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ABSTRACT

A longitudinal wave (fast or slow) or a transverse wave
incident on a spherical inhomogeneity localized in a fluid-
saturated poro-elastic medium causes the scattering by this
inhomogeneity of three waves (fast, slow and transverse).
After having dealt with the problem of scattering by an
inhomogeneity, we examine that of the multiple scatter-
ing by a random distribution of spheres of equal radii, in
the low frequency regime known as the Rayleigh regime.
In this context, the influence of certain effective quantities
(wavenumbers, densities and modulii) of the poro-elastic
matrix/fluid cavities continuity conditions is highlighted.
Some analytical and numerical results will be discussed.

1. INTRODUCTION

In nature or in the manufacturing industry, heterogeneous
porous materials constitute a vast field of study. We can
distinguish in particular the materials formed from a poroe-
lastic matrix in which are randomly distributed cavities
(scatterers) of size much larger than that of the pores
and, generally, of very varied, non-canonical shapes. This
last point makes an analytical study of the propagation of
poroelastic waves delicate, especially since sometimes, it
is necessary to take into account a probable interpenetra-
tion of the scatterers. In the present study, we assume
that the scatterers are identical spheres of radius a. The
dilute medium assumption is considered - low concentra-
tion, scatterers sufficiently distant from each other - so that
the theory developped by Linton and Martin [1] can be ap-
plied. The acoustic scattering by a spherical inhomogene-
ity in a poroelastic matrix obeying Biot’s theory [2] is the
subject of Ref. [3]. Here, the inhomogeneities are spheri-
cal cavities and we examine only the question of the multi-
ple scattering of the fast incident wave by multiple spheres.

2. SCATTERING BY A SPHERICAL
INHOMOGENEITY

Let us consider a spherical fluid cavity of radius a cen-
tred at the origin of the axes and localized in a poroelastic
matrix (the saturating fluid is the same as in the cavity).
The physical properties of the poroelastic matrix and of
the fluid are given in Table 1. A full description of the the-
ory and of the wave propagation can be found in Biot [2]

and Berryman [4] (e−iωτ dependance with ω the angular
frequency and τ the time is assumed everywhere). Such
medium sustains two longitudinal waves (fast and slow) of
respective wavenumber k1 and k2, and a transverse wave
of wavenumber kt. The wavenumber in the fluid will be
refered to as kf . When a plane harmonic wave of type α
(= 1, 2) is incident on the sphere, it gives rise to scattered
spherical waves of type β (= 1, 2 or t).

Let Ur be the radial displacement for the solid, P the
pore pressure and σrr, σrθ the components of the stress
tensor in the poroelastic medium. In the fluid cavity, the
pressure is Pf and the radial displacement ur. The appli-
cation of the boundary conditions at r = a

(Ur)α + (Ur)sc = ur (1)

(P )α + (P )sc = (P )f (2)

(σrr)α + (σrr)sc = −Pf (3)

(σrθ)α + (σrθ)sc = 0 (4)

yields a linear system of 4 equations with 4 unknowns, of
the form

An ~X
α
n = ~Sαn , (5)

where the letter α refers to the type of the incident longi-
tudinal wave (α = 1, 2) and sc to the scattered parts. The
matrix An and the vectors ~Xα

n and ~Sαn are detailed in the
Appendix. For α = 1 et 2, the far-field scattered ampli-
tudes are given by

1

a
fαβ(θ) =

1

ixβ

∞∑
n=0

(2n+ 1)tαβn Pn(cosθ) (6)

where β = 1, 2, t and where Pn(cosθ) is the Legendre
polynomial of degree n and θ the angle of the scattering.

3. MULTIPLE SCATTERING EQUATIONS

According to the theory of Lloyd and Berry [5] applied
first to the classical physics by Linton and Martin [1], and
extended later by Luppé, Conoir and Norris [6], a wave in-
cident on an assembly of randomly distributed sphere, with
the wavenumber kα gives rise to an effective wavenumber
ζα of the form

ζ2α = k2α + n0δ
α
1 + n20(δα,02 + δα,c2 ) +O(n30). (7)
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This expansion with respect to n0 - the number of spheres
per unit volume - assumes that the concentration of scat-
terer is low (dilute case), so that terms of order n30 and the
followings can be neglected. At very low frequency, the
first terms appearing in this expansion, which are infinite
series, can be truncated. We get

δα1 =
4π

ikα
[tαα0 + 3tαα1 + ...], (8)

δα,02 = −1

2
(
4π

kα
)4[K00t

αα
0 tαα0 + 2K01t

αα
0 tαα1

+K11t
αα
1 tαα1 + ...], (9)

δα,c2 = −1

2
(
4π

kα
)4

∑
β 6=α

2k3α
kβ(k2α − k2β)

×[Kαβ
00 t

βα
0 tαβ0 +Kαβ

01 t
βα
0 tαβ1

+Kαβ
10 t

βα
1 tαβ0 +Kαβ

11 t
βα
1 tαβ1 + ...]. (10)

The dots in the brakets mean that, the scattering coeffi-
cients tαβn>1 , which are very small with respect to tαβn≤1,
have been neglected (tαβ0 and tαβ1 areO(x3α) whereas tαβn>1

isO(x5α)) (see figure1,2 and 3 ). The coefficientsKnm and
Kαβ
nm [6] are such that K00 = 0, K01 = K10 = 3/(16π2),

K11 = 3/4π2 and

Kαβ
00 =

1

16π2
, (11)

Kαβ
01 =

3

16π2

kα
kβ

(= Kαβ
10 ), (12)

Kαβ
11 =

3

16π2
[1 + 2(

kα
kβ

)2]. (13)

The terms δα1 (figure 4) and δα,02 (figure 5) involve only
scattering coefficients tαα0 and tαα1 accounting for the scat-
tering of an α-wave into an α-wave. For its part, the term
δα,c2 (fig 6) accounts for mode conversions of an α-wave
into an β-wave, with β different from α. As shown by
the plot in fig 4 and 5, the contribution of the δ1,02 is very
small compared to the δ11 term. The same remark holds
for the δ1,c2 . The comparison between the modulus of the
effective wavenumber at order 1 (kα + n0δ

1
1) , at order 2

(k21 +n0δ
1
1 +n20(δ1,02 +δ1,c2 )) and the wavenumber k1 (free

of spheres) is shown in fig(7).

Figure 1. Scattering amplitude versus xf ; t110 (red),
t120 (blue) and t1t0 (black)

Figure 2. Scattering amplitude versus xf ; t111 (red),
t121 (blue) and t1t1 (black)

Figure 3. Scattering amplitude versus xf ; t112 (red),
t122 (blue) and t1t2 (black)

4. APPENDIX

The elements of the matrix An are the an,ijs, (i, j =
1, 2, ..., 4) given by

a11 = (1 + γ1)x1h
′
n(x1) (14)

a12 = (1 + γ2)x2h
′
n(x2) (15)

a13 = (1 + γt)n̄hn(xt) (16)

a14 = −xf j′n(xf ) (17)

a21 =
ρf1
ρf

hn(x1) (18)

a22 =
ρf2
ρf

hn(x2) (19)

a23 = 0 (20)

a24 = −jn(xf ) (21)

a31 = [2n̄− ρ1
ρt
x2t ]hn(x1) − 4x1h

′
n(x1) (22)

a32 = [2n̄− ρ2
ρt
x2t ]hn(x2) − 4x2h

′
n(x2) (23)

a33 = 2n̄[xth
′
n(xt) − hn(xt)] (24)

a34 =
ρf
ρt
x2t jn(xf ) (25)

a41 = hn(x1) − x1h
′
n(x1) (26)

a42 = hn(x2) − x2h
′
n(x2) (27)

a43 = xth
′
n(xt) + [1 − n̄+

x2t
2

]hn(xt) (28)

a44 = 0 (29)

For convenience, we introduced the notations xj = kja
(j = f, 1, 2, t) and n̄ = n(n + 1). The components of the
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Figure 4. Modulus of the coefficient δ11 versus xf

Figure 5. Modulus of the coefficient δ1,02 versus xf

vector ~Sαn are given by

~Sαn =


−(1 + γα)xαj

′
n(xα)

−ρfα
ρf
jn(xα)

(−2n̄+ ρα
ρt
x2t )jn(xα) + 4xαj

′
n(xα)

−jn(xα) + xαj
′
n(xα)

 (30)

and those of vector ~Xα
n which contains the unknowns by

~Xα
n =


tα1n
tα2n
tαtn
Bα0n

 . (31)

jn is the spherical Bessel function and hn is the spherical
Hankel function of the first kind( hn ≡ h1n). The dimen-
sionless parameters γα and the mass densities ρf1, ρf2 and
ρj with j = 1, 2, t are related to the properties of the poroe-
lastic medium presented in Table 1 - Kf , ρf and η are the
bulk modulus, the mass density and the kinematic viscosity
of the saturating fluid, resp., φ is the porosity, τ the tortu-
osity, κ the permeability, ap the mean radius of the pores,
a is the radius of the sphericals scatters, Ks and ρs are the
bulk modulus and the mass density of the solid, resp., Kb

the bulk modulus of the dried porous medium, µ the shear
mudulus [7].

Figure 6. Modulus of the coefficient δ1,c2 versus xf

Figure 7. Comparaison between the modulus of ζ21 at or-
der 1(magenta); at order 2(red) and k21 (blue) versus xf
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Parameter Unit Value
Ks Pa 3.66×1010

Kb Pa 9.47×109

Kf Pa 2.22×109

µ Pa 7.63×109

ρs kg m−3 2760
ρf kg m−3 1000
φ - 0.402
k m2 1.68×10−11

ap m 3.26×10−5
a - 1×10−2

η kg m−1s−1 1.14×10−3

τ - 1.89

Table 1. Parameters of the poroelastic medium.
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