) when using the 149 

two different background sets (Fig. 2b). When using the specific background set, there were far 150 

fewer SEPs at p ≤ 0.1 (solid bars) and q ≤ 0.1 (hatched bars) than there were using the 151 

nonspecific background set. Surprisingly, when using the specific background set (lighter 152 

coloured bars), two datasets contained no pathways which remained significant after multiple-153 

testing correction (no hashed bars). Since our further analyses require several pathways to be 154 

enriched in the original datasets, we decided to use a significance threshold corresponding to an 155 

uncorrected p-value of ≤ 0.1. While we do not recommend this threshold in practice as it is 156 

relatively liberal, this approach allowed us to demonstrate the characteristic behaviour of ORA 157 

across a wide range of datasets. 158 

A key difference between the specific and nonspecific background sets used in the 159 

simulations in Fig. 2 is the number of compounds they each contain. For the human datasets 160 

(Yachida, Stevens, and Quirós) for example, the nonspecific background set contained a total of 161 

3373 unique compounds, whereas the specified background sets for these datasets ranged in 162 

size from 286 to 1110 compounds. It is therefore reasonable to ask whether the changes seen in 163 

Fig 2a and b could be due to the size of the background sets. Accordingly, we investigated how 164 

the size of the background set affects ORA results. In Fig 2c, we simulated a reduction in the 165 

number of compounds identified in the experiment and identify differentially abundant (DA) 166 

metabolites based on the compounds in the reduced background set. This could also reflect the 167 

differences in the number of metabolites identifiable on different platforms, for example, MS 168 

and NMR assays. In Fig 2d, we aimed to demonstrate how changing the number of compounds 169 

in the background set but keeping the number of DA metabolites static affects the number of 170 

SEP (hence changing the ratio of DA compounds to background set compounds). Both removal 171 

of compounds at random and non-DA compounds from the background set resulted in a 172 

decrease in the proportion of SEP (p ≤ 0.1) as compared to using 100% of the compounds in the 173 

background set. Reduction of the background set at random (Fig. 2c) resulted in a steady 174 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 24, 2021. ; https://doi.org/10.1101/2021.05.24.445406doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.24.445406
http://creativecommons.org/licenses/by/4.0/


 9 

decrease in the number of significant pathways, as DA or non-DA compounds may be removed 175 

and the new list of DA metabolites is calculated based on the reduced background set. 176 

Reduction of the background set without removal of the original DA metabolites resulted in a 177 

much more variable decline in the number of significant pathways (Fig. 2d). Datasets that had 178 

larger background sets to begin with, such as Fuhrer et al., appeared to be the least affected by 179 

the background set reduction. This is likely attributed to the fact that even when the reduced 180 

background set contained just 10% of the original compounds, it still contained over 240 181 

metabolites. The trends observed in Fig. 2d also imply that a higher ratio of background set 182 

compounds to DA compounds provides more power in detecting SEPs.  183 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 24, 2021. ; https://doi.org/10.1101/2021.05.24.445406doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.24.445406
http://creativecommons.org/licenses/by/4.0/


 10 

 184 

 185 

Fig 2: Effect of background set. a Scatter plot of -log10 p-values of pathways when using an assay-specific background 
set consisting of all measurable compounds in each dataset (x-axis) compared to using a non-specific background set 
containing of all compounds annotated to at least one KEGG pathway (y-axis). Dashed black lines represent a p-value 
threshold equivalent to p = 0.1. Regression lines are shown with shading representing the 95% confidence interval. b 
Number of pathways significant at p  0.1 (solid bars) and the number of pathways significant at q < 0.1 (hashed bars, 
BH FDR correction). Datasets are ordered by number of compounds mapping to KEGG pathways. c and d The effect of 
reducing the size of the background set. c Compounds were removed from the background set at random and DA 
metabolites were identified based on the modified background set. d Only non-DA compounds were removed from the 
background set at random. In all panels a, c & d, dashed lines represent datasets where no 
chromatography/electrophoresis was used. Error bars represent standard error of the mean. 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 24, 2021. ; https://doi.org/10.1101/2021.05.24.445406doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.24.445406
http://creativecommons.org/licenses/by/4.0/


 11 

  186 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 24, 2021. ; https://doi.org/10.1101/2021.05.24.445406doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.24.445406
http://creativecommons.org/licenses/by/4.0/


 12 

Increasing the number of differential metabolites can result in higher or lower numbers 187 

of significant pathways  188 

The list of compounds of interest is a key parameter of ORA, as any compound falling below the 189 

significance threshold will not be able to contribute to the enrichment of a pathway. Methods 190 

used to select DA metabolites typically rely on p-values or q-values derived from a statistical 191 

test, for example when comparing metabolite abundances between study groups, or regression-192 

based approaches for continuous outcomes. An threshold such as q ≤ 0.05 is often used to select 193 

DA metabolites, however, as with all hypothesis testing this is an arbitrary choice. Furthermore, 194 

in untargeted metabolomics, hundreds or thousands of metabolites are often profiled and 195 

therefore multiple testing correction is essential. We therefore investigated the effect of using 196 

varying significance levels and different multiple correction testing approaches to select 197 

metabolites of interest on ORA results. To this end, DA compound lists of increasing length were 198 

constructed by adding compounds, from lowest p-value to highest, one at a time. ORA was 199 

performed following the addition of each compound to the DA list. The number of SEPs detected 200 

using a DA list corresponding to Bonferroni adjusted p-values and BH FDR q-values at 201 

thresholds of 0.005, 0.05, and 0.1 was also determined. Note that here, we are discussing the 202 

significance level relating to selection of DA metabolites (the first step of ORA), not pathways 203 

(second step of ORA). Fig 3 shows an example of this procedure on the Labbé et al. dataset. Plots 204 

for all datasets are shown in Fig S1. With the addition of each metabolite to the DA list, the 205 

number of SEPs tended to increase to a global maximum, followed by a decrease to zero where 206 

the DA list consisted of the entire background set. Several fluctuations can be observed as local 207 

minima and maxima in Fig. 3, demonstrating that the addition of just a single compound can 208 

have a pronounced effect on the number of SEP. As expected, the list of DA metabolites 209 

determined by Bonferroni correction at varying alpha thresholds resulted in fewer significant 210 

pathways than using BH FDR correction. Generally, higher alpha thresholds resulted in more DA 211 

metabolites and hence more significant pathways. In the case of selecting metabolites based on 212 

BH FDR q-values however, more significant pathways were obtained using α ≤ 0.05 than α ≤ 213 
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0.005 or ≤ 0.1. In summary, the addition of DA metabolites in order of significance will always 214 

result in an increase, followed by a decrease in the number of significant pathways. Thus, it is 215 

critical for practitioners to understand where their chosen significance threshold lies in this 216 

overarching trend.  217 

 218 

Fig 3: Number of DA metabolites. The effect of the number of DA metabolites in the list of metabolites of interest on the 219 
number of significant pathways (p ≤ 0.1) in the Labbé et al. dataset. Results corresponding to Bonferroni thresholds are 220 
denoted by red markers while those corresponding to BH FDR thresholds are denoted by black markers. Marker shape 221 
(circle, cross, or triangle) represents the adjusted p-value threshold for DA metabolite selection (0.005, 0.05, and 0.1 222 
respectively).  223 

  224 
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Pathway database choice is key  225 

An important consideration when conducting any type of pathway analysis is the nature of the 226 

pathway sets used. Pathway sets can differ between databases in many ways, including the 227 

number of pathways present, the size of pathways, how pathways are curated (either manually 228 

or computationally, or a combination of both), and the organisms supported. We compared 229 

several properties of three pathway databases: KEGG, Reactome, and BioCyc. As this work 230 

focuses on metabolomics, only pathways which contain at least three metabolites were 231 

considered for the purposes of this paper, and genes and proteins were excluded from the 232 

pathway definition. Using human pathways as an example, as of December 2020, Reactome 233 

contained the highest number of pathways (1631), followed by HumanCyc (390) (part of the 234 

BioCyc collection) and KEGG, containing 261 pathways. A comparison of pathway sizes across 235 

the three databases can be seen in Fig 4a, in which HumanCyc pathways are the largest across 236 

the three databases, followed by KEGG and Reactome, based on median pathway size.  237 

We next investigated the similarity of metabolite composition for KEGG and Reactome 238 

pathways. Identifiers for metabolites in each pathway were first converted to KEGG IDs and the 239 

ComPath [20] resource was used to find equivalent pathway mappings, linking KEGG and 240 

Reactome pathways with the same metabolic functions. We calculated the Jaccard index (JI) for 241 

each of the 23 pairs of equivalent pathways. The JI values were low (median = 0.08, 242 

interquartile range = 0.01-0.16), suggesting a low level of similarity in metabolite composition 243 

despite apparent equivalence of function. The same calculation was performed considering only 244 

genes in equivalent KEGG and Reactome pathways. 55 pathways were comparable, and while 245 

the JI values were slightly larger than those derived from comparison of metabolite-only 246 

pathways (median = 0.19, interquartile range = 0.11-0.26), these also suggest low levels of 247 

similarity in the gene composition of pathways from different databases. To explore whether 248 

similar biological functions could be inferred from an ORA using different databases, we 249 

compared the SEPs obtained using the Yachida et al. dataset based on KEGG, Reactome, and 250 

HumanCyc pathways (Table S1). By manual inspection of pathway names, there appeared to be 251 
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low concordance between the results of the three databases in terms of biological function. 252 

Similar observations were also made in the other datasets.  253 

 In addition to selecting a pathway database, many pathway databases offer both 254 

reference and organism-specific pathway sets. Reference pathway sets are not associated with 255 

any organism and can be useful where the organism under study does not have an associated 256 

pathway set. We compared basic properties of the KEGG human and KEGG reference pathways 257 

sets. The KEGG reference pathway set contained both more (377 vs. 261 pathways) and larger 258 

pathways (mean pathway size 45 vs. 30 compounds). The two pathway sets had a median JI of 259 

0.8 (IQR = 0.57-1.0) for pathways with a common ID (e.g. Glycolysis: HSA00010/MAP00010), 260 

indicating a high level of similarity between pathways but that not all common pathways are 261 

identical. We performed ORA for each example dataset using both the organism-specific and 262 

reference pathway sets and compared the SEPs obtained (Table 2). While there was a large 263 

overlap, many more pathways were significantly enriched in the reference pathway set alone as 264 

opposed to in the organism-specific pathway set alone. This is likely due to the fact that the 265 

reference set contains more pathways, although not all of these may be of biological relevance 266 

to the organism in question.   267 

Table 2: Organism-specific vs. reference pathways. Number of SEP (P ≤ 0.1) detected in both the KEGG organism-268 
specific and KEGG reference pathway sets, and those significant in only one of the sets.  269 

Dataset Common pathways Organism-specific only Reference only 

Labbé 19 0 6 

Yachida 11 1 19 

Stevens 5 0 1 

Quirós 46 3 28 

Fuhrer (yfgm) 27 0 26 

Fuhrer (dcus) 27 0 23 

  270 

A final consideration when selecting a pathway database is the version of the database one will 271 

use. Not all ORA tools will use the latest version of a certain pathway database available. The 272 

vast majority of pathway databases will undergo at least yearly updates, with some such as 273 

Reactome providing four major releases per year. To investigate how much impact pathway 274 
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database updates can have on ORA results, we obtained four years’ worth of Reactome pathway 275 

sets spanning the period from June 2017 to December 2020. We compared three aspects of the 276 

Reactome human pathway sets (R-HSA) between each release: the number of pathways, the 277 

number of unique compounds in the database, and the mean pathway size (Fig 4b).  As 278 

expected, the number of new pathways increased gradually from release to release, alongside 279 

the number of unique compounds. From 2017 to 2020, over 200 new pathways were added as 280 

well as almost 500 new compounds. Interestingly, the mean pathway size gradually increased 281 

from release 61 to release 68, after which it steadily decreased, but altogether remained 282 

between 17 and 19 compounds on average throughout the course of 14 releases.   283 
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 284 

Fig 4: Comparison of pathway databases and database updates. a Pathway size distribution of KEGG, 
Reactome, and HumanCyc databases. Violin plots show the distribution of pathway size (number of compounds, 
log10 transformed). Bold vertical lines show median, dashed vertical lines show lower and upper quartiles. b 
Comparison of Reactome human pathway set (R-HSA) releases spanning the years 2017 (R61, June 2017) to 
2020 (R75, December 2020). Data for release 67 was not available and hence is not shown. Dot colour 
corresponds to release version, with lighter colours representing newer releases.  
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Metabolite misidentification results in both gain and loss of truly significant pathways 285 

Next, we investigated some factors which are specific to metabolomics data, such as metabolite 286 

misidentification and assay chemical bias. A major bottleneck in untargeted metabolomics is the 287 

identification of compounds. In untargeted metabolomics, it is commonplace to putatively 288 

identify (“annotate”) metabolites based on their physicochemical properties (e.g. m/z ratio, 289 

polarity) and similarity to compounds in spectral databases, and then confirm the identities of 290 

compounds of interest using chemical reference standards. Consequently, a large proportion of 291 

compounds in untargeted metabolomics assays are expected to have a degree of uncertainty in 292 

their identification, ranging from Metabolomics Standards Initiative (MSI) confidence levels 2-4 293 

[21].  294 

 To compare the effects of metabolite misidentification on the number and identity of 295 

significant pathways detected using ORA, we introduce two new statistics: the pathway loss rate 296 

and the pathway gain rate (see Methods). The former describes how, as the data are degraded, 297 

some pathways are "lost" (no longer identified as significant) and others are "gained" (newly 298 

identified as significant). These are analogous to false-negative and false-positive rates, but 299 

account for the fact that we do not know the truly enriched pathways. For the purposes of this 300 

simulation, we make the assumption that all pathways significant at 0% misidentification are 301 

the “true” SEPs, and we compare these to the SEPs obtained at varying levels of simulated 302 

misidentification. The pathway loss rate refers to the proportion of SEPs present at 0% 303 

misidentification that are no longer present at f % misidentification, and the pathway gain rate 304 

refers to the number of SEPs not originally present at 0% misidentification which become 305 

significant at f % misidentification.  306 

We simulated the effects of metabolite misidentification on ORA using KEGG pathways 307 

by replacing the true metabolites with false ones in two different ways: a) by similar molecular 308 

weight (20ppm window), and b) by identical chemical formula (see Methods). For both 309 

approaches, we calculated the pathway loss and gain rate for each dataset at 4% simulated 310 

misidentification, which although there are few published estimates of misidentification rates in 311 
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metabolomics studies, endeavours to simulate a representative scenario (Fig 5). All the example 312 

datasets had a pathway loss and gain rate greater than zero at 4% simulated misidentification 313 

either by molecular weight or formula. Such findings suggest that even at a misidentification 314 

rate as low as 4%, it is likely that some pathways are significant simply as an effect of 315 

misidentification, and other pathways are not detected as significantly enriched due to the noise 316 

in the data caused by the misidentification. Pathway loss and gain rates from 1-5% are shown in 317 

Fig S2. Pathway loss and gain rate results were similar for both misidentification by molecular 318 

weight and formula, likely owing to the fact that compounds with identical chemical formula 319 

share the same molecular weight.  320 
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 321 

Fig 5: Metabolite misidentification. The effect of compound misidentification by a molecular weight (20ppm window) 322 
and b chemical formula on the mean pathway loss rate (red bars) and mean pathway gain rate (blue bars) averaged 323 
over 100 random resamplings at 4% misidentification. Error bars represent standard error of the mean.  324 

 325 

 326 

 327 

  328 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 24, 2021. ; https://doi.org/10.1101/2021.05.24.445406doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.24.445406
http://creativecommons.org/licenses/by/4.0/


 21 

The polarity of compounds in a metabolomics experiment influences the pathways 329 

discoverable using ORA 330 

The analytical platform and specific assay used for a metabolomics study can be expected to 331 

introduce bias into the pathways which might be detected by ORA. One common characteristic 332 

in which assays differ is their ability to detect compounds of different polarity, often depending 333 

on the type of chromatography used. Hydrophilic interaction chromatography is typically 334 

optimised for the detection of polar compounds, whereas reverse-phase liquid or gas 335 

chromatography are usually more advantageous for non-polar compounds. While it is 336 

increasingly common for metabolomics experiments to incorporate multiple types of 337 

chromatography, many datasets still consist of metabolites measured using just a single type of 338 

chromatography. We would expect to observe differences in SEPs based on the polarity of 339 

compounds in the dataset. We simulated the effect of using different types of chromatography 340 

by splitting the compounds in each dataset into two halves based on the median logP coefficient, 341 

to achieve an approximately even number of polar and non-polar compounds on each side. We 342 

then performed ORA using KEGG pathways on the polar and non-polar halves of each dataset 343 

and compared the results (Fig S3 shows an example using the Labbé dataset). In the Labbé 344 

example, only a single KEGG pathway, Pyrimidine metabolism, was enriched in both the polar 345 

and non-polar halves of the dataset. All remaining significant pathways (9 in total) were only 346 

found in either the polar or non-polar half. While this might be expected, it is a clear 347 

demonstration that ORA results are highly influenced by the chemistry probed by the assay, and 348 

especially the type of chromatography employed. 349 

  350 

  351 
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Discussion 352 

As metabolomics continues to grow as a field of study with a multitude of applications within 353 

various disciplines, deriving meaningful conclusions from such data becomes increasingly 354 

important. ORA is one of the most popular approaches used to draw functional interpretations 355 

from metabolomics data. However, to date, there have been no published investigations of the 356 

consequences of varying input parameters on ORA results derived from metabolomics data. 357 

Understanding the sensitivity of ORA to tuning parameters, especially how it is influenced by 358 

metabolomics-specific factors, will play a crucial role in its successful application. In the present 359 

study, we sought to investigate the effects of varying inputs on ORA results, which we 360 

demonstrated using in-silico simulations applied to five untargeted metabolomics datasets. 361 

 One of the most salient findings was the difference in the number of SEPs detected when 362 

using an assay-specific versus a nonspecific background set. The use of a nonspecific 363 

background set, such as all compounds present in the KEGG reference or human pathway set, 364 

for example, resulted in a drastic increase in the number of SEPs. In many ORA tools, use of a 365 

nonspecific background is typically the default option, and one that may lead users to believe 366 

that this is the ‘correct’ procedure. It is crucial however to understand that the consequence of 367 

not specifying a background set, which should contain all compounds that are realistically 368 

observable, is that an assumption is being made that the compounds in the default background 369 

set are all equally likely to be detected in the experiment [22]. Such an assumption is highly 370 

unlikely to be true given that most technologies can only detect a small fraction of the 371 

metabolome and may lead to false-positive pathways. Additionally, the size of the background 372 

set is an important consideration, with larger sets generally yielding higher numbers of SEPs. 373 

Mass-spectrometry based approaches can usually detect a larger number of compounds than 374 

NMR-based methods, for example, at least for typical 1D NMR methods that are most commonly 375 

used for profiling [23]. Users need to consider whether their metabolomics dataset is large 376 

enough to provide sufficient statistical power such that ORA results can be considered useful.  377 
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 The list of compounds of interest (often corresponding to metabolites differentially 378 

present between conditions in experiments) is an essential input for ORA and we have 379 

demonstrated that the way these compounds are selected greatly impacts PA results. It is 380 

important to select a threshold that strikes a balance between selecting too few compounds, 381 

therefore resulting in low power for the detection of significant pathways, or selecting 382 

compounds too liberally and losing power by introducing noise into the analysis. Visualisation 383 

of the curve of number of significant pathways vs. the number of compounds of interest (Fig 3) 384 

can be a useful tool to determine the stability of the analysis to significance thresholds. Multiple 385 

testing correction should always be applied to all metabolite-level statistics before filtering 386 

them to produce the list of compounds of interest. We examined two of the most popular 387 

multiple testing correction methods: Bonferroni and BH FDR correction. As expected, 388 

Bonferroni correction tended to be more stringent, resulting in fewer compounds of interest, 389 

although this does not necessarily always correspond to fewer SEPs.  390 

 Unlike other fields (e.g. transcriptomics), the level of uncertainty surrounding 391 

compound identities remains a critical issue in metabolomics studies. While it is not possible to 392 

find a benchmark level of metabolite misidentification typically found in metabolomics studies, 393 

most studies will contain at least a small percentage of misidentified compounds [24]. The level 394 

of misidentification will vary depending on the analytical platform used and remains a key 395 

bottleneck, more so in MS-based studies, where the number of metabolites detected often 396 

exceeds that of NMR-based studies [25]. In this study, we simulated metabolite 397 

misidentification by randomly swapping a small percentage of compounds in each of the 398 

datasets with compounds of either a similar molecular weight (± 20ppm) or an identical 399 

chemical formula. Even at a low level of misidentification of 4%, we found appreciable pathway 400 

loss and gain rates for all datasets. Hence, we suggest that ORA is sensitive to even low levels of 401 

metabolite misidentification, resulting in the emergence of false-positive and false-negative 402 

SEPs in the results.  403 
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 Another essential input of ORA is the pathway database or list of metabolite sets used. 404 

The inherent differences between pathway databases will undoubtedly impact the PA results, 405 

regardless of the method used [26]. In the case of ORA, which is based on the hypergeometric 406 

formula, pathway size will influence results by rendering smaller pathways more significant and 407 

larger pathways less significant [27]. The number of pathways tested using ORA will also 408 

directly impact the adjusted significance level if multiple testing correction methods are 409 

applied, and the more pathways tested the more statistical power is lost. A related caveat is that 410 

the most widely used multiple testing approaches (e.g. Bonferroni, BH FDR) do not account for 411 

correlations between pathways and therefore such methods may be too conservative and 412 

undermine pathway significance [2].  413 

A further important consideration for pathway database evaluation is the type of 414 

compound identifiers used in the pathway. KEGG and BioCyc use database-specific identifiers, 415 

whereas Reactome uses ChEBI identifiers. It is necessary to convert the identifiers present in a 416 

metabolomics dataset to their database-specific equivalent, which often results in loss of 417 

information as not all identifiers will necessarily map directly to a database compound or be 418 

annotated to a pathway [28]. For example, in the Stevens et al. dataset, over 900 compounds 419 

were assigned to Metabolon identifiers, but less than half of these compounds could be mapped 420 

to KEGG identifiers. Another characteristic of metabolomics (and in particular lipidomics) is the 421 

discrepancy between the chemical precision of identification between the pathway databases 422 

and the dataset. For instance, in databases classes of lipids are often gathered into a single 423 

element (e.g. “a triglyceride”) while lipidomics allows more in-depth annotation (e.g. “TG 424 

16/18/18”). Computational solutions based on chemical ontologies exist to establish a link 425 

between dataset elements and pathway database ones [29], but this will also have an impact on 426 

the pathway enrichment results since several data elements will map to a single node in the 427 

pathway database.  428 

The incompleteness of pathway databases, together with the evolution of pathway 429 

definitions between releases, are key factors highlighting the necessity of using an up-to-date 430 
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resource; not doing so can have a detrimental effect on PA results [30]. Furthermore, the 431 

magnitude of changes across database releases demonstrated in this work suggests that ORA 432 

results are somewhat short-lived and perhaps valid only at a given time, hence they should be 433 

periodically revised using an updated database. Frainay et al.  examined the coverage of 434 

analytes in the human metabolic network and found poor coverage of pathways involving 435 

eicosanoids, vitamins, heme, and bile acid metabolism [31]. Finally, although an extensive 436 

comparison of pathway databases is beyond the scope of this paper, several excellent studies 437 

have examined this in detail to which we refer the interested reader [26,32,33]. A general 438 

recommendation is to use multiple pathway databases and derive a consensus signature across 439 

these.  440 

 In this work we have focused on ORA, but many other PA methods exist [1,34]. While 441 

functional class scoring and topology-based methods can overcome certain limitations 442 

associated with ORA, such as the need to select compounds of interest, or not taking metabolite-443 

level statistics into account, many of our findings are also relevant to these other methods. 444 

Pathway database selection, metabolite misidentification rate, and assay chemical bias will 445 

impact the majority of metabolomics PA methods. Alongside the present work, further studies 446 

examining the input parameters of other PA methods for metabolomics data will be invaluable 447 

in establishing a set of best-practice guidelines for their application.  448 

 This study is limited by the lack of availability of a ground-truth dataset where the 449 

identities of enriched pathways have been experimentally confirmed. Such a dataset would have 450 

made it possible to investigate a wider variety of performance metrics for ORA. Another 451 

limitation is that in the majority of examples, a p-value threshold of P ≤ 0.1 was used without 452 

multiple testing correction to select SEPs. As metabolomics experiments usually identify far 453 

fewer compounds than transcriptomic experiments identify genes, ORA based on metabolites 454 

appears to have much lower power to identify significant pathways and as such in the example 455 

datasets few, if any, pathways remained significant after multiple testing correction was 456 

applied.  457 
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The purpose of the present research was to evaluate the suitability of ORA for 458 

metabolomics pathway analysis and assess the effects of varying input data and parameters. We 459 

have investigated the three main input parameters: the background set, the list of compounds of 460 

interest, and the pathway database, as well as metabolomics-specific considerations such as 461 

metabolite misidentification and assay chemical bias. By means of in-silico simulations using 462 

experimental datasets, all of the aforementioned variables have been shown to introduce 463 

varying levels of bias and uncertainty into ORA results, which has significant implications for 464 

those using ORA to analyse metabolomics data. In particular, use of an assay-specific 465 

background set is often ignored, yet has a critical effect on the output. Overall, this study has 466 

been the first detailed investigation into the application of ORA to metabolomics data, with 467 

wide-ranging findings that have implications not only to ORA but also a variety of other PA 468 

methods in metabolomics.  469 

We therefore offer the community a set of recommendations for application, as well as 470 

recommended minimal reporting criteria, which may contribute to the future development of 471 

best-practice guidelines for the application of ORA to metabolomics data. 472 

 473 

Suggested recommendations for the application of ORA to metabolomics data: 474 

1. Specify a realistic background set i.e., all the compounds which were detectable using 475 

the analytical platform used in the experiment. 476 

2. Use an organism-specific pathway set if the organism is supported by the pathway 477 

database. 478 

3. Perform ORA using multiple pathway databases and derive a consensus pathway 479 

signature using the results 480 

4. Use multiple-testing correction to select both DA metabolites and, where feasible, 481 

significant pathways. 482 

 483 

Suggested recommended minimal reporting criteria. Users should report: 484 

1. The statistical test/approach used for pathway analysis (e.g. Fisher’s exact test) 485 

2. The tool (and version) used to perform ORA. 486 
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3. The pathway database, the corresponding compound identifier type (e.g. KEGG, ChEBI, 487 

BioCyc, etc.), its release number and which organism-specific pathway set was used (if 488 

any). 489 

4. Which compounds form the background set. 490 

5. The multiple testing correction methods applied for i) selection of DA metabolites and 491 

ii) selection of SEP, alongside the adjusted p-value thresholds used. 492 

  493 
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Materials and methods 494 

1. Obtaining the list of metabolites of interest 495 

1.1 Summary of experimental datasets used 496 

Five publicly available untargeted metabolomics datasets were used in this work (Table 1). We selected a 497 

diverse range of datasets encompassing various organisms, biofluids, and experimental conditions. For 498 

consistency, all datasets used in this work are mass-spectrometry (MS) based. The first dataset is 499 

available at MTBLS135 from the MetaboLights repository and consists of 12 Hi-Myc genotype and 12 500 

wild-type Mus musculus plasma samples [35]. The second dataset from Yachida et al. 2019 consists of 149 501 

healthy control and 148 colorectal cancer human stool samples (stages I-IV). The third dataset is 502 

available at MTBLS136 and consists of 667 control samples and 332 estrogen users [37]. The fourth 503 

dataset is from Quirós et al. 2017 from which we compared 8 HeLa cell replicates treated with actinonin 504 

to 8 HeLa cell replicates treated with doxycycline. The final dataset is available from EBI BioStudies (S-505 

BSST5) and consists of >3,800 single-gene E. coli knockouts [39]. We selected two knockout strains to 506 

investigate from this dataset: ΔyfgM and ΔdcuS. It is important to note that two datasets, Quirós et al. 507 

2017 and Fuhrer et al. 2017, did not use any separation step in their analytical platform, and therefore 508 

there may be a higher degree of uncertainty in the metabolite identifications.  509 

Table 1: Summary of experimental datasets used in this work. An asterisk (*) besides the MS platform indicates no 510 
chromatography/electrophoresis was used in the assay.  511 

Author Title Organism 
Analytical 

platform  
Sample type 

Total number of 

metabolites mapping to 

KEGG compounds 

Study accession 

code/data 

availability 

Labbé et al. 

High-fat diet fuels 

prostate cancer 

progression by 

rewiring the 

metabolome and 

amplifying the MYC 

program 

Mus musculus UPLC-MS/MS Tissue 269 MTBLS135 

Yachida et al. 

Metagenomic and 

metabolomic analyses 

reveal distinct stage-

specific phenotypes of 

the gut microbiota in 

colorectal cancer 

Homo sapiens CE-TOF MS Stool 286 

Supplementary 

table S13 of 

https://doi.org/1

0.1038/s41591-

019-0458-7 

Stevens et al. 

Serum metabolomic 

profiles associated 

with postmenopausal 

hormone use 

Homo sapiens UPLC-MS/MS Serum 362 MTBLS136 

Quirós et al. 

Multi-omics analysis 

identifies ATF4 as a 

key regulator of the 

mitochondrial stress 

response in mammals  

Homo sapiens 

(HeLa cells) 

Flow injection 

TOF MS* 
HeLa cell 1110 

Supplementary 

table S8 of 

https://doi.org/1

0.1083/jcb.2017

02058 
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Fuhrer et al. 

Genomewide 

landscape of gene-

metabolome 

associations in 

Escherichia coli 

Escherichia coli 
Flow injection 

TOF MS* 
E. coli 2468 S-BSST5 

 512 

1.2 Post-processing of metabolomics datasets 513 

All metabolomics datasets and corresponding metadata used in this study are publicly available 514 

from the MetaboLights repository [40], the BioStudies database [41], or in the supplementary 515 

information of the original publication (Table 1). Details of metabolomics data pre-processing, 516 

as well as sample preparation, data acquisition, and compound identification can be found in the 517 

original publication for each dataset. For the purposes of this study, the pre-processed raw 518 

metabolite abundance matrices consisting of n samples by m metabolites were downloaded as 519 

.csv or .xlsx files and post-processed identically. Missing abundance values were imputed using 520 

the minimum value of each metabolite divided by 2. All abundance values in the matrix were 521 

then log2 transformed and features (metabolites) were auto-scaled by subtracting the mean and 522 

dividing by the standard deviation.  523 

 524 

1.3 Metabolite identifier harmonisation 525 

In order to map compounds to the three pathway databases investigated in this study (KEGG, 526 

Reactome, and BioCyc), metabolite identifiers in each dataset were converted to the 527 

corresponding identifier type. For the conversion of compound names to KEGG identifiers, the 528 

MetaboAnalyst 4.0 [42] ID conversion tool was used 529 

(https://www.metaboanalyst.ca/MetaboAnalyst/upload/ConvertView.xhtml). For Reactome, 530 

KEGG compounds were mapped to ChEBI identifiers using the Python bioservices package (v 531 

1.7.1) [43]. For BioCyc, the web-based metabolite translation service 532 

(https://metacyc.org/metabolite-translation-service.shtml) was used to convert from KEGG to 533 

BioCyc identifiers. 534 

 535 

1.4 Selection of differentially abundant metabolites 536 
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The list of metabolites of interest was determined using a series of two-tailed student’s t-tests to 537 

determine whether each metabolite in the dataset was significantly associated with the 538 

outcome of interest. p-values were adjusted using the Benjamini-Hochberg False discovery rate 539 

(BH FDR) procedure [44] to account for multiple testing. Significantly differentially abundant 540 

(DA) metabolites were then selected based on a q-value threshold of q ≤ 0.05. To investigate the 541 

effect of the list of input metabolites on the number of significant pathways, we used both BH 542 

FDR and Bonferroni methods for p-value adjustment and tested several cut-off thresholds 543 

(adjusted p ≤ 0.005, 0.05, or 0.1) for the selection of DA metabolites using each method.  544 

 545 

2. Performing pathway enrichment 546 

2.1 Pathway database details 547 

For the purposes of this paper, the pathway sets used contained only compounds (including 548 

small molecules, metabolites and drugs). KEGG pathways and their corresponding compounds 549 

were downloaded using the KEGG REST API (https://www.kegg.jp/kegg/rest/keggapi.html) in 550 

October 2020, corresponding to KEGG release 96. Reactome pathways release 75 were 551 

downloaded from https://reactome.org/download-data. BioCyc pathways v24.5 were exported 552 

from https://biocyc.org/ using the SmartTables function.  553 

 554 

2.2 ORA implementation 555 

ORA was implemented using a custom script that utilised the scipy stats fisher_exact function 556 

(right-tailed) to calculate pathway p-values. Only pathways containing at least 3 compounds 557 

were used as input for ORA. p-values were calculated if the parameter k (number of 558 

differentially abundant metabolites in the ith pathway) was ≥ 1. 559 

 560 

3. In-silico simulation details  561 

3.1 Implementation details 562 
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All simulations were performed using Python (v 3.8). Simulations with an element of 563 

randomisation were repeated 100 times, and results are reported as the mean of 100 random 564 

samplings of the simulation, alongside the standard error of the mean. 565 

 566 

3.2 Simulating metabolite misidentification 567 

Chemical formula and molecular weight information for each metabolite was obtained using the 568 

KEGG REST API. For each level of metabolite misidentification, we randomly selected f % (f=0, 1, 569 

…X%) of compounds that had at least one other compound with a molecular weight within 570 

±20ppm (approximately isobaric compound) present in the KEGG pathway set. For each 571 

randomly selected compound, one of its isobaric compounds was randomly selected and the 572 

identifier of this compound then replaced the original identifier in the dataset, thereby 573 

simulating misidentification by mass. Similarly, for misidentification by chemical formula, 574 

compounds that had at least one other compound with an identical chemical formula present in 575 

the KEGG pathway set were randomly selected, and compound identifiers replaced. 576 

Replacement compounds must be present in at least one KEGG pathway but must not already 577 

form part of the original background list, to avoid introducing duplicate compounds.  578 

 579 

3.3 Quantifying changes in results  580 

To illustrate how lists of significant pathways change at varying levels of metabolite 581 

misidentification, we define two performance statistics: the pathway loss rate and the pathway 582 

gain rate. The pathway loss rate represents the proportion of the original pathways (0% 583 

misidentification) significant at p ≤ 0.1 that are no longer significant at f % misidentification. 584 

The pathway gain rate represents the proportion of pathways that were not significant at 0% 585 

misidentification but become significant at f % misidentification.  586 

Let A and B be sets of pathways from ORA such that: 587 

A = {Pathways significant at 0 % metabolite misidentification (p ≤ 0.1)} 588 

Bf = {Pathways significant at f % metabolite misidentification (p ≤ 0.1)} 589 
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The pathway loss rate and pathway gain rate at f % metabolite misidentification are then 590 

defined as: 591 

𝑃𝑎𝑡ℎ𝑤𝑎𝑦 𝑙𝑜𝑠𝑠 𝑟𝑎𝑡𝑒(𝐴, 𝐵𝑓) =  1 −
|𝐴 ∩ 𝐵𝑓|

|𝐴|
 (2) 

 592 

 593 

𝑃𝑎𝑡ℎ𝑤𝑎𝑦 𝑔𝑎𝑖𝑛 𝑟𝑎𝑡𝑒(𝐴, 𝐵𝑓) =  
|𝐵𝑓 − 𝐴|

|𝐴|
 (3) 

 594 

where |A| indicates the cardinality (number of elements) in the set A, and |B-A| indicates the set 595 

formed by those members of B which are not members of A. 596 

 597 

  598 
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