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ABSTRACT

A study of frequency-dependent scattering mean-free
paths of two ballistic waves in polycrystalline media is pre-
sented. Experimental data sets are obtained by recording
impulse-response-type time signals using a multielement
array at the surface of polycrystalline samples. Spatial
averaging allows for the estimation of the coherent field
in which two ballistic waves are observed. A frequency-
domain method is introduced to extract the experimental
scattering mean-free path of each ballistic wave between
3.5 and 7.5MHz. Theoretical models described in the
literature are applied to also obtain theoretical scattering
mean-free paths. Experimental and theoretical results are
compared. The use of coherent field to extract microstruc-
tural information for non-destructive evaluation purposes
is discussed.

1. INTRODUCTION

When propagating in a polycrystalline medium such as
a metallic alloy, an ultrasonic wave is subject to single,
and possibly multiple scattering at crystallite (or “grain”)
boundaries. The impedance mismatches are due to random
crystalline orientations of the grains, hence to local varia-
tions of elastic constants. Scattering leads to the attenua-
tion and diffusion of the incident wave, which can make
flaw detection difficult through ultrasonic non-destructive
evaluation (NDE): the ballistic wave reflected by a defect
may have a lower amplitude than the back-scattered wave-
field, often referred to as grain or structural noise. It should
be noted that the designation “noise” is somewhat mislead-
ing, as it does not convey the fact that grain noise carries
information about the microstructure of the polycrystalline
medium. The aim of studies on polycrystals is thus to
extract microstructural information from ultrasonic NDE
measurements through the inversion of a reliable theoreti-
cal model. To this end, it is important to well understand
the attenuation mechanisms in polycrystals.

Multiple theoretical models predicting attenuation coef-
ficients in polycrystals exist, the main references being the
models by Stanke and Kino [1] and by Weaver [2]. These
two are known to provide results spanning multiple fre-
quency regimes. Still, as well as nearly all other theoreti-
cal models, they focus on bulk longitudinal and transverse
waves’ attenuation. This is reflected by the fact that most

experimental studies conducted on the attenuation in poly-
crystals mainly focus on grain noise, in hope of extracting
information about the microstructure from isolated NDE
experiments by studying the statistics of grain noise, i.e.,
of the “incoherent field” (or coda). Unlike grain noise,
the “coherent field” resists to ensemble averages. Ryzy et
al.’s recent publication [3] studies the possibility of deriv-
ing microstructural information not from grain noise, but
from the coherent field – more specifically, from coherent
surface waves.

In this paper, we propose to apply Weaver’s model and
then to follow Ryzy et al.’s procedure to compute theo-
retical scattering mean-free paths of two coherent ballistic
waves in Inconel R© 600 polycrystalline alloys: a surface-
skimming longitudinal wave and a surface Rayleigh wave.
As these two waves are experimentally observed in the es-
timated coherent field on two samples with different grain
size distributions, comparisons between experimental and
theoretical results are made possible. In Sec. 2, the exper-
imental estimation of the coherent field using a multiele-
ment array is described. The advantage of the experimental
setup presented here is its simplicity and wieldiness com-
pared to the opto-acoustic setup used by Ryzy et al.; on the
other hand, the frequency bandwidth is much smaller than
that of measurements made using an opto-acoustic setup.
From the estimated coherent field, a frequency-domain –
or “monochromatic” –, procedure is described in Sec. 3
to measure the experimental scattering mean-free path of
each of the two observed ballistic waves. Then, theoret-
ical scattering mean-free paths are derived using models
presented in Sec. 4 and are compared with experimental
results.

2. EXPERIMENTAL SETUP

2.1 Inspected Polycrystalline Media

For this study, two blocks of polycrystalline Inconel R© 600
(alloy made for the most part of nickel, chromium and
iron) of section 90× 90mm2 were used. These blocks
were manufactured by EDF R&D as part of a collabora-
tion, and their respective microstuctures have previously
been studied [4]. In particular, the mean grain diameter d
of each block is known: one block’s microstructure con-
sists of small grains (d = 89.2 µm) and the other one’s of
large grains (d = 748 µm); hence, these blocks will be re-
ferred to as “small-grain block” and “coarse-grain block”
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ρ (mg/mm3) c11 (GPa) c12 (GPa) c44 (GPa)

8.26 234.6 145.4 126.2

Table 1. Density and elastic constants of a single cubic
crystal of Inconel R© 600 [5].

respectively in the following. Furthermore, elastic proper-
ties of a single cubic crystal of Inconel R© 600 are known [5]
and given in Tab. 1.

2.2 Measurement of Ballistic Waves

Experimental data is obtained using an array of 128 trans-
ducers with central frequency 5.5MHz. A single ac-
quisition on a polycrystalline block consists in measur-
ing an inter-element impulse response matrix h(t) with
the multielement array. This matrix is obtained using
a process called “full matrix capture” (FMC): time sig-
nals are recorded by every element of the array when
they are individually and sequentially excited by the same
impulse signal. Thus, the matrix h(t) has dimensions
128× 128×Nt: the first dimension represents the source
transducer, the second the receiving transducer and the
third the time samples, Nt being the number of recorded
time samples.

To estimate ballistic waves, part of the so-called “co-
herent field”, it is necessary to perform an average. Rig-
orously, equivalent realisations of disorder should be aver-
aged, but assuming ergodicity, this ensemble average can
be replaced by a spatial average. As illustrated in Fig. 1,
a set of A matrices h(a)(t) (1 ≤ a ≤ A) is recorded on
each block by scanning its surface along its length: be-
tween two consecutive acquisitions, the array’s position is
shifted so that it is facing a different – and supposedly inde-
pendent –, arrangement of grains. A total ofA = 72 and of
A = 113 matrices h(a)(t) are recorded on the small-grain
and coarse-grain blocks respectively.

The first processing performed on these two data sets
is filtering: every time signal is filtered using a second or-
der band-pass zero phase Butterworth filter with cutoff fre-
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Figure 1. Illustration of the measurement of A inter-
element impulse response matrices h(a)(t) on a polycrys-
talline block.
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Figure 2. Averaged signals u(x, t) measured (a) on the
small-grain block and (b) on the coarse-grain block.

quencies 3.5 and 7.5MHz. All analysis described in this
paper will therefore be restricted to this frequency range.
Assuming statistical homogeneity and isotropy along the
scanned face of each block, the average performed to es-
timate the coherent field is twofold: first, the A matrices
h(a)(t) are averaged; and second, time signals correspond-
ing to the same source-receiver distance x are averaged.
This provides averaged signals, noted u(x, t) and repre-
sented as B-scans (images whose lines are time signals) in
Fig. 2. In addition to estimating the coherent field on each
block, we can estimate the statistical fluctuations (“noise”)
n(a)(x, t) of each of the A acquisitions – which will be es-
sential to compute error bars later in this document –, by
subtracting the averaged signals u(x, t) to the a-th measure
h(a)(x, t):

n(a)(x, t) = h(a)(x, t)− u(x, t). (1)

On each of the two B-scans in Fig. 2, two ballistic
waves are clearly visible. On the coarse-grain block, they
appear to decay much faster than on the small-grain one,
which reflects the fact that a coarse-grain microstructure
scatters much more strongly than a small-grain one. In the
following, the study will be focused on the two ballistic
waves.

3. DATA ANALYSIS

3.1 Extraction of Scattering Mean-Free Paths

Experimentally, scattering mean-free path `s of a given
wave (or equivalently, the attenuation coefficient α =
1/2`s) is linked to the decay of said wave, as scattering is
known to cause an exponential attenuation exp(−r/2`s)
with distance r of the amplitude of a wave propagating in
any direction. In this section, we propose a method to mea-
sure the experimental scattering mean-free path of each ob-
served ballistic wave, along with an estimation of experi-
mental uncertainty. As scattering is a frequency-dependent
phenomenon, the approach presented here is monochro-
matic and will provide frequency-dependent mean-free
paths `s(f). Moreover, as it will be emphasised in the fol-
lowing, care has to be taken because the attenuation of a
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wave is not due solely to scattering, but also to the geomet-
rical spreading of the wave. Taking these points into ac-
count, the scattering mean-free paths are estimated through
the following steps.

3.1.1 Windowing of Ballistic Waves

The first step is to isolate each ballistic wave by window-
ing it. The window is chosen so that it “follows” the wave
of interest, which requires a gross estimation of the waves’
group velocities. This estimation simply consists in cal-
culating the slope of the two ridgelines appearing on the
averaged B-scans in Fig. 2. On both blocks, we find group
velocities of about 5.75mm/µs for the fast ballistic wave
and 2.85mm/µs for the slow one. From Fig. 2, it ap-
pears that on the coarse-grain block, ballistic waves de-
cay very quickly; so quickly, in fact, that they are drowned
out by the grain noise remaining after averaging for rather
short distances x. Consequently, spatial windowing on
the coarse-grain block will be more restrictive than on the
small-grain block. Moreover, as it appears that the fast
ballistic wave is less temporally spread out than the slow
wave, the corresponding temporal window will be shorter.
The windowed signals û(x, t) used in this paper are repre-
sented in Fig. 3. Noise n(a)(x, t) calculated from (1) may
be windowed exactly as the averaged signals u(x, t), pro-
viding a set of A windowed noise signals n̂(a)(x, t).
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Figure 3. Windowed signals û(x, t) of the fast (top) and
slow (bottom) ballistic waves measured (a) on the small-
grain block and (b) on the coarse-grain block.

3.1.2 Calculation of Ballistic Waves’ Attenuation

As previously mentioned, the approach proposed here is
monochromatic. This implies the passage to the fre-
quency domain by calculating the spectrum U(x, f) =
FT{û(x, t)} of each windowed ballistic wave, where
FT{·} designates the temporal discrete Fourier transform.
At any frequency f , the wave’s amplitude |U(x, f)| is

modelled as:

|U(x, f)| ∝ g(x) exp
[
− x

2`s(f)

]
, (2)

where the term g(x) represents the geometrical spreading
of the studied wave. For instance, for a wave of spher-
ical symmetry (bulk wave generated by a point source),
g(x) = 1/x, while for a wave of cylindrical symmetry
(surface wave generated by a point source), g(x) = 1/

√
x.

From the model (2), scattering mean-free path `s(f) may
be obtained through linear regressions at all frequencies f
of the quantity y(x, f) defined as:

y(x, f) = log

[
|U(x, f)|
g(x)

]
. (3)

Therefore, a choice has to be made for the geometri-
cal spreading function g(x) of each ballistic wave: from
the relative group velocities previously estimated on both
blocks, the fast ballistic wave is assumed to be a surface-
skimming longitudinal wave (SSLW, also called subsur-
face longitudinal wave or longitudinal critically refracted
wave) and the slow one a Rayleigh-type surface wave
(RW). Under the hypothesis that the considered source-
receiver distances x are large enough to neglect diffraction
effects due to the finite size of transducers (that is, trans-
ducers are supposed to be point sources), the former has
a geometrical spreading corresponding to a point-source-
generated bulk longitudinal wave, hence g(x) = 1/x; and
the latter has a cylindrical symmetry, hence g(x) = 1/

√
x.

The variable y(x, f) thus computed from (3) for each
windowed ballistic wave is represented against distance x
in Fig. 4 for multiple frequencies f ranging from 3.5 to
7.5MHz.
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Figure 4. Natural logarithm of the amplitude |U(x, f)|
at multiple frequencies compensated by the geometrical
spreading g(x) for the fast (top) and slow (bottom) ballis-
tic waves measured (a) on the small-grain block and (b) on
the coarse-grain block. Amplitudes are normalised so that
|U(x, f)|/g(x) = 1 at the minimum distance x.
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As a first observation, it appears that the slope of y(x, f)
is lower in magnitude, i.e., attenuation due to scattering is
less important, at low frequencies. This is a known result:
the attenuation coefficient increases with frequency up un-
til the high-frequency regime (often called “geometrical
regime”), where it becomes frequency-independent. From
Fig. 4, it seems that the grain noise remaining after averag-
ing prevents the use of the method described here for the
calculation of `s(f) at high frequencies. In other words,
there is not enough experimental data to average out the
grain noise. This is especially apparent on the coarse-grain
block and for the slow wave, as both display non-linear
curves y(x, f) at high frequencies. This observation leads
us to consider the signal-to-noise ratio (SNR) as a means
to decide if the curve y(x, f) at a given frequency f should
be fitted or not. The SNR, as a function of distance x and
frequency f , is calculated as:

SNR(x, f) =
|U(x, f)|
σU (x, f)

, (4)

where σU (x, f) represents the uncertainty of the ampli-
tude |U(x, f)|. In order to estimate σU (x, f), the spec-
trum N (a)(x, f) = FT{n̂(a)(x, t)} of the windowed noise
is computed and its variance σ2

N (x, f) is estimated:

σ2
N (x, f) =

1

A

A∑
a=1

|N (a)(x, f)|2. (5)

The uncertainty σU (x, f) is finally given by:

σU (x, f) =

√
σ2
N (x, f)

A
. (6)

To simplify matters, the SNR calculated from (4) is av-
eraged over distances x, so that it becomes a function of
the sole frequency variable f : the SNRs considered in the
following will be noted 〈SNR〉x(f). In Fig. 5, SNRs for
each windowed ballistic wave considered in this paper are
represented against frequency.

As it had been observed from Fig. 4, the SNRs of the
windowed slow wave on each block become particularly
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Figure 5. Signal-to-noise ratios of the two windowed bal-
listic waves measured (a) on the small-grain block and
(b) on the coarse-grain block. SNRs are averaged over dis-
tances x to be represented as a function of frequency f .
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Figure 6. Scattering mean-free paths with error bars of the
two windowed ballistic waves measured (a) on the small-
grain block and (b) on the coarse-grain block. Results are
given for frequencies f verifying the criterion (7).

small at high frequencies (it actually falls to unity on the
coarse-grain block over 6MHz). To avoid noise-related
difficulties, only frequencies verifying the following crite-
rion will be considered in this paper:

〈SNR〉x(f) ≥ 5. (7)

Taking this criterion into account, the measured scatter-
ing mean-free paths `s(f) are given in Fig. 6. The er-
ror bars displayed in this figure are obtained through a
Monte-Carlo procedure, performed using the uncertainty
σy(x, f). From the expression of y(x, f) in (3), one ob-
tains its uncertainty σy(x, f) from σU (x, f) by:

σy(x, f) =
σU (x, f)

|U(x, f)|
. (8)

3.2 Validity of Ballistic Waves’ Modelling

In the previous section, scattering mean-free paths `s(f)
were calculated for the two ballistic waves appearing on
each polycrystalline block by performing linear regres-
sions of the quantity y(x, f) = log[A(x, f)/g(x)] at all
frequencies f . This implied modelling the two ballis-
tic waves’ geometrical spreading g(x): the fast and slow
waves, supposedly a SSLW and a RW, decay as g(x) =
1/x and g(x) = 1/

√
x respectively. In this section, we

propose to test the validity of these models with a simple
statistical test. The experimental data y(x, f) at a given
frequency f is compared to the linear fit yfit(x, f), tak-
ing into account the uncertainty σy(x, f). To this end,
the proportion P (f) of the line yfit(x, f) intercepting
the experimental data to within two standard deviations
(y(x, f)±2σy(x, f)) is measured: assuming normally dis-
tributed noise, the chosen model for g(x) is accepted if the
proportion is greater than 95%; otherwise, it is rejected.
As the proportions P (f) measured for each windowed bal-
listic wave equal 100% at all frequencies verifying the cri-
terion (7), the chosen models for g(x) seem accurate. Note
however that the test performed here does not prove the
validity of these models but simply points towards it.
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4. COMPARISON TO THEORETICAL MODELS

Multiple theoretical models exist to describe bulk waves’
attenuation in polycrystals. Stanke and Kino’s [1] and
Weaver’s [2] models are usually considered as references
nowadays for crystallites of cubic symmetry. Unlike his-
torically previous models, these two provide results span-
ning multiple frequency regimes.

In this section, theoretical scattering mean-free paths
are computed using Weaver’s model and are compared to
the experimentally obtained curves of `s(f). To this end,
we first apply Weaver’s model [2] in its simplest form to
obtain bulk longitudinal and transverse waves’ attenuation,
implying a few hypotheses that will be mentioned; then
the Rayleigh wave’s attenuation coefficient is calculated
through a procedure proposed by Ryzy et al. [3].

4.1 Bulk Waves’ Attenuation

In his theoretical model, Weaver studied bulk ultrasonic
waves’ diffusivity in polycrystals and obtained closed-
form expressions for the attenuation coefficients αL(f)
and αT (f) of longitudinal and transverse waves respec-
tively. Weaver’s model, as Stanke and Kino’s, makes use
of a functionW (r) called “two-point correlation function”
(TPCF), representative of the microstructure’s statistics:
W (r) is defined as the probability that two points sepa-
rated by a vector r within the microstructure are located in
the same grain. By definition, W (0) = 1 and W (r) → 0
when |r| → ∞, but the exact form of a given microstruc-
ture’s TPCF is not trivial. The TPCF is an important part of
Weaver’s model as its spatial Fourier transform appears in
the expressions of attenuation coefficients. As we assumed
statistical isotropy in the studied polycrystalline samples,
the TPCF is actually a function of the distance r = |r|.
To further simplify matters, we will make the recurrent,
though debatable, assumption that the TPCF follows an ex-
ponential law:

W (r) = e−r/`c , (9)

where `c, called “correlation length”, is a characteris-
tic length describing the microstructure. The exponential
form for the TPCF is often discussed in the literature and
the choice of the length `c is not necessarily unique. In
particular, it has been observed that while the exponential
form may be suited to some cases, a single characteris-
tic length `c is rarely enough to fully describe the statis-
tics of the microstructure. For example, taking into ac-
count the grain size distribution’s mean and deviation has
shown different results than using the mean of the distri-
bution alone [6]. However, as the experimental TPCFs of
the studied blocks have yet to be measured, we will set-
tle for the exponential form TPCF (9) and will assume the
correlation length `c to be equal to the known mean grain
diameter d. Under the hypothesis of an exponential TPCF,
Weaver fully calculated attenuation coefficients αL(f) and
αT (f) (Eqs. (7.11) to (7.14) of reference [2]). These ex-
pressions depend on the correlation length `c, on the cubic
crystal anisotropy factor ν = c11 − c12 − 2c44 (calculated
from elastic constants in Tab. 1), but also on “homogenised

wave velocities” cL and cT ; that is, wave velocities con-
sidering the polycrystal as a homogeneous and isotropic
medium with elastic properties obtained from single crys-
tal elastic constants and density. As in Stanke and Kino’s
model, Weaver expressed cL and cT through a Voigt ho-
mogenisation technique, providing:

cL =

√
3c11 + 2c12 + 4c44

5ρ
, (10)

cT =

√
c11 − c12 + 3c44

5ρ
. (11)

Then again, the choice of a Voigt averaging is question-
able, as it has been shown that this homogenisation over-
estimates wave velocities [7]. Other averaging methods
exist, some of them being discussed in reference [8], but
we will consider the Voigt homogenisation in this section,
as in most of the literature. Homogenised wave velocities
considered here are thus given by (10) and (11).

4.2 Rayleigh Wave’s Attenuation

From the last section, attenuation coefficients αL(f) and
αT (f) of bulk longitudinal and transverse waves are
known. Weaver’s model, however, does not describe at-
tenuation of surface waves. In order to compute the atten-
uation coefficient αR(f) of Rayleigh waves, we use a pro-
cedure introduced by Ryzy et al. in reference [3], allowing
calculation of αR(f) from the knowledge of αL(f) and
αT (f). The objective of this procedure is to calculate the
RW’s complex wavenumber k̃R(f) = kR(f) + iαR(f),
where kR(f) = 2πf/cR(f) is the RW’s real wavenum-
ber, cR(f) being the RW’s velocity. To this end, we first
introduce the Rayleigh equation written in terms of real
wavenumbers ki(f) (i = L, T,R) [9]:

γ6 − 8γ4 + 8(3− 2κ−2)γ2 − 16(1− κ−2) = 0, (12)

where γ = kT /kR and κ = kT /kL. Assuming small
attenuation coefficients compared to real wavenumbers,
i.e., αi(f) � ki(f), Ryzy et al. proposed replacing
real wavenumbers ki(f) in the Rayleigh equation (12) by
their complex counterparts k̃i(f), which gives the “com-
plex Rayleigh equation”:

γ̃6 − 8γ̃4 + 8(3− 2κ̃−2)γ̃2 − 16(1− κ̃−2) = 0, (13)

where γ̃ = k̃T /k̃R and κ̃ = k̃T /k̃L. This equation may
be resolved numerically at all frequencies, thus providing
the attenuation coefficient αR(f). As well as for the real
Rayleigh equation (12), the physically relevant solution
of the complex Rayleigh equation (13) has to be chosen
from the six mathematical roots obtained at a given fre-
quency. This choice may be done by looking for the root
whose real part is the closest to an approximation of the
RW’s real wavenumber k̂R(f) = 2πf/ĉR, where ĉR is an
approximation of the RW’s velocity; for example, Royer
and Clorennec proposed an approximation ĉR [10], which,
coupled with Voigt averaging, reads:

ĉR = cT

√
116c11 + 244c12 − 12c44

137c11 + 258c12 + 16c44
, (14)
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where cT is given by (11).
To ensure the validity of the method described in this

section, one has to verify the hypothesis αi(f) � ki(f)
for all waves (i.e., for i = L, T,R). Hence, attenuation co-
efficients αi(f) are computed using Weaver’s model and
Ryzy et al.’s procedure as described previously for the
two polycrystalline blocks studied here, and the maximum
value of αi(f)/ki(f) over the frequency range spanning
from 3.5 to 7.5MHz is calculated for each wave. These
maxima are given in Tab. 2. It appears that αT (f) and
αR(f) respectively reach up to about a fifth of kT (f)
and kR(f) on the coarse-grain block, hence the hypothesis
αi(f)� ki(f) may not hold true on this block.

Block max
(
αL

kL

)
max

(
αT

kT

)
max

(
αR

kR

)
SG 1.05× 10−2 2.11× 10−2 1.99× 10−2

CG 1.89× 10−2 2.11× 10−1 1.94× 10−1

Table 2. Maximum values of the ratios αi(f)/ki(f) (i =
L, T,R) for frequencies ranging from 3.5 to 7.5MHz on
each studied polycrystalline block. SG and CG stand for
small-grain and coarse-grain blocks respectively.

4.3 Comparison with Experimental Results

As theoretical attenuation coefficients αi(f) are computed
as described in the two previous sections, they may be
compared with experimentally measured scattering mean-
free paths. As the fast ballistic wave is assumed to be
a surface-skimming longitudinal wave, its experimental
scattering mean-free path `s(f) is to be compared with
half the inverse of the bulk longitudinal wave’s theoreti-
cal attenuation coefficient calculated from Weaver’s model
(1/2αL(f)). As for the slow ballistic wave, supposedly a
Rayleigh wave, its experimental scattering mean-free path
`s(f) shall be compared with 1/2αR(f), where αR(f) is
calculated using Ryzy et al.’s method. These comparisons
are displayed in Fig. 7.

It appears that, despite the numerous approximations
that were made – the main ones being the exponential
form (9) for the TPCF, the choice of the correlation length
`c = d and the Voigt averaging –, the theoretical curves
in Fig. 7 seem to roughly follow experimental scattering
mean-free paths for the two ballistic waves on the small-
grain block, and for the fast ballistic wave only on the
coarse-grain block. The theoretical curve 1/2αR(f) on
the coarse-grain block appears, however, to be way off the
measured scattering mean-free path `s(f). More precisely,
the experimental RW’s scattering mean-free path on the
coarse-grain block is much larger than the theoretical one,
which means that in this case, the theory overestimates the
scattering “strength”. A way to quantify this observation is
to compute the mismatch εi of each couple of experimental
and theoretical curves:

εi(f) =
|`s(f)− 1/2αi(f)|

1/2αi(f)
. (15)
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Figure 7. Comparison between the experimentally mea-
sured scattering mean-free paths `s(f) shown in Fig. 6 and
theoretical ones calculated using Weaver’s and Ryzy et
al.’s models for the two windowed ballistic waves (a) on
the small-grain block and (b) on the coarse-grain block.

On the small-grain and coarse-grain blocks respectively, εL
reaches 80% and 46%, while εR reaches 16% and 350%.

The observed discrepancy between experimental and
theoretical RW’s scattering mean-free paths on the coarse-
grain block may be due to different factors. First, as
it has been observed in the last section, the hypothesis
αi(f) � ki(f) for each wave, necessary for the calcu-
lation of αR(f), is not quite verified on the coarse-grain
block (Tab. 2). Moreover, the wavelength-to-mean grain
diameter ratio λ/d is less than unity over 4.5MHz for
the bulk transverse wave on the coarse-grain block, which
might imply that the application of Weaver’s model is not
really adequate at such frequencies.

Otherwise, the fact that, aside from the RW on the
coarse-grain block, experimental and theoretical scatter-
ing mean-free paths seem to follow the same tendency
is encouraging for the use of Weaver’s and Ryzy et al.’s
models; though the relevancy of these theoretical models
in our case should not be taken as granted from the re-
sults presented here. Theoretical attenuation coefficients
calculated from Weaver’s model assuming an exponen-
tial TPCF highly depend, usually non-linearly, on the cor-
relation length `c. This is shown in Fig. 8, represent-
ing the variations against correlation length `c of theo-
retical scattering mean-free paths at the lowest frequency
1/2αL,R(3.5MHz) calculated using Weaver’s and Ryzy
et al.’s models. It appears that the choice of `c can have
a large impact on results obtained with the small-grain
block’s properties: simply halving the correlation length
(`c = d/2) modifies theoretical scattering mean-free paths
by a factor of about four; and setting `c = d/3 multiplies
theoretical curves in Fig. 7a by about fourteen. As for the
coarse-grain block, 1/2αL seems to show very little de-
pendence on the correlation length, while 1/2αR ∝ 1/`c.

The previous observations partly show the limitations
of the exponential form TPCF in theoretical modelling:
a more precise representation would require the experi-
mental measurement of the studied polycrystalline blocks’

10.48465/fa.2020.0443 1388 e-Forum Acusticum, December 7-11, 2020



(a) (b)

14

10

6

1 4/32/3

3

2

12

Longitudinal wave Rayleigh wave

`c/d
1 4/31/3 2/3

`c/d

α
0 i
(d
)/
α

0 i
(`
c
)

α
0 i
(d
)/
α

0 i
(`
c
)

1/3

Figure 8. Variations against correlation length `c of the
inverse of α0

i = αL,R(3.5MHz), where α0
i are calculated

using Weaver’s and Ryzy et al.’s models with the proper-
ties (a) of the small-grain block and (b) of the coarse-grain
block. Vertical axes are normalised so that the curves equal
unity when `c = d.

TPCF. Moreover, the Voigt averaging used to calculate
wave velocities cL and cT appearing in Weaver’s model
is known to provide inaccurate results. Besides, Weaver’s
model might not be exactly suited to the present case, as
it gives attenuation coefficients αL,T (f) that only increase
with frequency (αL,T (f) ∝ fn with n = 4 for λ � d
and n = 2 for λ ∼ d); i.e., theoretical scattering mean-
free paths calculated using Weaver’s model can only de-
crease with frequency. This implies that Weaver’s model
cannot account for the “hump” that can be observed on
experimental SSLWs’ scattering mean-free paths `s(f) at
around 6MHz (Fig. 7). It shall first be confirmed, how-
ever, that this hump is not an artefact due to insufficient
experimental data sets.

5. CONCLUSION

A simple experimental setup was proposed for the esti-
mation of coherent ballistic waves in polycrystalline me-
dia using a multielement array, by scanning the surface of
a sample and measuring at each position of the array an
inter-element impulse response matrix h(t). Experimental
data sets were measured on two Inconel R© 600 blocks with
different grain size distributions. On both blocks, two bal-
listic waves were observed. The fast one (group velocity of
about 5.75mm/µs) is supposed to be a surface-skimming
longitudinal wave and the slow one (group velocity of
about 2.85mm/µs) a Rayleigh wave. From these ballis-
tic waves, a monochromatic procedure to extract experi-
mental, frequency-dependent, scattering mean-free paths
`s(f) was presented, along with an estimation of exper-
imental uncertainty. This method presumes the geomet-
rical spreading function g(x) of each studied wave to be
known, therefore the assumptions made on the nature of
the two ballistic waves are paramount. For this reason, a
simple statistical test using the estimated uncertainty was
performed to verify the validity of the choice of g(x) for
each ballistic wave. Besides, the presented method re-
quires a high signal-to-noise ratio to provide reliable re-

sults and thus, large data sets are necessary in order to well-
estimate coherent ballistic waves; this becomes a problem
at low wavelength-to-mean grain diameter (and mean-free
path-to-distance) ratios, as the signal-to-noise ratio drops
with frequency and source-receiver distance.

Experimental scattering mean-free paths were com-
pared with theoretical ones, obtained by first applying
Weaver’s model [2] (to obtain bulk longitudinal and trans-
verse waves’ attenuation coefficients), and then using the
procedure suggested by Ryzy et al. [3] (to obtain the
Rayleigh wave’s attenuation coefficient). Weaver’s model
was used in its most simplified form, which assumes
the two-point correlation function W (r), describing the
microstructure’s statistics, to be exponentially decreasing
with distance r = |r|. Although such an approxima-
tion is often debated in the literature, a rather good quan-
titative agreement between theoretical and experimental
scattering mean-free paths was found on the small-grain
block. On the coarse-grain block, however, the experimen-
tal Rayleigh wave’s scattering mean-free path appeared to
be more than three times larger than the theoretical one,
which might suggest the invalidity of the used theoreti-
cal model when the wavelength becomes lower than the
mean-grain diameter. Nonetheless, as the importance of
the correlation length `c – that is, the characteristic extinc-
tion length of the exponential functionW (r) –, was shown,
it is clear that to reach a conclusion on the previous point,
W (r) should be measured experimentally on each studied
sample, thus allowing the use of Weaver’s model without
making assumptions on the microstructure. Hence, further
experimental studies are necessary to better understand and
analyse differences between theoretical models and exper-
imental results.
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des matrices aléatoires. PhD thesis, Université Paris
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