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ABSTRACT

In underwater acoustic shallow-water environments act as
dispersive waveguides. With a low-frequency source emit-
ting in such environment, the signal can be described as the
sum of few modal components, each associated to its own
wavenumber. A precise estimation of these wavenumbers
is essential to characterize the nature of the environment.
In the continuation of previous works, we propose a new-
grid free algorithm applied to time-shifted data allowing a
super-resolution of the (f-k) diagram. Our method is vali-
dated on both simulated and real data.

1. INTRODUCTION

In normal mode theory, the low-frequency sound field in
shallow water is composed of several normal modes at
each frequency. The solutions of the modal equation with
its boundary conditions are a series of modes [1]. Each
mode is characterized by its own wavenumber. For a hori-
zontal linear array (HLA), the received signal at frequency
f can be written within the matrix form

yf = Daf + nf , (1)

where yf is the received signal at frequency f , the ele-
ments in af are proportional to the modal amplitudes, nf is
an additive noise and D ∈ CM×N is a dictionary made up
of Fourier atoms, that constitutes a N -points discretization
of the wavenumber subspace. A least square estimation
of af is given by applying an inverse Fourier transform to
yf . Repeating the process for each frequency of the source
and stacking the obtained spectra results in a frequency-
wavenumber (f-k) diagram representative of the waveguide
dispersion [2, 3, 4]. While being simple, this approach is
also highly sensitive to the antenna configuration and re-
quires a large quantity of sensors to reach a satisfying res-
olution of spatial wavenumbers. Alternatively, since only
few modes are expected at each frequency, sparse represen-
tations (SR) comes as a natural and intuitive model for the
search of these few wavenumbers over a large dictionary of

discretized wavenumbers. SR algorithms have been suc-
cessfully applied to the modal estimation problem [4, 5].
However, these approaches are almost always looking for
the wavenumbers within a discretized domain–i.e., within
ad discretized dictionary D–that induces mismatch in the
estimation. In [6] the authors propose a grid-free version of
the SR optimization problem that is solved using the Con-
vex optimization toolbox CVX and thus results in a high
complexity and time consuming algorithm.

Some recent contributions [4, 5] proposed to take into
account a propagation relation of the estimated modes be-
tween two successive frequencies. This was showned to
provide a performance improvement compared to the naive
approach.

We propose to include a mode propagation relation
into an computationally light grid-free algorithm based on
the well known greedy SR procedure that is Orthogonal
Matching Pursuit (OMP) [7]. The proposed approach is
also considering a shifted version of the signal that writes
for each frequency f as yshift

f = e( 2iπf
c )yf , where c is the

celerity in the medium. This shift, proposed in [2, 3] is a
method that allows a better separability of the wavenum-
bers and prevents aliasing in the wavenumber domain.

2. PROPOSED APPROACH

In modal theory, the horizontal wavenumbers krm associ-
ated to the propagating modes are linked to their vertical
counter-parts kzm by the dispersion relation, that is, for a
given frequency f ,

(
2πf

c

)2

= krm(f)2 + kzm(f)2. (2)

Discretizing the frequency axis (with f = ν∆f , ν ∈
{0, ..., F}, ∆f the frequency spacing) and denoting
k̃rm[ν] , k̃rm(ν∆f ), the shifted wavenumbers attached
to two successive indices are linked as [4] :
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(
k̃rm[ν + 1] + α(ν + 1)

)2

=(
k̃rm[ν] +

2π∆f

c
ν

)2

+ (2ν + 1)

(
2π∆f

c

)2

+ ε[ν].

(3)

where ε[ν] stands for the variation of the vertical com-
ponents. In shallow-water environments, the vertical
wavenumbers kzm weakly depend on the frequency, the
quantity ε is thus smaller than the other terms of the equa-
tion and can be neglected. The dispersive relation has been
exploited in [4, 5, 8].

Our proposed approach mainly builds on a continuous
version of OMP (COMP) that basically consists in i) se-
lecting ”the best” wavenumber from the grid to be part of
the sparse representation and ii) initiating a gradient de-
scent from this wavenumber to relax the grid constrained
solution. The contribution of the obtained wavenumber is
then removed from the residual signal and these steps are
repeated up to a defined stopping criteria, e.g., up to a max-
imum number of selection. In the continuation of [5], we
propose to integrate the information provided by the dis-
persion relation (3) into the COMP SR process. Instead
of performing COMP for each frequency independently,
we propagate the SR obtained at frequency f to frequency
f + ∆f . Concretely, if no wavenumbers have been ac-
tivated in the SR of ỹf then SR of ỹf+∆f

is performed
using standard COMP. On the contrary, if some wavenum-
bers have been activated, then the SR process starts with
a propagation stage that consists in initiated gradient de-
scents to each wavenumber satisfying (3). Depending on
their relevance, the obtained wavenumbers are conserved
in the SR support or ignored. Standard COMP in then ap-
plied to the remaining wavenumbers of the grid. The pro-
cess is repeated for the whole frequencies so as to build the
(f-k) diagram.

3. EXPERIMENT

We propose to compare the performance of our approach to
those obtained with OMP, COMP and propagated SoBaP
algorithm [5]. Tests are realised on a physically-realistic
dataset simulated with a Pekeris waveguide [1].

Fig.1 shows the evolution of the Jaccard’s distance [9]
reached with four algorithms with respect to the number
of sensor on the simulated dataset. Jaccard’s distance is a
criteria designed to quantitatively assess the detection per-
formance of continuous algorithms. One can see that our
approach, that combines both an off-grid selection of the
wavenumbers and the propagation relation outperforms all
other considered approaches no matter the number of sen-
sors. The method has also been tested on experimental data
collected in the North Sea and shows promising result.
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Figure 1. Evolution of the Jaccard’s distance with respect
to the number of sensors.
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