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Despite several significant advances over the last 30 years, guaranteeing the correctly rounded evaluation of elementary functions, such as cos, exp, 3 √ • for instance, is still a difficult issue. This can be formulated as a Diophantine approximation problem, called the Table Maker's Dilemma, which reduces to determining points with integer coordinates that are close to a curve. In this article, we propose two algorithmic approaches to tackle this problem, closely related to a celebrated work by Bombieri and Pila and to the so-called Coppersmith's method. We establish the underlying theoretical foundations, prove the algorithms, study their complexity and present practical experiments; we also compare our approach with previously existing ones. In particular, our results show that the development of a correctly rounded mathematical library for the binary128 format is now possible at a much smaller cost than with previously existing approaches.

Introduction

Modelling real numbers on a computer is by no means a trivial task. Until the mid-80s, processor manufacturers developed their own representations and conventions, leading to a difficult era -a time of weird, unexpected and dangerous behaviours [START_REF] Kahan | Why do we need a floating-point standard?[END_REF]. This motivated the publication in 1984 of the IEEE-754 standard [START_REF] Cody | A proposed radix-and-word-length-independent standard for floating-point arithmetic[END_REF][START_REF]IEEE Standard for Binary Floating-Point Arithmetic[END_REF], since then revised in 2008 [START_REF]IEEE Standard for Floating-Point Arithmetic. IEEE Standard[END_REF][START_REF] Markstein | The New IEEE-754 Standard for Floating-Point Arithmetic[END_REF] and 2019 [START_REF]IEEE. IEEE Standard for Floating-Point Arithmetic (IEEE Std 754[END_REF], for binary floating-point (FP) arithmetic 1 , which remains the best trade-off for representing real numbers on a computer [START_REF] Muller | Handbook of Floating-Point Arithmetic[END_REF]. This put an end to this dangerous era of "numerical insecurity".

In particular, the IEEE-754 standard clearly specifies the formats of the FP representations of numbers, and the behaviour of the four arithmetic operations and the square root. And yet, as of today, the standard still does not rule the behaviour of usual functions, such as the ones contained in the C mathematical library (libm), as precisely as it does for the four arithmetic operations and the square root.

The issue that we address in this paper is the problem of correctly-rounded evaluation of a one-variable function. Usually, when one wants to evaluate a function such as the cube root or the exponential functions, one actually evaluates a very good approximation of it (such as a polynomial for instance). This raises a problem, that is correct rounding: how can one guarantee that the rounding of the value of the function coincides with the rounding of the value of the approximation? This issue is related to a problem called Table's Maker Dilemma (TMD), which we shall describe in further detail in Section 1.2. This paper presents two heuristic approaches to address the TMD. Both mix ingredients from approximation theory and algorithmic number theory (actually Euclidean lattice basis reduction). The first approach can be viewed as an effective variant of Bombieri and Pila's approach developed in [START_REF] Bombieri | The number of integral points on arcs and ovals[END_REF]. The second one is an improvement over the algorithmic approaches developed in [START_REF] Stehlé | Searching Worst Cases of a One-Variable Function Using Lattice Reduction[END_REF][START_REF] Stehlé | On the randomness of bits generated by sufficiently smooth functions[END_REF]. Rather than reducing the problem for 𝑓 to the same problem for an approximation (Taylor) polynomial for 𝑓 as it is done in [START_REF] Stehlé | Searching Worst Cases of a One-Variable Function Using Lattice Reduction[END_REF][START_REF] Stehlé | On the randomness of bits generated by sufficiently smooth functions[END_REF], we work with the function 𝑓 itself as long as possible. The difference may seem subtle, but it raises significant difficulties, while bringing two major improvements: smaller matrices and the prereduction trick (see Section 8).

In particular, we give the first significant results for the binary128 format and this work paves the way for the first development of an efficient correctly rounded mathematical library in the three fundamental formats binary32, binary64 and binary128. As of today, the library CRlibm [START_REF] Lauter | Arrondi Correct de Fonctions Mathématiques[END_REF] offers correctly rounded evaluation of the binary64 precision C99 standard elementary functions.

We believe that our results are interesting in themselves. In particular, beyond their application to the Table Maker's Dilemma for which we improve on some of the theoretical and practical results of [START_REF] Lefèvre | Moyens Arithmétiques Pour un Calcul Fiable[END_REF][START_REF] Lefèvre | Worst cases for correct rounding of the elementary functions in double precision[END_REF][START_REF] Lefèvre | New results on the distance between a segment and Z 2 . Application to the exact rounding[END_REF][START_REF] Stehlé | Searching Worst Cases of a One-Variable Function Using Lattice Reduction[END_REF][START_REF] Stehlé | On the randomness of bits generated by sufficiently smooth functions[END_REF], they offer a practical means to compute integer points in a strip around a transcendental analytic curve 2 .

Note that we restrict ourselves in the present paper to transcendental function. Our methods, as we describe them, are bound to fail for algebraic functions of small degree. They may however be adapted in this case (similarly to Bombieri and Pila's adaptation in the algebraic case). We intend to come back to this in a sequel of this paper.

1.1. Arithmetic framework. We first recall the definition of a FP number. Definition 1.1. Let 𝛽, 𝑝, 𝐸 min , 𝐸 max ∈ Z, 𝛽, 𝑝 ⩾ 2, 𝐸 min < 0 < 𝐸 max , a (normal) radix-𝛽 FP number in precision 𝑝 with exponent range [𝐸 min , 𝐸 max ] is a number of the form 𝑥 = (-1) 𝑠 𝑀 𝛽 𝑝-1 • 𝛽 𝐸 , where :

• the exponent 𝐸 ∈ Z is such that 𝐸 𝑚𝑖𝑛 ⩽ 𝐸 ⩽ 𝐸 𝑚𝑎𝑥 , • the integral significand 𝑀 ∈ N represented in radix 𝛽 satisfies 𝛽 𝑝-1 ⩽ 𝑀 ⩽ 𝛽 𝑝 -1,
• 𝑠 ∈ {0, 1} is the sign bit of 𝑥.

In the sequel, we shall leave the exponent range implicit unless it is explicitly required, and simply talk about "radix-𝛽 FP numbers in precision 𝑝". Remark 1.2. For the sake of clarity, we chose not to mention subnormal FP numbers since they will not appear in the text. One can find the complete definition in [START_REF] Muller | Handbook of Floating-Point Arithmetic[END_REF]Chap. 2.1].

The number zero is a special case, cf. [START_REF] Muller | Handbook of Floating-Point Arithmetic[END_REF]Chap. 3], that we add to the set of radix-𝛽 and precision-𝑝 FP numbers. This yields a set denoted ℱ 𝛽,𝑝 .

Remark 1.3. In this paper, we use radix 2 for the sake of clarity but our approach remains valid for any radix, in particular radix 10, the importance of which grows at a steady pace. The set ℱ 2,𝑝 will thus be denoted ℱ 𝑝 . 1. Main parameters of the three basic binary formats (up to 128 bits) specified by the standard [START_REF]IEEE. IEEE Standard for Floating-Point Arithmetic (IEEE Std 754[END_REF].

Table 1 gives the main parameters of the three basic binary formats specified by IEEE 754-2019.

The result of an arithmetic operation whose input values belong to ℱ 𝑝 may not belong to ℱ 𝑝 (in general it does not). Hence that result must be rounded. The IEEE standard defines 5 different rounding functions; in the sequel, 𝑥 is any real number to be rounded:

• round toward +∞, or upwards: ∘ 𝑢 (𝑥) is the smallest element of ℱ 𝑝 that is greater than or equal to 𝑥; • round toward -∞, or downwards: ∘ 𝑑 (𝑥) is the largest element of ℱ 𝑝 that is less than or equal to 𝑥; • round toward 0: ∘ 𝑧 (𝑥) is equal to ∘ 𝑢 (𝑥) if 𝑥 < 0, and to ∘ 𝑑 (𝑥) otherwise;

• round to nearest ties to even, denoted ∘ 𝑛𝑒 (𝑥) and round to nearest ties to away, denoted ∘ 𝑛𝑎 (𝑥). If 𝑥 is exactly halfway between two consecutive elements of ℱ 𝑝 , ∘ 𝑛𝑒 (𝑥) is the one for which the integral significand 𝑀 is an even number and ∘ 𝑛𝑎 (𝑥) is the one for which the integral significand 𝑀 is largest. Otherwise, both return the element of ℱ 𝑝 that is the closest to 𝑥. The first three rounding functions are called directed rounding functions.

The following real numbers will play a key role in the problem that we address.

Definition 1.4. A rounding breakpoint (or simply, a breakpoint) is a point where the rounding function changes (namely a discontinuity point). For round-to-nearest functions, the rounding breakpoints are the exact middles of consecutive floatingpoint numbers. For the other rounding functions, they are the floating-point numbers themselves. Maker's Dilemma. The standard requires that the user should be able to choose one rounding function among these ones, called the active rounding function. An active rounding function being chosen, when performing one of the 4 arithmetic operations, or when computing square roots, the obtained rounded result should be equal to the rounding of the exact result: this requirement on the quality of the computation is called correct rounding.

Correct rounding, Table

Being able to provide correctly rounded functions is of utter interest:

• it greatly improves the portability of software;

• it allows one to design algorithms that use this requirement;

• this requirement can be used for designing formal proofs of pieces of software;

• one can easily implement interval arithmetic, or more generally one can get certain lower or upper bounds on the exact result of a sequence of arithmetic operations. While the IEEE 754-1985 and 854-1987 standards required correctly rounded arithmetic operations and square root, they did not do it for the most common mathematical functions, such as simple algebraic 3 functions like 1/ √ •, 3 √ •, . . . and also a few transcendental 4 functions like sine, cosine, exponentials, and logarithms of radices 𝑒, 2, and 10, etc. More generally, a natural target is the whole class of elementary functions 5 . A subset of these functions is usually available from the libms delivered with compilers or operating systems.

This lack of requirement is mainly due to a difficult problem known as the Table Maker's Dilemma (TMD), a term coined by Kahan. When evaluating most elementary functions, one has to compute an approximation to the exact result, using an intermediate precision somewhat larger than the "target" precision 𝑝. The TMD is the problem of determining, given a function 𝑓 , what this intermediate precision should be in order to make sure that rounding that approximation yields the same result as rounding the exact result. Ideally, we aim at getting the minimal such precision htr 𝑓 (𝑝), that we call hardness to round of 𝑓 (see Definition 2.3).

If we have 𝑁 FP numbers in the domain being considered, it is expected that htr 𝑓 (𝑝) is of the order of 𝑝+log 2 (𝑁 ) (hence 2𝑝 for most usual functions and binades 6 ). This is supported by a probabilistic heuristic approach that is presented in detail in [START_REF] Muller | Handbook of Floating-Point Arithmetic[END_REF][START_REF] Muller | Elementary Functions, Algorithms and Implementation[END_REF]. It has been studied in [START_REF] Brisebarre | Exponential sums and correctly-rounded functions[END_REF] where O. Robert and the authors of the present paper gave, under some mild hypothesis on 𝑓 ′′ , solid theoretical foundations to some instances of this probabilistic heuristic, targeting in particular the cases that the CRlibm library uses in practice.

Fast and cheap correctly-rounded function evaluation in binary64.

Diophantine approximation-type methods yield -not fully satisfactory -upper bounds for htr 𝑓 (𝑝) for algebraic functions: the precision to which the computations must be performed is, in general, grossly overestimated [START_REF] Iordache | On infinitely precise rounding for division, square root, reciprocal and square root reciprocal[END_REF][START_REF] Lang | Bound on run of zeros and ones for algebraic functions[END_REF][START_REF] Brisebarre | Correct rounding of algebraic functions[END_REF]. On the other hand, regarding transcendental functions, either no theoretical statement exists or they provide results that are off by such a margin that they cannot be used in practical computations [START_REF] Nesterenko | On the approximation of the values of exponential function and logarithm by algebraic numbers[END_REF][START_REF] Khémira | Approximants de Hermite-Padé, déterminants d'interpolation et approximation diophantienne[END_REF][START_REF] Khémira | Approximation diophantienne et approximants de Hermite-Padé de type I de fonctions exponentielles[END_REF].

Therefore, algorithmic approaches to the TMD [START_REF] Lefèvre | Moyens Arithmétiques Pour un Calcul Fiable[END_REF][START_REF] Lefèvre | Worst cases for correct rounding of the elementary functions in double precision[END_REF][START_REF] Lefèvre | New results on the distance between a segment and Z 2 . Application to the exact rounding[END_REF][START_REF] Stehlé | Searching Worst Cases of a One-Variable Function Using Lattice Reduction[END_REF][START_REF] Hanrot | Worst Cases of a Periodic Function for Large Arguments[END_REF] had to be developed. They allowed for solving the TMD for the IEEE binary64 format (also known as "double precision").

As a consequence, the revised IEEE-754 standard now recommends (yet does not require, due to the lack of results in the case of binary128) that the following functions should be correctly rounded: 𝑒 𝑥 , 𝑒 𝑥 -1, 2 𝑥 , 2 𝑥 -1, 10 𝑥 , 10 𝑥 -1, ln(𝑥), log 2 (𝑥), log 10 (𝑥), ln(1 + 𝑥), log 2 (1 + 𝑥), log 10 (1 + 𝑥), √︀ 𝑥 2 + 𝑦 2 , 1/ √ 𝑥, (1 + 𝑥) 𝑛 , 𝑥 𝑛 , 𝑥 1/𝑛 (𝑛 is an integer), sin(𝑥), cos(𝑥), tan(𝑥), arcsin(𝑥), arccos(𝑥), arctan(𝑥), arctan(𝑦/𝑥), sin(𝜋𝑥), cos(𝜋𝑥), tan(𝜋𝑥), arcsin(𝑥)/𝜋, arccos(𝑥)/𝜋, arctan(𝑥)/𝜋, arctan(𝑦/𝑥)/𝜋, sinh(𝑥), cosh(𝑥), tanh(𝑥), sinh -1 (𝑥), cosh -1 (𝑥), tanh -1 (𝑥).

Thanks to these results, it is now possible to obtain correct rounding in binary64 in two steps only (inspired by a strategy developed by A. Ziv [START_REF] Ziv | Fast evaluation of elementary mathematical functions with correctly rounded last bit[END_REF] and implemented 3 We say that a function 𝜙 is algebraic if there exists 𝑃 ∈ Z[𝑥, 𝑦] ∖ {0} such that for all 𝑥 such that 𝜙(𝑥) is defined, 𝑃 (𝑥, 𝜙(𝑥)) = 0.

4 A function is transcendental if it is not algebraic. 5 An elementary function is a function of one variable which is the composition of a finite number of arithmetic operations (+, -, ×, /), exponentials, logarithms, constants, and solutions of algebraic equations [START_REF] Bronstein | Symbolic integration. I, volume 1 of Algorithms and Computation in Mathematics[END_REF]Def. 5.1.4].

in the libultim library 7 ), which one may then optimize separately. This is the approach used in CRlibm:

• the first quick step is as fast as a current libm, and provides a relative accuracy of 2 -52-𝑘 (𝑘 = 11 for the exponential function for instance), which is sufficient to round correctly to the 53 bits of binary64 in most cases; • the second accurate step is dedicated to challenging cases. It is slower but has a reasonable bounded execution time, being tightly targeted at the hardest-to-round cases computed by Lefèvre et al. [START_REF] Lefèvre | Towards correctly rounded transcendentals[END_REF][START_REF] Lefèvre | Worst cases for correct rounding of the elementary functions in double precision[END_REF][START_REF] Stehlé | Worst Cases and Lattice Reduction[END_REF][START_REF] Stehlé | Searching Worst Cases of a One-Variable Function Using Lattice Reduction[END_REF][START_REF] Stehlé | On the randomness of bits generated by sufficiently smooth functions[END_REF]. In particular, there is no need for arbitrary multiple precision anymore. This approach [START_REF] De Dinechin | Towards the post-ultimate libm[END_REF][START_REF] De Dinechin | Fast and correctly rounded logarithms in double-precision[END_REF] leads to correctly-rounded function evaluation routines that are fast and have a reasonable memory consumption. Unfortunately, the lack of useful information about the TMD in binary128 has so far prevented the development of an extension of CRlibm to this format. 1.4. Goal and outline of the paper. In this paper, we present two new algorithmic approaches to tackle the TMD. For both, we follow the standard strategy to subdivide the interval under study into subintervals; but instead of approximating the function 𝑓 by a polynomial function using Taylor expansion at the center of such a tiny interval 𝐼, as it was done in [START_REF] Lefèvre | Moyens Arithmétiques Pour un Calcul Fiable[END_REF][START_REF] Lefèvre | Worst cases for correct rounding of the elementary functions in double precision[END_REF][START_REF] Lefèvre | New results on the distance between a segment and Z 2 . Application to the exact rounding[END_REF][START_REF] Stehlé | Searching Worst Cases of a One-Variable Function Using Lattice Reduction[END_REF][START_REF] Stehlé | On the randomness of bits generated by sufficiently smooth functions[END_REF], we approximate 𝑓 by an algebraic function using uniform approximation: if we assume for instance 𝑓 : [1/2, 1) → [1/2, 1) (hence every involved FP number has denominator 2 𝑝 ),we search for 𝑃 0 and 𝑃 1 ∈ Z[𝑋, 𝑌 ] that are small on the "weighted" curve (2 𝑝 𝑥, 2 𝑝 𝑓 (𝑥)) (first approach) or in a strip around this "weighted" curve (second approach). This smallness implies that the bad cases for rounding are common roots to 𝑃 0 and 𝑃 1 . Then, we use a heuristic argument of coprimality of 𝑃 0 and 𝑃 1 , analogous to the one used in [START_REF] Boneh | Cryptanalysis of RSA with private key 𝑑 less than 𝑁 0.292[END_REF][START_REF] Stehlé | Searching Worst Cases of a One-Variable Function Using Lattice Reduction[END_REF][START_REF] Stehlé | On the randomness of bits generated by sufficiently smooth functions[END_REF] to obtain these bad cases.

In order to compute 𝑃 0 and 𝑃 1 , we use ideas and techniques developed by the first author and S. Chevillard [START_REF] Brisebarre | Efficient polynomial 𝐿 ∞ approximations[END_REF]. Very roughly speaking, if we still assume 𝑓 : [1/2, 1) → [1/2, 1), the key idea is to find 𝑃 ∈ Z[𝑋 1 , 𝑋 2 ] that is small at some points (2 𝑝 𝑥 𝑖 , 2 𝑝 𝑓 (𝑥 𝑖 )) of the "weighted" curve (first approach) or (2 𝑝 𝑥 𝑖 , 2 𝑝 (𝑓 (𝑥 𝑖 )+𝑦 𝑖 )) of a strip around the "weighted" curve (second approach). If the points 𝑥 𝑖 (resp. the pairs (𝑥 𝑖 , 𝑦 𝑖 )) are carefully chosen, these discrete smallness constraints imply uniform smallness over the curve, resp. the strip around the curve, cf. Section 4.1. The discrete constraints can be reformulated as the fact that the values of 𝑃 at the (2 𝑝 𝑥 𝑖 , 2 𝑝 𝑓 (𝑥 𝑖 )) (resp. the (2 𝑝 𝑥 𝑖 , 2 𝑝 (𝑓 (𝑥 𝑖 ) + 𝑦 𝑖 ))) are the coordinates of a certain short vector in a Euclidean lattice. The celebrated LLL algorithm, cf. Section 4.2, then allows for computing a reasonable candidate for 𝑃 .

The first approach which favours smallness on the curve (2 𝑝 𝑥, 2 𝑝 𝑓 (𝑥)), 𝑥 ∈ 𝐼 is somehow akin to [START_REF] Bombieri | The number of integral points on arcs and ovals[END_REF] whereas the second one, which forces smallness on a strip around this curve, is somehow analogous to [START_REF] Stehlé | Searching Worst Cases of a One-Variable Function Using Lattice Reduction[END_REF][START_REF] Stehlé | On the randomness of bits generated by sufficiently smooth functions[END_REF].

As our reader will see, our work does not lead, with respect to the previous algorithmic approaches, to an improvement for the determination of worst cases for rounding and optimal values of htr 𝑓 (𝑝). On the other hand, for certain elementary or special functions evaluated in binary128, we are able to provide:

• upper bounds for htr 𝑓 (𝑝) that are useful in practice. For instance, for the exponential function, which plays a central role for correctly-rounded evaluation of the elementary functions of the C mathematical library, we provide a roadmap to reach, in practice8 , the upper bound htr 𝑓 (𝑝) ⩽ 12𝑝 for 𝑝 = 113 which corresponds to the binary128 format; • an effective determination of the FP values whose evaluation by 𝑓 is exactly an FP number or the middle of two consecutive FP numbers. This is a key issue in the development of correctly-rounded evaluation routines. An exhaustive evaluation is possible in binary32 and theoretical results [START_REF] Jeannerod | Midpoints and exact points of some algebraic functions in floating-point arithmetic[END_REF] yield lists of these values for some restricted classes of functions and algorithmic approaches [START_REF] Lefèvre | Towards correctly rounded transcendentals[END_REF][START_REF] Lefèvre | Worst cases for correct rounding of the elementary functions in double precision[END_REF][START_REF] Stehlé | Worst Cases and Lattice Reduction[END_REF][START_REF] Stehlé | Searching Worst Cases of a One-Variable Function Using Lattice Reduction[END_REF][START_REF] Stehlé | On the randomness of bits generated by sufficiently smooth functions[END_REF]] make it possible to address this problem in binary64. However, before the present paper, the only practical means to tackle the binary128 format was S. Torres' implementation of [START_REF] Stehlé | On the randomness of bits generated by sufficiently smooth functions[END_REF] in his PhD thesis [START_REF] Torres | Tools for the Design of Reliable and Efficient Functions Evaluation Libraries[END_REF] and we will show in Section 8 that our work significantly improves the situation. As an example, we address the case of the Euler function Γ, a function of the C mathematical library, for which theoretical results from Transcendental Number Theory are almost nonexistent. This hopefully paves the way to an extension of CRlibm to the binary128 format, provided that we adopt the following three step strategy for this format:

• a first quick step identical to the one mentioned in the previous subsection;

• a second step, slower but with a reasonable bounded execution time, where the evaluation is performed using a precision of 260 = 2𝑝 + 34 bits, say. Heuristically, this should cover all the hardest-to-round cases; • a third step, where the evaluation is performed using a precision of 12𝑝 = 1356 bits. Heuristically, this step should never be called, so it is important to write routines simple enough to be formally proved in order to guarantee its validity. We will formalize the problem we address in Section 2. We then give a state of the art in Section 3. The theoretical results are presented in Section 3.1, including applications of [START_REF] Khémira | Approximants de Hermite-Padé, déterminants d'interpolation et approximation diophantienne[END_REF][START_REF] Khémira | Approximation diophantienne et approximants de Hermite-Padé de type I de fonctions exponentielles[END_REF] that, to the best of our knowledge, are reviewed for the first time and offer theoretical upper bounds for htr 𝑓 (𝑝) in the binary64 and binary128 cases which greatly improve upon the existing ones. The existing algorithmic approaches are sketched in Section 3.2. Our approach relies on tools from Approximation Theory and Euclidean lattice basis reduction and an idea presented in [START_REF] Brisebarre | Efficient polynomial 𝐿 ∞ approximations[END_REF][START_REF] Chevillard | Évaluation efficace de fonctions numériques -Outils et exemples[END_REF]. We recall them in Section 4. Our first approach is presented in Section 5 and our second one in Section 6. We present a comparison with previous work in Section 7 and we conclude with experimental results in Section 8.

Formalization of the problem

Assume we wish to correctly round a real-valued function 𝜙. Note that if 𝑥 is a bad case for 𝜙 (i.e., 𝜙(𝑥) is difficult to round), then it is also a bad case for -𝜙 and -𝑥 is a bad case for 𝑡 ↦ → 𝜙(-𝑡) and 𝑡 ↦ → -𝜙(-𝑡). Hence we can assume that 𝑥 ⩾ 0 and 𝜙(𝑥) ⩾ 0.

We consider that all input values are elements of

ℱ 𝑝 ∩ [2 𝑒1 , 2 𝑒1+1
). The method must be applied for each possible integer value of 𝑒 1 .

If the values of 𝜙(𝑥), for 𝑥 ∈ [2 𝑒1 , 2 𝑒1+1 ), are not all included in the binade [2 𝑒2 , 2 𝑒2+1 ), we split the input interval into subintervals such that for each subinterval, there is an integer 𝑒 2 such that the values 𝜙(𝑥), for 𝑥 in the subinterval, are in [2 𝑒2 , 2 𝑒2+1 ). We now restrict to one of those subintervals 𝐼 included in [2 𝑒1 , 2 𝑒1+1 ).

For directed rounding functions, the problem to be solved is the following: Problem 2.1 (TMD, directed rounding functions). What is the minimum 𝜇(𝑝) ∈ Z such that, for 2 𝑝-1 ⩽ 𝑋 ⩽ 2 𝑝 -1 (and, possibly, the restrictions implied by

𝑋/2 -𝑒1+𝑝-1 ∈ 𝐼) such that 𝜙 (︀ 𝑋2 𝑒1-𝑝+1 )︀ / ∈ ℱ 𝑝 and for 2 𝑝-1 ⩽ 𝑌 ⩽ 2 𝑝 -1, we have ⃒ ⃒ ⃒ ⃒ 2 -𝑒2 𝜙 (︂ 𝑋 2 -𝑒1+𝑝-1 )︂ - 𝑌 2 𝑝-1 ⃒ ⃒ ⃒ ⃒ ⩾ 1 2 𝜇(𝑝) .
For rounding to nearest functions, the problem to be solved is the following: Problem 2.2 (TMD, rounding to nearest functions). What is the minimum 𝜇(𝑝) ∈ Z such that, for 2 𝑝-1 ⩽ 𝑋 ⩽ 2 𝑝 -1 (and, possibly, the restrictions implied by

𝑋/2 -𝑒1+𝑝-1 ∈ 𝐼) such that 𝜙 (︀ 𝑋2 𝑒1-𝑝+1 )︀ is not the middle of two consecutive elements of ℱ 𝑝 and for 2 𝑝-1 ⩽ 𝑌 ⩽ 2 𝑝 -1, we have ⃒ ⃒ ⃒ ⃒ 2 -𝑒2 𝜙 (︂ 𝑋 2 -𝑒1+𝑝-1 )︂ - 2𝑌 + 1 2 𝑝 ⃒ ⃒ ⃒ ⃒ ⩾ 1 2 𝜇(𝑝) .
These statements lead to the following definition. Definition 2.3 (hardness to round). Let a precision 𝑝 be given, ∘ be a rounding function and 𝜙 be a real valued function. Let 𝑥 be a FP number in precision 𝑝 and 𝑒 2 ∈ Z be the unique integer such that 𝜙(𝑥) ∈ [2 𝑒2 , 2 𝑒2+1 ) (here again, we assume 𝑥 and 𝜙(𝑥) ⩾ 0, since the extension to the other cases is straightforward).

The hardness to round 𝜙(𝑥), denoted htr 𝜙,{𝑥},∘ (𝑝) is equal to:

• -∞ if 𝜙(𝑥) is a breakpoint;
• the smallest integer 𝑚 such that the distance of 𝜙(𝑥) to the nearest breakpoint is larger than or equal to 2 -𝑚+𝑒2 . The hardness to round 𝜙 over an interval 𝐼, denoted htr 𝜙,𝐼,∘ (𝑝), is then the maximum of the hardness to round 𝜙(𝑥) for all FP 𝑥 ∈ ℱ 𝑝 ∩ 𝐼, while the hardness to round 𝜙 is the hardness to round 𝜙 over R, simply denoted htr 𝜙,∘ (𝑝). When there is no ambiguity over the rounding function, we get rid of the symbol ∘.

Remark 2.4. Note that both Problem 2.1 and Problem 2.2 for precision 𝑝 are subproblems of Problem 2.1 for precision 𝑝 + 1.

Remark 2.5. If we assume that 𝜙 admits an inverse 𝜙 -1 and is differentiable over 𝐼 and that we have a precise control over the image of 𝜙 ′ over 𝐼, it follows from the mean value theorem that addressing Problems 2.1 and 2.2 for 𝜙 over 𝐼 is analogous to addressing Problems 2.1 and 2.2 for 𝜙 -1 over 𝜙(𝐼). For instance, one can think of exp and log or 𝑥 ↦ → 3 √ 𝑥 and 𝑥 ↦ → 𝑥 3 .

The problem that we actually tackle in this paper is the following. 

⃒ ⃒ ⃒ ⃒ 𝑓 (︂ 𝑋 𝑢 )︂ - 𝑌 𝑣 ⃒ ⃒ ⃒ ⃒ < 1 𝑤 .
This problem encompasses the TMD: consider 𝑎 = 2 𝑒1 , 𝑏 = 2 𝑒1+1 -1, 𝑢 = 2 𝑝-𝑒1-1 , 𝑣 = 2 𝑝-𝑒2-1 and 𝑓 = 𝜙 (for directed rounding functions) or 𝑓 = 𝜙 -1/(2𝑣) (for rounding to nearest functions).

It also includes a generalization of the question addressed in [START_REF] Bombieri | The number of integral points on arcs and ovals[END_REF], which corresponds to the case 𝑎 = 0, 𝑏 = 1, 𝑢 = 𝑣. Remark 2.7. Note that the status of 𝑤 in Problem 2.6 may vary. In Section 5, we'll consider 𝑤 as an output of the algorithm: on input 𝑢, 𝑣, 𝑎, 𝑏, Algorithm 2 heuristically returns a value of 𝑤 and a set (𝑋, 𝑌 ) of solutions of (2.1). This comes from the fact that Algorithm 2 is primarily devoted to finding solutions to 𝑌 /𝑣 = 𝑓 (𝑋/𝑢), and that it happens that from the work done on this curve, one can deduce information close to the curve. A parameter 𝜔 0 gives some influence on 𝑤, but no complete control.

On the other hand, in Section 6, 𝑤 will be an input of the problem: on input 𝑢, 𝑣, 𝑤, 𝑎, 𝑏, Algorithm 4 heuristically returns the set (𝑋, 𝑌 ) of solutions of (2.1).

State of the art

In this section, we review the state of the art on the TMD; we shall start by discussing results which can be derived from previous estimates in Diophantine approximation, then shall account on the algorithmic approaches which have been developed since the late 90s. One can find a more complete (but slightly outdated since the results of [START_REF] Khémira | Approximants de Hermite-Padé, déterminants d'interpolation et approximation diophantienne[END_REF][START_REF] Khémira | Approximation diophantienne et approximants de Hermite-Padé de type I de fonctions exponentielles[END_REF] on the exponential function are not considered) state of the art in [52, Chap. 12].

3.1. Diophantine approximation results: the exponential and the logarithm functions. In this section, we use the conventions and notations that we introduced in Section 2.

The exponential function is central in the study of correctly-rounded evaluation of the elementary functions of libms: a relevant information on its hardness to round yields relevant information as well on trigonometric and hyperbolic functions, and their respective reciprocals, see [52, §12.4.4] and Remark 2.5, the logarithm function and inverse trigonometric functions.

Following the works [START_REF] Nesterenko | On the approximation of the values of exponential function and logarithm by algebraic numbers[END_REF] and [START_REF] Khémira | Approximants de Hermite-Padé, déterminants d'interpolation et approximation diophantienne[END_REF], Khémira and Voutier proved in [START_REF] Khémira | Approximation diophantienne et approximants de Hermite-Padé de type I de fonctions exponentielles[END_REF] a lower bound (called transcendence measure) for the expression ⃒ ⃒ 𝑒 𝛽 -𝛼 ⃒ ⃒ , where 𝛼 and 𝛽 are algebraic numbers, 𝛽 ̸ = 0. When specialized in FP numbers, their result provides interesting upper bounds for htr exp (𝑝).

Let 𝑚 and 𝑛 ∈ N, we put

𝑑 𝑛 = l.c.m.(1, . . . , 𝑛) and 𝐷 𝑚,𝑛 = 𝑚! ∏︀ 𝑞⩽𝑛, 𝑞 prime 𝑞 𝑣𝑞(𝑚!) ,
where 𝑣 𝑞 (𝑚!) is the 𝑞-adic valuation of 𝑚!. We can now state Khémira and Voutier's Theorem in the particular case where 𝛼 is a FP number and 𝛽 is a FP number (directed rounded functions) or the middle of two consecutive FP numbers (round-tonearest functions). As mentioned above, we can get a similar result for the logarithm function.

Theorem 3.1 (Khemira and Voutier [START_REF] Khémira | Approximation diophantienne et approximants de Hermite-Padé de type I de fonctions exponentielles[END_REF], specialized here to FP numbers, directed rounded functions). Let a precision 𝑝 be given, let 𝑥 ̸ = 0 and 𝑦 ∈ ℱ 𝑝 such that 𝑦 and 𝑒 𝑥 are in the same binade. We denote by 𝑒 𝑥 , resp. 𝑒 𝑦 , the exponent of 𝑥, resp. 9 9 The condition 𝐾 ⩾ 2 is not stated in [START_REF] Khémira | Approximation diophantienne et approximants de Hermite-Padé de type I de fonctions exponentielles[END_REF] but it is actually necessary to have Inequality (3.1) satisfied here.

𝑦. We have

𝑒 𝑦 = ⌊log 2 (exp(𝑥))⌋ = ⌊𝑥/ log(2)⌋. Let 𝐾 and 𝐿 ∈ N ∖ {0}, 𝐾 ⩾ 2,
𝐿 ⩾ 2 and 𝐸 ∈ (1, +∞) which satisfy

𝐾𝐿 log 𝐸 ⩾ 𝐾𝐿 log 2 + (𝐾 -1)(1 + log( √ 3𝐿𝑑 𝐿-1 )) + log(𝐷 𝐾-1,𝐿-1 ) + (1 + 2 log 2)(𝐿 -1) + log (︀ min (︀ 𝑑 𝐾-1 𝐿-2 , (𝐿 -2)! )︀)︀ + log((𝐾 -1)!) (3.1) + (𝐾 -1) max(𝑝 -2 -𝑒 𝑥 , -1) log 2 + 𝐿𝐸|𝑥| + 𝐿 log 𝐸 + (𝐿 -1) max(𝑝 -2 -𝑒 𝑦 , -1) log 2.
Then we have |𝑒 𝑥 -𝑦| ⩾ 𝐸 -𝐾𝐿 . Remark 3.2. For the round-to-nearest functions, we assume that 𝑦 is the middle of two consecutive FP numbers and that the numbers 𝑦 and 𝑒 𝑥 are in the same binade. If we denote again 𝑒 𝑦 = ⌊𝑥/ log(2)⌋, the conclusion of the theorem remains valid if we replace max(𝑝 -2 -𝑒 𝑦 , -1) with max(𝑝 -1 -𝑒 𝑦 , -1) in the last line of (3.1).

For instance, using the following sets of parameters, we are able to compute the following upper bounds for the hardness to round exp on [1/4, 1/2): A first straightforward idea consists in testing all possible FP values 𝑥; for each value of 𝑥 one computes a sufficiently accurate interval approximation to 𝑓 (𝑥) and determines the hardness to round 𝑓 (𝑥). The cost of the approach is obviously proportional to the number of different FP numbers of the format under study i.e., 2 𝑝+𝐸max-𝐸min , which makes it basically tractable for binary32 [START_REF] Schulte | Exact rounding of certain elementary functions[END_REF]. In [START_REF] De Dinechin | An FPGA architecture for solving the Table Maker's Dilemma[END_REF], the exhaustive evaluations are performed on an FPGA using a tabulated difference approach, which makes it possible to address the binary64 case. Currently, the double extended or binary128 formats seem completely out of reach of such approaches.

• In binary64 (𝑝 = 53
More subtle ideas proceed by splitting the domain into subintervals and replacing the function (assumed to be sufficiently smooth) by a polynomial, in practice a Taylor approximation, over the interval under study; one is then reduced to study the problem in the polynomial case.

Lefèvre, together with Muller [START_REF] Lefèvre | Moyens Arithmétiques Pour un Calcul Fiable[END_REF][START_REF] Lefèvre | Worst cases for correct rounding of the elementary functions in double precision[END_REF][START_REF] Lefèvre | New results on the distance between a segment and Z 2 . Application to the exact rounding[END_REF], studied the degree 1 case; in this case, the remaining Diophantine problem is to find two integers 𝑥, 𝑦, |𝑥| ⩽ 𝑋, |𝑦| ⩽ 𝑌 such that |𝛼𝑥 + 𝛽 -𝑦| is minimal, which is solved by elementary Diophantine arguments, either the three distance theorem, or continued fractions (see e.g., [START_REF] Berthé | Diophantine approximation, Ostrowski numeration and the doublebase number system[END_REF]). These ideas lead to an algorithm of complexity Õ(2 2𝑝/3 ) for floating-point numbers of precision 𝑝, as 𝑝 → ∞, which computes all worst cases for rounding in the domains under consideration.

Highly optimized and parallel implementations of this method have proved invaluable to find optimal values of htr 𝑓 [START_REF] Nesterenko | On the approximation of the values of exponential function and logarithm by algebraic numbers[END_REF] for several functions of the standard libm. This was a key step towards the development of CRlibm.

Higher degree approximations give rise to more complicated Diophantine problems. Stehlé, Lefèvre and Zimmermann [START_REF] Stehlé | Searching Worst Cases of a One-Variable Function Using Lattice Reduction[END_REF], further refined by Stehlé [START_REF] Stehlé | On the randomness of bits generated by sufficiently smooth functions[END_REF], make use of a technique due to Coppersmith [START_REF] Coppersmith | Small solutions to polynomial equations, and low exponent RSA vulnerabilities[END_REF][START_REF] Coppersmith | Finding small solutions to small degree polynomials[END_REF] and based on lattice basis reduction to solve it. We recall Corollaries 4 & 5 of [START_REF] Stehlé | On the randomness of bits generated by sufficiently smooth functions[END_REF], adapted to our context. Theorem 3.3 (Stehlé [61]). For all 𝜀 > 0, there exists a heuristic algorithm of complexity 2 𝑝(1+𝜀)/2 which, given a function 𝑓 , returns all FP numbers 𝑥 ∈ [1/2, 1) of precision 𝑝 such that the hardness to round 𝑓 (𝑥) is ⩾ 2𝑝.

There exists a polynomial-time heuristic algorithm which returns all FP numbers 𝑥 ∈ [1/2, 1) of precision 𝑝 such that the hardness to round 𝑓 (𝑥) is ⩾ 4𝑝 2 ; the latter works by reducing a lattice of dimension 𝑂(𝑝 2 ) of R 𝑚 for some 𝑚 = 𝑂(𝑝 4 ).

The heuristic character of the algorithm is rather mild (i.e., the algorithm works in practice as expected on almost all inputs).

We use a somewhat different approach: the algorithmic content of our method remains based on lattice basis reduction, but rather than reducing the problem to a polynomial problem, we keep the problem linked to the function, which we shall make possible thanks to rigorous uniform approximation techniques based on Chebyshev interpolation. In order to develop our approach, we thus now need to give a short survey of Chebyshev interpolation/approximation and lattice basis reduction.

A quick overview of uniform approximation and lattice basis reduction

We shall require some tools from uniform approximation theory [START_REF] Fox | Chebyshev polynomials in numerical analysis[END_REF][START_REF] Rivlin | The Chebyshev polynomials[END_REF][START_REF] Powell | Approximation theory and methods[END_REF][START_REF] Cheney | Introduction to approximation theory[END_REF][START_REF] Boyd | Chebyshev and Fourier spectral methods[END_REF][START_REF] Mason | Chebyshev polynomials[END_REF][START_REF] Trefethen | Approximation Theory and Approximation Practice[END_REF] and algorithmic geometry of numbers [START_REF] Lovász | An algorithmic theory of numbers, graphs and convexity[END_REF][START_REF] Gruber | Geometry of numbers[END_REF][START_REF] Cohen | A course in computational algebraic number theory[END_REF][START_REF] Cassels | An introduction to the geometry of numbers[END_REF][START_REF] Nguyen | The LLL Algorithm -Survey and Applications[END_REF][START_REF] Zur Gathen | Modern computer algebra[END_REF].

Relation between uniform approximation and interpolation.

Let 𝑛 ∈ N, the 𝑛-th Chebyshev polynomial of the first kind is defined by 𝑇 𝑛 ∈ R 𝑛 [𝑥] and 𝑇 𝑛 (cos 𝑡) = cos(𝑛𝑡) for all 𝑡 ∈ [0, 𝜋]. The 𝑇 𝑛 's can also be defined by 

𝑇 0 (𝑥) = 1, 𝑇 1 (𝑥) = 𝑥, 𝑇 𝑛+2 (𝑥) = 2𝑥𝑇 𝑛+1 (𝑥) -𝑇 𝑛 (𝑥), ∀𝑛 ∈ N.
‖𝑓 -𝑝 𝑁 -1 ‖ ∞,[𝑎,𝑏] ⩽ 4𝑀 𝜌,𝑎,𝑏 (𝑓 ) 𝜌 𝑁 -1 (𝜌 -1)
.

Proof. See Appendix A. □ Let 𝜌 1 , 𝜌 2 > 1, 𝑎 1 < 𝑏 1 , 𝑎 2 < 𝑏 2 , we define ℰ 𝜌1,𝑎1,𝑏1,𝜌2,𝑎2,𝑏2 = ℰ 𝜌1,𝑎1,𝑏1 × ℰ 𝜌2,𝑎2,𝑏2 and 𝐸 𝜌1,𝑎1,𝑏1,𝜌2,𝑎2,𝑏2 = 𝐸 𝜌1,𝑎1,𝑏1 × 𝐸 𝜌2,𝑎2,𝑏2 . Proposition 4.2. Let 𝜌 1 , 𝜌 2 > 1, 𝑎 1 < 𝑏 1 , 𝑎 2 < 𝑏 2 , let 𝑀 1 , 𝑀 2 ∈ N, 𝑀 1 , 𝑀 2 ⩾ 2,
𝑓 be a function analytic in a neighbourhood of 𝐸 𝜌1,𝑎1,𝑏1,𝜌2,𝑎2,𝑏2 , the coefficients 𝑐 𝑘1,𝑘2 , 𝑘 1 = 0, . . . , 𝑀 1 -1, 𝑘 2 = 0, . . . , 𝑀 2 -1 of the interpolation polynomial 𝑃 𝑀1-1,𝑀2-1 of 𝑓 at pairs of Chebyshev nodes of the first kind satisfy, for 𝑘 1 = 0, . . . , 𝑀 1 -1, 𝑘 2 = 0, . . . , 𝑀 Given a basis (𝑏 1 , . . . , 𝑏 𝑁 ) of 𝐿 as input, finding a shortest nonzero vector in 𝐿 is called the shortest vector problem. The decision version of this problem has been shown [START_REF] Ajtai | The Shortest Vector Problem in L 2 is NP-hard for Randomized Reductions (Extended Abstract)[END_REF] to be hard under randomized reductions; in practice, one thus has to content oneself with approximation algorithms, such as the LLL algorithm [START_REF] Lenstra | Factoring polynomials with rational coefficients[END_REF]: Theorem 4.5 [START_REF] Lenstra | Factoring polynomials with rational coefficients[END_REF]. The LLL algorithm, given 𝑁 R-linearly independent vectors (𝑏 1 , . . . , 𝑏 𝑁 ) ∈ Z 𝑀 , returns a basis (𝑐 1 , . . . , 𝑐 𝑁 ) such that ‖𝑐 1 ‖ 2 ⩽ 2 (𝑁 -1)/4 (vol 𝐿) 1/𝑁 , and ‖𝑐 1 ‖ 2 ⩽ (︀ 2 (𝑁 -1)/4 )︀ 2 min 𝑥∈𝐿-{0} ‖𝑥‖ 2 . One also has ‖𝑐 2 ‖ 2 ⩽ 2 (𝑁 -1)/4 (vol 𝐿) 1/(𝑁 -1) .

‖𝑓 -𝑃 𝑀1-1,𝑀2-1 ‖ ∞,[𝑎1,𝑏1]×[𝑎2,𝑏2] ⩽ 16𝜌 1 𝜌 2 𝑀 𝜌1,𝜌2 (𝑓 ) (𝜌 1 -1)(𝜌 2 -1) (︂ 1 𝜌 𝑀1 1 + 1 𝜌 𝑀2 2 )︂ . Proof.
The time complexity of the LLL algorithm is polynomial in the maximal bit-length of the coefficients of the 𝑏 𝑖 's, the lattice rank 𝑁 , and the space dimension 𝑀 . Proof. See Theorems 9 and 10 from [55, Chap. 2], except for the last inequality on ‖𝑐 2 ‖ which is a consequence of the proof of Fact 3.3 in [START_REF] Boneh | Cryptanalysis of RSA with private key 𝑑 less than 𝑁 0.292[END_REF]. □

The constant 2 in the terms 2 (𝑁 -1)/4 of the inequalities of the theorem is arbitrary, and could be replaced by any real number > 4/3.

We now discuss shortly an improvement due to Akhavi & Stehlé [START_REF] Akhavi | Speeding-up Lattice Reduction with Random Projections[END_REF] to the LLL algorithm in the case where 𝑁 is much smaller than 𝑀 , the dimension of the ambient space. Let 𝐴 be an 𝑁 × 𝑀 matrix, the rows of which generate the lattice 𝐿; the idea is to reduce a smaller 𝑁 × 𝑁 matrix obtained by a random projection (i.e., multiplying 𝐴 on the right by a random 𝑀 × 𝑁 matrix), and apply the same transformation to the original matrix. Theorem 4.6 [START_REF] Akhavi | Speeding-up Lattice Reduction with Random Projections[END_REF]. For all 𝑁 , there is an 𝑛 0 (𝑁 ) such that for 𝑀 ⩾ 𝑛 0 (𝑁 ), if 𝑃 is an 𝑀 × 𝑁 matrix whose columns are independent random vectors picked up uniformly independently inside the 𝑀 -th dimensional unit ball, and 𝐴 ′ = LLL(𝐴 • 𝑃 ); then, with probability ⩾ 1 -2 -𝑁 , the first column vector of the matrix 𝐴 ′ (𝐴 • 𝑃 ) -1 𝐴 is a vector of 𝐿 of norm ⩽ 2 4𝑁 (vol 𝐿) 1/𝑁 . S. Torres [START_REF] Torres | Tools for the Design of Reliable and Efficient Functions Evaluation Libraries[END_REF] showed that this idea indeed improves the practical outcome of [START_REF] Stehlé | On the randomness of bits generated by sufficiently smooth functions[END_REF]. As for us, cf. Section 8, we noticed that this idea works even for simpler models for the random matrix 𝑃 such as random, uniform {0, ±1} coefficients, which give equally good results.

The one-variable method, à la Liouville

Let 𝑢, 𝑣 ∈ N ∖ {0}, 𝑎 < 𝑏 be two real numbers and 𝑓 : [𝑎, 𝑏] → R. The starting point of this approach to Problem 2.6 follows a simple (but fundamental!) idea due to J. Liouville [START_REF] Liouville | Nouvelle démonstration d'un théorème sur les irrationnelles algébriques[END_REF][START_REF] Liouville | Remarques relatives à des classes très-étendues de quantités dont la valeur n'est ni algébrique ni même réductible à des irrationnelles algébriques[END_REF][START_REF] Liouville | Sur des classes très étendues de quantités dont la valeur n'est ni algébrique ni même réductible à des irrationnelles algébriques[END_REF], which we now recall.

For any 𝑃 ∈ Z[𝑋 

⃒ ⃒ ⃒ is bounded by "not too large" an 𝑀 . Let 𝑥 0 = 𝑋/𝑢 ∈ [𝑎, 𝑏], 𝑋 ∈ Z, 𝑦 0 = 𝑌 /𝑣, 𝑌 ∈ Z, we have 𝑃 𝑖 (𝑢𝑥 0 , 𝑣𝑦 0 ) = 𝑃 𝑖 (𝑋, 𝑌 ) ∈ Z. If 𝑃 𝑖 (𝑋, 𝑌
) is non zero for some 𝑖, say 𝑖 = 0, then it follows from (5.1)

|𝑃 0 (𝑋, 𝑌 )| ⏟ ⏞ ⩾1 -|𝑃 0 (𝑋, 𝑣𝑓 (𝑋/𝑢))| ⏟ ⏞ <1/2 ⩽ 𝑣|𝑓 (𝑋/𝑢) -𝑌 /𝑣| ⃒ ⃒ ⃒ ⃒ 𝜕𝑃 0 𝜕𝑦 (𝑢𝑥 0 , 𝑧 0 ) ⃒ ⃒ ⃒ ⃒ ⏟ ⏞ ⩽𝑀 , hence |𝑣𝑓 (𝑋/𝑢) -𝑌 | > 1/(2𝑀 )
. Otherwise, we have 𝑃 0 (𝑋, 𝑌 ) = 𝑃 1 (𝑋, 𝑌 ) = 0. We now use our heuristic assumption, that is 𝑃 0 and 𝑃 1 have no nonconstant common factor: we then perform elimination of one of the variables and retrieve the list of all the bad cases, i.e., the 𝑋 such that |𝑣𝑓 (𝑋/𝑢) -𝑌 | ⩽ 1/(2𝑀 ). In the sequel of this section, we give all the details of this approach: we first give estimates of the determinants of the lattices that we use, we present our algorithm, the proof of its correctness and analyse its complexity.

Volume estimates for rigorous interpolants at the Chebyshev nodes.

Let 𝑁 ⩾ 2, for 𝑖 = 0, . . . , 𝑁 -1, let 𝑓 𝑖 be a function defined over [𝑎, 𝑏] and 𝑄 𝑖 be its interpolation polynomials in R 𝑁 -1 [𝑥] at Chebyshev nodes of the first kind. We shall use the following results for the functions 𝑓 𝑖 defined in (5.5).

Let DCT-II denote the discrete cosine transform of type 2:

DCT-II : R 𝑁 → R 𝑁 (𝑥 0 , . . . , 𝑥 𝑁 -1 ) ↦ → (𝑋 0 , . . . , 𝑋 𝑁 -1 ) with

𝑋 𝑘 = ∑︁ 0⩽ℓ⩽𝑁 -1 𝑥 ℓ cos (︂ 𝑘(ℓ + 1/2)𝜋 𝑁 )︂ , for 𝑘 = 0, . . . , 𝑁 -1.
This function is often introduced with slightly different normalisations [START_REF] Strang | The discrete cosine transform[END_REF][START_REF] Plonka | Numerical Fourier analysis[END_REF] and we can take advantage of fast algorithms [57, §6.3] that make possible to compute it in at most 𝒪(𝑁 log 𝑁 ) operations for a fixed and given precision. Recall, cf.

Section 4.1.1, that for 𝑖 = 0, . . . , 𝑁 -1,

𝑄 𝑖 (𝑥) = ∑︁ ′ 0⩽𝑘⩽𝑁 -1 𝑐 𝑘,𝑖 𝑇 𝑘,[𝑎,𝑏] (𝑥) ∈ R 𝑁 -1 [𝑥] with (𝑐 0,𝑖 , . . . , 𝑐 𝑁 -1,𝑖 ) = 2 𝑁 DCT-II(𝑓 𝑖 (𝜇 𝑁 -1,[𝑎,𝑏] ), . . . , 𝑓 𝑖 (𝜇 0,[𝑎,𝑏] )). (5.2)
Let us introduce two real parameters 𝜌 > 1 and 𝜔 0 ⩾ 0 (to be chosen later on).

We now assume that all the 𝑓 𝑖 's are analytic in a neighbourhood of 𝐸 𝜌,𝑎,𝑏 . For 𝑖 = 0, . . . , 𝑁 -1, let 𝑅 𝑖 = 4𝑀 𝜌,𝑎,𝑏 (𝑓 𝑖 )/(𝜌 𝑁 -1 (𝜌 -1)). We have, by Proposition 4.1, ‖𝑓 𝑖 -𝑄 𝑖 ‖ ∞,[𝑎,𝑏] ⩽ 𝑅 𝑖 . For 𝐵, 𝐶 two complex matrices with the same number of rows 𝑟 and respectively 𝑚 and 𝑛 columns, we shall denote by (𝐵|𝐶) the 𝑟 × (𝑚 + 𝑛) matrix obtained by concatenating these two matrices. If 𝛿 𝑖𝑗 denotes the Kronecker delta, we introduce the 𝑁 × 2𝑁 matrix 𝐴 = (𝐴 1 |𝐴 2 ), where

(5.3) 𝐴 1 = (︀ 𝑐 𝑗,𝑖 /2 𝛿𝑗0 )︀ 0⩽𝑖,𝑗⩽𝑁 -1 , 𝐴 2 = (𝛿 𝑖𝑗 𝜌 𝜔0 𝑅 𝑖 ) 0⩽𝑖,𝑗⩽𝑁 -1 .
Its rows generate the lattice that will be reduced in our algorithm. The (diagonal) right half of the matrix are weights that will be used for two tasks:

• (remainders) controlling that 𝑃 0 (𝑢𝑥, 𝑣𝑓 (𝑥)), 𝑃 1 (𝑢𝑥, 𝑣𝑓 (𝑥)) are uniformly small, where 𝑃 0 , 𝑃 1 are two polynomials, with integer coefficients, output by the lattice reduction process. Matrix 𝐴 1 helps us securing uniform smallness of the interpolation polynomial of 𝑃 0 , resp. 𝑃 1 , and matrix 𝐴 2 helps us securing smallness of the corresponding approximation remainders (this accounts for the presence of the 𝑅 𝑖 term); • (coefficients) controlling the size of the coefficients of the polynomial, hence the quality of the lower bound deduced from the output of Algorithm 2; this accounts for the presence of the 𝜌 𝜔0 term. We shall assume later on (in Section 5.2) that 4𝜌 𝜔0 𝑣𝑀 𝜌,𝑎,𝑏 (𝑓 )/(𝜌 𝑁 -1 (𝜌 -1)) < 1. This is a necessary condition for the success of the method; otherwise, most of the 𝜌 𝜔0 𝑅 𝑖 are too large, and the method is bound to fail. Note that this assumption can be made without loss of generality on 𝑓 , as for fixed 𝑓, 𝑎, 𝑏, 𝜔 0 , 𝜌 it holds for 𝑁 large enough. We now establish a slightly improved version of [61, Theorem 2]10 . Let an 𝑁 × 𝑀 matrix 𝐵 whose rows span a lattice 𝐿. We assume that the entries of 𝐵 satisfy: |𝐵 𝑖,𝑗 | ⩽ r 𝑖 • c 𝑗 , for some r 𝑖 's and c 𝑗 's, 0 ⩽ 𝑖 ⩽ 𝑁 -1 and 0 ⩽ 𝑗 ⩽ 𝑀 -1. As mentioned in [START_REF] Stehlé | On the randomness of bits generated by sufficiently smooth functions[END_REF], this is typical for Coppersmith-type lattice bases. Theorem 5.1. Let 𝐵 be an 𝑁 × 𝑀 matrix (with 𝑀 ⩾ 𝑁 ), the entries of which are bounded by the product of some quantities r 𝑖 's and c 𝑗 's as described above. Let 𝐿 be the lattice spanned by the rows of the matrix 𝐵, and P the product of the 𝑁 largest c 𝑗 's. We have:

vol 𝐿 = (det 𝐵𝐵 𝑡 ) 1/2 ⩽ (︂ 𝑀 𝑁 )︂ 1/2 𝑁 𝑁/2 (︃ 𝑁 -1 ∏︁ 𝑖=0 r 𝑖 )︃ P.
Proof. Let us denote C 0 , . . . , C 𝑀 -1 the columns of 𝐵. The classical Lagrange's identity, which is a particular case of Cauchy-Binet formula [START_REF] Gramain | Sur le lemme de Siegel[END_REF][START_REF] Knill | Cauchy-Binet for pseudo-determinants[END_REF], then states

with (︀ 𝑛 𝑑 )︀ 1/2 𝑑! 1/2 . that (5.4) det 𝐵𝐵 𝑡 = ∑︁ 0⩽𝑗1<•••<𝑗 𝑁 ⩽𝑀 -1 det(C 𝑗1 , . . . , C 𝑗 𝑁 ) 2 ⩽ (︂ 𝑀 𝑁 )︂ max 0⩽𝑗1<•••<𝑗 𝑁 ⩽𝑀 -1 det(C 𝑗1 , . . . , C 𝑗 𝑁 ) 2 .
We can assume

(︁ ∏︀ 𝑁 -1 𝑖=0 r 𝑖
)︁ ̸ = 0: otherwise, there is at least one row of 𝐵 that is identically 0, hence vol 𝐿 = 0. Now, for a given 0

⩽ 𝑗 1 < • • • < 𝑗 𝑁 ⩽ 𝑀 -1, if one of the c 𝑗 is zero, it follows that at least one column of (C 𝑗1 , . . . , C 𝑗 𝑁 ) is zero, hence det(C 𝑗1 , . . . , C 𝑗 𝑁 ) = 0. Otherwise, we consider the matrix (C ′ 𝑗1 . . . C ′ 𝑗 𝑁 ) obtained from (C 𝑗1 . . . C 𝑗 𝑁 )
after having divided the 𝑖-th row by r 𝑖 for all 𝑖 = 0, . . . , 𝑁 -1 and the 𝑗 𝑘 -th column by 𝑐𝑐 𝑗 𝑘 for all 𝑘 = 1, . . . , 𝑁 . All the coefficients of (C ′ 𝑗1 . . . C ′ 𝑗 𝑁 ) have an absolute value less or equal to 1. Hadamard's inequality then implies det

(C ′ 𝑗1 , . . . , C ′ 𝑗 𝑁 ) 2 ⩽ 𝑁 𝑁 . It follows det(C 𝑗1 , . . . , C 𝑗 𝑁 ) 2 = (︃ 𝑁 -1 ∏︁ 𝑖=0 r 𝑖 )︃ 2 (︃ 𝑁 ∏︁ 𝑘=1 c 𝑗 𝑘 )︃ 2 det(C ′ 𝑗1 , . . . , C ′ 𝑗 𝑁 ) 2 ⩽ (︃ 𝑁 -1 ∏︁ 𝑖=0 r 𝑖 )︃ 2 P 2 𝑁 𝑁 .
We conclude by combining the last inequality with (5.4). □

Then, we upper bound det 𝐴𝐴 𝑡 , where 𝐴 is the matrix defined by (5.3).

Theorem 5.2. Let 𝜌 > 1, 𝜔 0 ⩾ 0, 𝑎 < 𝑏, 𝑁 ⩾ 2, 𝑓 0 , . . . , 𝑓 𝑁 -1 be functions analytic in a neighbourhood of 𝐸 𝜌,𝑎,𝑏 . We have

(det 𝐴𝐴 𝑡 ) 1/2 ⩽ (64𝑁 ) 𝑁/2 (︂ 𝜌 𝜌 -1 )︂ 𝑁 ∏︀ 𝑁 -1 𝑖=0 𝑀 𝜌,𝑎,𝑏 (𝑓 𝑖 ) 𝜌 𝑁 (𝑁 -1)/2+⌊𝜔0⌋(⌊𝜔0⌋-2𝜔0+1)/2
Proof. For 0 ⩽ 𝑖, 𝑗 ⩽ 𝑁 -1, we have from Proposition 4.1 and Lemma A.6,

|𝐴 1,𝑖,𝑗 | ⩽ ⃒ ⃒ ⃒ 𝑐 𝑗,𝑖 2 𝛿𝑗0 ⃒ ⃒ ⃒ ⩽ 2𝑀 𝜌,𝑎,𝑏 (𝑓 𝑖 ) 1 𝜌 𝑗 𝜌 2 + 1 𝜌 2 -1 ⩽ 2 𝑀 𝜌,𝑎,𝑏 (𝑓 𝑖 ) 𝜌 𝑗 𝜌 𝜌 -1 . Now, let us write, for 0 ⩽ 𝑖, 𝑗 ⩽ 𝑁 -1, |𝐴 2,𝑖,𝑗 | ⩽ 𝜌 𝜔0 𝑅 𝑖 = 4𝜌 𝜔0 𝑀 𝜌,𝑎,𝑏 (𝑓 𝑖 ) 𝜌 𝑁 -1 (𝜌 -1) = 4𝜌 𝜔0 𝜌 𝜌 -1 𝑀 𝜌,𝑎,𝑏 (𝑓 𝑖 ) 𝜌 𝑁 .
In view of these estimates, we can apply Theorem 5.1 with r 𝑖 = 2𝜌/(𝜌 -1)𝑀 𝜌,𝑎,𝑏 (𝑓 𝑖 ) for 𝑖 = 0, . . . , 𝑁 -1,

c 𝑗 = {︂ 𝜌 -𝑗 , 0 ⩽ 𝑗 ⩽ 𝑁 -1, 2𝜌 𝜔0-𝑁 , 𝑁 ⩽ 𝑗 ⩽ 2𝑁 -1.
Hence, P is the maximum, for 𝑠 = 0, . . . , 𝑁 , of

𝑠 ∏︁ 𝑘=1 1 𝜌 𝑘-1 𝑁 ∏︁ 𝑘=𝑠+1 2𝜌 𝜔0 𝜌 𝑁 = 1 𝜌 𝑠(𝑠-1)/2 (2𝜌 𝜔0 ) 𝑁 -𝑠 𝜌 𝑁 (𝑁 -𝑠) .
Finally, Theorem 5.1 yields

(det 𝐴𝐴 𝑡 ) 1/2 ⩽ (︂ 2𝑁 𝑁 )︂ 1/2 𝑁 𝑁/2 2 𝑁 (︂ 𝜌 𝜌 -1 )︂ 𝑁 max 0⩽𝑠⩽𝑁 (2𝜌 𝜔0 ) 𝑁 -𝑠 𝜌 𝑠(𝑠-1)/2+𝑁 (𝑁 -𝑠) 𝑁 -1 ∏︁ 𝑖=0 𝑀 𝜌,𝑎,𝑏 (𝑓 𝑖 ) ⩽ (64𝑁 ) 𝑁/2 (︂ 𝜌 𝜌 -1 )︂ 𝑁 max 0⩽𝑠⩽𝑁 𝜌 𝜔0(𝑁 -𝑠) 𝜌 𝑠(𝑠-1)/2+𝑁 (𝑁 -𝑠) 𝑁 -1 ∏︁ 𝑖=0 𝑀 𝜌,𝑎,𝑏 (𝑓 𝑖 ).
Then, if 𝑃 𝑠 = 𝜌 𝜔0(𝑁 -𝑠) /𝜌 𝑠(𝑠-1)/2+𝑁 (𝑁 -𝑠) , we have 𝑃 𝑠+1 /𝑃 𝑠 = 𝜌 𝑁 -𝑠-𝜔0 , hence 𝑃 𝑠 is maximal for 𝑠 = 𝑁 -⌊𝜔 0 ⌋, which completes the proof of the Theorem.

□

We now specialize the previous estimate to our situation, where we shall use the ordered list of functions

(5.5) [𝑓 𝑖 , 0 ⩽ 𝑖 ⩽ (𝑑 + 1)(𝑑 + 2)/2 -1] = [𝑥 ↦ → 𝑢 𝑘 𝑥 𝑘 𝑣 ℓ 𝑓 (𝑥) ℓ , ℓ = 0, . . . , 𝑑, 𝑘 = 0, . . . , 𝑑 -ℓ].
Let the 𝑐 𝑗,𝑖 's be defined by (5.2), using the same ordering for the functions and [𝑅 2,𝑖 , 𝑖 = 0, . . . , 𝑁 -1] be the ordered list

[︂ 4 𝑢 𝑘 𝑀 𝜌,𝑎,𝑏 (𝑥) 𝑘 𝑣 ℓ 𝑀 𝜌,𝑎,𝑏 (𝑓 ) ℓ 𝜌 𝑁 -1 (𝜌 -1) ; ℓ = 0, . . . , 𝑑, 𝑘 = 0, . . . , 𝑑 -ℓ ]︂ .
We denote again 𝐴 = (𝐴 1 |𝐴 2 ) the 𝑁 × 2𝑁 matrix defined11 by (5.6)

𝐴 1 = (︀ 𝑐 𝑗,𝑖 /2 𝛿𝑗0 )︀ 0⩽𝑖,𝑗⩽𝑁 -1 , 𝐴 2 = (𝛿 𝑖𝑗 𝜌 𝜔0 𝑅 2,𝑖 ) 0⩽𝑖,𝑗⩽𝑁 -1 .
Corollary 5.3. Let 𝜌 > 1, 𝑎 < 𝑏, 𝑓 be a function analytic in a neighbourhood of

𝐸 𝜌,𝑎,𝑏 . Let 𝑑 ⩾ 1, 𝑁 = (𝑑 + 1)(𝑑 + 2)/2, 𝜔 0 ⩾ 0, 𝑢, 𝑣 ∈ N ∖ {0}. Define 𝑓 𝑘,ℓ (𝑥) = 𝑢 𝑘 𝑥 𝑘 𝑣 ℓ 𝑓 (𝑥) ℓ , 0 ⩽ ℓ ⩽ 𝑑, 0 ⩽ 𝑘 ⩽ 𝑑 -ℓ, the matrices 𝐴 1 , 𝐴 2 , 𝐴 = (𝐴 1 |𝐴 2 )
as in (5.6), and the quantity Δ 𝑁,[𝑎,𝑏],𝜔0 := (det 𝐴𝐴 𝑡 ) 1/2 . We have

(5.7) Δ 1/(𝑁 -1) 𝑁,[𝑎,𝑏],𝜔0 ⩽ 30 √ 𝑁 (︂ 𝜌 𝜌 -1 )︂ 𝑁/(𝑁 -1) (𝑢𝑣) 2𝑁/(3(𝑑+3)) 𝜌 𝑁/2+⌊𝜔0⌋(⌊𝜔0⌋-2𝜔0+1)/(2(𝑁 -1)) (︂ 𝑏 -𝑎 2 (︂ 𝜌 + 𝜌 -1 2 )︂ + ⃒ ⃒ ⃒ ⃒ 𝑏 + 𝑎 2 ⃒ ⃒ ⃒ ⃒ )︂ 2𝑁/(3(𝑑+3)) 𝑀 𝜌,𝑎,𝑏 (𝑓 ) 2𝑁/(3(𝑑+3)) .
Proof. Follows from Theorem 5.2, the facts that 𝑀 𝜌,𝑎,𝑏 (𝑥 𝑘 𝑓 (𝑥) ℓ ) ⩽ 𝑀 𝜌,𝑎,𝑏 (𝑥) 𝑘 𝑀 𝜌,𝑎,𝑏 (𝑓 ) ℓ , the inequality

𝑀 𝜌,𝑎,𝑏 (𝑥) ⩽ 𝑏 -𝑎 2 (︂ 𝜌 + 𝜌 -1 2 )︂ + ⃒ ⃒ ⃒ ⃒ 𝑏 + 𝑎 2 ⃒ ⃒ ⃒ ⃒ ,
and finally the fact that (8

√ 𝑁 ) 𝑁/(𝑁 -1) ⩽ 30 √ 𝑁 for 𝑁 ⩾ 3. □ 5.2.
Statement of the algorithms. Our main routine is Algorithm 2. It comes together with Algorithm 1 that mainly constructs the lattice to be reduced in Algorithm 2. We shall make use of the following notation: for any 𝑥 ∈ R, [𝑥] 0 = ⌊𝑥⌋ if 𝑥 ⩾ 0 and ⌈𝑥⌉ otherwise. In the sequel, as in Corollary 5.3, we define 𝑁 = (𝑑 + 1)(𝑑 + 2)/2. Before writing the algorithm, we explain how we turn our problem, which leads to the reduction of a sublattice of R 2𝑁 , into a problem leading to the reduction of a sublattice of Z 2𝑁 .

From a mathematical point of view, the lattice that we would ideally work with is the one generated by the rows of 𝐴 defined in (5.6), the volume of which is estimated in Corollary 5. [START_REF]IEEE Standard for Binary Floating-Point Arithmetic[END_REF]. And yet, in order to perform lattice reduction computations, it is safer to work with lattices given by vectors defined over Z, hence the introduction of  = ( Â1 | Â2 ):

(5.8) Â1 = (︀[︀ 2 tprec 𝐴 1 [𝑖, 𝑗] ]︀ 0 /2 tprec )︀ 0⩽𝑖,𝑗⩽𝑁 -1 , Â2 = (︀ ⌊2 tprec 𝐴 2 [𝑖, 𝑗]⌋/2 tprec )︀ 0⩽𝑖,𝑗⩽𝑁 -1 , where tprec = ⌈-log 2 (min 0⩽𝑖⩽𝑁 -1 𝐴 2 [𝑖, 𝑖]) + log 2 (𝑁 )⌉ + 5.
The integer tprec corresponds to a truncation precision that will allow us to work over Z 𝑁 and keep enough information from 𝐴 at the same time.

Remark 5.4. By construction, ⃒ ⃒ ⃒ Â[𝑖, 𝑗] ⃒ ⃒ ⃒ ⩽ |𝐴[𝑖, 𝑗]
| for all 𝑖, 𝑗. Hence, Theorem 5.2 and its corollaries, which proceed by upper bounding the absolue values of the coefficients of 𝐴 and applying Theorem 5.1, also hold for (det  Â𝑡 ) 1/2 . Note that the matrices 𝑀 𝑐 and 𝑀 𝑟 computed in Algorithm 1 correspond to the scaled matrices 2 tprec Â1 and 2 tprec Â2 . The rows of  generate the lattice that will be reduced in our algorithm.

Lemma 5.5. The Z-module generated by the rows of  is a lattice of rank 𝑁 .

Proof. Recall that tprec = ⌈-log 2 (min 0⩽𝑖⩽𝑁 -1 𝐴 2 [𝑖, 𝑖]) + log 2 (𝑁 )⌉ + 5. Thus, for 𝑖 = 0, . . . , 𝑁 -1, 2 tprec 𝐴 2 [𝑖, 𝑖] ⩾ 2 5 𝑁 , hence Â2 [𝑖, 𝑖] ⩾ 2 5-tprec 𝑁 > 0.
This shows that the matrix Â2 is an invertible diagonal matrix, so that the matrix  has full rank 𝑁 . □

We now give an equivalent but more convenient form for tprec. In order to do that, we henceforth assume that the set 𝑢[𝑎, 𝑏], resp. 𝑣𝑓 ([𝑎, 𝑏]), contains at least one nonzero integer 𝑛 𝑥 , resp. 𝑛 𝑓 ; note that this assumption is made without loss of generality with respect to our problem, since if the assumption does not hold the problem is trivial. Lemma 5.6. We have

tprec =⌈-log 2 (𝜌 𝜔0 𝑅 2,0 ) + log 2 (𝑁 )⌉ + 5 =⌈(𝑁 -𝜔 0 -1) log 2 (𝜌) + log 2 (𝜌 -1) + log 2 (𝑁 )⌉ + 3 and 8𝑁 𝜌 𝑁 -𝜔0-1 (𝜌 -1) ⩽ 2 tprec ⩽ 16𝑁 𝜌 𝑁 -𝜔0-1 (𝜌 -1).
Proof. From our assumption, we have

𝑢𝑀 𝜌,𝑎,𝑏 (𝑥) ⩾ |𝑛 𝑥 | ⩾ 1 and 𝑣𝑀 𝜌,𝑎,𝑏 (𝑓 ) ⩾ |𝑛 𝑓 | ⩾ 1. It then follows 𝑅 2,𝑖 ⩾ 4/(𝜌 𝑁 -1 (𝜌 -1)) = 𝑅 2,0 for all 𝑖. Therefore, we get tprec = ⌈-log 2 (𝜌 𝜔0 𝑅 2,0 ) + log 2 (𝑁 )⌉ + 5. □ Algorithm 1
Computation of the lattice to be reduced (1D approach)

Input: Two real numbers 𝑎 < 𝑏, 𝑓 a transcendental function analytic in a complex neighbourhood of [𝑎, 𝑏], three positive integers 𝑑, 𝑢, 𝑣, two real numbers 𝜌 > 1, 𝜔 0 ⩾ 0 such that 4𝜌 𝜔0 𝑣𝑀 𝜌,𝑎,𝑏 (𝑓 ) < 𝜌 𝑁 -1 (𝜌 -1), where 𝑁 = (𝑑 + 1)(𝑑 + 2)/2. Output: An integer tprec which is the truncation precision, two matrices 𝑀 𝑐 , 𝑀 𝑟 ∈ ℳ 𝑁 (Z), respectively storing scaled values of the coefficients and of the remainders, namely 2 tprec Â1 and 2 tprec Â2 , Â1 and Â2 being defined in (5.8).

1: 𝑅 𝜔0 ← 4𝜌 𝜔 0 𝜌 𝑁 -1 (𝜌-1) , tprec ← ⌈-log 2 (𝑅 𝜔0 ) + log 2 (𝑁 )⌉ + 5 2: 𝐿 𝑐ℎ𝑒𝑏 ← [︀ 𝑏-𝑎 2 cos (︀ (𝑗 + 1/2) 𝜋 𝑁 )︀ + 𝑎+𝑏 2 ]︀ 0⩽𝑗⩽𝑁 -1 // Computation of the Cheby- shev nodes, listed in reverse order 3: 𝑀 𝑐 ← [0] 𝑁 ×𝑁 ; 𝑀 𝑟 ← [0] 𝑁 ×𝑁 4: 𝐵 𝑥 ← ⃒ ⃒ 𝑎+𝑏 2 ⃒ ⃒ + 𝑏-𝑎 4 (𝜌 + 𝜌 -1 ) 5: 𝑔 ← (︀ 𝑥 ↦ → ⃒ ⃒ 𝑓 (︀ 𝑎+𝑏 2 + 𝑏-𝑎 4 (𝜌 exp(𝑖𝑥) + 𝜌 -1 exp(-𝑖𝑥)) )︀⃒ ⃒ )︀ 6: 𝐵 𝑓 ← max (𝑔([0, 2𝜋])) 7: for ℓ = 0 to 𝑑 do 8:
for 𝑘 = 0 to 𝑑 -ℓ do 9:

𝜙 ← (𝑥 ↦ → (𝑢𝑥) 𝑘 (𝑣𝑓 (𝑥)) ℓ ) // We compute the coefficient matrix : for each function, we compute its value at points of 𝐿 𝑐ℎ𝑒𝑏 , use DCT and scale.

10: 𝑈 ← [𝜙(𝐿 𝑐ℎ𝑒𝑏 [0]), . . . , 𝜙(𝐿 𝑐ℎ𝑒𝑏 [𝑁 -1])] 11: 𝐿 DCT ← 2 𝑁 DCT-II(𝑈 ), 𝐿 DCT [0] ← 1 2 𝐿 DCT [0] 12:
for 𝑗 = 0 to 𝑁 -1 do 13: end for // We compute the scaled remainder matrix.

𝑀 𝑐 [𝑖, 𝑗] ← [2 tprec 𝐿 DCT [𝑗]] 0 //
15:

𝑀 𝑟 [𝑖, 𝑖] ← ⌊︀ 2 tprec 𝑅 𝜔0 (𝑢𝐵 𝑥 ) 𝑘 (𝑣𝐵 𝑓 ) ℓ ⌋︀ , 𝑖 ← 𝑖 + 1 16:
end for 17: end for 18: Return tprec, 𝑀 𝑐 , 𝑀 𝑟 5.2.1. Heuristic character of Algorithm 2. We will see in the sequel of the section that, up to a suitable choice of parameters, the condition stated at Step 4 can always be satisfied. On the other hand, we do not know how to simultaneously guarantee both this condition and the condition stated at Step 8. It is even likely that it is not possible when 𝑓 is close to an algebraic function of small height.

Practical remarks. Algorithm 1 has been written with readability in mind.

We now add some practical clarifications. We will discuss some experiments in Section 8.

5.3.1.

Efficiency. The number of DCT calls (see Step 11 in Algorithm 1) can be reduced from 𝑂(𝑁 ) to 𝑂(𝑑) by noticing that the DCT 𝛿 ′ of the vector 𝑢 ′ associated to 𝑥𝜙(𝑥) can be deduced from the DCT 𝛿 of the vector 𝑢 associated to 𝜙(𝑥) via the following formulas, which are easily deduced from the recurrence relation 2𝑥𝑇 𝑛 (𝑥) = 𝑇 𝑛+1 (𝑥) + 𝑇 𝑛-1 (𝑥): 

• 𝛿 ′ [0] = (𝑏 -𝑎)𝛿[1]/4 + (𝑏 + 𝑎)𝛿[0]/2, • 𝛿 ′ [𝑘] = (𝑏 -𝑎)(𝛿[𝑘 -1] + 𝛿[𝑘 + 1])/4 + (𝑏 + 𝑎)𝛿[𝑘]/2, 1 ⩽ 𝑘 ⩽ 𝑛 -2, • 𝛿 ′ [𝑛 -1] = (𝑏 -𝑎)𝛿[𝑛 -2]/4 + (𝑏 + 𝑎)𝛿[𝑛 -1]/2.
4: if max(‖(𝑀 𝐿𝐿𝐿 [0, 𝑗]) 0⩽𝑗⩽2𝑁 -1 ‖ 2 , ‖(𝑀 𝐿𝐿𝐿 [1, 𝑗]) 0⩽𝑗⩽2𝑁 -1 ‖ 2 ) ⩽ 2 tprec /(2𝑁 ) then 5: [𝐿 𝑚 [𝑗], 𝑗 = 0, . . . , 𝑁 -1] ← [𝑋 𝑘 1 𝑋 ℓ 2 for 𝑘 = 0 to 𝑑 -ℓ for ℓ = 0 to 𝑑] // List
𝑃 0 ← ∑︀ 𝑁 -1 𝑗=0 𝑈 [0, 𝑗]𝐿 𝑚 [𝑗], 𝑃 1 ← ∑︀ 𝑁 -1 𝑗=0 𝑈 [1, 𝑗]𝐿 𝑚 [𝑗],
7:

𝑅(𝑋 1 ) ← Res 𝑋2 (𝑃 0 (𝑋 1 , 𝑋 2 ), 𝑃 1 (𝑋 1 , 𝑋 2 )) 8: if 𝑅(𝑋 1 ) ̸ = 0 then 9: ℒ ← {𝑡 ∈ Z; 𝑅(𝑡) = 0} 10:
(𝐵 0 , 𝐵 1 ) ← (0, 0) // Monomials in 𝑋 1 do not contribute to the 𝐵 𝑖 's; given the ordering of 𝐿 𝑚 we can thus start the loop at 𝑘 = 𝑑 + 1.

11:

for 𝑘 = 𝑑 + 1 to 𝑁 -1 do 12:

𝐽 ← 𝑑𝐿𝑚[𝑘] 𝑑𝑋2 (𝑋 1 = 𝑢 max(|𝑎|, |𝑏|), 𝑋 2 = 𝑣 max |𝑓 |([𝑎, 𝑏])),
13:

𝐵 0 ← 𝐵 0 + |𝑈 [0, 𝑘]|𝐽, 𝐵 1 ← 𝐵 1 + |𝑈 [1, 𝑘]|𝐽 14:
end for 15:

return 𝐾 = 4𝑣 max(𝐵 0 , 𝐵 return "FAIL" 21: end if This gives, in practice, a significant speedup in the construction of the matrix for large 𝑑. Note that these formulas must be applied to 𝐿 DCT before the renormalisation instruction 𝐿 DCT [0] ← 1 2 𝐿 DCT [0]. A similar strategy applies for the computation of the remainder matrix 𝑀 𝑟 . 5.3.2. Overestimation issues. We now discuss the instruction 𝐵 𝑓 ← max (𝑔([0, 2𝜋])), presented at Step 6 of Algorithm 1. For some functions such as exp or Γ, we can take advantage of a closed expression for this maximum. Otherwise, either we develop a dedicated routine to derive a tight estimate of this value, or we can use interval or ball arithmetic [START_REF] Tucker | Validated numerics, A short introduction to rigorous computations[END_REF][START_REF] Johansson | Arb: efficient arbitrary-precision midpoint-radius interval arithmetic[END_REF] to quickly obtain an upper bound, which then may raise overestimation issues. So far, our experiments, which use Arb 12 , resp. MPFI 13 , for every ball, resp. interval, arithmetic based computation, did not show any problematic overestimation -we thus did not have to develop dedicated routines.

This remark leads to the fact that we may overestimate 𝐵 𝑓 , thus 𝑀 𝑟 , in implementations of the Algorithm. Still, if the condition stated at Step 4 of Algorithm 2 is satisfied with these (possibly overestimated) computed values, then this condition is also satisfied for the actual values and Theorem 5.8 and Corollary 5.11 apply.

Rounding issues.

In Algorithm 1, the computation of tprec at Step 1, as well as those performed at Steps 13 and 15, as written, require correct rounding, and may raise issues such as those this paper aims at solving.

In this context, we can, however quite easily avoid them, using the classical remark that if we let x be an underapproximation of 𝑥 with x ⩽ 𝑥 ⩽ x + 1/2, then we have ⌈𝑥⌉ ∈ {⌈x⌉, ⌈x⌉ + 1}. Similarly, if x is an approximation of a nonzero 𝑥

such that |x| -1/2 ⩽ |𝑥| ⩽ x, we get [𝑥] 0 ∈ {[x] 0 , [x] 0 -sgn(𝑥)}.
It is well known that such approximations are easy to compute, either by using floating-point with sufficient intermediate precision and ensuring that we work with over/under-approximations using the suitable rounding mode for each operation, or using ball arithmetic as provided, for instance, by Arb.

In the sequel, we denote by tprec comp , 𝑀 𝑐,comp , 𝑀 𝑟,comp the quantities computed in this way. Note that 𝑀 𝑐 and 𝑀 𝑟 are then defined with tprec comp instead of tprec. We have

tprec comp ∈ {tprec, tprec + 1}, 𝑀 𝑐 [𝑖, 𝑗] -𝑀 𝑐,comp [𝑖, 𝑗] ∈ {0, sgn(𝑀 𝑐 [𝑖, 𝑗])}, and 𝑀 𝑟 [𝑖, 𝑗] -𝑀 𝑟,comp [𝑖, 𝑗] ∈ {0, 1} for 𝑖, 𝑗 = 0, . . . , 𝑁 -1.
The question of the intermediate precision required will be addressed in Appendix C. Note that in this setting, Remark 5.4 must be replaced by: Remark 5.7. Let Âcomp = 2 -tpreccomp (𝑀 𝑐,comp 𝑀 𝑟,comp ) be the actual computed matrix, we notice that since

⃒ ⃒ ⃒ Âcomp [𝑖, 𝑗] ⃒ ⃒ ⃒ ⩽ |𝐴[𝑖, 𝑗]
| for all 𝑖, 𝑗, the same argument as in Remark 5.4 applies: Theorem 5.2 and its corollaries hold for Âcomp .

Newton polynomials.

In practice, we replace the monomial functions {𝑢 𝑘 𝑥 𝑘 } 0⩽𝑘⩽𝑑 with Newton polynomial functions {𝑢𝑥(𝑢𝑥 -1) • • • (𝑢𝑥 -𝑘 + 1)/𝑘!} 0⩽𝑘⩽𝑑 . In both cases, the substitution 𝑥 = 𝑋/𝑢 yields integer values -respectively {𝑋 𝑘 } 0⩽𝑘⩽𝑑 and {𝑋(𝑋 -1) • • • (𝑋 -𝑘 + 1)/𝑘!} 0⩽𝑘⩽𝑑 . Likewise, we replace the "monomials" {𝑣 𝑘 𝑓 (𝑥) 𝑘 } 0⩽𝑘⩽𝑑 with "Newton polynomials" {𝑣𝑓 (𝑥)(𝑣𝑓 (𝑥) -1) • • • (𝑣𝑓 (𝑥) -𝑘 + 1)/𝑘!} 0⩽𝑘⩽𝑑 . Hence, the changes to operate are:

• Step 9, Algorithm 1, 𝜙 ← (︁ 𝑥 ↦ → (︁ ∏︀ 𝑘 𝑗=1 (𝑢𝑥 -𝑗 + 1)/𝑗 )︁ (︁ ∏︀ ℓ 𝑗=1 (𝑣𝑓 (𝑥) -𝑗 + 1)/𝑗 )︁)︁ , • Step 15, Algorithm 1, 𝑀 𝑟 [𝑖, 𝑖] ← ⌊︁ 2 tprec 4 𝜌 𝑁 -𝜔 0 -1 (𝜌-1) ∏︀ 𝑘 𝑗=1 𝑢𝐵𝑥+𝑗-1 𝑗 ∏︀ ℓ 𝑗=1 𝑣𝐵 𝑓 +𝑗-1 𝑗 ⌋︁ , • Step 5, Algorithm 2, 𝐿 𝑚 ← [︁ ∏︀ 𝑘 𝑗=1 𝑋1-𝑗+1 𝑗 ∏︀ ℓ 𝑗=1 𝑋2-𝑗+1 𝑗 for 𝑘 = 0 to 𝑑 -ℓ for ℓ = 0 to 𝑑 ]︁ .
The use of Newton polynomials leads to smaller uniform norms, hence makes it possible to tackle larger intervals for a same 𝑑. This improvement is asymptotically negligible (it contributes to a lower order term) but is quite significant in practice.

Note that the optimizations described in Section 5.3.1 can easily be adapted to the case of Newton polynomials. 5.3.5. Choice of norms. Beside the heuristic coprimality condition, the success condition of Algorithm 2 is expressed at Step 4 in terms of the Euclidean norm of the vectors. This is a mere convenience related to the fact that the bounds on the LLL algorithm are expressed in terms of this norm, making it more tractable in our proofs of correctness / complexity analysis.

Alternatively, one may make the choice of a success condition expressed in terms of the 1-norm, namely (5.9) max

𝑖=0,1 (︂ ‖(𝑀 𝐿𝐿𝐿 [𝑖, 𝑗]) 0⩽𝑗⩽2𝑁 -1 ‖ 1 + ‖(𝑀 𝐿𝐿𝐿 [𝑖, 𝑗]) 𝑁 ⩽𝑗⩽2𝑁 -1 ‖ 1 16 
)︂ < 2 tprec-1 .
Indeed, as we shall see in the proof of Theorem 5.8, this condition means that from the vector we can derive a polynomial 𝑃 such that 𝑃 (𝑢𝑥,

𝑣𝑓 (𝑥)) = ∑︀ 𝑁 -1 𝑖=0 𝑐 𝑖 𝑇 𝑖,[𝑎,𝑏] (𝑥) + 𝑅(𝑥), with ∑︀ 𝑁 -1 𝑖=0 |𝑐 𝑖 | + ‖𝑅(𝑥)‖ ∞ < 1/2. Since ‖𝑇 𝑖,[𝑎,𝑏] ‖ ∞ = 1
for all 𝑖, we see that (5.9) guarantees that the polynomial 𝑃 verifies ‖𝑃 (𝑢𝑥, 𝑣𝑓 (𝑥))‖ ∞ < 1/2 over [𝑎, 𝑏], which is the key criterion for the success of the algorithm. As this condition is slightly more efficient in practice, we recommend using it in any implementation of our algorithm.

Proof of correctness.

In this section, we shall prove the correctness of Algorithm 2. This is done in two steps: first, in Subsection 5.4.1 we prove that if the Algorithm does not return FAIL, then the output is indeed as specified; second, in Subsection 5.4.2, we prove that for suitable choices of parameters, Algorithm 2 may not return FAIL at Step 20. Recall 𝑁 = (𝑑 + 1)(𝑑 + 2)/2. 5.4.1. Proof of correctness of the output in case of success. This part is devoted to the proof of the following. Theorem 5.8. Let 𝑑, 𝑢, 𝑣 be nonzero integers, 𝑁 = (𝑑 + 1)(𝑑 + 2)/2, (𝑓

𝑗 ) 0⩽𝑗⩽𝑁 -1 = (𝑢 𝑘 𝑥 𝑘 𝑣 ℓ 𝑓 (𝑥) ℓ ) 0⩽ℓ⩽𝑑 0⩽𝑘⩽𝑑-ℓ . Let 𝜔 0 ⩾ 0, 𝜌 > 1 such that there exists Λ = (𝜆 𝑘,ℓ ) 0⩽ℓ⩽𝑑 0⩽𝑘⩽𝑑-ℓ ∈ Z 𝑁 with ‖Λ Â‖ 2 ⩽ 1/(2𝑁 ), and let 𝑃 (𝑋 1 , 𝑋 2 ) = ∑︀ 0⩽𝑘+ℓ⩽𝑑 𝜆 𝑘,ℓ 𝑋 𝑘 1 𝑋 ℓ 2 . Then, we have (1) max 𝑥∈[𝑎,𝑏] |𝑃 (𝑢𝑥, 𝑣𝑓 (𝑥))| < 1/2; (2) max 𝑥∈[𝑎,𝑏],𝑧∈𝑓 ([𝑎,𝑏]) 0⩽|𝑦-𝑧|⩽|𝑧|/(2𝑑) ⃒ ⃒ ⃒ 𝑃 (𝑢𝑥,𝑣𝑧)-𝑃 (𝑢𝑥,𝑣𝑦) 𝑧-𝑦 ⃒ ⃒ ⃒ < 2𝑣𝐵 < 𝑑𝜌 𝑁 -𝜔 0 -1 (𝜌-1) 4𝑀 𝜌,𝑎,𝑏 (𝑓 )
, where

𝐵 = ∑︁ 1⩽ℓ⩽𝑑 0⩽𝑘⩽𝑑-ℓ ℓ|𝜆 𝑘,ℓ |𝑢 𝑘 max(|𝑎|, |𝑏|) 𝑘 𝑣 ℓ-1 ‖𝑓 ‖ ℓ-1 ∞,[𝑎,𝑏] . Proof. For 𝑗 = 0, . . . , 2𝑁 -1, we have |(Λ𝐴)[𝑗]-(Λ Â)[𝑗]| 1 ⩽ ∑︀ 0⩽𝑘+ℓ⩽𝑑 |𝜆 𝑘,ℓ |2 -tprec ⩽ ∑︀ 0⩽𝑘+ℓ⩽𝑑 |𝜆 𝑘,ℓ | min 𝑖 Â2 [𝑖, 𝑖] 2 -5 𝑁 , cf. proof of Lemma 5.5. As ∑︁ 0⩽𝑘+ℓ⩽𝑑 |𝜆 𝑘,ℓ | min 𝑖 Â2 [𝑖, 𝑖] ⩽ ‖Λ Â2 ‖ 1 , we get |(Λ𝐴)[𝑗]-(Λ Â)[𝑗]| ⩽ 1 32𝑁 ‖Λ Â2 ‖ 1 . Then, it comes ‖Λ𝐴‖ 1 ⩽ ‖Λ Â‖ 1 + ‖Λ Â2‖1 16 ⩽ ‖Λ Â‖ 1 + √ 𝑁 ‖Λ Â2‖2
thanks to Cauchy-Schwarz inequality. Finally, we obtain

‖Λ𝐴‖ 1 ⩽ ‖Λ Â‖ 1 + 1 32𝑁 1/2 from the assumption ‖Λ Â‖ 2 ⩽ 1/(2𝑁 ).
Let 𝑃 be as in the statement of the Theorem, and 𝑄(𝑥) = ∑︀ 𝑁 -1 𝑗=0 𝑞 𝑗 𝑇 𝑗,[𝑎,𝑏] (𝑥) be the interpolation polynomial of 𝑃 (𝑢𝑥, 𝑣𝑓 (𝑥)) at the order 𝑁 Chebyshev nodes of the first kind. Then, the coordinates of Λ𝐴 1 are exactly 𝑞 𝑗 , 0 ⩽ 𝑗 ⩽ 𝑁 -1: indeed, the matrix 𝐴 1 contains the DCT of the functions (𝑢𝑥) 𝑘 (𝑣𝑓 (𝑥)) ℓ , so that Λ𝐴 1 is the DCT of 𝑃 (𝑢𝑥, 𝑣𝑓 (𝑥)), meaning (see (5.2)) that it contains the coefficients of the interpolation polynomial 𝑃 (𝑢𝑥, 𝑣𝑓 (𝑥)) in the Chebyshev basis (𝑇 𝑗,[𝑎,𝑏] (𝑥)) 0⩽𝑗⩽𝑁 -1 .

Proposition 4.1 shows that max

𝑥∈[𝑎,𝑏] |𝑄(𝑥) -𝑃 (𝑢𝑥, 𝑣𝑓 (𝑥))| ⩽ 4 𝑀 𝜌,𝑎,𝑏 (𝑃 ) 𝜌 𝑁 -1 (𝜌 -1) ⩽ 4 ∑︁ 0⩽𝑘+ℓ⩽𝑑 |𝜆 𝑘,ℓ | 𝑢 𝑘 𝑀 𝜌,𝑎,𝑏 (𝑥) 𝑘 𝑣 ℓ 𝑀 𝜌,𝑎,𝑏 (𝑓 ) ℓ 𝜌 𝑁 -1 (𝜌 -1) , hence max 𝑥∈[𝑎,𝑏] |𝑃 (𝑢𝑥, 𝑣𝑓 (𝑥)| ⩽ max 𝑥∈[𝑎,𝑏] |𝑄(𝑥)| + 4 ∑︁ 0⩽𝑘+ℓ⩽𝑑 |𝜆 𝑘,ℓ | 𝑢 𝑘 𝑀 𝜌,𝑎,𝑏 (𝑥) 𝑘 𝑣 ℓ 𝑀 𝜌,𝑎,𝑏 (𝑓 ) ℓ 𝜌 𝑁 -1 (𝜌 -1) . As max 𝑥∈[𝑎,𝑏] |𝑇 𝑘,[𝑎,𝑏] (𝑥)| = 1 for all 𝑘, we have max 𝑥∈[𝑎,𝑏] |𝑄(𝑥)| ⩽ ∑︀ 0⩽𝑗⩽𝑁 -1 |𝑞 𝑗 |, so that: max 𝑥∈[𝑎,𝑏] |𝑃 (𝑢𝑥, 𝑣𝑓 (𝑥)| ⩽ ∑︁ 0⩽𝑗⩽𝑁 -1 |𝑞 𝑗 |+ 4𝜌 𝜔0 ∑︁ 0⩽𝑘+ℓ⩽𝑑 |𝜆 𝑘,ℓ | 𝑢 𝑘 𝑀 𝜌,𝑎,𝑏 (𝑥) 𝑘 𝑣 ℓ 𝑀 𝜌,𝑎,𝑏 (𝑓 ) ℓ 𝜌 𝑁 -1 (𝜌 -1) (5.10) = ‖Λ𝐴‖ 1 ⩽ ‖Λ Â‖ 1 + 1/(2 5 √ 𝑁 ) ⩽ 1/(2 5 √ 𝑁 ) + √ 2𝑁 ‖Λ Â‖ 2 thanks to Cauchy-Schwarz inequality ⩽ 1/(2 5 √ 𝑁 ) + 1/ √ 2𝑁 < 1/2 since 𝑁 ⩾ 3. (5.11) Finally, let 𝑥 ∈ [𝑎, 𝑏], 𝑧 ∈ 𝑓 ([𝑎, 𝑏]) such that 0 ⩽ |𝑦 -𝑧| ⩽ |𝑧|/(2𝑑).
Notice that the quantity 𝑃 (𝑢𝑥,𝑣𝑦)-𝑃 (𝑢𝑥,𝑣𝑧) 𝑦-𝑧 is actually a polynomial, so is well defined for 𝑦 = 𝑧. First, we note that max(|𝑎|, |𝑏|) ⩽ 𝑀 𝜌,𝑎,𝑏 (𝑥) and ‖𝑓 ‖ ∞,[𝑎,𝑏] ⩽ 𝑀 𝜌,𝑎,𝑏 (𝑓 ) from the maximum modulus principle. Then, we have

⃒ ⃒ ⃒ ⃒ 𝑃 (𝑢𝑥, 𝑣𝑦) -𝑃 (𝑢𝑥, 𝑣𝑧) 𝑦 -𝑧 ⃒ ⃒ ⃒ ⃒ ⩽ ∑︁ 1⩽ℓ⩽𝑑 0⩽𝑘⩽𝑑-ℓ ℓ|𝜆 𝑘,ℓ |𝑢 𝑘 |𝑥| 𝑘 𝑣 ℓ max(|𝑧|, |𝑦|) ℓ-1 ⩽ ∑︁ 1⩽ℓ⩽𝑑 0⩽𝑘⩽𝑑-ℓ ℓ|𝜆 𝑘,ℓ |𝑢 𝑘 |𝑥| 𝑘 𝑣 ℓ |𝑧| ℓ-1 (︂ 1 + 1 2𝑑 )︂ ℓ-1 ⏟ ⏞ <2 < 2 ∑︁ 1⩽ℓ⩽𝑑 0⩽𝑘⩽𝑑-ℓ ℓ|𝜆 𝑘,ℓ |𝑢 𝑘 max(|𝑎|, |𝑏|) 𝑘 𝑣 ℓ ‖𝑓 ‖ ℓ-1 ∞,[𝑎,𝑏] =: 2𝑣𝐵 (5.12) ⩽ 2𝑑 ∑︁ 1⩽ℓ⩽𝑑 0⩽𝑘⩽𝑑-ℓ |𝜆 𝑘,ℓ |𝑢 𝑘 𝑀 𝜌,𝑎,𝑏 (𝑥) 𝑘 𝑣 ℓ 𝑀 𝜌,𝑎,𝑏 (𝑓 ) ℓ-1 < 𝑑𝜌 𝑁 -𝜔0-1 (𝜌 -1) 4𝑀 𝜌,𝑎,𝑏 (𝑓 ) . (5.13)
The last inequality follows from the comparison of (5.10) to (5.11). We take the supremum over the compact set 𝑥 ∈ [𝑎, 𝑏], 𝑧 ∈ 𝑓 ([𝑎, 𝑏]), 0 ⩽ |𝑦 -𝑧| ⩽ |𝑧|/(2𝑑); as, again, the quantity under study is actually a polynomial, this supremum is actually a maximum, which concludes the proof. □ Remark 5.9. Note that

‖Λ𝐴‖ 1 ⩾ 4 ∑︀ 0⩽𝑘+ℓ⩽𝑑 |𝜆 𝑘,ℓ | 𝑢 𝑘 𝑀 𝜌,𝑎,𝑏 (𝑥) 𝑘 𝑣 ℓ 𝑀 𝜌,𝑎,𝑏 (𝑓 ) ℓ 𝜌 𝑁 -1 (𝜌-1)
in particular. Since the constraint ‖Λ Â‖ 2 ⩽ 1/(2𝑁 ) implies ‖Λ𝐴‖ 1 < 1/2, it comes either 𝜆 𝑘,ℓ = 0 or 4

𝑢 𝑘 𝑀 𝜌,𝑎,𝑏 (𝑥) 𝑘 𝑣 ℓ 𝑀 𝜌,𝑎,𝑏 (𝑓 ) ℓ 𝜌 𝑁 -1 (𝜌-1)
< 1 for any 𝑘, ℓ. Also, the proof of Lemma 5.6 shows in particular that 𝑅 2,𝑖 ⩾ 𝑅 2,𝑑+2 = 4𝑣𝑀 𝜌,𝑎,𝑏 (𝑓 )/(𝜌 𝑁 -1 (𝜌 -1)) for all 𝑖 ⩾ 𝑑 + 2. Hence, if 𝜌 𝜔0 𝑅 2,𝑑+2 ⩾ 1, we thus have 𝜌 𝜔0 𝑅 2,𝑖 ⩾ 1 for all 𝑖 ⩾ 1 and 𝜆 𝑘,ℓ = 0 for any 1 ⩽ ℓ ⩽ 𝑑, 0 ⩽ 𝑘 ⩽ 𝑑 -ℓ: the only functions taken into account are the 𝑢 𝑘 𝑥 𝑘 's and the method fails as claimed at the beginning of this section. This explains the condition 4𝑣𝜌 𝜔0 𝑀 𝜌,𝑎,𝑏 (𝑓 ) < 𝜌 𝑁 -1 (𝜌 -1).

Remark 5.10. The proof should be slightly adapted if Subsection 5.3.3 is used. Recall that Âcomp = 2 -tpreccomp (𝑀 𝑐,comp 𝑀 𝑟,comp ), we obtain for 𝑗 = 0, . . . , 2𝑁 -1,

|(Λ𝐴)[𝑗] -(Λ Âcomp )[𝑗]| ⩽ ∑︁ 0⩽𝑘+ℓ⩽𝑑 |𝜆 𝑘,ℓ |2 1-tpreccomp ⩽ ∑︁ 0⩽𝑘+ℓ⩽𝑑 |𝜆 𝑘,ℓ | min 𝑖 Â2 [𝑖, 𝑖] 2 -4 𝑁 from which follows ‖Λ𝐴‖ 1 ⩽ ‖Λ Â‖ 1 + ‖Λ Â2‖1 2 3 ⩽ ‖Λ Â‖ 1 + 1 2 4 𝑁 1/2
. The upper bound in Inequality (5.11) becomes 1/(2 4 𝑁 1/2 ) + 1/ √ 2𝑁 < 1/2 since 𝑁 ⩾ 3. Note also that the success condition (5.9) becomes max 𝑖=0,1

(︂ ‖(𝑀 𝐿𝐿𝐿 [𝑖, 𝑗]) 0⩽𝑗⩽2𝑁 -1 ‖ 1 + ‖(𝑀 𝐿𝐿𝐿 [𝑖, 𝑗]) 𝑁 ⩽𝑗⩽2𝑁 -1 ‖ 1 8 )︂ < 2 tprec-1 .
From Theorem 5.8, we can deduce a lower bound for |𝑌 /𝑣 -𝑓 (𝑋/𝑢)| in the following way: Corollary 5.11. With the notations and assumptions of Theorem 5.8, we have, for all 𝑋 ∈ Z, 𝑎 ⩽ 𝑋/𝑢 ⩽ 𝑏, all 𝑌 ∈ Z, either:

𝑃 (𝑋, 𝑌 ) = 0 or ⃒ ⃒ ⃒ ⃒ 𝑌 𝑣 -𝑓 (︂ 𝑋 𝑢 )︂⃒ ⃒ ⃒ ⃒ > 1 2𝑣 max(2𝐵, 𝑑) > 2𝑀 𝜌,𝑎,𝑏 (𝑓 ) 𝑑𝜌 𝑁 -𝜔0-1 (𝜌 -1)
.

Proof. The inequality 1 4𝑣𝐵 > 2𝑀 𝜌,𝑎,𝑏 (𝑓 )

𝑑𝜌 𝑁 -𝜔 0 -1 (𝜌-1) follows from the second point of Theorem 5.8.

We have, for any 𝑥 ∈ [𝑎, 𝑏], 𝑦 ∈ R, 

⃒ ⃒ ⃒ ⃒ ⩽ ∑︁ 1⩽ℓ⩽𝑑 0⩽𝑘⩽𝑑-ℓ |𝜆 𝑘,ℓ ||𝑋| 𝑘 𝑣 ∑︁ 0⩽𝑗⩽ℓ-1 |𝑌 | ⏟ ⏞ ⩽1 𝑗 |𝑣𝑓 (𝑋/𝑢)| ⏟ ⏞ ⩽1 ℓ-1-𝑗 ⩽ ∑︁ 1⩽ℓ⩽𝑑 0⩽𝑘⩽𝑑-ℓ ℓ|𝜆 𝑘,ℓ |𝑢 𝑘 |𝑋/𝑢| 𝑘 𝑣 ⩽ ∑︁ 1⩽ℓ⩽𝑑 0⩽𝑘⩽𝑑-ℓ ℓ|𝜆 𝑘,ℓ |𝑢 𝑘 max(|𝑎|, |𝑏|) 𝑘 𝑣(𝑣‖𝑓 ‖ ∞,[𝑎,𝑏] ⏟ ⏞ ⩾|𝑛 𝑓 |⩾1 ) ℓ-1
where 𝑛 𝑓 was introduced just before Lemma 5.6. The conclusion follows by combining this upper bound with (5.15).

If |𝑌 /𝑣 -𝑓 (𝑋/𝑢)| ⩾ 1/𝑣, the conclusion holds since not all 𝜆 𝑘,ℓ are zero and

𝐵 = 4𝑣 ∑︁ 1⩽ℓ⩽𝑑 0⩽𝑘⩽𝑑-ℓ ℓ |𝜆 𝑘,ℓ | ⏟ ⏞ ∈N 𝑢 𝑘 max(|𝑎|, |𝑏|) 𝑘 ⏟ ⏞ |𝑛𝑥| 𝑘 ⩾1 𝑣 ℓ-1 ‖𝑓 ‖ ℓ-1 ∞,[𝑎,𝑏] ⏟ ⏞ |𝑛 𝑓 | ℓ-1 ⩾1 ⩾ 4𝑣. • Likewise, if |𝑓 (𝑋/𝑢)| ⩾ 1/𝑣, we have |𝑌 /𝑣 -𝑓 (𝑋/𝑢)| > |𝑓 (𝑋/𝑢)| 2𝑑 ⩾ 1 2𝑑𝑣 > 2𝑀 𝜌,𝑎,𝑏 (𝑓 ) 𝑑𝜌 𝑁 -𝜔0-1 (𝜌 -1) , since 1 > 4𝑣𝑀 𝜌,𝑎,𝑏 (𝑓 )
𝜌 𝑁 -𝜔 0 -1 (𝜌-1) thanks to Remark 5.9, the conclusion holds again. □

We now have all the elements to prove the correctness of Algorithm 2. First, recall that the matrices 𝑀 𝑐 and 𝑀 𝑟 computed in Algorithm 1 correspond to the scaled matrices 2 tprec Â1 and 2 tprec Â2 . If the condition stated at Step 4 of Algorithm 2 is satisfied, then Theorem 5.8 and Corollary 5.11 prove that, given an integer pair (𝑋, 𝑌 ), either 𝑃 0 (𝑋, 𝑌 ) = 𝑃 1 (𝑋, 𝑌 ) = 0, or the lower bound of Corollary 5.11 holds. If the test at Step 8 succeeded, 𝑃 0 and 𝑃 1 are coprime and since the total degree of each 𝑃 𝑖 is at most 𝑑, we deduce from Bézout's theorem that the cardinal of ℒ, the list of integer roots of 𝑃 0 and 𝑃 1 is at most 𝑑 2 .

Steps 7 & 9 of Algorithm 2 deal with the former case, by trying to solve the polynomial system 𝑃 0 (𝑥, 𝑦) = 𝑃 1 (𝑥, 𝑦) = 0. If 𝑃 0 and 𝑃 1 are not coprime, however, this will fail; this is what makes our algorithm (and actually all bivariate versions of Coppersmith's method) heuristic. When this situation occurs, one convenient solution is to subdivide the interval of interest into two subintervals and to apply the algorithm again to these subintervals.

When 𝑋 / ∈ ℒ, then at least one of the values 𝑃 0 (𝑋, 𝑌 ), 𝑃 1 (𝑋, 𝑌 ) is non-zero. Then, we deduce from Corollary 5.11 that |𝑓 (𝑋/𝑢) -𝑌 /𝑣| > 1/𝐾 > 2𝑀 𝜌,𝑎,𝑏 (𝑓 )

𝑑𝜌 𝑁 -𝜔 0 -1 (𝜌-1)
, where 𝐾 is the value computed at Step 15 of Algorithm 2.

Examination of the success of Algorithm 2.

If we apply the LLL lattice basis reduction algorithm to Â, we obtain: Corollary 5.12. Assume that det( Â Â𝑡 ) 1/2(𝑁 -1) ⩽ 2 -(𝑁 +3)/4-tprec/(𝑁 -1)

𝑁

; then Theorem 5.8 applies with Λ equal to any of the first two vectors of an LLL-reduced basis of the lattice generated by the rows of Â.

Proof. Let à = 2 tprec  ∈ ℳ 𝑛 (Z), we know from Theorem 4.5 that if 𝑤 1 and 𝑤 2 denote these first two vectors, we have

‖2 tprec 𝑤 𝑖 ‖ 2 ⩽ 2 (𝑁 -1)/4 max(det( Ã Ã𝑡 ) 1/2(𝑁 -1) , det( Ã Ã𝑡 ) 1/(2𝑁 ) ).
As à is an integer matrix, its determinant is an integer, so that det( à Ã𝑡 ) 1/2(𝑁 -1) ⩾ det( à Ã𝑡 ) 1/(2𝑁 ) ; we thus have

2 tprec ‖𝑤 𝑖 ‖ 2 ⩽ 2 (𝑁 -1)/4 2 𝑁 tprec/(𝑁 -1) det( Â Â𝑡 ) 1/2(𝑁 -1) , hence ‖𝑤 𝑖 ‖ 2 ⩽ 2 (𝑁 -1)/4 2 tprec/(𝑁 -1) det( Â Â𝑡 ) 1/2(𝑁 -1) ⩽ 1 2𝑁
.

□

We shall base our analysis on Inequality (5.7). The important term in the analysis is (𝑢𝑣) 2𝑁/(3(𝑑+3)) 𝑀 𝜌,𝑎,𝑏 (𝑓 ) 2𝑁/(3(𝑑+3)) /𝜌 𝑁/2+... . The quality of the bound thus depends on 𝜌 and the growth of 𝑓 .

We shall start by giving a general result. This result will then be turned into more readable versions under various sets of assumptions in Theorems 5.18, 5.26 and 5.27. 

𝑁

.

Proof. We first notice that under our assumption 𝜌 = 𝐾/(𝑏 -𝑎) ⩾ 2, we have 𝐸 𝜌,𝑎,𝑏 ⊂ 𝒟 𝑎,𝑏,𝐾 . Thanks to Corollary 5.3, in view of (𝜌/(𝜌 -1)) 𝑁/(𝑁 -1) ⩽ 2 3/2 , we have

Δ 1/(𝑁 -1) 𝑁,[𝑎,𝑏],𝜔0 ⩽ 60 √ 2𝑁 (𝑢𝑣(|𝑎 + 𝑏| + 𝐾)/2) 2𝑁/(3(𝑑+3))
𝜌 𝑁/2+⌊𝜔0⌋(⌊𝜔0⌋-2𝜔0+1)/(2(𝑁 -1)) 𝑀 𝒟 𝑎,𝑏,𝐾 (𝑓 ) 2𝑁/(3(𝑑+3)) .

Thus, for Δ

1/(𝑁 -1)
𝑁,[𝑎,𝑏],𝜔0 < 2 -(𝑁 +3)/4 2 -tprec/(𝑁 -1) /𝑁 , it suffices, using Lemma 5.6 that

𝜌 > (︁ 60 • 2 (𝑁 +5)/4-2𝑁/(3(𝑑+3))+3/(𝑁 -1) 𝑁 3/2 (𝑢𝑣(|𝑎 + 𝑏| + 𝐾)𝑀 𝒟 𝑎,𝑏,𝐾 (𝑓 )) 2𝑁/(3(𝑑+3)) )︁ 2(𝑁 -1) 𝑁 (𝑁 -3)+2𝜔 0 +⌊𝜔 0 ⌋(⌊𝜔 0 ⌋-2𝜔 0 +1) .
We observe that 60 • 2 (𝑁 +5)/4-2𝑁/(3(𝑑+3))+3/(𝑁 -1) 𝑁 Note that the algorithm may still return "FAIL" at Step 17, precisely in the case where 𝑃 0 and 𝑃 1 are not coprime -this makes the algorithm heuristic.

Complexity analysis.

In this subsection, we deduce estimates for the complexity of our algorithm applied to a fixed interval [𝛼, 𝛽). This actually requires several things:

• Evaluating the complexity of the basic blocks, namely Algorithms 1 and 2 (Subsection 5.5.1), and the precision required for all intermediate computations; • Evaluating, thanks to Corollary 5.14, the size of a subinterval [𝑎, 𝑏] which can be treated at once by those algorithms; the general case will be treated in Subsection 5.5.2, whereas the case where 𝑓 is entire allows for an asymptotic improvement in the estimates by letting 𝜌 tend to infinity with 𝑑; we shall discuss this in Subsection 5.5.4; • Investigating the interplay between 𝑑 and 𝜔 0 , two parameters which have an impact on both the complexity and the quality of the final bound on 1/𝑤. (Subsection 5.5.3).

We start by giving complexity estimates for Algorithms 1 and 2.

Complexity of Algorithms 1 and 2.

In this subsection, we denote M(𝑛) the complexity of multiplying two 𝑛-bit integers (or two precision 𝑛 floating-point numbers). Using naive arithmetic, we have 𝑀 (𝑛) = 𝑂(𝑛 2 ) whereas the best known bound as of today is 𝑀 (𝑛) = 𝑂(𝑛 log 𝑛), see [START_REF] Harvey | Integer multiplication in time 𝑂(𝑛 log 𝑛)[END_REF]. We assume that interval evaluation at precision 𝑝 of a function 𝑓 uses 𝑂(1) evaluations of 𝑓 at precision 𝑝. In our implementation, we used the Arb library [START_REF] Johansson | Arb: efficient arbitrary-precision midpoint-radius interval arithmetic[END_REF] and the MPFI library. In particular, for fixed 𝑎, 𝑏, 𝜌, 𝜔 0 , 𝑓 , for 𝑢, 𝑣 = 2 𝑝 , with 𝑝 ⩾ 𝑑, the required precision is 𝑂(𝑑𝑝). In particular, for fixed 𝑎, 𝑏, 𝜌, 𝑢 = 𝑣 = 2 𝑝 , 𝑝 ⩾ 𝑑, 𝐶 𝑓,𝑃 = Õ(M(𝑃 )), M(𝑛) = Õ(𝑛 𝜅 ), and ignoring the 𝜔 0 log 𝜌 term in tprec, we obtain a complexity of Õ(𝑑 4+𝜅 𝑝 𝜅 ). Here, we use the Õ(•) notation defined as 𝑓 (𝑛) = Õ(𝑔(𝑛)) iff. there exists a nonnegative integer 𝑘 such that 𝑓 (𝑛) = 𝑂(𝑔(𝑛) log 𝑘 𝑔(𝑛)) (𝑔 is implicitly assumed to tend to +∞ at ∞).

Proof
We now turn to the analysis of Algorithm 2. We shall limit ourselves to the analysis of Steps 1-6, which compute the two auxiliary polynomials. This is, in any case, the core of the algorithm, but also the choice made in previous papers, and thus allows for a better comparison. Proposition 5.17. On input 𝑎, 𝑏, 𝑓, 𝑑, 𝑢, 𝑣, 𝜌, 𝜔 0 , under the assumption 𝐶 𝑓,𝑃 = 𝑂(𝑃 2 ), Steps 1-6 of Algorithm 2 have complexity 𝑂(𝑑 6 M(𝑑 2 )(𝑑 2 + p)p).

Proof. The main steps of Algorithm 2 are: 

• A call to Algorithm 1; • A call to LLL
2𝑁 𝑑 3(𝑁 (𝑁 -3)+2𝜔 0 +⌊𝜔 0 ⌋(⌊𝜔 0 ⌋-2𝜔 0 +1))
)︁ calls to Algorithm 2 with parameter 𝑑.

We then obtain a value (5.17)

𝑤 = 𝑂 (︂ (𝑢𝑣) 2𝑁 (𝑁 -𝜔 0 )𝑑 3(𝑁 (𝑁 -3)+2𝜔 0 +⌊𝜔 0 ⌋(⌊𝜔 0 ⌋-2𝜔 0 +1)) )︂ .
When 𝑑 → ∞, both statements remain valid if 𝑁 -𝜔 0 = Θ(𝑁 ), or if one replaces 𝑢𝑣 by 𝑢𝑣2 𝑂 (𝑑) .

Proof. This is a direct consequence of Proposition 5.13 and Corollary 5.14, where we choose 𝐾 = 2. Recall that the heuristic nature of this result comes from the possibility that the two polynomials obtained in Algorithm 2 are not coprime, in which case one cannot recover the solutions 𝑋, 𝑌 from those two polynomials.

Finally, thanks to Corollary 5.11, the upper bound on 𝑤 is 𝑂(𝜌 (𝑁 -𝜔0) ), from which the second part of the result follows.

For 𝑑 → ∞, we need to take into account the term 2 6(𝑑+3) = 2 𝑂(𝑑) of Proposition 5.13. However, if 𝜔 -𝑁 = Θ(𝑁 ), the global exponent in Proposition 5. [START_REF] Cassels | An introduction to the geometry of numbers[END_REF] Remark 5.20. In the case where 𝜔 0 is an integer, the bounds take the nicer form

𝑂 (︁ (𝛽 -𝛼)(𝑢𝑣) 2𝑁 𝑑 3(𝑁 -𝜔 0 )(𝑁 +𝜔 0 -3) )︁
and 𝑤 = 𝑂 (︁ (𝑢𝑣)

2𝑁 𝑑 3(𝑁 +𝜔 0 -3) )︁ .
In particular, this shows the limits of the approach: for 𝜔 0 close to 𝑁 , we decrease the exponent of the bound on 𝑤 by a factor of 2, but can expect nothing better. We shall see in the next section how to go beyond this limitation.

We now discuss the case where we let 𝑑 → ∞. This has two goals:

• )︁ .

Remark 5.22. Note that if we assume 𝑑 = Θ(log(𝑢𝑣)), Corollary 5.21 states that one call is enough to address an interval of the size 𝛽 -𝛼 = 𝑂(1) and we then obtain 𝑤 = 𝑒 𝑂(log 2 (𝑢𝑣)) . We will improve this result in Section 5.5.4 under additional assumptions on the growth of 𝑓 at infinity.

Remark 5.23. In all this section, our complexity estimates should be considered as slightly pessimistic for fixed 𝑑, at least for usual transcendental functions. Indeed, we base our complexity estimates on estimates on the size of the second vector of an LLL-reduced basis, estimates which can only be obtained under a (trivial, thus pessimistic in practice) lower bound on the size of the first vector. For a "classical" function such as exp or Γ, we notice in practice that most of the time, the second vector has a size similar to the size of the first one. This yields the slighly better bound

𝑂 (︁ (𝛽 -𝛼)(𝑢𝑣) 2𝑑𝑁 3(𝑁 (𝑁 -3)+2𝜔 0 +𝑁 ⌊𝜔 0 ⌋(⌊𝜔 0 ⌋-2𝜔 0 +1)) )︁ .
Note that it is easy to build examples where this latter bound does not hold, by taking a function which has a very good algebraic approximation (which gives a very short first vector) over the interval under study.

Remark 5.24. The first part of the Corollary, when 𝜆 = 0, is akin to, asymptotically, Bombieri and Pila's result [START_REF] Bombieri | The number of integral points on arcs and ovals[END_REF] on the number of real algebraic curves of degree ⩽ 𝑑 containing all integer points on a given transcendental curve. The only reasons why we do not get the exact same result as theirs are: the fact that we use a bound on the second vector (see previous remark); and the fact that in order to get a practical algorithm, we truncate our matrix to get an integer matrix -this has a slight effect, asymptotically negligible, on the final bound.

5.5.3. Tuning 𝑑 and 𝜔 0 . Again, in order to ease this very technical discussion, we shall focus on the situation of a fixed 𝑓, 𝑎, 𝑏 for 𝑢𝑣 → ∞.

Let us start by pointing that a tedious, but not difficult computation shows that for 𝑑 ⩾ 2 the exponent in (5.17) is decreasing for 𝜔 0 ∈ [0, 𝑁 -1); the maximal value of this exponent, for 𝜔 0 = 0, is 4𝑑𝑁/(3(𝑑 -1)(𝑑 + 4)) ≈ 2𝑑/3, whereas its minimal value, for 𝜔 0 close to 𝑁 -1, is 𝑑𝑁/(3𝑁 -6) ≈ 𝑑/3. We thus have a wall-type phenomenon: if we want to get access to a good complexity (see (5.16)), we need to increase 𝑑; but then 𝜔 0 fails to prevent the degradation of the estimate on 𝑤, at least in a significant way. In practice, if we target a sharp bound and let 𝜔 0 grow with this purpose in mind, we observe that the lattice basis reduction step decreases 𝑑 to some 𝛿 on its own simply by not using monomials of degree > 𝛿 for the first vectors.

We shall however see that setting 𝜔 0 to a non-zero value still allows one to get a better complexity/𝑤 compromise, and shall study a different method giving complete control on 𝑤 in the next section.

From now on, we thus fix a value of 𝑤 = (𝑢𝑣) 𝜇 and try to find a pair (𝑑, 𝜔 0 ) which minimizes the complexity required to achieve this value of 𝑤.

We start with the asymptotic situation, i.e., 𝑑 → ∞.

Proposition 5.25. Let 𝑑 → ∞, and 𝜔 0 = 𝜆𝑁 (1 + 𝑜( 1)). The value of 𝑑 such that the exponent of 𝑢𝑣 in (5. [START_REF] Coppersmith | Small solutions to polynomial equations, and low exponent RSA vulnerabilities[END_REF]) is 𝜇 while minimizing the exponent in (5.18) is 𝑑 = 2𝜇(1 + 𝑜( 1)), obtained for 𝜆 = 1/3(1 + 𝑜( 1)). This gives a number of subintervals

𝑂 (︁ (𝛽 -𝛼)(𝑢𝑣) 3 4𝜇 (1+𝑜 (1) 
)︁ .

Proof. Elementary calculus. □

Led by this asymptotic statement, we have computed (experimentally), for small values of 𝜇, the value of 𝑑 giving the best estimate for the complexity in (5.16); it turns out that in all our computations, the optimal value was 𝑑 = ⌊2𝜇⌋, except when 𝜇 = 𝑟 + 1/2 is an half-integer, where the optimal 𝑑 is 2𝑟.

Working out a closed form for the exponent of the complexity estimate as a function of 𝜇 seems thus possible, but would be moderately enlightening; it seems preferable to give a plot of the corresponding function. Figure 1 gives three curves. The dashed curve corresponds to the best exponent in Theorem 5.18 as a function of the exponent of 𝑢𝑣 in the bound on 𝑤. The dotted curve represents a similar function, but using a version of our bounds controlling only the first vector of the lattice. Finally, the plain curve is the asymptotic bound 3/(4𝜇). 5.5.4. The case 𝜌(𝑏 -𝑎) → ∞. In this subsection, we shall now let 𝐾 depend on 𝑑, namely we shall let it tend to ∞ with 𝑑. We shall thus need the function under study to be an entire function. Recall that if 𝑓 : C → C is an entire function, and if 𝜃 = lim sup 𝜌→∞ log log max |𝑧|⩽𝜌 |𝑓 (𝑧)|/ log 𝜌 is finite, the function 𝑓 is said to have finite order 𝜃.

The presence of a term 𝑀 𝜌,𝑎,𝑏 (𝑓 ), depending on the growth of 𝑓 at infinity, shows that it is difficult to give a single ready-to-use result. We thus split the discussion into two parts: the case of entire functions of finite order, such as exp for instance, in which the value of the order gives sufficiently precise information on the growth Proof. Let 𝜃 ′ > 𝜃 be a parameter which will be fixed later on. We choose 𝐾 = 𝑑 1/𝜃 ′ /2, which is > 2(𝑏 -𝑎) for 𝑑 large enough. The disc 𝒟 𝑎,𝑏,𝐾 (see Proposition 5.13) is, for our choice of 𝜌, included into the ball 𝐵(0, 𝑑 1/𝜃 ′ ) for 𝑑 large enough; hence, the assumption that 𝑓 has order ⩽ 𝜃 shows that there exist constants

𝐶 𝑓,𝜃 ′ , 𝜎 𝑓,𝜃 ′ ∈ R such that 𝑀 𝒟 𝑎,𝑏,𝐾 (𝑓 ) ⩽ 𝐶 𝑓,𝜃 ′ exp(𝜎 𝑓,𝜃 ′ 𝑑) = 2 𝑂(𝑑) .
Proposition 5.13 then implies that a sufficient condition for the conclusion of the theorem to hold is

𝑏 -𝑎 < 1 2 (︃ 2 6(𝑑+3) (︃ |𝑎 + 𝑏| + 𝑑 1/𝜃 ′ 2 )︃ 𝑀 𝒟 𝑎,𝑏,𝐾 (𝑓 ) ⏟ ⏞ =:𝐴 𝑑 )︃ -4/(3𝑑(1-𝜆 2 ))(1+𝑜(1)) 𝑑 1/𝜃 ′ (𝑢𝑣) -4/(3𝑑(1-𝜆 2 ))(1+𝑜(1)) ,
or equivalently

𝑑 1/𝜃 ′ (𝑢𝑣) -4/(3𝑑(1-𝜆 2 ))(1+𝑜(1)) > 2𝐴 4/(3𝑑(1-𝜆 2 ))(1+𝑜(1)) 𝑑 (𝑏 -𝑎).
As 𝑎, 𝑏 are fixed and 𝐴 𝑑 = 2 𝑂(𝑑) when 𝑑 → ∞, the right hand side is bounded and a sufficient condition for this to hold is simply

𝑑 1/𝜃 ′ (𝑢𝑣) -4/(3𝑑(1-𝜆 2 ))(1+𝑜(1)) → ∞,
for which it suffices that, for some 𝜀 ′ > 0,

𝑑 log 𝑑 ⩾ (︂ 4𝜃 ′ 3(1 -𝜆 2 ) + 𝜀 ′ )︂ log(𝑢𝑣),
which obviously holds under the assumption on 𝑑 made in the theorem for 𝑢𝑣 large enough and

𝜃 ′ < 3(1 -𝜆 2 )𝜈/4.
As for the last part, the bound on 𝑤 is ⩽ 𝜌 𝑁 (1-𝜆) = 𝐾 𝑁 (1-𝜆)(1+𝑜(1)) , namely we have

log(𝑤) = (1 -𝜆)𝑑 2 log 𝑑 2𝜃 ′ (1 + 𝑜(1)) ⩽ (1 -𝜆)𝜈 2 log 2 (𝑢𝑣) 2𝜃 log log 𝑢𝑣 (1 + 𝑜(1)),
as claimed. □

In particular, for the TMD over [1/4, 1/2) for the exponential function (𝜃 = 1), hence for 𝑎 = 1/4, 𝑏 = 1/2 and 𝑢 = 2 𝑝+1 and 𝑣 = 2 𝑝-1 , for 𝑝 → ∞, we obtain the condition 𝑑 ⩾ (︁

8 log 2 3(1-𝜆 2 ) + 𝜀 )︁ 𝑝 log 𝑝 for the full interval [1/4, 1/2), with a bound 𝑤 ⩽ 2 (︀ 32 log 2 9(1-𝜆 2 )(1+𝜆) +𝜀 )︀ 𝑝 2
log 𝑝 . Two other examples. We illustrate, more generally, the fact that we get asymptotic results depending on the rate of growth of 𝑓 at infinity: the slower the growth of 𝑓 , the better the performance. 

3 2 𝜈 2 (1-𝜆 2 )(1-𝜆) √ log(𝑢𝑣)(1+𝑜(1)) .
Proof. The proof is similar to the proof of the previous theorem, with 𝐾 = log 𝑑 for 𝑓 and 𝐾 = exp(3(1 -𝜆 2 )𝑑/2) for 𝑔. See Appendix B. □

The two-variable method

We consider 𝑢, 𝑣 ∈ N ∖ {0}, 𝑎 1 < 𝑏 We prefer to keep 𝑎 2 and 𝑏 2 arbitrary in the sequel to put more emphasis on the symmetry between (𝑎 1 , 𝑏 1 ) and (𝑎 2 , 𝑏 2 ) in the formulas and statements.

Our approach aims at building a trap for these pairs (𝑋, 𝑌 ). We compute, by combining two-dimensional Chebyshev interpolation and lattice reduction, two

polynomials 𝑃 0 , 𝑃 1 ∈ Z[𝑋 1 , 𝑋 2 ] such that, for 𝑖 = 0, 1, for all 𝑥 ∈ [𝑎 1 , 𝑏 1 ], 𝑡 ∈ [𝑎 2 , 𝑏 2 ], we have |𝑃 𝑖 (𝑢𝑥, 𝑣(𝑓 (𝑥)+𝑡))| < 1. Let 𝑋 ∈ Z be such that 𝑋/𝑢 =: 𝑥 0 ∈ [𝑎 1 , 𝑏 1 ] and let 𝑌 ∈ Z be such that 𝑌 /𝑣 =: 𝑓 (𝑥 0 )+𝑡 0 with 𝑡 0 ∈ [𝑎 2 , 𝑏 2 ]. Then 𝑃 𝑖 (𝑢𝑥 0 , 𝑣(𝑓 (𝑥 0 )+𝑡 0 )) = 𝑃 𝑖 (𝑋, 𝑌 ) ∈ Z ∩ (-1, 1) = {0}, that is to say (𝑋, 𝑌 ) is a common root to 𝑃 0 and 𝑃 1 .
As in Section 5, we use our heuristic assumption: 𝑃 0 and 𝑃 1 are supposed to have no nonconstant common factor. We eliminate one of the variables and get the list of all the integers 𝑋, 𝑌 that satisfy (6.1).

In the sequel of this section, we start with estimates of the determinants of the lattices that we use, we present our algorithm, the proof of its correctness and analyse its complexity. When the proofs of the statements are similar to the ones presented in Section 5, we shall postpone them to Appendix E.

Throughout this section, 𝑁 1 , 𝑁 2 ⩾ 2 and 𝑁 ⩾ 2, will be three integers. In order to avoid degenerate situations and trivial output, we shall always assume 𝑁 1 𝑁 2 ⩾ 𝑁 .

Volume estimates for rigorous interpolants at the Chebyshev nodes.

We start by introducing the two dimensional extension of the DCT-II: 2D-DCT-II :

R 𝑁1 × R 𝑁2 → R 𝑁1 × R 𝑁2 (𝑥 ℓ1,ℓ2 ) 0⩽ℓ1⩽𝑁1-1 0⩽ℓ2⩽𝑁2-1 ↦ → (𝑋 𝑘1,𝑘2 ) 0⩽𝑘1⩽𝑁1-1 0⩽𝑘2⩽𝑁2-1 with 𝑋 𝑘1,𝑘2 = ∑︁ 0⩽ℓ1⩽𝑁1-1 ∑︁ 0⩽ℓ2⩽𝑁2-1 𝑥 ℓ1,ℓ2 cos (︂ 𝑘 1 (ℓ 1 + 1/2)𝜋 𝑁 1 )︂ cos (︂ 𝑘 2 (ℓ 2 + 1/2)𝜋 𝑁 2
)︂ ,

for 𝑘 1 = 0, . . . , 𝑁 1 -1, 𝑘 2 = 0, . . . , 𝑁 2 -1.

Let 𝑁 ∈ N, 𝑁 ⩾ 2, let 𝑖 = 0, . . . , 𝑁 -1, let 𝑓 𝑖 a function defined over [𝑎 

𝜇 𝑘1,𝑘2 = (𝜇 𝑘1,𝑁1-1,[𝑎1,𝑏1] , 𝜇 𝑘2,𝑁2-1,[𝑎2,𝑏2] ) 0⩽𝑘1⩽𝑁1-1 0⩽𝑘2⩽𝑁2-1
, cf. Section 4.1, we have the following expressions for the interpolation polynomials (the proof is identical to the one variable case [START_REF] Mason | Chebyshev polynomials[END_REF]Chap. 6]), for 𝑖 = 0, . . . , 𝑁 -1: 

𝑄 𝑖 (𝑥, 𝑡) = 𝑁1-1 ∑︁ ′ 𝑘1=0 𝑁2-1 ∑︁ ′ 𝑘2=0 𝑐 𝑘1,𝑘2,𝑖 𝑇 𝑘1,[𝑎1,𝑏1] (𝑥)𝑇 𝑘2,[𝑎2,𝑏2] (𝑡) ∈ R 𝑁1-1,𝑁2-1 [𝑥, 𝑡] with (6.2) (𝑐 𝑘1,𝑘2,𝑖 ) 0⩽𝑘1⩽𝑁1-1 0⩽𝑘2⩽𝑁2-1 = 4 𝑁 1 𝑁 2 2D-DCT-II (︂ (𝑓 𝑖 (𝜇 𝑁1-1-ℓ1,𝑁2-1-ℓ2 )) 0⩽ℓ1⩽𝑁1-1 0⩽ℓ2⩽𝑁2-1 )︂ . Let 𝜌 1 , 𝜌 2 > 1, 𝑎 1 < 𝑏 1 , 𝑎 2 < 𝑏 2 ,
(𝐴 1 ) 𝑖,(𝑘1,𝑘2) = (︁ 𝑐 𝑘1,𝑘2,𝑖 2 𝛿 0𝑘 1 +𝛿 0𝑘 2 )︁ 0⩽𝑖⩽𝑁 -1 0⩽𝑘1⩽𝑁1-1, 0⩽𝑘2⩽𝑁2-1 , (𝐴 2 ) 𝑖,𝑗 = 𝛿 𝑖𝑗 16𝜌 1 𝜌 2 𝑀 𝜌1,𝑎1,𝑏1,𝜌2,𝑎2,𝑏2 (𝑓 𝑖 ) (𝜌 1 -1)(𝜌 2 -1) (︂ 1 𝜌 𝑁1 1 + 1 𝜌 𝑁2 2 )︂ , 0 ⩽ 𝑖, 𝑗 ⩽ 𝑁 -1. Recall from Proposition 4.2 that ‖𝑓 𝑖 -𝑄 𝑖 ‖ ∞ ⩽ 𝐴 2 [𝑖, 𝑖], 𝑖 = 0, . . . , 𝑁 -1.
Once again, the diagonal right part, 𝐴 2 , of the matrix will be used for controlling that the functions 𝑃 0 (𝑢𝑥, 𝑣(𝑓 (𝑥) + 𝑡)), 𝑃 1 (𝑢𝑥, 𝑣(𝑓 (𝑥) + 𝑡)), output by the lattice basis reduction process, are uniformly small; this accounts for the presence of the

16𝜌1𝜌2𝑀 𝜌 1 ,𝑎 1 ,𝑏 1 ,𝜌 2 ,𝑎 2 ,𝑏 2 (𝑓𝑖) (𝜌1-1)(𝜌2-1)
(︂

1 𝜌 𝑁 1 1 + 1 𝜌 𝑁 2 2
)︂ remainder term for the approximation of 𝑃 𝑖 (𝑢𝑥, 𝑣(𝑓 (𝑥) + 𝑡)) by its interpolation polynomial at the 2D Chebyshev points.

We start with a convenient combinatorial lemma. 

𝑆 = {𝑘 + 𝛾𝑘 ′ , (𝑘, 𝑘 ′ ) ∈ [0, 𝑁 1 -1] × [0, 𝑁 2 -1]} + {𝑁 1 , . . . , 𝑁 1 ⏟ ⏞ 𝑁 times
}, and order the will turn to play the role that 𝜌 𝑁 (𝑁 -1)/2 played in the univariate case. For fixed values of 𝑁, 𝑁 1 , 𝑁 2 , 𝛾, it is easy to compute explicit values of Ω 𝛾 (𝑁, 𝑁 1 , 𝑁 2 ). We thus focus in the sequel on the asymptotic (for 𝑁 → ∞) behaviour of Ω 𝛾 (𝑁, 𝑁 1 , 𝑁 2 ) and shall hence mostly study the asymptotic behaviour of this bivariate method -even though the analysis itself is not asymptotic by nature (see e.g. Theorem 6.4). 

elements of 𝑆 as 𝜎 0 ⩽ . . . ⩽ 𝜎 card 𝑆-1 . Define Ω 𝛾 (𝑁 1 , 𝑁 2 , 𝑁 ) = 𝜎 0 + • • • + 𝜎 𝑁 -

We now give explicit expressions for card

+ 𝑗𝛾 ⩽ 𝑠, 𝑖 ∈ [0, 𝑁 1 -1]}, i.e., 𝑖 ∈ [0, ⌊𝑠 -𝑗𝛾⌋].
Hence, for 𝑗 = 0, . . . , ⌊𝑠/𝛾⌋, we sum the values ⌊𝑠 -𝑗𝛾⌋(1 + ⌊𝑠 -𝑗𝛾⌋)/2 + (1 + ⌊𝑠 -𝑗𝛾⌋)𝑗𝛾, from which (6.5) follows.

We use 𝑠 -𝑗𝛾 -1 ⩽ ⌊𝑠 -𝑗𝛾⌋ ⩽ 𝑠 -𝑗𝛾 for 𝑗 = 0, . . . , ⌊𝑠/𝛾⌋ to derive from (6.4)

(1 + ⌊𝑠/𝛾⌋)(𝑠 -𝛾⌊𝑠/𝛾⌋/2) ⩽ card 𝒦 𝑠 ⩽ (1 + ⌊𝑠/𝛾⌋)(1 + 𝑠 -𝛾⌊𝑠/𝛾⌋/2).
Likewise, we derive from (6.5)

⌊𝑠/𝛾⌋ ∑︁ 𝑗=0 (𝑠 -𝑗𝛾)(𝑠 + 𝑗𝛾 -1) 2 ⩽ ∑︁ (𝑖,𝑗)∈𝒦𝑠 (𝑖 + 𝑗𝛾) ⩽ ⌊𝑠/𝛾⌋ ∑︁ 𝑗=0 (1 + 𝑠 -𝑗𝛾)(𝑠 + 𝑗𝛾) 2 ,
which yields (6.7). □

The next result gives an upper bound for the volume of the lattice generated by the rows of 𝐴:

Theorem 6.4. Let 𝜌 1 , 𝜌 2 > 1, 𝑎 1 < 𝑏 1 , 𝑎 2 < 𝑏 2 . We further assume that 𝜌 𝑁1 1 ⩽ 𝜌 𝑁2
2 , and define 𝛾 = log 𝜌 2 / log 𝜌 1 . Let 𝑓 0 , . . . , 𝑓 𝑁 -1 be functions analytic in a neighbourhood of 𝐸 𝜌1,𝑎1,𝑏1,𝜌2,𝑎2,𝑏2 . Then, we have

(det 𝐴𝐴 𝑡 ) 1/2 ⩽ (︁ 32 
√ 𝑁 )︁ 𝑁 2 𝑁1𝑁2 (︂ 𝜌 1 𝜌 2 (𝜌 1 -1)(𝜌 2 -1) )︂ 𝑁 ∏︀ 𝑁 -1 𝑖=0 𝑀 𝜌1,𝑎1,𝑏1,𝜌2,𝑎2,𝑏2 (𝑓 𝑖 ) 𝜌 Ω𝛾 (𝑁,𝑁1,𝑁2) 1
.

Proof. See Appendix E. □

We now give two statements on the behaviour of Ω 𝛾 (𝑁, 𝑁 1 , 𝑁 2 ) when 𝑁 → ∞, for a fixed (essentially optimal) choice of 𝑁 1 , 𝑁 2 . The proofs are elementary, but long and we postpone them to Appendix D. Proposition 6.5. Let 𝜙 be the function from [1, +∞) to [1, +∞) defined by 𝜙(𝑥) = (1 + ⌊𝑥⌋)(𝑥 -⌊𝑥⌋/2). Then 𝜙 is invertible. We further define 𝜓 by

𝜓(𝑥) = 1 + ⌊𝜙 -1 (𝑥)⌋ 12𝑥 (︀ 6𝜙 -1 (𝑥) 2 -⌊𝜙 -1 (𝑥)⌋ -2⌊𝜙 -1 (𝑥)⌋ 2 )︀ ;
we then have, for any 𝑦 ∈ [1, +∞),

𝜓 -1 (𝑦) = 𝑘 + 1 2 (︁ 2𝑦 -𝑘 + √︀ 4𝑦(𝑦 -𝑘) + 2𝑘(2𝑘 + 1)/3 )︁ ,
where In particular, for 𝛾 = 𝑜(𝑁 ), we have

𝑘 = ⌊3𝑦/2 + 1/4⌋. Further, when 𝑥 → ∞, 𝜙 -1 (𝑥) = √ 2𝑥 + 𝑂(1), 𝜓(𝑥) = 2 √ 2𝑥/3 +
Ω 𝛾 (𝑁, 𝑁 1 , 𝑁 2 ) = 2 √ 2 3 𝑁 3/2 𝛾 1/2 + 𝑂(𝑁 𝛾).
Proof. See Corollary D.3. □ Remark 6.7. We can obtain a similar result for 1 < 𝛾 < 3 if we set

𝑁 1 = 1 + ⌊ √ 2𝑁 𝛾⌋ and 𝑁 2 = 1 + ⌈ √︀ 2𝑁/𝛾⌉.
This allows us to give asymptotic versions of Theorem 6.4, which will be more convenient in the sequel.

Corollary 6.8. Let 𝜌 1 , 𝜌 2 > 1 such that 𝛾 = log 𝜌 2 / log 𝜌 1 ∈ [3, 𝑁 ]. Let 𝑎 1 < 𝑏 1 , 𝑎 2 < 𝑏 2 , 𝑠 = 𝛾𝜙 -1 (𝑁/𝛾), 𝑁 1 = ⌊ √ 2𝑁 𝛾⌋ and 𝑁 2 = ⌈ √︀ 2𝑁/𝛾⌉.
Let 𝑓 0 , . . . , 𝑓 𝑁 -1 be functions analytic in a neighbourhood of 𝐸 𝜌1,𝑎1,𝑏1,𝜌2,𝑎2,𝑏2 .

Assume that 𝑁 → ∞, we obtain

(det 𝐴𝐴 𝑡 ) 1/2 ⩽ 2 𝑂(𝑁 log 𝑁 ) (︂ 𝜌 1 𝜌 2 (𝜌 1 -1)(𝜌 2 -1) )︂ 𝑁 ∏︀ 𝑁 -1 𝑖=0 𝑀 𝜌1,𝑎1,𝑏1,𝜌2,𝑎2,𝑏2 (𝑓 𝑖 ) 𝜌 𝜓(𝑁/𝛾)𝑁 𝛾+𝑂(𝑁 ) 1
.

Again, we specialize this statement to the case of the ordered list of functions (6.3), and the quantity Δ 𝑁,𝑁1,𝑁2,[𝑎1,𝑏1],[𝑎2,𝑏2],𝜌1,𝜌2 := (det 𝐴𝐴 𝑡 ) 1/2 . We have, as 𝑑 → +∞, (6.9) Δ 1/(𝑁 -1)

(6.8) [𝑓 𝑖 , 0 ⩽ 𝑖 ⩽ (𝑑 + 1)(𝑑 + 2)/2 -1] = [𝑥 ↦ → 𝑢 𝑘 𝑥 𝑘 𝑣 ℓ (𝑓 (𝑥) + 𝑡) ℓ , ℓ = 0, . . . , 𝑑, 𝑘 = 0, . . . , 𝑑 -ℓ]. Corollary 6.9. Let 𝜌 1 , 𝜌 2 > 1 such that 𝛾 = log 𝜌 2 / log 𝜌 1 ∈ [3, 𝑁 ]. Let 𝑎 1 < 𝑏 1 , 𝑎 2 < 𝑏 2 , 𝑠 = 𝛾𝜙 -1 (𝑁/𝛾), 𝑁 1 = ⌊ √ 2𝑁 𝛾⌋ and 𝑁 2 = ⌈ √︀ 2𝑁/𝛾⌉. Let 𝑓 be a function analytic in a neighbourhood of 𝐸 𝜌,𝑎1,𝑏1 . Define 𝑓 𝑘,ℓ (𝑥, 𝑡) = 𝑢 𝑘 𝑥 𝑘 𝑣 ℓ (𝑓 (𝑥) + 𝑡) ℓ , 0 ⩽ ℓ ⩽ 𝑑, 0 ⩽ 𝑘 ⩽ 𝑑 -ℓ, the matrices 𝐴 1 , 𝐴 2 , 𝐴 = (𝐴 1 |𝐴 2 ) as in
𝑁,𝑁1,𝑁2,[𝑎1,𝑏1],[𝑎2,𝑏2],𝜌1,𝜌2 ⩽ 2 𝑂(1) (︂ √ 𝑁 𝜌 1 𝜌 2 (𝜌 1 -1)(𝜌 2 -1) )︂ 1+𝑜(1)
(𝑢𝑣) 𝑑/3+𝑂 (1) 𝜌 𝜓(𝑁/𝛾)𝛾+𝑂( 1)

1 (︂ 𝑏 1 -𝑎 1 2 (︂ 𝜌 1 + 𝜌 -1 1 
2

)︂ + ⃒ ⃒ ⃒ ⃒ 𝑏 1 + 𝑎 1 2 ⃒ ⃒ ⃒ ⃒ )︂ 𝑑/3+𝑂(1) (︂ 𝑀 𝜌1,𝑎1,𝑏1 (𝑓 ) + 𝑏 2 -𝑎 2 2 (︂ 𝜌 2 + 𝜌 -1 2 
2

)︂ + ⃒ ⃒ ⃒ ⃒ 𝑏 2 + 𝑎 2 2 ⃒ ⃒ ⃒ ⃒
)︂ 𝑑/3+𝑂 [START_REF] Ajtai | The Shortest Vector Problem in L 2 is NP-hard for Randomized Reductions (Extended Abstract)[END_REF] .

Proof. Note that each 𝑓 𝑘,ℓ is analytic in a neighbourhood of 𝐸 𝜌1,𝑎1,𝑏1,𝜌2,𝑎2,𝑏2 . Also, 

since ∑︀ 0⩽𝑘+ℓ⩽𝑑 𝑘 = ∑︀ 0⩽𝑘+ℓ⩽𝑑 ℓ = 𝑑𝑁/3, the exponent of 𝑢𝑣, 𝑏1-𝑎1 2 (︁ 𝜌1+𝜌 -1 1 2 )︁ + ⃒ ⃒ 𝑏1+𝑎1 2 ⃒ ⃒ and 𝑀 𝜌1,𝑎1,𝑏1 (𝑓 ) + 𝑏2-𝑎2 2 (︁ 𝜌2+𝜌 -1 2 2 )︁ + ⃒ ⃒ 𝑏2+𝑎2 2 ⃒ ⃒ is 𝑑𝑁 3(𝑁 -1) = 𝑑 3 + 𝑂(1
[︂ 16𝜌 1 𝜌 2 𝑢 𝑘 𝑀 𝜌1,𝑎,𝑏 (𝑥) 𝑘 𝑣 ℓ 𝑀 𝜌1,𝑎1,𝑏1,𝜌2,𝑎2,𝑏2 (𝑓 (𝑥) + 𝑡) ℓ (𝜌 1 -1)(𝜌 2 -1) (︂ 1 𝜌 𝑁1 1 + 1 𝜌 𝑁2 2 )︂ ; ℓ = 0, . . . , 𝑑, 𝑘 = 0, . . . , 𝑑 -ℓ ]︂ . Let 𝐴 = (𝐴 1 |𝐴 2 ) and  = (︁ Â1 | Â2
)︁ be the 𝑁 × (𝑁 1 𝑁 2 + 𝑁 ) matrices defined by

𝐴 1 = (︁ 𝑐 𝑘1,𝑘2,𝑖 2 𝛿 0𝑘 1 +𝛿 0𝑘 2 )︁ 0⩽𝑖⩽𝑁 -1 0⩽𝑘1⩽𝑁1-1, 0⩽𝑘2⩽𝑁2-1 , 𝐴 2 = (𝛿 𝑖𝑗 𝑅 𝑖 ) 0⩽𝑖,𝑗⩽𝑁 -1 , Â1 = (︀[︀ 2 tprec 𝐴 1 [𝑖, 𝑗] ]︀ 0 /2 tprec )︀ 0⩽𝑖⩽𝑁 -1 0⩽𝑗⩽𝑁1𝑁2-1 , Â2 = (︀ ⌊2 tprec 𝐴 2 [𝑖, 𝑗]⌋/2 tprec )︀ 0⩽𝑖,𝑗⩽𝑁 -1 ,
where 16 

tprec = ⌈-log 2 (min 0⩽𝑖⩽𝑁 -1 𝐴 2 [𝑖, 𝑖]) + log 2 (𝑁 )⌉ + 2.
The reasons for introducing  and tprec are the same as in Section 5. By construction,

⃒ ⃒ ⃒ Â[𝑖, 𝑗] ⃒ ⃒ ⃒ ⩽ |𝐴[𝑖, 𝑗]
| for all 𝑖, 𝑗. Hence, Theorem 6.4 and its corollaries, which proceed by upper bounding the coefficients of 𝐴 and applying Theorem 5.1, also hold for (det  Â𝑡 ) 1/2 .

The rows of  generate the lattice that will be reduced in our algorithm.

Lemma 6.10. The Z-module generated by the rows of  is a lattice of rank 𝑁 .

Proof. Identical to the proof of Lemma 5.5. □

The matrices 𝑀 𝑐 and 𝑀 𝑟 computed in Algorithm 3 correspond to the scaled matrices 2 tprec Â1 and 2 tprec Â2 . We now derive an explicit expression for tprec in this bivariate context. In order to do so, we assume that the set

𝑢[𝑎 1 , 𝑏 1 ], resp. 𝑣(𝑓 ([𝑎 1 , 𝑏 1 ]) + [𝑎 2 , 𝑏 2 ]
), contains at least one nonzero integer 𝑛 𝑥 , resp. 𝑛 𝑓 . Again, this assumption is made without loss 16 We shall prove in Lemma 6.11 that this value coincides with the definition of tprec at Step 1 of Algorithm 3.

of generality with respect to our problem, since if the assumption does not hold the problem is trivial. Lemma 6.11. We have

tprec = ⌈-log 2 (𝑅 0 ) + log 2 (𝑁 )⌉ + 2 = ⌈︁ log 2 (1 -1/𝜌 1 ) + log 2 (1 -1/𝜌 2 ) -log 2 (𝜌 -𝑁1 1 + 𝜌 -𝑁2 2 ) + log 2 (𝑁 ) ⌉︁ - 2 
and

𝑁 (𝜌 1 -1)(𝜌 2 -1)𝜌 𝑁1-1 1 𝜌 𝑁2-1 2 4(𝜌 𝑁1 1 + 𝜌 𝑁2 2 ) ⩽ 2 tprec ⩽ 𝑁 (𝜌 1 -1)(𝜌 2 -1)𝜌 𝑁1-1 1 𝜌 𝑁2-1 2 2(𝜌 𝑁1 1 + 𝜌 𝑁2 2 )
.

Proof. Under our assumption, it comes 𝑣(𝑀 𝜌1,𝑎1,𝑏1,𝜌2,𝑎2,𝑏2 (𝑓 (𝑥

) + 𝑡)) ⩾ |𝑛 𝑓 | ⩾ 1 and 𝑢𝑀 𝜌1,𝑎1,𝑏1 (𝑥) ⩾ |𝑛 𝑥 | ⩾ 1. It then follows 𝑅 𝑖 ⩾ 16𝜌 1 𝜌 2 (𝜌 -𝑁1 1 + 𝜌 -𝑁2 2 
))/((𝜌 1 -1)(𝜌 2 -1)) = 𝑅 0 for all 𝑖. Therefore, we get tprec = ⌈-log 2 (𝑅 0 ) + log 2 (𝑁 )⌉ + 2. □ 6.3. Practical remarks. All practical details and optimizations mentioned in Section 5.3 apply mutatis mutandis to Algorithms 3 and 4: optimization of the construction of the matrix using properties of the DCT (Section 5.3.1), overestimation issues (Section 5.3.2), rounding issues (Section 5.3.3), use of Newton polynomials (Section 5.3.4). Concerning Section 5.3.5, one should replace (5.9) by the following inequality, cf. proof of Theorem 6.12:

(6.10) max 𝑖=0,1 (︂ ‖(𝑀 𝐿𝐿𝐿 [𝑖, 𝑗]) 0⩽𝑗⩽𝑁 +𝑁1𝑁2-1 ‖ 1 + (𝑁 + 𝑁 1 𝑁 2 ) ‖(𝑀 𝐿𝐿𝐿 [𝑖, 𝑗]) 𝑁1𝑁2⩽𝑗⩽𝑁 +𝑁1𝑁2-1 ‖ 1 4𝑁
)︂ < 2 tprec .

6.4. Proof of correctness. We shall now prove the correctness of Algorithm 4.

Uniformly small polynomials in the vicinity of a transcendental analytic curve.

We now state a key result for the proof of Algorithm 4. Theorem 6.12. Let 𝑑 ⩾ 1, 𝑚 ⩾ 2 be two integers, 𝑁 = (𝑑 + 1)(𝑑 + 2)/2, 𝑢, 𝑣 > 0 and

(𝑓 𝑗 ) 1⩽𝑗⩽𝑁 = (𝑢 𝑘 𝑥 𝑘 𝑣 ℓ (𝑓 (𝑥) + 𝑡) ℓ ) 0⩽𝑘+ℓ⩽𝑑 . Let 𝜌 1 , 𝜌 2 > 1, 𝑎 1 < 𝑏 1 , 𝑎 2 < 𝑏 2 , 𝑁 1 , 𝑁 2 ⩾ 2, and 𝑁 ⩽ 𝑁 1 𝑁 2 . Let Λ = (𝜆 𝑘,ℓ ) 0⩽𝑘+ℓ⩽𝑑 ∈ Z 𝑁 be such that ‖Λ Â‖ 2 ⩽ 1/(𝑁 + 𝑁 1 𝑁 2 ), and let 𝑃 (𝑋, 𝑌 ) = ∑︀ 0⩽𝑘+ℓ⩽𝑑 𝜆 𝑘,ℓ 𝑋 𝑘 𝑌 ℓ , we have max 𝑥∈[𝑎1,𝑏1] 𝑡∈[𝑎2,𝑏2] |𝑃 (𝑢𝑥, 𝑣(𝑓 (𝑥) + 𝑡))| < 1.
Proof. See Appendix E. □ Remark 6.13. The proof of Theorem 6.12 yields in particular that

‖Λ𝐴‖ 1 ⩾ ∑︁ 0⩽𝑘+ℓ⩽𝑑 |𝜆 𝑘,ℓ | 16𝑢 𝑘 𝑀 𝜌1,𝑎1,𝑏1 (𝑥) 𝑘 𝑣 ℓ 𝑀 𝜌1,𝑎1,𝑏1,𝜌2,𝑎2,𝑏2 (𝑓 (𝑥) + 𝑡) ℓ 𝜌 1 𝜌 2 (𝜌 1 -1)(𝜌 2 -1) (︂ 1 𝜌 𝑁1 1 + 1 𝜌 𝑁2 2 )︂ ⏟ ⏞ =:𝑄 𝑘,ℓ . Since the constraint ‖Λ Â‖ 2 ⩽ 1/(𝑁 + 𝑁 1 𝑁 2 ) implies ‖Λ𝐴‖ 1 < 1, cf. Appendix E,
it comes either 𝜆 𝑘,ℓ = 0 or 𝑄 𝑘,ℓ < 1 for any 𝑘, ℓ. Also, the proof of Lemma 6.11

Algorithm 3 Computation of the lattice to be reduced (2D approach)

Input: Four real numbers 𝑎 1 < 𝑏 1 , 𝑎 2 < 𝑏 2 , 𝑓 a transcendental function analytic in a complex neighbourhood of [𝑎 1 , 𝑏 1 ], five positive integers 𝑑, 𝑁 1 , 𝑁 2 , 𝑢, 𝑣, two real numbers 𝜌 1 , 𝜌 2 > 1 such that 𝑁 1 , 𝑁 2 ⩾ 2, 𝑁 1 𝑁 2 ⩾ 𝑁 := (𝑑 + 1)(𝑑 + 2)/2 and 16𝜌 1 𝜌 2 (𝜌 -𝑁1 1 + 𝜌 -𝑁2 2 
)𝑣𝑀 𝜌1,𝑎1,𝑏1,𝜌2,𝑎2,𝑏2 (𝑓 (𝑥) + 𝑡) < (𝜌 1 -1)(𝜌 2 -1). Output: Two matrices 𝑀 𝑐 ∈ ℳ 𝑁,𝑁1𝑁2 (Z), 𝑀 𝑟 ∈ ℳ 𝑁 (Z), where 𝑁 = (𝑑 + 1)(𝑑 + 2)/2, respectively storing scaled values of the coefficients and the remainders, an integer tprec which is the truncation precision.

1: 𝑅 0 ← 16(𝜌 1-𝑁 1 1 𝜌2+𝜌1𝜌 1-𝑁 2 2 ) (𝜌1-1)(𝜌2-1)
, tprec ← ⌈-log 2 (𝑅 0 ) + log 2 (𝑁 )⌉ + 2 // Computation of the Chebyshev nodes, listed in reverse order

2: 𝐿 𝑐ℎ𝑒𝑏,𝑥 ← [︁ 𝑏1-𝑎1 2 cos (︁ (𝑗 + 1/2) 𝜋 𝑁1 )︁ + 𝑎1+𝑏1 2 ]︁ 0⩽𝑗⩽𝑁1-1 3: 𝐿 𝑐ℎ𝑒𝑏,𝑡 ← [︁ 𝑏2-𝑎2 2 cos (︁ (𝑗 + 1/2) 𝜋 𝑁2 )︁ + 𝑎2+𝑏2 2 ]︁ 0⩽𝑗⩽𝑁2-1 4: 𝑀 𝑐 ← [0] 𝑁 ×𝑁1𝑁2 ; 𝑀 𝑟 ← [0] 𝑁 ×𝑁 5: 𝐵 𝑥 ← ⃒ ⃒ 𝑎1+𝑏1 2 ⃒ ⃒ + 𝑏1-𝑎1 4 (𝜌 1 + 𝜌 -1 1 ), 𝐵 𝑡 ← 𝜌 2 max(|𝑎 2 |, |𝑏 2 |) 6: 𝑔 ← (︀ 𝑥 ↦ → ⃒ ⃒ 𝑓 (︀ 𝑎1+𝑏1 2 + 𝑏1-𝑎1 4 (𝜌 1 exp(𝑖𝑥) + 𝜌 -1 1 exp(-𝑖𝑥)) )︀⃒ ⃒ )︀ 7: 𝐵 𝑓 ← max (𝑔([0, 2𝜋])) , 𝑖 ← 0 8: for ℓ = 0 to 𝑑 do 9:
for 𝑘 = 0 to 𝑑 -ℓ do 10:

𝜙 ← ((𝑥, 𝑡) ↦ → (𝑢𝑥) 𝑘 (𝑣(𝑓 (𝑥) + 𝑡)) ℓ ) // We compute the coefficient matrix : for each function, we compute its value at points of 𝐿 𝑐ℎ𝑒𝑏,𝑥 × 𝐿 𝑐ℎ𝑒𝑏,𝑡 , use DCT and scale. 

𝑈 ← 4 𝑁1𝑁2 2D-DCT-II (︂ (𝜙(𝐿 𝑐ℎ𝑒𝑏,𝑥 [ℓ 1 ], 𝐿 𝑐ℎ𝑒𝑏,𝑡 [ℓ 2 ])) 0⩽ℓ1⩽𝑁1-1 0⩽ℓ2⩽𝑁2-1
)︂ ,

12:

for 𝑘 1 = 0 to 𝑁 1 -1 do 13:

for 𝑘 2 = 0 to 𝑁 2 -1 do 14: for 𝑘 1 = 0 to 𝑁 1 -1 do 18:

𝑀 𝑐 [𝑖, 𝑘 2 + 𝑘 1 𝑁 2 ] ← 𝑈 [𝑘 1 , 𝑘 2 ].
𝑀 𝑐 [𝑖, 𝑘 1 𝑁 2 ] ← 1 2 𝑀 𝑐 [𝑖, 𝑘 1 𝑁 2 ] 19:
end for 20:

for 𝑘 2 = 0 to 𝑁 2 -1 do 21:

𝑀 𝑐 [𝑖, 𝑘 2 ] ← 1 2 𝑀 𝑐 [𝑖, 𝑘 2 ] 22:
end for [START_REF] De Dinechin | An FPGA architecture for solving the Table Maker's Dilemma[END_REF]:

for 𝑗 = 0 to 𝑁 1 𝑁 2 -1 do 24: 𝑀 𝑐 [𝑖, 𝑗] ← [2 tprec 𝑀 𝑐 [𝑖, 𝑗]] 0 25:
end for // We compute the scaled remainder matrix.

26:

𝑀

𝑟 [𝑖, 𝑖] ← ⌊︀ 2 tprec 𝑅 0 (𝑢𝐵 𝑥 ) 𝑘 (𝑣(𝐵 𝑓 + 𝐵 𝑡 )) ℓ ⌋︀ , 𝑖 ← 𝑖 + 1 27:
end for 28: end for 29: Return 𝑀 𝑐 , 𝑀 𝑟 , tprec Algorithm 4 2D approach to Problem 2.6

Input: Four real numbers 𝑎 1 < 𝑏 1 , 𝑎 2 < 𝑏 2 , 𝑓 a transcendental function analytic in a complex neighbourhood of [𝑎 1 , 𝑏 1 ], five positive integers 𝑑, 𝑁 1 , 𝑁 2 , 𝑢, 𝑣, two real numbers 𝜌 1 , 𝜌 2 > 1 such that 𝑁 1 , 𝑁 2 ⩾ 2, 𝑁 1 𝑁 2 ⩾ 𝑁 := (𝑑 + 1)(𝑑 + 2)/2 and 16𝜌 1 𝜌 2 (𝜌 -𝑁1 1 + 𝜌 -𝑁2 2 
)𝑣𝑀 𝜌1,𝑎1,𝑏1,𝜌2,𝑎2,𝑏2 (𝑓 (𝑥) + 𝑡) < (𝜌 1 -1)(𝜌 2 -1).

Output: If successful, return a list ℒ such that ℒ ⊃ {𝑋 ∈ Z such that 𝑎 1 ⩽ 𝑋/𝑢 ⩽ 𝑏 1 and there exists 𝑌 ∈ Z,

𝑌 𝑣 ∈ [︀ 𝑓 (︀ 𝑋 𝑢 )︀ + 𝑎 2 , 𝑓 (︀ 𝑋 𝑢 )︀ + 𝑏 2 ]︀ }. 1: (𝑀 𝑐 , 𝑀 𝑟 , tprec) ← Algorithm 3 (𝑎 1 , 𝑏 1 , 𝑎 2 , 𝑏 2 , 𝑓, 𝑑, 𝑁 1 , 𝑁 2 , 𝑢, 𝑣, 𝜌 1 , 𝜌 2 ), 2: 𝑀 𝐿𝐿𝐿 ← LLL-reduce the rows of (𝑀 𝑐 | 𝑀 𝑟 ) 3: 𝑈 ← 𝑀 𝐿𝐿𝐿,𝑟 𝑀 -1
𝑟 // This is the LLL change of basis matrix; 𝑀 𝐿𝐿𝐿,𝑟 is the right part of the matrix 𝑀 𝐿𝐿𝐿 . Note that 𝑀 𝑟 is diagonal.

4: if max(‖(𝑀 𝐿𝐿𝐿 [0, 𝑗]) 0⩽𝑗⩽𝑁 +𝑁1𝑁2-1 ‖ 2 , ‖(𝑀 𝐿𝐿𝐿 [1, 𝑗]) 0⩽𝑗⩽𝑁 +𝑁1𝑁2-1 ‖ 2 ) ⩽ 2 tprec /(𝑁 + 𝑁 1 𝑁 2 ) then 5: 𝐿 𝑚 ← [𝑋 𝑘
1 𝑋 ℓ 2 for 𝑘 = 0 to 𝑑 -ℓ for ℓ = 0 to 𝑑] // List of monomials, ordered in a way compatible with Algorithm 3, Steps 8-10.

6:

𝑃 0 ← ∑︀ 𝑁 -1 𝑗=0 𝑈 [0, 𝑗]𝐿 𝑚 [𝑗], 𝑃 1 ← ∑︀ 𝑁 -1 𝑗=0 𝑈 [1, 𝑗]𝐿 𝑚 [𝑗] 7: 𝑅(𝑋 1 ) ← Res 𝑋2 (𝑃 0 (𝑋 1 , 𝑋 2 ), 𝑃 1 (𝑋 1 , 𝑋 2 )) 8: if 𝑅(𝑋 1 ) ̸ = 0 then 9: ℒ ← {𝑡 ∈ Z; 𝑅(𝑡) = 0} 10: return ℒ 11: else 12: 
return "FAIL"

13:

end if 14: else 15: return "FAIL" 16: end if shows in particular that 𝑅 𝑖 ⩾ 𝑅 𝑑+2 = 16

𝑣𝑀 𝜌 1 ,𝑎 1 ,𝑏 1 ,𝜌 2 ,𝑎 2 ,𝑏 2 (𝑓 (𝑥)+𝑡)𝜌1𝜌2 (𝜌1-1)(𝜌2-1) (︂ 1 𝜌 𝑁 1 1 + 1 𝜌 𝑁 2 2
)︂ for all 𝑖 ⩾ 𝑑 + 2. Hence, if 𝑅 𝑑+2 ⩾ 1, we thus have 𝑅 𝑖 ⩾ 1 for all 𝑖 ⩾ 𝑑 + 2 and 𝜆 𝑘,ℓ = 0 for any 1 ⩽ ℓ ⩽ 𝑑, 0 ⩽ 𝑘 ⩽ 𝑑 -ℓ: the only functions taken into account are the 𝑢 𝑘 𝑥 𝑘 's and the method fails. This explains the condition

16𝜌 1 𝜌 2 (𝜌 -𝑁1 1 + 𝜌 -𝑁2

2

)𝑣𝑀 𝜌1,𝑎1,𝑏1,𝜌2,𝑎2,𝑏2 (𝑓 (𝑥) + 𝑡) < (𝜌 1 -1)(𝜌 2 -1) in the input of Algorithm 3 and 4.

We deduce the following corollary. ; then Theorem 6.12 applies with Λ any of the first two vectors of an LLL-reduced basis of the lattice generated by the rows of Â.

Proof. Identical to the proof of Corollary 5.12.

□

We now study the case 𝜌 1 = 𝐾 1 /(𝑏 1 -𝑎 1 ) and similarly 𝜌 2 = 𝐾 2 /(𝑏 2 -𝑎 2 ), where 𝐾 1 > 2(𝑏 1 -𝑎 1 ) and 𝐾 2 > 2(𝑏 2 -𝑎 2 ) are fixed real numbers (note that 𝜌 1 , 𝜌 2 > 2); we further assume 𝜌 𝑁1 1 ⩽ 𝜌 𝑁2 2 . Proposition 6.16. Let 𝑓 be analytic in a neighbourhood of the closed disc 𝒟 𝑎1,𝑏1,𝐾1 = {𝑧 ∈ C : |𝑧 -(𝑎 1 + 𝑏 1 )/2| ⩽ 𝐾 1 /2}, 𝑑 be an integer ⩾ 2, 𝑁 = (𝑑 + 1)(𝑑 + 2)/2,

𝜌 1 = 𝐾 1 /(𝑏 1 -𝑎 1 ) > 2, 𝜌 2 = 𝐾 2 /(𝑏 2 -𝑎 2 ) > 2, 𝛾 = log 𝜌 2 / log 𝜌 1 ∈ [3, 𝑁 ], 𝑁 1 = ⌊ √ 2𝛾𝑁 ⌋, 𝑁 2 = ⌈ √︀ 2𝑁/𝛾⌉ two integers. Let 𝑀 𝒟 𝑎 1 ,𝑏 1 ,𝐾 1 (𝑓 ) := max 𝑧∈𝒟 𝑎 1 ,𝑏 1 ,𝐾 1 |𝑓 (𝑧)|. Then, for 𝑑 → ∞, if 𝑏 1 -𝑎 1 < 𝐾 1 2 𝑂 (︀ - 𝑁 𝜓(𝑁/𝛾)𝛾 )︀ (︂ 𝑢𝑣 2 (|𝑎 1 + 𝑏 1 | + 𝐾 1 ) (︂ 𝑀 𝒟 𝑎 1 ,𝑏 1 ,𝐾 1 (𝑓 ) + 𝐾 2 + |𝑎 2 + 𝑏 2 | 2 )︂)︂ -𝑑 3𝜓(𝑁/𝛾)𝛾 (1+𝑂(1/𝑑))
,

we have Δ 1/(𝑁 -1) 𝑁,𝑁1,𝑁2,[𝑎1,𝑏1],[𝑎2,𝑏2],𝜌1,𝜌2 < 2 -(𝑁 -1)/4-tprec/(𝑁 -1) 𝑁 +𝑁1𝑁2 . Proof. Since 𝜌 1 = 𝐾 1 /(𝑏 1 -𝑎 1 ) > 2,
we have 𝐸 𝜌1,𝑎1,𝑏1 ⊂ 𝒟 𝑎1,𝑏1,𝐾1 . Thanks to Corollary 6.9, in view of (𝜌 𝑖 /(𝜌 𝑖 -1)) 𝑁/(𝑁 -1) ⩽ 2 3/2 for 𝑖 ∈ {1, 2}, we have

Δ 1/(𝑁 -1) 𝑁,𝑁1,𝑁2,[𝑎1,𝑏1],[𝑎2,𝑏2],𝜌1,𝜌2 ⩽ 2 𝑂(1) 𝑁 1/2+𝑜(1) (𝑢𝑣(|𝑎 1 + 𝑏 1 | + 𝐾 1 )/2) 𝑑/3+𝑂(1)
𝜌 𝜓(𝑁/𝛾)𝛾+𝑂( 1)

1 (︂ 𝑀 𝒟 𝑎 1 ,𝑏 1 ,𝐾 1 (𝑓 ) + 𝐾 2 + |𝑎 2 + 𝑏 2 | 2 
)︂ 𝑑/3+𝑂 [START_REF] Ajtai | The Shortest Vector Problem in L 2 is NP-hard for Randomized Reductions (Extended Abstract)[END_REF] .

Note that, using Lemma 6.11, as

𝜌 𝑁1 1 ⩽ 𝜌 𝑁2 2 , 2 -tprec ⩾ 4 𝑁 (︁ 𝜌 -𝑁1 1 + 𝜌 -𝑁2 2 )︁ ⩾ 8 𝑁 𝜌 -𝑁2 2 = 8 𝑁 𝜌 -𝛾𝑁2 1 ⩾ 2 -𝑜(𝑁 ) 𝜌 -𝑂(𝑁 ) 1 , as 𝛾𝑁 2 < √ 2𝑁 𝛾 + 𝛾 ⩽ 𝑁 (1 + √ 2).
Thus, for Δ

1/(𝑁 -1) 𝑁,𝑁1,𝑁2,[𝑎1,𝑏1],[𝑎2,𝑏2],𝜌1,𝜌2 < 2 -(𝑁 -1)/4-tprec/(𝑁 -1) /(𝑁 + 𝑁 1 𝑁 2 ), it suf- fices that Δ 1/(𝑁 -1) 𝑁,𝑁1,𝑁2,[𝑎1,𝑏1],[𝑎2,𝑏2],𝜌1,𝜌2 < 2 -𝑂(𝑁 ) 𝜌 -𝑂(1) 1
, or again that

𝜌 1 > 2 𝑂 (︀ 𝑁 𝜓(𝑁/𝛾)𝛾 )︀ (︂ 𝑢𝑣 2 (|𝑎 1 + 𝑏 1 | + 𝐾 1 ) (︂ 𝑀 𝒟 𝑎 1 ,𝑏 1 ,𝐾 1 (𝑓 ) + 𝐾 2 + |𝑎 2 + 𝑏 2 | 2 )︂)︂ 𝑑 3𝜓(𝑁/𝛾)𝛾 (1+𝑂(1/𝑑))
. □ Corollary 6.17. Under the assumptions of Proposition 6.16, Algorithm 4 over

[𝑎 1 , 𝑏 1 ] and [𝑎 2 , 𝑏 2 ] produces at Step 6 two polynomials 𝑃 0 , 𝑃 1 such that max 𝑥∈[𝑎1,𝑏1], 𝑡∈[𝑎2,𝑏2] |𝑃 𝑖 (𝑢𝑥, 𝑣(𝑓 (𝑥) + 𝑡))| < 1 for 𝑖 ∈ {0, 1}.
In particular, Algorithm 4 never executes Step 15 and its output is valid.

Proof. It suffices to apply Proposition 6.16, Corollary 6.15, and Theorem 6.12. □ Note again that 𝑃 0 and 𝑃 1 may not be coprime, in which case the algorithm returns "FAIL" at Step 12. This is what makes the algorithm heuristic. 6.5. Complexity analysis. In this subsection, we deduce estimates for the complexity of our algorithm applied to a fixed interval [𝛼, 𝛽). As in the univariate case, this actually requires several things:

• An evaluation of the complexity of the basic blocks, namely Algorithms 3 and 4. • Use Corollary 6.17 to evaluate the size of a subinterval [𝑎 1 , 𝑏 1 ] which can be treated at once by those algorithms. We start by giving complexity estimates for Algorithms 3 and 4. Algorithms 3 and 4. In this subsection, we keep notations and assumptions of Section 5.5.1.

Complexity of

Proposition 6.18. On input 𝑎 1 , 𝑏 1 , 𝑎 2 , 𝑏 2 , 𝑓, 𝑑, 𝑁 1 , 𝑁 2 , 𝑢, 𝑣, 𝜌 1 , 𝜌 2 , if ℳ := max(𝑢, 𝑣, |𝑎 1 |, |𝑏 1 |, 𝜌 1 , |𝑎 2 |, |𝑏 2 |, 𝜌 2 , 𝐵 𝑓 , max [𝑎1,𝑏1] |𝑓 ′ (𝑥)|),
under the assumption 𝐶 𝑓,p = 𝑂(p 2 ), the computations of Algorithm 3 can be made in floating-point precision p = tprec + 𝑂(max(𝑑 log ℳ, | log((𝜌 1 -1)(𝜌 2 -1))|). Hence, Steps 1-6 of Algorithm 4 have complexity 𝑂(𝑑 6 M(𝑑 2 )(𝑑 2 + p)p) using the 𝐿 2 algorithm.

Proof. Similar to Propositions 5.16 and 5.17. □ 6.5.2. Number of subintervals for fixed 𝑑. Thanks to the results of the previous subsection, given a value 𝛾, we can estimate the maximum size of an interval [𝑎 1 , 𝑏 1 ] ⊂ [𝛼, 𝛽], with 𝛼, 𝛽 fixed, for which Algorithm 4 succeeds (in the sense of Corollary 6.17) and yields an upper bound of the order of magnitude 𝑤 = 𝑂(|𝑏 1 -𝑎 1 | -𝛾 ). This follows from Proposition 6.16, and yields at the same time the number of subintervals to be considered if one wants to deal with a full interval [𝛼, 𝛽]. Theorem 6.19. Given fixed 𝑓 and two fixed real numbers 𝛼, 𝛽, Problem 2.6 can heuristically be solved for 𝑢, 𝑣 → ∞, 𝑑 → ∞, 𝛾 ∈ [3, 𝑁 ], over [𝛼, 𝛽] using

(6.11) (𝛽 -𝛼)2 𝑂 (︀ 𝑁 𝛾𝜓(𝑁/𝛾) )︀ (𝑢𝑣) 𝑑 3𝜓(𝑁/𝛾)𝛾 (1+𝑂(1/𝑑))
calls to Algorithm 4 with parameter 𝑑.

We then obtain a value (6.12)

𝑤 = 2 𝑂(𝑁/𝜓(𝑁/𝛾)) (𝑢𝑣) 𝑑 3𝜓(𝑁/𝛾) (1+𝑂(1/𝑑)) .
Proof. This is a direct consequence of Corollary 6.17, where we note that 𝑎 1 , 𝑎 

𝑛 𝐼 = (𝛽 -𝛼)2 𝑂(𝑑/ √ 𝛾) (𝑢𝑣) 1/(2 √ 𝛾)(1+𝑂( √ 𝛾/𝑑)) , 𝑤 = 2 𝑂(𝑑 √ 𝛾) (𝑢𝑣) √ 𝛾/2(1+𝑂( √ 𝛾/𝑑)) .
The first case resembles the results obtained in the previous section with the univariate algorithm (but with a different constant), whereas the second part is unattainable using the methods of the previous section.

For 𝑢 = 𝑣 = 2 𝑝 , 𝛾 = 4 + 𝑜 [START_REF] Ajtai | The Shortest Vector Problem in L 2 is NP-hard for Randomized Reductions (Extended Abstract)[END_REF], 𝑑 = 𝑜(𝑝), we recover Stehlé's result [START_REF] Stehlé | On the randomness of bits generated by sufficiently smooth functions[END_REF], namely the fact that we can solve the TMD (i.e., get the bound 1/𝑤 = 2 -2𝑝 in time 2 𝑝/2(1+𝑜 (1)) .

For examples of practical values of 𝑑, 𝛾, the reader might consult Table 4. This table shows that the relevant regime for the TMD problem seems to be 𝛾/𝑁 bounded rather that 𝛾 = 𝑜(𝑁 ), the relevance of which seems more theoretical. Remark 6.21. One can adapt Remark 5.22, Theorems 5.26 and 5.27 in the case of this bivariate method. However, for the last two results, the region where the discussion makes sense is restricted to 𝛾 ≫ 𝑁/(log 𝑁 ) 2 , as otherwise the impact of choosing an optimal 𝜌 1 occurs only on second order terms.

Further, this leads to a somewhat delicate discussion and, in the end, yields the same result up to some improvement in the constants. We thus chose not to include the corresponding theorems.

Comparison with previous work

The following table summarizes the main results of the paper and compares them to [START_REF] Stehlé | On the randomness of bits generated by sufficiently smooth functions[END_REF]. The columns complexity and bound on 𝑤 should be understood as the exponent of 𝑢𝑣 in the corresponding values. For the sake of readability,

• In the first row, we restrict to 𝜔 0 ∈ Z >0 just in order to get a more compact bound ; • In the fourth row, we shall assume that 𝑑 = 𝑜(log(𝑢𝑣)) ; • We shall omit all factors (1 + 𝑜( 1)) in the asymptotic results.

Rows labelled "1D" refer to Section 5 (Algorithms 1 and 2) whereas rows labelled "2D" refer to Section 6 (Algorithms 3 and 4).

Parameters Matrix Complexity Bound on 𝑤 to be chosen dimensions (exponent of 𝑢𝑣) (exponent of 𝑢𝑣) 1D Rk. 5.20 ) 𝛼 Ste , which, in our notations, means that their size is of the order of 𝑂(𝑑(log 𝑤 + log max(𝑢, 𝑣))).

𝜔 0 ∈ [0, 𝑁 ) ∩ Z >0 𝑁 × 2𝑁 2𝑁 𝑑 3(𝑁 -𝜔0)(𝑁 +𝜔0-3) 2𝑁 𝑑 3(𝑁 +𝜔0-3) 1D 𝑑→∞ Cor. 5.21 𝜆 = 𝜔 0 /𝑁 ∈ [0, 1) 𝑁 × 2𝑁 4 3(1-𝜆 2 )𝑑 2𝑑 3(1+𝜆) 2D 𝑑→∞ Rk. 6.20 𝛾 = 𝑁/𝜅, 𝜅 ⩾ 1 ≈ 𝑁 × 3𝑁 2𝜅 3𝑑𝜓(𝜅) 𝑑 3𝜓(𝜅) 2D 𝑑→∞ Rk. 6.20 𝛾 = 𝑜(𝑁 ) ≈ 𝑁 × 3𝑁 1 2 √ 𝛾 √ 𝛾/2 S 𝛼→∞ [61, Thm. 3] 𝜉 ⩾ 1 (𝛼+1)(𝛼+2) 2 1 2 √ 𝜉 √ 𝜉/2 ×𝑂(𝜉𝛼 2 )
This difference in the size of the integers involved may, at least partially, explain the fact that lattice basis reduction performs somewhat better in our method than in the BaCSeL implementation of Stehlé's method (see Section 8).

7.1. Univariate method and Bombieri and Pila's approach. Our univariate method bears a strong resemblance to Bombieri & Pila's approach [START_REF] Bombieri | The number of integral points on arcs and ovals[END_REF] of bounding the number of integer points on an analytic curve. The method that we develop is effective, and yields a way to not only control integer points on the curve, but close to the curve.

Note that we (asymptotically) recover Bombieri and Pila's estimate [6, Main Lemma] under the form (𝑢𝑣) 4 3(𝑑+3) , which is the number of intervals required. We can thus recover, following Bombieri and Pila's arguments based on [START_REF] Bombieri | The number of integral points on arcs and ovals[END_REF]Thm. 5] or [START_REF] Pila | Density of integer points on plane algebraic curves[END_REF], their bound for the number of points on the curve (without any heuristic). Our method also allows for the explicit determination of those points, but is on this point only (mildly) heuristic.

Our variation with the 𝜔 0 , on the other hand, is new; it worsens the quality of Bombieri-Pila's bound, but improves the distance around the curve in which we are able to detect points with denominator dividing 𝑣. 7.2. Bivariate method vs. Stehlé's approach. On the other hand, our bivariate method bears a strong resemblance with Stehlé's work [START_REF] Stehlé | On the randomness of bits generated by sufficiently smooth functions[END_REF]. Our approach mostly differs by the use of approximation-related techniques (Chebyshev interpolants) rather than a computer-algebra oriented vision of functions using Taylor expansions.

We have a dense representation of our auxiliary polynomials, which leads us to manipulate almost square matrices, whereas Stehlé's matrices are inherently more rectangular, because he has to represent all coefficients of the bivariate polynomials he manipulates.

Table 5 shows that our approach is better in practice. We propose an analysis of this favourable situation in Section 8.3.

Note two further facts :

• our analysis is sharper in the case of entire functions, as we are able to take into account the growth of the function at infinity. The same results could probably be derived in Stehlé's paper using Cauchy inequalities to estimate Taylor coefficients. This sharper analysis allows us to a obtain, in Problem 2.6, a lower bound 1/𝑤 ⩾ (𝑢𝑣) -𝑂(𝑝 2 / log 𝑝) in the case where we want to solve the problem without any subdivision. This improves at the same time on Stehlé's method and, heuristically, Nesterenko-Waldschmidt paper which, though with different goals and through a purely theoretical (vs. algorithmic) method, both obtain the upper bound 𝑤 ⩽ (𝑢𝑣) -𝑂(𝑝 2 ) .

• Our analysis is also sharper in the more practical domain where we choose 𝛾 = 𝑁/𝜅 for some constant 𝜅. We obtain better constants in the exponents for both the overall complexity of the method and the bound on 𝑤.

Experimental results

We have implemented TMD-oriented versions of our algorithms in SageMath17 . Our codes are available from https://perso.ens-lyon.fr/nicolas.brisebarre/tmd.html. The tests hereafter were executed on an Intel Xeon E5620 2.40GHz CPU with a 64-bit Linux-based system.

In the two examples that we address, we cut the binades under consideration into subintervals of the same size and we apply the algorithms to each subinterval. For Algorithms 1 and 2, the subinterval will correspond to the interval [𝑎, 𝑏] considered in these algorithms. For Algorithms 3 and 4, the subinterval will correspond to the interval [𝑎 1 , 𝑏 1 ], while [𝑎 2 , 𝑏 2 ] will be equal to [-1/𝑤, 1/𝑤], cf. Problem 2.6.

Currently, the most expensive part of our algorithms is the LLL reduction. In our implementations, the following two optimizations led to a significant speedup of the LLL reduction part:

(1) we use a random projection trick inspired from [START_REF] Akhavi | Speeding-up Lattice Reduction with Random Projections[END_REF], cf. Theorem 4.6.

(2) If we consider two contiguous subintervals 𝐼 0 and 𝐼 1 , the matrices 𝑀 𝑐,𝐼0 and 𝑀 𝑟,𝐼0 , 𝑀 𝑐,𝐼1 and 𝑀 𝑟,𝐼1 , output by Algorithm 1 (resp. Algorithm 3) applied to 𝐼 0 and 𝐼 1 will be close by construction. Hence, our optimization consists in:

• retrieving the change-of-basis matrix 𝑈 𝐼0 computed at Step 3 of Algorithm 2 (resp. Step 3 of Algorithm 4) applied to 𝐼 0 , • then left-multiplying 𝑀 𝑐,𝐼1 and 𝑀 𝑟,𝐼1 by 𝑈 𝐼0 , which operates in practice as a significant prereduction of the lattice built from 𝑀 𝑐,𝐼1 and 𝑀 𝑟,𝐼1 , • eventually, we apply LLL to these prereduced matrices.

Here, we address the TMD for exp over [1/4, 1/2), for directed rounding functions and for the precision 𝑝 = 113: we compute 𝑤 > 0 and all the integers 𝑋, 1/4 ⩽ 𝑋/2 𝑝+1 < 1/2 for which there exists 𝑌 ∈ Z satisfying

⃒ ⃒ ⃒ ⃒ exp (︂ 𝑋 2 𝑝+1 )︂ - 𝑌 2 𝑝-1 ⃒ ⃒ ⃒ ⃒ < 1 𝑤 .
Here, we set 𝑢 = 2 𝑝+1 and 𝑣 = 2 𝑝-1 .

For each value of the bound on 𝑤 we have tried to find, for various values of 𝑑, the 𝜔 0 allowing to attain this bound in minimal time (in the case of exp, we use 𝜌 = 𝑑/(𝑏 -𝑎), cf. Theorem 5.26). Figure 2 represents the log 2 of the time to treat a binade (𝑦-axis) as a function of log 2 (𝑤)/𝑝 (𝑥-axis); this is indeed the experimental equivalent of Figure 1, up to a rescaling of the 𝑥-axis (by a factor of 2, as Figure 1 is expressed in terms of powers of 𝑢𝑣 = 2 2𝑝 ) and 𝑦-axis. 

(︂ 𝑋 2 𝑝+1 )︂ - 𝑌 2 𝑝-1 ⃒ ⃒ ⃒ ⃒ < 1 𝑤 .
We report in Table 4 our results. We first set 𝑝 = 113, 𝑢 = 2 𝑝+1 , 𝑣 = 2 𝑝-1 , 𝑏 2 = -𝑎 2 = 1/𝑤 and the value of 𝑑. The choice of the parameters 𝑁 1 , 𝑁 2 , 𝜌 1 , 𝑎 1 and18 𝑏 1 is then made in order to maximize the width of the subinterval [𝑎 1 , 𝑏 1 ] of [1/4, 1/2). We finally fix 𝜌 2 = min(𝜌

𝑁1/𝑁2 1
, 1/𝑏 2 ). The column ‖𝑀 ‖ ∞ stands for the largest coefficient of the integer matrix 𝑀 = (𝑀 𝑐 | 𝑀 𝑟 ) which is to be LLL-reduced.

For the sake of practical comparison, we have attempted a comparison with BaCSeL-4.019 , which implements [START_REF] Stehlé | On the randomness of bits generated by sufficiently smooth functions[END_REF]. For the latter, we used BaCSel-4.0 only for the generation of the corresponding matrix, and simply measured the cost of the LLL step (which dominates the total cost anyway), using the same implementation of fplll as in our code.

log 2 (𝑤) 𝑑 𝑁 𝑁 1 𝑁 2 𝜌 1 𝑏 1 -𝑎 1 𝛾 ‖𝑀 ‖ ∞ Timing 6𝑝 6 
For the comparison to be fair, we have included the Akhavi-Stehlé's trick (cf. Theorem 4.6) in BaCSeL. We have also tried to include the prereduction trick but the latter, in the setting of [START_REF] Stehlé | On the randomness of bits generated by sufficiently smooth functions[END_REF], seems to make the reduction more costly. In this case, the complete timings are merely estimates for the cost of treating a whole binade.

The results are reported in Table 5. Again, the column ‖𝑀 ‖ ∞ stands for the largest coefficient of the integer matrix which is to be LLL-reduced. We observe that we gain a significant constant factor, increasing with the value of 𝛼 Ste (= 𝑑); our method allows for slightly larger intervals (by a factor around 2, which seems to decrease with 𝑑), but the main factors explaining the difference are the fact that our lattices seem somewhat easier to reduce and that the "prereduction trick" also plays an important role. These three terms each account for a small 2 to 5 (depending on the cases) factor, explaining overall the factors ≈ 9-100 that we observe above.

It should finally be recalled that the comparison is biased in favour of [START_REF] Stehlé | On the randomness of bits generated by sufficiently smooth functions[END_REF] : we are comparing optimized C code to an algorithm implemented in an interpreted language. The comparison remains rather fair as long as the lattice basis reduction dominates (which is the case for 𝛼 Ste = 10, 12) but a low-level implementation of our algorithms is required in order to get reliable results when our parameter 𝑑 ⩽ 8, where the gap is probably larger than suggested by Table 5.

Remark 8.1. Note that, regarding the targets log 2 (𝑤) = 6𝑝, 8𝑝, a more relevant comparison between Table 4 and Table 5 would probably be obtained by comparing

• Row 2 of Table 4 with Row 1 of Table 5, which corresponds to the best choice of parameters for the problem with log 2 (𝑤) = 6𝑝; with this criterion, the ratio is ≈ 50. • Row 4 of Table 4 with Row 3 of Table 5, which corresponds to the best choice of parameters for the problem with log 2 (𝑤) = 8𝑝; with this criterion, the ratio is ≈ 45.

Conclusion

We expect this work to be used in practice to address the TMD for the binary128 format, but we also hope that it will be of practical use for the determination of integer points close to a transcendental curve. Moreover, we believe that the tools that we have developed are of a more general interest in the context of practical applications of Coppersmith's method, and allow easier analysis of some "rectangular" variants.

Regarding future work, we plan, first, to improve our current implementations and then to study the case of algebraic functions, for which we have some preliminary results.

Let 𝑓 be Lipschitz continuous over [- 

𝑐 𝑘 = 𝑎 𝑘 -𝑎 2𝑁 -𝑘 -𝑎 2𝑁 +𝑘 + 𝑎 4𝑁 -𝑘 + 𝑎 4𝑁 -𝑘 -• • • (A.1) = +∞ ∑︁ 𝑗=0 (-1) 𝑗 𝑎 2𝑗𝑁 +𝑘 + +∞ ∑︁ 𝑗=1 (-1) 𝑗 𝑎 2𝑗𝑁 -𝑘 .
Let 𝑁 ∈ N, 𝑁 ⩾ 1, we also define 

𝛾 𝜌,0,𝑁 -1 = 1 and 𝛾 𝜌,𝑘,𝑁 -1 = 1 1 -𝜌 -2𝑁 (︂ 1 + 1 𝜌 2(𝑁 -𝑘) )︂ for 𝑘 = 1, . . . ,
|𝑐 𝑘 | ⩽ 2 𝑀 𝜌 (𝑓 ) 𝜌 𝑘 𝛾 𝜌,𝑘,𝑁 -1 , 𝑘 = 0, . . . , 𝑁 -1,
where 𝑀 𝜌 (𝑓 ) = max 𝑧∈ℰ𝜌 |𝑓 (𝑧)|. Moreover, we have

‖𝑓 -𝑝 𝑁 -1 ‖ ∞,[-1,1] ⩽ 4𝑀 𝜌 (𝑓 ) 𝜌 𝑁 -1 (𝜌 -1)
.

Proof. First, we use the following consequence of [67, Thm 8.1]: the Chebyshev coefficients satisfy

(A.2) |𝑎 0 | ⩽ 𝑀 𝜌 (𝑓 ) and |𝑎 𝑘 | ⩽ 2 𝑀 𝜌 (𝑓 ) 𝜌 𝑘 .
Then, we combine Equation (A.1) and Inequalities (A.2) to obtain, for 𝑘 = 1, . . . , 𝑁 -1. 

|𝑐 𝑘 | ⩽ |𝑎 𝑘 | + |𝑎 2𝑁 -𝑘 | + |𝑎 2𝑁 +𝑘 | + |𝑎 4𝑁 -𝑘 | + |𝑎 4𝑁 -𝑘 | + • • • , ⩽ 2 𝑀 𝜌 (𝑓 ) 𝜌 𝑘 + 2 𝑀 𝜌 (𝑓 ) 𝜌 2𝑁 -𝑘 + 2 𝑀 𝜌 (𝑓 ) 𝜌 2𝑁 +𝑘 + 2 𝑀 𝜌 (𝑓 ) 𝜌 4𝑁 -𝑘 + 2 𝑀 𝜌 (𝑓 ) 𝜌 4𝑁 +𝑘 + • • • , ⩽ 2 𝑀 𝜌 (𝑓 ) 𝜌 𝑘 (︂ 1 + 1 𝜌 2𝑁 -2𝑘 + 1 𝜌 2𝑁 + 1 𝜌 4𝑁 -2𝑘 + 1 𝜌 4𝑁 + • • • )︂ , ⩽ 2 𝑀 𝜌 (𝑓 ) 𝜌 𝑘 1 1 -𝜌 -2𝑁 (︂ 1 + 1 𝜌 2(𝑁 -𝑘) )︂ . Moreover, recall that 𝑐 0 = 2 𝑁 ∑︀ 1⩽ℓ⩽𝑁 𝑓 (𝜇 ℓ ), hence |𝑐 0 | = 2 max 𝑥∈[-1,1] |𝑓 (𝑥)| ⩽ 2𝑀 𝜌 (𝑓 )
(︀ [-1, 1] × [-1, 1], (1 -𝑥 2 ) -1/2 (1 -𝑦 2 ) -1/2
∈ N, ⃦ ⃦ ⃦ ⃦ ⃦ 𝑓 (𝑥, 𝑦) - 𝑛1 ∑︁ ′ 𝑘1=0 𝑛2 ∑︁ ′ 𝑘2=0 𝑎 𝑘1,𝑘2 𝑇 𝑘1 (𝑥)𝑇 𝑘2 (𝑦) ⃦ ⃦ ⃦ ⃦ ⃦ ∞,[-1,1]×[-1,1] ⩽ 4𝜌 1 𝜌 2 𝑀 𝜌1,𝜌2 (𝑓 ) (𝜌 1 -1)(𝜌 2 -1) (︂ 1 𝜌 𝑛1+1 1 + 1 𝜌 𝑛2+1 2 )︂ .
𝑓 (𝑥, 𝑦) = 𝐹 (𝑧 1 , 𝑧 2 ) = ∑︁ ′ 𝑛1⩾0 ∑︁ ′ 𝑛2⩾0 𝑎 𝑛1,𝑛2 𝑧 𝑛1 + 𝑧 -𝑛1 2 
𝑧 𝑛2 + 𝑧 -𝑛2 2 .
Now we use Cauchy's integral formula in two variables: for all 𝑛 1 , 𝑛 2 ∈ N,

1 (2𝑖𝜋) 2 ∫︁ 𝒞1×𝒞1 𝐹 (𝑧 1 , 𝑧 2 ) 𝑧 𝑛1+1 1 𝑧 𝑛2+1 2 d𝑧 1 d𝑧 2 = 1 2 𝛿0𝑛 1 +𝛿0𝑛 2 2 𝛿0𝑛 1 +𝛿0𝑛 2 4 𝑎 𝑛1,𝑛2 . If 𝑔 : (𝑧 1 , 𝑧 2 ) ↦ → ((𝑧 1 + 𝑧 -1 1 )/2, (𝑧 2 + 𝑧 -1 2 )/2, the domain 𝐸 𝜌1,𝜌2 is the image of ℛ 𝜌1 × ℛ 𝜌2 , where ℛ 𝜌 = {𝑧 ∈ C, 𝜌 -1 < |𝑧| < 𝜌}, via the application 𝑔. Note that, since 𝐹 = 𝑓 ∘ 𝑔, 𝐹 is analytic in a neighbourhood of ℛ 𝜌1 × ℛ 𝜌2 since it is the composition of two analytic functions, hence, for all 𝑛 1 , 𝑛 2 ∈ N, 𝑎 𝑛1,𝑛2 = 1 (𝑖𝜋) 2 ∫︁ 𝒞𝜌 1 ×𝒞𝜌 2 𝐹 (𝑧 1 , 𝑧 2 ) 𝑧 𝑛1+1 1 𝑧 𝑛2+1 2 d𝑧 1 d𝑧 2 , from which follows |𝑎 𝑛1,𝑛2 | ⩽ (2𝜋) 2 𝜌 1 𝜌 2 𝜋 2 max (𝑧1,𝑧2)∈𝒞𝜌 1 ×𝒞𝜌 2 |𝐹 (𝑧 1 , 𝑧 2 )| 𝜌 𝑛1+1 1 𝜌 𝑛2+1 2 = 4𝑀 𝜌1,𝜌2 (𝑓 ) 𝜌 𝑛1 1 𝜌 𝑛2 2 for all 𝑛 1 , 𝑛 2 ∈ N.
As for the remainder, for all 𝑥, 𝑦 ∈ [-1, 1], for all 𝑛 1 and 𝑛 2 ∈ N, we have

𝑓 (𝑥, 𝑦) - 𝑛1 ∑︁ ′ 𝑘1=0 𝑛2 ∑︁ ′ 𝑘2=0 𝑎 𝑘1,𝑘2 𝑇 𝑘1 (𝑥)𝑇 𝑘2 (𝑦) = ∑︁ 𝑘1⩾𝑛1+1 ∑︁ ′ 𝑘2⩾0 𝑎 𝑘1,𝑘2 𝑇 𝑘1 (𝑥)𝑇 𝑘2 (𝑦) + 𝑛1 ∑︁ ′ 𝑘1=0 ∑︁ 𝑘2⩾𝑛2+1 𝑎 𝑘1,𝑘2 𝑇 𝑘1 (𝑥)𝑇 𝑘2 (𝑦), hence, ⃦ ⃦ ⃦ ⃦ ⃦ 𝑓 (𝑥, 𝑦) - 𝑛1 ∑︁ ′ 𝑘1=0 𝑛2 ∑︁ ′ 𝑘2=0 𝑎 𝑘1,𝑘2 𝑇 𝑘1 (𝑥)𝑇 𝑘2 (𝑦) ⃦ ⃦ ⃦ ⃦ ⃦ ∞,[-1,1]×[-1,1] = ∑︁ 𝑘1⩾𝑛1+1 ∑︁ ′ 𝑘2⩾0 |𝑎 𝑘1,𝑘2 | + 𝑛1 ∑︁ ′ 𝑘1=0 ∑︁ 𝑘2⩾𝑛2+1 |𝑎 𝑘1,𝑘2 |, ⩽ 4𝑀 𝜌1,𝜌2 (𝑓 ) (︂ 1 𝜌 𝑛1+1 1 + 1 𝜌 𝑛2+1 2 )︂ 𝜌 1 𝜌 2 (𝜌 1 -1)(𝜌 2 -1)
.

□

Now we can prove: 

Proposition A.5. Let 𝜌 1 , 𝜌 2 > 1, let 𝑀 1 , 𝑀 2 ∈ N, 𝑀 1 , 𝑀 2 ⩾ 2,
‖𝑓 -𝑃 𝑀1-1,𝑀2-1 ‖ ∞,[-1,1]×[-1,1] ⩽ 16𝜌 1 𝜌 2 𝑀 𝜌1,𝜌2 (𝑓 ) (𝜌 1 -1)(𝜌 2 -1) (︂ 1 𝜌 𝑀1 1 + 1 𝜌 𝑀2 2 )︂ . Proof. Let ∑︁ ′ 𝑛1⩾0 ∑︁ ′ 𝑛2⩾0 𝑎 𝑛1,𝑛2 𝑇 𝑛1 (𝑥)𝑇 𝑛2 (𝑦)
the series expansion of 𝑓 , the aliasing phenomenon presented above still exists: for

𝑘 1 = 0, . . . , 𝑀 1 -1, 𝑘 2 = 0, . . . , 𝑀 2 -1, (A.4) 𝑐 𝑘1,𝑘2 = +∞ ∑︁ 𝑝1=0 +∞ ∑︁ 𝑝2=0 (-1) 𝑝1+𝑝2 𝑎 2𝑝1𝑀1+𝑘1,2𝑝2𝑀2+𝑘2 + +∞ ∑︁ 𝑝1=0 +∞ ∑︁ 𝑝2=1 (-1) 𝑝1+𝑝2 𝑎 2𝑝1𝑀1+𝑘1,2𝑝2𝑀2-𝑘2 + +∞ ∑︁ 𝑝1=1 +∞ ∑︁ 𝑝2=0 (-1) 𝑝1+𝑝2 𝑎 2𝑝1𝑀1-𝑘1,2𝑝2𝑀2+𝑘2 + +∞ ∑︁ 𝑝1=1 +∞ ∑︁ 𝑝2=1 (-1) 𝑝1+𝑝2 𝑎 2𝑝1𝑀1-𝑘1,2𝑝2𝑀2-𝑘2 .
We now combine Equation (A.4) and Inequalities (A.3) to obtain, for

𝑘 1 = 1, . . . , 𝑀 1 - 1, 𝑘 2 = 1, . . . , 𝑀 2 -1, |𝑐 𝑘1,𝑘2 | ⩽ +∞ ∑︁ 𝑝1=0 +∞ ∑︁ 𝑝2=0 |𝑎 2𝑝1𝑀1+𝑘1,2𝑝2𝑀2+𝑘2 | + +∞ ∑︁ 𝑝1=0 +∞ ∑︁ 𝑝2=1 |𝑎 2𝑝1𝑀1+𝑘1,2𝑝2𝑀2-𝑘2 | + +∞ ∑︁ 𝑝1=1 +∞ ∑︁ 𝑝2=0 |𝑎 2𝑝1𝑀1-𝑘1,2𝑝2𝑀2+𝑘2 | + +∞ ∑︁ 𝑝1=1 +∞ ∑︁ 𝑝2=1 |𝑎 2𝑝1𝑀1-𝑘1,2𝑝2𝑀2-𝑘2 | ⩽ +∞ ∑︁ 𝑝1=0 +∞ ∑︁ 𝑝2=0 4 𝑀 𝜌1,𝜌2 (𝑓 ) 𝜌 2𝑝1𝑀1+𝑘1 1 𝜌 2𝑝2𝑀2+𝑘2 2 + +∞ ∑︁ 𝑝1=0 +∞ ∑︁ 𝑝2=1 4 𝑀 𝜌1,𝜌2 (𝑓 ) 𝜌 2𝑝1𝑀1+𝑘1 1 𝜌 2𝑝2𝑀2-𝑘2 2 + +∞ ∑︁ 𝑝1=1 +∞ ∑︁ 𝑝2=0 4 𝑀 𝜌1,𝜌2 (𝑓 ) 𝜌 2𝑝1𝑀1-𝑘1 1 𝜌 2𝑝2𝑀2+𝑘2 2 + +∞ ∑︁ 𝑝1=1 +∞ ∑︁ 𝑝2=1 4 𝑀 𝜌1,𝜌2 (𝑓 ) 𝜌 2𝑝1𝑀1-𝑘1 1 𝜌 2𝑝2𝑀2-𝑘2 2 ⩽ 4 𝑀 𝜌1,𝜌2 (𝑓 ) 𝜌 𝑘1 1 𝜌 𝑘2 2 1 1 -𝜌 -2𝑀1 1 1 1 -𝜌 -2𝑀2 2 (︃ 1 + 1 𝜌 2(𝑀1-𝑘1) 1 + 1 𝜌 2(𝑀2-𝑘2) 2 + 1 𝜌 2(𝑀1-𝑘1) 1 𝜌 2(𝑀2-𝑘2) 2
)︃ .

If we use Equation (6.2), we get

|𝑐 0,0 | ⩽ 4𝑀 𝜌1,𝜌2 (𝑓 ) thanks to the maximum principle, |𝑐 𝑘1,0 | ⩽ 4 𝑀 𝜌1,𝜌2 (𝑓 ) 𝜌 𝑘1 1 1 1 -𝜌 -2𝑀1 1 (︃ 1 + 1 𝜌 2(𝑀1-𝑘1) 1 )︃ for 𝑘 1 = 1, . . . , 𝑀 1 -1, |𝑐 0,𝑘2 | ⩽ 4 𝑀 𝜌1,𝜌2 (𝑓 ) 𝜌 𝑘2 2 1 1 -𝜌 -2𝑀2 2 (︃ 1 + 1 𝜌 2(𝑀2-𝑘2) 2
)︃ for 𝑘 2 = 1, . . . , 𝑀 2 -1.

The last two inequalities are consequences of Proposition A.3.

As for the remainder, for all 𝑥, 𝑦 ∈ [-1, 1], for all 𝑛 1 and 𝑛 2 ∈ N, we have thanks to the aliasing phenomenon

𝑓 (𝑥, 𝑦) - 𝑀1-1 ∑︁ ′ 𝑘1=0 𝑀2-1 ∑︁ ′ 𝑘2=0 𝑐 𝑘1,𝑘2 𝑇 𝑘1 (𝑥)𝑇 𝑘2 (𝑦) = ∑︁ 𝑘1⩾𝑀1 ∑︁ ′ 𝑘2⩾0 𝑎 𝑘1,𝑘2 (𝑇 𝑘1 (𝑥) -(-1) 𝑝1 𝑇 𝑚1 (𝑥))(𝑇 𝑘2 (𝑦) -(-1) 𝑝2 𝑇 𝑚2 (𝑦)) + 𝑀1-1 ∑︁ ′ 𝑘1=0 ∑︁ 𝑘2⩾𝑀2 𝑎 𝑘1,𝑘2 (𝑇 𝑘1 (𝑥) -(-1) 𝑝1 𝑇 𝑚1 (𝑥))(𝑇 𝑘2 (𝑦) -(-1) 𝑝2 𝑇 𝑚2 (𝑦)),
where 𝑚 1 , 𝑚 2 and 𝑝 1 , 𝑝 2 are defined as in Proposition A.1. Hence,

‖𝑓 (𝑥, 𝑦) -𝑃 𝑀1-1,𝑀2-1 (𝑥, 𝑦)‖ ∞,[-1,1]×[-1,1] = ∑︁ 𝑘1⩾𝑀1 ∑︁ ′ 𝑘2⩾0 4|𝑎 𝑘1,𝑘2 | + 𝑀1-1 ∑︁ ′ 𝑘1=0 ∑︁ 𝑘2⩾𝑀2 4|𝑎 𝑘1,𝑘2 | ⩽ 16𝑀 𝜌1,𝜌2 (𝑓 ) (︂ 1 𝜌 𝑀1 1 + 1 𝜌 𝑀2 2 )︂ 𝜌 1 𝜌 2 (𝜌 1 -1)(𝜌 2 -1)
, thanks to Proposition A.4. □

The next lemma eases the computations. Recall that we introduce in Section 4.1.2 𝜂 𝜌,0 = 1 and 𝜂 𝜌,𝑘 = (𝜌 2 + 1)(𝜌 2 -1) for 𝑘 = 1, . . . , 𝑁 -1.

Lemma A.6. Let 𝜌 > 1, 𝑁 ⩾ 2, for 𝑘 = 0, . . . , 𝑁 -1, we have

𝛾 𝜌,𝑘,𝑁 -1 ⩽ 𝜂 𝜌,𝑘 .
In particular, if 𝜌 ⩾ 2, 𝜂 𝜌,𝑘 ⩽ 2 for 𝑘 = 1, . . . , 𝑁 -1.

Proof. The case 𝑘 = 0 is straightforward. For 𝑘 = 1, . . . , 𝑁 -1, we have

𝛾 𝜌,𝑘,𝑁 -1 = 1 1 -𝜌 -2𝑁 (︂ 1 + 1 𝜌 2(𝑁 -𝑘) )︂ = 1 𝜌 2𝑁 -1 (︀ 𝜌 2𝑁 + 𝜌 2𝑘 )︀ ⩽ 𝜌 2𝑁 𝜌 2𝑁 -1 (︀ 1 + 𝜌 -2 )︀ .
The function 𝑢 ↦ → 𝑢/(𝑢 -1) is strictly decreasing over (1, +∞), hence

𝛾 𝜌,𝑘,𝑁 -1 ⩽ 𝜌 2𝑁 𝜌 2𝑁 -1 (︀ 1 + 𝜌 -2 )︀ ⩽ 𝜌 2 𝜌 2 -1 (︀ 1 + 𝜌 -2 )︀ = 𝜌 2 + 1 𝜌 2 -1 .
The )︀ for any (𝑧 1 , 𝑧 2 ) in a suitable neighbourhood of 𝐸 𝜌1,𝜌2 , and then to apply Proposition A.5 to ̂︀ 𝑓 and Lemma A.6.

We choose 𝐾 = exp(3(1 -𝜆 2 )𝑑/2). In this case, we have 𝑀 𝒟 𝑎,𝑏,𝐾 (𝑓 ) = exp(9(1 -𝜆 2 ) 2 𝑑 2 /16 + 𝑂(𝑑)).

A sufficient success condition for Algorithm 2 is thus, as 𝑑 → ∞, 𝑏 -𝑎 < 1 4 (|𝑎 + 𝑏| + exp(3(1 -𝜆 2 )𝑑/2)) -4/(3(1-𝜆 2 )𝑑)(1+𝑜(1))

exp(3(1 -𝜆 2 )𝑑/2)(𝑢𝑣𝑀 𝒟 𝑎,𝑏,𝐾 (𝑓 )) -4/(3(1-𝜆 2 )𝑑)(1+𝑜(1)) .

It follows from for some 𝜀 ′ > 0.

Again, the statement on 𝑤 follows from simple calculus using 𝑤 = 𝑂(𝐾 𝑁 (1-𝜆) ).

Appendix C. Precision required, 1D case

We now estimate the precision required for the computations performed in Algorithm 1. We shall use a computation model where our real numbers are represented by fixed point numbers, with p ⩾ 1 binary digits following the binary point. This means that for each elementary operation, the result differs from the ideal mathematical result by at most 2 -p (such a result is usually called faithful rounding in precision p). The notations used hereafter correspond to those of Algorithm 1. This somewhat artificial model is a simplification of the natural model, which is a floating-point model where the total precision is p + 𝑃 , where 𝑃 is the size of the largest real number encountered during the computation. It allows for a simpler, though probably slightly rougher, analysis; as a consequence, Theorem C.9 is valid for floating-point computations in precision p + 𝑃 .

The following lemma summarizes basic facts on this model: 

Lemma C.
|𝑔 ′ |.
As a consequence, if 𝑥 1 , . . . , 𝑥 𝑛 are real numbers and 𝑋 1 , . . . , 𝑋 𝑛 be fixed-point numbers in precision p which are approximations of those such that max 1⩽𝑖⩽𝑛 |𝑥 𝑖 -𝑋 𝑖 | ⩽ 𝜀, the error on the sum 𝑥 1 + • • • + 𝑥 𝑛 (which can be evaluated in any order) is at most 𝑛𝜀.

In the sequel, we shall put 𝐶 = max(1, 𝑢, 𝑣) max(1, 𝐵 𝑥 , 𝐵 𝑓 ) max(1, max

[𝑎,𝑏] |𝑓 ′ |).
The error analysis of the DCT follows:

Proposition C.2. Assume that each 𝜙(𝐿 𝑐ℎ𝑒𝑏 [𝑖]) is given by an approximation with error 𝜀 < 1, with 𝜀 ⩾ 2 -p and that the cosines involved in the DCT definition are given by an approximation ⩽ 1 with error 2 -p . Assume that we compute each coefficient of the DCT by computing first the 𝑁 products, then the sum. Then, we obtain an approximation Δ of DCT-II(𝑈 ) at Step 11 of Algorithm 1 such that ‖Δ -DCT-II(𝑈 )‖ ∞ ⩽ 𝑁 (𝜀 + 2 -p (1 + 𝐶 𝑑 )).

Proof. We deduce from (C.2) that each product 𝜙(𝐿 𝑐ℎ𝑒𝑏 [𝑖]) cos(𝑘(𝑖 + 1/2)𝜋)/𝑁 incurs an error at most 𝜀 + 2 -p |𝜙(𝐿 𝑐ℎ𝑒𝑏 [𝑖])| + 2 -p ⩽ 𝜀 + 2 -p (1 + 𝐶 𝑑 ). The sum of those terms then, cf. (C.1), incurs an error ⩽ 𝑁 (𝜀 + 2 -p (1 + 𝐶 𝑑 )), from which the result follows.

□

We now turn to the computation of 𝛼 𝑘 ; our practical application cases have 𝛼 ≫ 1, and we need all the values 𝛼, . . . , 𝛼 𝑘 , so that we compute 𝛼 𝑘 by the recurrence 𝛼 𝑘 = 𝛼 𝑘-1 • 𝛼. (︀ 6𝜙 -1 (𝜆) 2 -⌊𝜙 -1 (𝜆)⌋ -2⌊𝜙 -1 (𝜆)⌋ 2 )︀ .

Note that if 𝛾 = 𝑜(𝑁 ), we have 𝜆 → ∞ and 𝜙 -1 (𝜆) = √ 2𝜆 + 𝑂 [START_REF] Ajtai | The Shortest Vector Problem in L 2 is NP-hard for Randomized Reductions (Extended Abstract)[END_REF], so that 𝜓(𝜆) = 2 √ 2𝜆/3 + 𝑂 [START_REF] Ajtai | The Shortest Vector Problem in L 2 is NP-hard for Randomized Reductions (Extended Abstract)[END_REF] and

Ω 𝛾 (𝑁, 𝑁 1 , 𝑁 2 ) = 2 √ 2 3
𝑁 3/2 𝛾 1/2 + 𝑂(𝑁 𝛾).

Proof. For the first part, since 𝜙 -1 is continuous and 𝑥 > 0, it suffices to prove that 𝑥 ↦ → 𝑥(𝜓 ∘ 𝜙(𝑥)) is continuous, namely that 𝐹 : 𝑥 ↦ → (1 + ⌊𝑥⌋)(6𝑥 2 -⌊𝑥⌋ -2⌊𝑥⌋ 2 ) is continuous.

Obviously, 𝐹 is continuous on [1, ∞)∖Z >0 . If 𝑛 is an integer, we check that 𝐹 (𝑛) = (1 + 𝑛)(4𝑛 2 -𝑛) whereas lim 𝑥→𝑛 -𝐹 (𝑥) = 𝑛(4𝑛 2 + 3𝑛 -1) = 𝑛(𝑛 + 1)(4𝑛 -1) = 𝐹 (𝑛).

To prove that 𝑥 ↦ → 𝜓(𝑥) is increasing, as 𝜙 is increasing it suffices to study 𝑥 ↦ → 𝜓(𝜙(𝑥)). As the latter function is continuous over each interval (𝜙 -1 (𝑛), 𝜙 -1 (𝑛 + 1)), it suffices to prove that it increases over each of those intervals.

Over such an interval, we have 𝜓(𝜙(𝑥)) = 𝐴𝑥 2 /𝜙(𝑥) -𝐵/𝜙(𝑥) for some nonnegative constants 𝐴, 𝐵; it thus suffices to prove that 𝑥 2 /𝜙(𝑥) is increasing, or that 𝜙(𝑥)/𝑥 2 is decreasing. As this function is continuous and has the form 𝐴 ′ (𝑥 + 𝐵 ′ )/𝑥 2 for some nonnegative 𝐴 ′ , 𝐵 ′ over each interval (𝑛, 𝑛 + 1) for integer 𝑛, we see that it is indeed decreasing. □ Proposition D.7. We have, for any 𝜇 ∈ [1, +∞),

𝜓 -1 (𝜇) = 𝑘 + 1 2 (︁ 2𝜇 -𝑘 + √︀ 4𝜇(𝜇 -𝑘) + 2𝑘(2𝑘 + 1)/3 )︁ ,
where 𝑘 = ⌊3𝜇/2 + 1/4⌋. For 𝜇 → ∞, we have 𝜓 -1 (𝜇) = 9𝜇 2 /8 + 𝑂(𝜇).

Proof. We start by noticing that for all integer ℓ, 𝜓(ℓ(ℓ + 1)/2) = (4ℓ -1)/6, which follows easily from 𝜙 -1 (ℓ(ℓ + 1)/2) = ℓ.

Let now 𝑘 = ⌊3𝜇/2 + 1/4⌋; then, 𝜓(𝑘(𝑘 + 1)/2) ⩽ 𝜇 < 𝜓((𝑘 + 1)(𝑘 + 2)/2), so that 𝑘(𝑘 + 1)/2 ⩽ 𝜓 -1 (𝜇) < (𝑘 + 1)(𝑘 + 2)/2, and ⌊𝜙 -1 (𝜓 -1 (𝜇))⌋ = 𝑘. The asymptotic expansion follows from these inequalities.

As a consequence, 𝜓 -1 (𝜇) = 𝜙(𝜙 -1 (𝜓 -1 (𝜇))) = (𝑘 + 1)(𝜙 -1 (𝜓 -1 (𝜇)) -𝑘/2), so that 𝜙 -1 (𝜓 -1 (𝜇)) = 𝜓 -1 (𝜇) 𝑘+1 + 𝑘/2. Hence, 𝜇 = 𝜓(𝜓 -1 (𝜇)) = 1 + 𝑘 12𝜓 -1 (𝜇) (︀ 6𝜙 -1 (𝜓 -1 (𝜇)) 

(︂ 1 𝜌 𝑁1 1 + 1 𝜌 𝑁2 2 )︂ = ‖Λ𝐴‖ 1 ⩽ ‖Λ Â‖ 1 + 1/(4𝑁 1/2 ) ⩽ 1/(4𝑁

(5. 14 )⩾

 14 𝑃 (𝑢𝑥, 𝑣𝑦) = 𝑃 (𝑢𝑥, 𝑣𝑓 (𝑥)) + (𝑦 -𝑓 (𝑥)) 𝑃 (𝑢𝑥, 𝑣𝑦) -𝑃 (𝑢𝑥, 𝑣𝑓 (𝑥)) 𝑦 -𝑓 (𝑥) . As 𝑃 ∈ Z[𝑋 1 , 𝑋 2 ] and 𝑋, 𝑌 ∈ Z, we must have 𝑃 (𝑋, 𝑌 ) ∈ Z, so that either 𝑃 (𝑋, 𝑌 ) = 0 or |𝑃 (𝑋, 𝑌 )| ⩾ 1. In the former case, there is nothing to prove. In the latter case, we plug 𝑥 = 𝑋/𝑢 and 𝑦 = 𝑌 /𝑣 into (5, 𝑌 ) -𝑃 (𝑋, 𝑣𝑓 (𝑋/𝑢)) 𝑌 /𝑣 -𝑓 (𝑋/𝑢) |𝑃 (𝑋, 𝑌 )| -|𝑃 (𝑋, 𝑣𝑓 (𝑋/𝑢))| > 1 2 from the first point of Theorem 5.8. If we assume |𝑌 /𝑣 -𝑓 (𝑋/𝑢)| ⩽ |𝑓 (𝑋/𝑢)|/(2𝑑), we then derive the expected result from the second point of Theorem 5.8. We now assume |𝑌 /𝑣 -𝑓 (𝑋/𝑢)| > |𝑓 (𝑋/𝑢)|/(2𝑑). • If |𝑓 (𝑋/𝑢)| < 1/𝑣, then either 𝑌 = -1, 0, 1 or |𝑌 /𝑣 -𝑓 (𝑋/𝑢)| ⩾ 1/𝑣. For 𝑌 = -1, 0, 1, we have ⃒ ⃒ ⃒ ⃒ 𝑃 (𝑋, 𝑌 ) -𝑃 (𝑋, 𝑣𝑓 (𝑋/𝑢)) 𝑌 /𝑣 -𝑓 (𝑋/𝑢)

Proposition 5 . 13 .2𝑑𝑁 3 (

 5133 Let 𝑓 be analytic in a neighbourhood of the closed disc 𝒟 𝑎,𝑏,𝐾 = {𝑧 ∈ C : |𝑧-(𝑎+𝑏)/2| ⩽ 𝐾/2}, 𝑑 be an integer ⩾ 1, 𝑁 = (𝑑+1)(𝑑+2)/2, and 𝜔 0 ⩾ 0, 𝜌 = 𝐾/(𝑏 -𝑎) ⩾ 2 be two real parameters. Let 𝑀 𝒟 𝑎,𝑏,𝐾 (𝑓 ) := max 𝑧∈𝒟 𝑎,𝑏,𝐾 |𝑓 (𝑧)| and recall that Δ 𝑁,[𝑎,𝑏],𝜔0 = (det 𝐴𝐴 𝑡 ) 1/2 . Then, if 𝑏 -𝑎 < 𝐾 (︁ 2 6(𝑑+3) 𝑢𝑣(|𝑎 + 𝑏| + 𝐾)𝑀 𝒟 𝑎,𝑏,𝐾 (𝑓 ) )︁ - 𝑁 (𝑁 -3)+2𝜔 0 +⌊𝜔 0 ⌋(⌊𝜔 0 ⌋-2𝜔 0 +1)) , we have Δ 1/(𝑁 -1) 𝑁,[𝑎,𝑏],𝜔0 < 2 -(𝑁 +3)/4-tprec/(𝑁 -1)

Lemma 5 . 15 .

 515 Put ℳ = max(𝑢, 𝑣, |𝑎|, |𝑏|, 𝜌, 𝐵 𝑓 , max [𝑎,𝑏] |𝑓 ′ (𝑥)|). The computations of Algorithm 1 on input 𝑎, 𝑏, 𝑓, 𝑑, 𝑢, 𝑣, 𝜌, 𝜔 0 can be made in floating-point precision p = tprec + 𝑂(𝑑 log ℳ).

Theorem 5 . 18 .

 518 on a lattice of dimension 𝑁 with entries of size 𝑂(p). For the second part, we use the 𝐿 2 algorithm[START_REF] Nguyen | An LLL algorithm with quadratic complexity[END_REF] on a lattice of dimension 𝑁 = 𝑂(𝑑 2 ), embedded into R 2𝑁 ; we thus have complexity 𝑂(𝑑 6 M(𝑑 2 )(𝑑 2 + p)p). This cost dominates the cost of Algorithm 2. □ Note that in typical situations (for instance, either 𝑢, 𝑣 = 2 𝑝 , 𝑝 ⩾ 𝑑 or 𝜔 0 ̸ = 𝑁 -𝑜(𝑁 ), 𝜌 ⩾ 2) we have 𝑑 2 = 𝑂(p) and the complexity simplifies to 𝑂(𝑑 6 M(𝑑 2 )p 2 ). 5.5.2. Number of subintervals for fixed 𝑑. Thanks to the results of Subsection 5.4.2, we can estimate the maximum size of an interval [𝑎, 𝑏] ⊂ [𝛼, 𝛽], with 𝛼, 𝛽 fixed, for which Algorithm 2 succeeds (in the sense of Corollary 5.14). This follows from Proposition 5.13, and yields at the same time the number of subintervals to be considered if one wants to deal with a full interval [𝛼, 𝛽]. Given fixed 𝑓 , a fixed parameter 𝑑, two fixed real numbers 𝛼 and 𝛽, Problem 2.6 can heuristically be solved for 𝑢, 𝑣 → ∞ over [𝛼, 𝛽] using (5.16) 𝑂 (︁ (𝛽 -𝛼)(𝑢𝑣)

Figure 1 .Theorem 5 . 26 .
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Theorem 5 . 27 . 4 3( 1 - 4 3( 1 -

 5274141 Let 𝑓 = exp(exp(𝑧)). For 𝑢𝑣 large enough, for any constant 𝜈 > 𝜆 2 ) , for 𝑑 = ⌈𝜈 log(𝑢𝑣) log log log(𝑢𝑣) ⌉, Algorithm 2 succeeds in the sense of Corollary 5.14 and we obtain𝑤 = (𝑢𝑣) 𝜈 2 (1-𝜆) log(𝑢𝑣) log log(𝑢𝑣) (log log log(𝑢𝑣)) 2 (1+𝑜(1)) . Let 𝑔(𝑧) = ∑︀ 𝑛⩾0 exp(-𝑛2 )𝑧 𝑛 . For 𝑢𝑣 large enough, for any constant 𝜈 > 𝜆 2 ) , for 𝑑 = ⌈𝜈 √︀ log(𝑢𝑣)⌉, Algorithm 2 succeeds in the sense of Corollary 5.14 and we obtain 𝑤 = (𝑢𝑣)

Corollary 6 . 14 .Corollary 6 . 15 .

 614615 Under the assumptions and notations of the previous theorem, for all 𝑥, 𝑦 such that 𝑢𝑥, 𝑣𝑦 ∈ Z, we have either 𝑃 (𝑢𝑥, 𝑣𝑦) = 0, or 𝑦 ̸ ∈ [𝑓 (𝑥) + 𝑎 2 , 𝑓 (𝑥) + 𝑏 2 ]. 6.4.2. Proof of success of Algorithm 4. If we apply the LLL lattice basis reduction algorithm to Â, we obtain: Assume that det( Â Â𝑡 ) 1/2(𝑁 -1) ⩽ 2 -(𝑁 -1)/4-tprec/(𝑁 -1) 𝑁 +𝑁1𝑁2

1

 1 
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Proof.

  For 𝜌 > 0, we define 𝒞 𝜌 = {𝑧 ∈ C, |𝑧| = 𝜌}. Extending what is done in the proof of [67, Thm. 8.1], we now introduce the change of variables 𝑥 = (𝑧 1 + 𝑧 -1 1 )/2, 𝑦 = (𝑧 2 + 𝑧 -1 2 )/2 where 𝑧 1 , 𝑧 2 ∈ 𝒞 1 and the function

Proposition C. 3 .

 3 Let 𝑥 be a nonnegative real number, and 𝑋 a fixed point number in precision p approximating 𝑥, so that |𝑋 -𝑥| ⩽ 𝜀, with 1 ⩾ 𝜀 ⩾ 2 -p . If 𝑘 is an integer, and if we define𝑋 1 = 𝑋 and 𝑋 𝑘 = 𝑋 ⊗ 𝑋 𝑘-1 we have, for 𝑘 ⩾ 1, |𝑋 𝑘 -𝑥 𝑘 | ⩽ 𝑘𝜀(𝑥 + 1) 𝑘-1 .Proof. Induction on 𝑘, clear for 𝑘 = 1. We let 𝜀 𝑘 be |𝑋 𝑘 -𝑥 𝑘 |. Then, we have|𝑋 𝑘+1 -𝑥 𝑘+1 | = |𝑋 𝑘+1 -𝑋 • 𝑋 𝑘 | + |𝑋 • (𝑋 𝑘 -𝑥 𝑘 )| + |𝑋 -𝑥|𝑥 𝑘 ⩽ 2 -p + (𝑥 + 𝜀)𝜀 𝑘 + 𝑥 𝑘 𝜀,from (C.2) and the induction hypothesis, so that 𝜀 𝑘+1 ⩽ (𝑥 + 𝜀)𝜀 𝑘 + 𝑥 𝑘 𝜀 + 2 -p ⩽ (𝑥 + 𝜀)𝜀 𝑘 + (𝑥 𝑘 + 1)𝜀 ⩽ (𝑥 + 1)𝜀 𝑘 + (𝑥 + 1) 𝑘 𝜀, from which the result follows by induction. □ Corollary C.

Table

  precision 𝑝 minimal exponent 𝐸 𝑚𝑖𝑛 maximal exponent 𝐸 𝑚𝑎𝑥

	binary32	24	-126	127
	binary64	53	-1022	1023
	binary128	113	-16382	16383

  ), the triple (𝐾, 𝐿, 𝐸) = (61, 29, 81.29...) yields htr

	subsection,
	algorithmic approaches have been developed and used in an extensive way since the
	late 90s.

exp,[1/4,1/2) (53) ⩽ 11225 ∼ 211𝑝. • In double extended precision (𝑝 = 64), the triple (𝐾, 𝐿, 𝐸) = (62, 37, 82.62...) yields htr exp,[1/4,1/2) (64) ⩽ 14610 ∼ 228𝑝. • In binary128 (𝑝 = 113), the triple (𝐾, 𝐿, 𝐸) = (84, 59, 109.44...) yields htr exp,[1/4,1/2) (113) ⩽ 33573 ∼ 297𝑝. 3.2. Algorithmic approaches. In view of the lack of practicality (or in order to improve on it) of fundamental results discussed in the previous

4.1.1. Interpolation at the Chebyshev nodes. The zeros of 𝑇 𝑛+1 are

  𝑇 𝑛 (𝜇 𝑘,𝑛 ). Let 𝑁 ⩾ 1, let 𝑓 be a function defined over [𝑎, 𝑏], if we interpolate 𝑓 by a polynomial in R 𝑁 -1 [𝑥] at the scaled Chebyshev nodes of the first kind, we have the following expressions for the interpolation polynomial 𝑃 [50, Chap. 6]: }︂ and let 𝐸 𝜌,𝑎,𝑏 be the closed region bounded by the ellipse ℰ 𝜌,𝑎,𝑏 . For 𝑓 a function analytic in a neighbourhood of 𝐸 𝜌,𝑎,𝑏 , we define 𝑀 𝜌,𝑎,𝑏 (𝑓 ) = max 𝑧∈ℰ 𝜌,𝑎,𝑏 |𝑓 (𝑧)|.

	𝜇 𝑘,𝑛 = cos They are called (𝑛 + 1)-Chebyshev nodes of the first kind. Polynomials interpolating (︂ (𝑛 -𝑘 + 1/2)𝜋 𝑛 + 1 )︂ , 𝑘 = 0, . . . , 𝑛. functions at this family give rise to very good uniform approximations over [-1, 1] to these functions [50, 67]. To be able to work on an interval [𝑎, 𝑏], we will need scaled versions of Chebyshev polynomials and nodes. We then define, for 𝑛 ∈ N, (4.1) 𝑇 𝑛,[𝑎,𝑏] := 𝑇 𝑛 (︂ 2𝑥 -𝑏 -𝑎 𝑏 -𝑎 )︂ , 𝜇 𝑘,𝑛,[𝑎,𝑏] := (𝑏 -𝑎)𝜇 𝑘,𝑛 + 𝑎 + 𝑏 2 , 𝑘 = 0, . . . , 𝑛. Here again, when there is no ambiguity, we denote the nodes as 𝜇 𝑘,[𝑎,𝑏] . Note that 𝑇 𝑛,[𝑎,𝑏] (︀ 𝜇 𝑘,𝑛,[𝑎,𝑏] )︀ ∑︁ ′ 0⩽𝑘⩽𝑁 -1 𝑐 𝑘 𝑇 𝑘,[𝑎,𝑏] (𝑥) ∈ R 𝑁 -1 [𝑥] with 𝑐 𝑘 = 2 𝑁 ∑︁ 0⩽ℓ⩽𝑁 -1 𝑓 (𝜇 ℓ,𝑁 -1,[𝑎,𝑏] )𝑇 𝑘,[𝑎,𝑏] (𝜇 ℓ,𝑁 -1,[𝑎,𝑏] ) for 𝑘 = 0, . . . , 𝑁 -1, = 2 𝑁 ∑︁ 0⩽ℓ⩽𝑁 -1 𝑓 (𝜇 ℓ,𝑁 -1,[𝑎,𝑏] )𝑇 𝑘 (𝜇 ℓ,𝑁 -1 ). The symbol ∑︁ ′ means that the first coefficient has to be halved. Note that, if we introduce ̂︀ 𝑓 : 𝑧 ∈ [-1, 1] ↦ → 𝑓 (︀ 𝑧 𝑏-𝑎 2 + 𝑎+𝑏 2 )︀ , the coefficients 𝑐 𝑘 are also the coefficients of the interpolation polynomial in R 𝑁 -1 [𝑥] of ̂︀ 𝑓 at the Chebyshev nodes of the first kind. 4.1.2. Uniform approximation using interpolation polynomials. Let 𝜌 > 1, if 𝑎 < 𝑏 are two real numbers, we define the ellipse ℰ 𝜌,𝑎,𝑏 = {︂ 𝑏 -𝑎 2 𝜌𝑒 𝑖𝜃 + 𝜌 -1 𝑒 -𝑖𝜃 2 + 𝑎 + 𝑏 2 , 𝜃 ∈ [0, 2𝜋] Let 𝑁 ∈ N, 𝑁 ⩾ 1, we also define 𝜂 𝜌,0 = 1 and 𝜂 𝜌,𝑘 = 𝜌 2 + 1 𝜌 2 -1 for 𝑘 = 1, . . . , 𝑁 -1. The following two propositions establish Cauchy's inequalities for interpolation polynomials at (scaled) Chebyshev nodes. Proposition 4.1. Let 𝜌 > 1, 𝑎 < 𝑏, let 𝑁 ∈ N, 𝑁 ⩾ 1, 𝑓 be a function analytic in a neighbourhood of 𝐸 𝜌,𝑎,𝑏 , the coefficients 𝑐 𝑘 , 𝑘 = 0, . . . , 𝑁 -1, of the interpolation polynomial 𝑝 𝑁 -1 of 𝑓 at the (scaled) Chebyshev nodes of the first kind over [𝑎, 𝑏], (𝜇 𝑘,𝑁 -1,[𝑎,𝑏] ) 0⩽𝑘⩽𝑁 -1 satisfy |𝑐 𝑘 | ⩽ 2 𝑀 𝜌,𝑎,𝑏 (𝑓 ) 𝜌 𝑘 𝜂 𝜌,𝑘 for 𝑘 = 0, . . . , 𝑁 -1, = 𝑃 (𝑥) = Moreover, we have

  𝑏2 (𝑓 ) = max 𝑧∈ℰ 𝜌 1 ,𝑎 1 ,𝑏 1 ,𝜌 2 ,𝑎 2 ,𝑏 2 |𝑓 (𝑧)|. Moreover, we have

	where 𝑀 𝜌1,𝑎1,𝑏1,𝜌2,𝑎2,		
	|𝑐 𝑘1,𝑘2 | ⩽ 4	𝑀 𝜌1,𝑎1,𝑏1,𝜌2,𝑎2,𝑏2 (𝑓 ) 𝜌 𝑘1 2 1 𝜌 𝑘2	𝜂 𝜌1,𝑘1 𝜂 𝜌2,𝑘2 ,

2 -1,

quick reminder on Euclidean lattices and the LLL algorithm. In

  Let 𝑀 ∈ N, 𝑀 ⩾ 1, a lattice of R 𝑀 is a discrete subgroup of R 𝑀 ; equivalently, a lattice 𝐿 ⊂ R 𝑀 is the set of integer linear combinations of a family (𝑏 1 , . . . , 𝑏 𝑁 ) of R-linearly independent vectors of R 𝑀 . We shall then say that (𝑏 𝑖 ) 1⩽𝑖⩽𝑁 is a basis of 𝐿, and that 𝑁 ⩽ 𝑀 is the dimension (or the rank) of 𝐿. The sets 𝐵 = (𝑏 𝑖 ) 1⩽𝑖⩽𝑁 , 𝐶 = (𝑐 𝑖 ) 1⩽𝑖⩽𝑁 are two bases of the same lattice, given in (row) matrix form if and only if there exists 𝑈 ∈ ℳ 𝑁 (Z), det 𝑈 ∈ {±1}, such that 𝐶 = 𝑈 𝐵. As a consequence, the quantity (det 𝐶𝐶 𝑡 ) 1/2 = (det 𝐵𝐵 𝑡 ) 1/2 is independent of the basis and is associated to the lattice itself -we shall call it the volume of the lattice and denote it by vol 𝐿.

	See Appendix A.	□
	4.2. A this subsection, we shortly review basic facts concerning lattices and lattice basis
	reduction algorithms.	
	Definition 4.3. Proposition 4.4.	

  1 , 𝑋 2 ], for any 𝑥 ∈ [𝑎, 𝑏], 𝑦 ∈ [𝑓 (𝑥) -1/𝑣, 𝑓 (𝑥) + 1/𝑣], we know,

	from the mean value theorem, that there exists 𝑧 between 𝑣𝑓 (𝑥) and 𝑣𝑦 (hence
	𝑧 ∈ [𝑣𝑓 (𝑥) -1, 𝑣𝑓 (𝑥) + 1]), such that		
	(5.1)	𝑃 (𝑢𝑥, 𝑣𝑓 (𝑥)) -𝑃 (𝑢𝑥, 𝑣𝑦) = 𝑣(𝑓 (𝑥) -𝑦)	𝜕𝑃 𝜕𝑦	(𝑢𝑥, 𝑧).
	Then we compute, by combining Chebyshev interpolation and lattice reduction, two polynomials 𝑃 0 , 𝑃 1 ∈ Z[𝑋 1 , 𝑋 2 ] such that, for 𝑖 = 0, 1, for all 𝑥 ∈ [𝑎, 𝑏], 𝑧 ∈ [𝑣𝑓 (𝑥) -1, 𝑓 (𝑥) + 1)], |𝑃 𝑖 (𝑢𝑥, 𝑣𝑓 (𝑥))| < 1/2, while ⃒ ⃒ ⃒ 𝜕𝑃𝑖 𝜕𝑦 (𝑢𝑥, 𝑧)

  Two real numbers 𝑎 < 𝑏, 𝑓 a transcendental function analytic in a complex neighbourhood of [𝑎, 𝑏], three positive integers 𝑑, 𝑢, 𝑣, two real numbers 𝜌 > 1, 𝜔 0 ⩾ 0 such that 4𝜌 𝜔0 𝑣𝑀 𝜌,𝑎,𝑏 (𝑓 ) < 𝜌 𝑁 -1 (𝜌 -1), where 𝑁 = (𝑑 + 1)(𝑑 + 2)/2. 𝑀 𝑐 , 𝑀 𝑟 ) ← Algorithm 1 (𝑎, 𝑏, 𝑓, 𝑑, 𝑢, 𝑣, 𝜌, 𝜔 0 ) 2: 𝑀 𝐿𝐿𝐿 ← LLL-reduce the rows of (𝑀 𝑐 | 𝑀 𝑟 ) 3: 𝑈 ← 𝑀 𝐿𝐿𝐿,𝑟 𝑀 -1 𝑟 // This is the LLL change of basis matrix; 𝑀 𝐿𝐿𝐿,𝑟 is the right part of the matrix 𝑀 𝐿𝐿𝐿 . Note that 𝑀 𝑟 is diagonal.

	Algorithm 2 1D approach to Problem 2.6	
	Input: ∈ ℒ, for all integers 𝑌 , we have
	⃒ ⃒ 𝑓	(︀ 𝑋 𝑢	)︀	-𝑌 𝑣	⃒ ⃒ ⩾ 1/𝐾. The bound 𝐾 is guaranteed to be at most 𝑑𝜌 𝑁 -𝜔 0 -1 (𝜌-1) 2𝑀 𝜌,𝑎,𝑏 (𝑓 )	.

Output: If successful, return 𝐾 ∈ R >0 and a list ℒ of integers, #ℒ ⩽ 𝑑 2 , such that for all integers 𝑋, 𝑎 ⩽ 𝑋/𝑢 ⩽ 𝑏 and 𝑋 / 1: (tprec,

  of monomials, ordered in a way compatible with Algorithm 1, Steps 7-9.

6:

  3/2 < 2 4𝑁for 𝑑 ⩾ 1, from which the proposition follows. It suffices to apply Proposition 5.13, Corollary 5.12, Theorem 5.8 and Corollary 5.11 (in order to get the estimate on |𝑓 (𝑋/𝑢) -𝑌 /𝑣| which is part of the output of Algorithm 2). □

□ Corollary 5.14. Under the assumptions of Proposition 5.13, Algorithm 2 over [𝑎, 𝑏] produces at Step 6 two polynomials 𝑃 0 , 𝑃 1 such that max 𝑥∈[𝑎,𝑏] |𝑃 𝑖 (𝑢𝑥, 𝑣𝑓 (𝑥))| < 1/2 for 𝑖 ∈ {0, 1}. In particular, Algorithm 2 never reaches Step 20 and its output is valid.

Proof.

  . It is a corollary of Theorem C.9, see Appendix C.

□

Proposition 5.16. On input 𝑎, 𝑏, 𝑓, 𝑑, 𝑢, 𝑣, 𝜌, 𝜔 0 , assuming that evaluating 𝑓 in precision 𝑃 costs 𝐶 𝑓,𝑃 , and a DCT of size 𝑛 in precision 𝑞 has cost 𝑂(𝑛M(𝑞)), Algorithm 1 has complexity

𝑂(𝑑 4 M(p) + 𝑑 2 𝐶 𝑓,p ),

where p is as in Lemma 5.15.

Proof. The most costly steps of Algorithm 1 appear in the loop 7-17 which can be performed using 𝑂(𝑑 2 ) evaluations of 𝑓 at precision 𝑂(tprec), and 𝑂(𝑑 4 ) multiplications of real numbers in precision 𝑂(tprec), plus 𝑂(𝑑 2 ) DCTs of size 𝑁 in precision tprec.

□

  is 𝑂(1/𝑑) and, overall, this term is absorbed by the 𝑂 notation. □ Remark 5.19. If one is only interested with the smallest possible complexity, it should be noted that the exponent in (5.16) is minimal for 𝜔 0 ∈ [1, 2], and equal in this

	case to 8𝑁/(3(𝑑 + 3)(𝑑 2 + 3𝑑 -2)); for 𝜔 0 = 2 we then get 𝑤 = 𝑂	(︀	(𝑢𝑣) 4𝑁/(3(𝑑+3)) )︀	.

  See for what value of 𝑑 we can expect to treat a whole interval [𝛼, 𝛽] at once; notice that better results will be obtained later (Subsection 5.5.4) on if 𝑓 is entire and we have control on its growth at infinity; • Give a simplified form of the estimates of Theorem 5.18, which, in reason of the technical parameter 𝜔 0 , are rather unpleasant and unintuitive.

					4(1+𝑜(1))	)︂
					3(1-𝜆 2 )𝑑
	calls to Algorithm 2 with parameter 𝑑, giving a bound
	(5.19)	𝑤 = 𝑂	(︁	(𝑢𝑣)	2𝑑(1+𝑜(1)) 3(1+𝜆)

Corollary 5.21. Let again 𝛼, 𝛽 be fixed real numbers. For 𝑑 → ∞, for 𝜔 0 = 𝜆𝑁 (1 + 𝑜(1)), 𝜆 ∈ [0, 1), Problem 2.6 can heuristically be solved for 𝑢, 𝑣 → ∞ over [𝛼, 𝛽] using (5.18) 𝑂 (︂ (𝛽 -𝛼)(𝑢𝑣)

  1 and 𝑎 2 < 𝑏 2 , and 𝑓 : [𝑎 1 , 𝑏 1 ] → R a function

	that is analytic in a neighbourhood of [𝑎 1 , 𝑏 1 ]. In this section, we develop a heuristic
	algorithmic approach to determine the integers 𝑋, 𝑌 such that
	(6.1)	𝑋/𝑢 ∈ [𝑎

1 , 𝑏 1 ] and 𝑎 2 < 𝑌 /𝑣 -𝑓 (𝑋/𝑢) < 𝑏 2 . Note that this is a mere reformulation of Problem 2.6: let 𝑤 ∈ N ∖ {0}, we set [𝑎, 𝑏] = [𝑎 1 , 𝑏 1 ] and 𝑏 2 = -𝑎 2 = 1/𝑤. Actually, without loss of generality, we can assume 𝑏 2 = -𝑎 2 by replacing 𝑓 by 𝑓 + (𝑎 2 + 𝑏 2 )/2.

  𝜌1,𝑎1,𝑏1,𝜌2,𝑎2,𝑏2 . Let 𝑁 1 , 𝑁 2 ⩾ 2, and 𝑁 ⩽ 𝑁 1 𝑁 2 . Let 𝑓 0 , . . . , 𝑓 𝑁 -1 be functions analytic in a neighbourhood of 𝐸 𝜌1,𝑎1,𝑏1,𝜌2,𝑎2,𝑏2 . We introduce the 𝑁 × (𝑁 1 𝑁 2 + 𝑁 ) matrix 𝐴 = (𝐴 1 |𝐴 2 ), defined by

	we recall from Section 4.1.2, ℰ 𝜌1,𝑎1,𝑏1,𝜌2,𝑎2,𝑏2 = ℰ 𝜌1,𝑎1,𝑏1 × ℰ 𝜌2,𝑎2,𝑏2 and 𝐸 𝜌1,𝑎1,𝑏1,𝜌2,𝑎2,𝑏2 = 𝐸 𝜌1,𝑎1,𝑏1 × 𝐸 𝜌2,𝑎2,𝑏2 . We also recall 𝑀 𝜌1,𝑎1,𝑏1,𝜌2,𝑎2,(6.3)

𝑏2 (𝑔) := max 𝑧∈ℰ 𝜌 1 ,𝑎 1 ,𝑏 1 ,𝜌 2 ,𝑎 2 ,𝑏 2 |𝑔(𝑧)| if 𝑔 is analytic in a neighbourhood of 𝐸

  𝒦 𝑠 and ∑︀ (𝑖,𝑗)∈𝒦𝑠 (𝑖 + 𝑗𝛾). Let 𝑠 ∈ R, 𝑠 < 𝑁 1 and 𝛾 ⩾ 𝑁 1 /𝑁 2 ⩾ 1. We have

	and								
	(6.5)	∑︁ (𝑖,𝑗)∈𝒦𝑠	(𝑖 + 𝑗𝛾) =	⌊𝑠/𝛾⌋ ∑︁ 𝑗=0	(1 + ⌊𝑠 -𝑗𝛾⌋)	(︂ 𝑗𝛾 +	⌊𝑠 -𝑗𝛾⌋ 2	)︂	.
	This implies							
	(6.6)	(1 + ⌊𝑠/𝛾⌋)(𝑠 -𝛾⌊𝑠/𝛾⌋/2) ⩽ card 𝒦 𝑠 ⩽ (1 + ⌊𝑠/𝛾⌋)(1 + 𝑠 -𝛾⌊𝑠/𝛾⌋/2)
	and								
	(6.7)	(1 + ⌊𝑠/𝛾⌋)	6𝑠(𝑠 -1) + 𝛾⌊𝑠/𝛾⌋(3 -𝛾 -2𝛾⌊𝑠/𝛾⌋) 12	⩽	(𝑖,𝑗)∈𝒦𝑠 ∑︁	(𝑖 + 𝑗𝛾)
				⩽ (1 + ⌊𝑠/𝛾⌋)	6𝑠(𝑠 + 1) + 𝛾⌊𝑠/𝛾⌋(3 -𝛾 -2𝛾⌊𝑠/𝛾⌋) 12	.
	Lemma 6.3. (6.4) card 𝒦 𝑠 =	⌊𝑠/𝛾⌋ ∑︁	(1 + ⌊𝑠 -𝑗𝛾⌋) = (1 + ⌊𝑠/𝛾⌋) +	⌊𝑠/𝛾⌋ ∑︁	⌊𝑠 -𝑗𝛾⌋
				𝑗=0						𝑗=0
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By sum of multisets, we mean that the multiplicity of an element of the union is the sum of its multiplicities in the multisets.

Proof. First, note that 𝑠/𝛾 < 𝑁 1 /𝛾 ⩽ 𝑁 1 /(𝑁 1 /𝑁 2 ) = 𝑁 2 , hence ⌊𝑠/𝛾⌋ ⩽ 𝑁 2 -1.

Let (𝑖, 𝑗) ∈ 𝒦 𝑠 , the largest possible value of 𝑗 corresponds to the case 𝑖 = 0: we then have 𝑗𝛾 ⩽ 𝑠, that is to say 𝑗 ⩽ ⌊𝑠/𝛾⌋. Now, in order to count the elements of 𝐾 𝑠 , we enumerate, for 𝑗 = 0, . . . , ⌊𝑠/𝛾⌋, the elements of each slice {𝑖+𝑗𝛾 ⩽ 𝑠, 𝑖 ∈ [0, 𝑁 1 -1]}: there are 1 + ⌊𝑠 -𝑗𝛾⌋ such elements, which proves (6.4). Now, for 𝑗 = 0, . . . , ⌊𝑠/𝛾⌋, we sum the values 𝑖 + 𝑗𝛾 for 𝑖 in the slice {𝑖

  𝑂[START_REF] Ajtai | The Shortest Vector Problem in L 2 is NP-hard for Randomized Reductions (Extended Abstract)[END_REF].

	Proof. See Corollary D.3.	□
	Note that for 𝑥 ⩾ 1, we prove in Lemma D.4 the inequalities 𝜓(𝑥) -2 √ [-5/6, 0] and observe numerically that 𝜓(𝑥) -2 √ 2𝑥/3 ∈ [-1/2, -0.44], meaning 2𝑥/3 ∈ that for our purposes 𝜓(𝑥) is very well approximated by 2 √ 2𝑥/3 -1/2.

Proposition 6.6. Let 𝛾 ∈ R such that 3 ⩽ 𝛾 ⩽ 𝑁 . Put 𝑁 1 = ⌊ √ 2𝑁 𝛾⌋ and 𝑁 2 = ⌈ √︀ 2𝑁/𝛾⌉. Then, we have 𝛾 ⩾ 𝑁 1 /𝑁 2 and Ω 𝛾 (𝑁, 𝑁 1 , 𝑁 2 ) = 𝜓(𝑁/𝛾)𝑁 𝛾 + 𝑂(𝑁 ).

  2 , 𝑏 1 , 𝑏 2 are bounded, and we choose 𝐾 1 = 2(𝑏 1 -𝑎 1 ), 𝐾 2 = 1 and 𝜌 2 = 𝜌𝛾 1 . The heuristic nature of this result comes from the possibility that the two polynomials obtained in Algorithm 4 are not coprime, in which case one cannot recover the solutions 𝑋, 𝑌 from those two polynomials.Finally, we can take 1/𝑤 = 𝑏 2 -𝑎 2 , thus the upper bound on 𝑤 is 𝑂((𝑏 1 -𝑎 1 ) -𝛾 ), from which the second part of the result follows.□ If, on the other hand, 𝛾 = 𝑜(𝑁 ), 𝑁/𝛾 tends to infinity and we can use the 𝑛 𝐼 of intervals and on 𝑤 of the respective forms

	asymptotic estimate (see Proposition 6.5) 𝜓(𝑁/𝛾) = 2 3	√︁	2𝑁 𝛾 + 𝑂(1) to get
	a bound on the number				
	Remark 6.20. To get a better feeling of this result we should distinguish two cases:
	• We let 𝛾 tend to infinity as 𝑁/𝜅, 𝜅 ⩾ 1. Then, we obtain an upper
	bound for the number of intervals 𝑂	(︁	(𝛽 -𝛼)(𝑢𝑣)	2𝜅 3𝑑𝜓(𝜅) (1+𝑂(1/𝑑))	)︁	, with
	𝑤 = (𝑢𝑣)	𝑑 3𝜓(𝜅) (1+𝑂(1/𝑑)) .				

•

Table 2 .

 2 Comparison of the main methods of this paper and[START_REF] Stehlé | On the randomness of bits generated by sufficiently smooth functions[END_REF] Concerning[START_REF] Stehlé | On the randomness of bits generated by sufficiently smooth functions[END_REF], we have introduced a parameter 𝜉 for a clearer comparison; namely, we have put (with Stehlé's notations) 𝑛 1 -𝑡 = log 2 (𝑢𝑣)/(2 √ 𝜉), which gives 𝑛 2 + 𝑚 = √ 𝜉 log(𝑢𝑣)/2. Note that Stehlé's 𝛼 corresponds to our 𝑑, while his 𝑑 is a technical parameter with a completely different meaning of our 𝑑; finally, Stehlé's 𝑡 corresponds to our notations 𝑝 -1 -log 2 (𝑏 1 -𝑎 1 ). To avoid any confusion, we will denote them 𝑑 Ste , 𝛼 Ste and 𝑡 Ste in the sequel.Remark 7.1. Table2only estimates the exponential part of the complexity; it would remain to estimate the polynomial part, which is dominated by the cost of lattice basis reduction. Akhavi-Stehlé's trick reduces greatly the influence of the dimension, but the size of the integers involved in the different methods differ. Roughly speaking, and ignoring the dependency on 𝑓, 𝑎, 𝑏 which is similar for the two methods:• in the case of the univariate method, the size of the integers involved is ≈ tprec + 𝑑 log(max(𝑢, 𝑣)) ≈ 𝑑 log max(𝑢, 𝑣) + 𝑁 log 𝜌, which is of the order of 𝑂(𝑑 log max(𝑢, 𝑣) + log 𝑤). As for this method, log(𝑤) = 𝑂(𝑑 log(𝑢𝑣)), the size of the integers is 𝑂(𝑑 log max(𝑢, 𝑣)); • in the case of the bivariate method, the size of the integers involved is ≈ 𝑑 log(max(𝑢, 𝑣)) + tprec ≈ 𝑑 log max(𝑢, 𝑣) + log max(𝜌 𝑁1 1 , 𝜌 𝑁2 2 ), whereas the bound on 𝑤 is of the order of 𝜌 2 ; as we expect, for optimal choices of parameters, that 𝑁 1 log 𝜌 1 and 𝑁 2 log 𝜌 2 have the same order of magnitude, this size is thus 𝑂(𝑑 log max(𝑢, 𝑣) + 𝑁 2 log 𝜌 2 ) = 𝑂(𝑑 log max(𝑢, 𝑣) + 𝑁 2 log 𝑤). • in Stehlé's paper, the integers involved are of the order of (𝑀 𝑁 2 𝑁 𝑑 Ste

	As 𝑁 2 ≍ 𝑑/	√ 𝛾, this is 𝑂(𝑑	(︀	log max(𝑢, 𝑣) + log 𝑤/ √ 𝛾	)︀	);

Table 4 .

 4 Algo. 3 and 4: exp over the binade [1/4, 1/2)

		28 24	2 2 36 7/2 35 18.8 ≈ 1540 bits 22.63 * years
	6𝑝	12 91 60	3 2 29 59/2 30 23.4 ≈ 3080 bits 3.41 * years
	8𝑝	8 45 39	2 2 30 15/2 29 30.1 ≈ 2065 bits	203 * days
	8𝑝	12 91 59	3 2 26	2 -21	34.8 ≈ 2870 bits	137 days
	10𝑝	10 66 59	2 2 25 7/2 23 45.2 ≈ 2590 bits	25.8 days
	10𝑝	12 91 61	3 2 24 7/2 22 47.1 ≈ 3260 bits	37.7 days
	12𝑝	12 91 80	2 2 21 5/2 19 64.6 ≈ 3020 bits	8.7 days

log 2

 2 (𝑤) 𝛼 Ste 𝑑 Ste 𝑡 Ste

			‖𝑀 |‖ ∞	Timing	Comparison with
					this paper
					‖𝑀 |‖ ∞ Timing
	6𝑝	6	16 78.7 ≈ 3870 bits	169 * years	×2.5	×7.5
	6𝑝	12	20 86.2 ≈ 7780 bits	334 * years	×2.5	×98
	8𝑝	8	30 86.3 ≈ 7220 bits 16.82 * years	×3.5	×30
	8𝑝	12	30 90.1 ≈ 10230 bits 35.01 * years	×3.5	×93
	10𝑝	10	40 90.8 ≈ 11150 bits 7.37 * years	×4.3	×104
	10𝑝	12	55 93.2 ≈ 13545 bits 10.53 * years	×4.2	×102
	12𝑝	12	60 94.6 ≈ 16255 bits 3.81 * years	×5.4	×160

Table 5 .

 5 Stehlé's BaCSeL parameters and timings for the exponential function over the binade [1/4, 1/2)

  1, 1], we know [73, Chap. VI] that 𝑓 admits Let 𝑁 ∈ N, 𝑁 ⩾ 1, Let 𝑓 be Lipschitz continuous over [-1, 1],its Chebyshev coefficients (𝑎 𝑘 ) 𝑘⩾0 and the coefficients 𝑐 𝑘 , 𝑘 = 0, . . . , 𝑁 -1, of the interpolation polynomial 𝑝 𝑁 -1 of 𝑓 at the Chebyshev nodes of the first kind satisfy, for 𝑘 = 0, . . . , 𝑁 -1,

	a series expansion	∑︁ ′	𝑛⩾0	𝑎 𝑛 𝑇 𝑛 (𝑥) in 𝐿 2	(︀	[-1, 1], (1 -𝑥 2 ) -1/2 )︀	which converges
	uniformly to 𝑓 . We now state a straightforward consequence of Proposition A.1.
	Corollary A.2.						

  by the maximum principle. Now, we turn to the estimate on the remainder. Corollary A.2 yields, for any𝑥 ∈ [-1, 1], 𝑝 𝑇 𝑚 (𝑥))where 𝑚 and 𝑝 are defined as in Proposition A.[START_REF] Ajtai | The Shortest Vector Problem in L 2 is NP-hard for Randomized Reductions (Extended Abstract)[END_REF]. Hence, we have, for any 𝑥 ∈ [-1, 1], 𝑝 𝑇 𝑚 (𝑥)| Regarding the two variable case, we start by establishing results analogous to [67, Thms 8.1 and 8.2]. Let 𝑓 in 𝐿 2

	|𝑓 (𝑥) -𝑝 𝑁 -1 (𝑥)| ⩽	∑︁					
		⩽ 2	∑︁ 𝑘⩾𝑁	|𝑎 𝑘 | ⩽ 4𝑀 𝜌 (𝑓 )	∑︁ 𝑘⩾𝑁	𝜌 -𝑘 =	4𝑀 𝜌 (𝑓 ) 𝜌 𝑁 -1 (𝜌 -1)	.
								□

𝑓 (𝑥) -𝑝 𝑁 -1 (𝑥) = ∑︁ 𝑘⩾𝑁 𝑎 𝑘 (𝑇 𝑘 (𝑥) -(-1) 𝑘⩾𝑁 |𝑎 𝑘 ||𝑇 𝑘 (𝑥) -(-1)

  Let 𝜌 1 , 𝜌 2 > 1, 𝑓 be a function analytic in a neighbourhood of 𝐸 𝜌1,𝜌2 , the coefficients 𝑎 𝑛1,𝑛2 , 𝑛 1 , 𝑛 2 ⩾ 0, of the Chebyshev series of 𝑓 satisfy, for all 𝑛 1 and 𝑛 2 ∈ N,

							)︀	, we
	denote by	∑︁ ′	𝑛1⩾0	∑︁ ′	𝑛2⩾0	𝑎 𝑛1,𝑛2 𝑇 𝑛1 (𝑥)𝑇 𝑛2 (𝑦) its series expansion.
	Proposition A.4. (A.3)			|𝑎 𝑛1,𝑛2 | ⩽ 4	𝑀 𝜌1,𝜌2 (𝑓 ) 𝜌 𝑛1 1 𝜌 𝑛2

2

, where 𝑀 𝜌1,𝜌2 (𝑓 ) = max 𝑧∈ℰ𝜌 1 ,𝜌 2 |𝑓 (𝑧)|. Moreover, we have, for all 𝑛 1 and 𝑛 2

  last statement is obvious. □ 𝑧 in a suitable neighbourhood of 𝐸 𝜌 . The coefficients 𝑐 𝑘 are also the coefficients of the interpolation polynomial in R 𝑁 -1 [𝑥] of ̂︀ 𝑓 at the Chebyshev nodes of the first kind. Therefore, we obtain Proposition 4.1 by applying Proposition A.3 to ̂︀ 𝑓 and Lemma A.6. Proof of Proposition 4.2. It is identical to the previous one: it suffices to introduce

	Proof of Proposition 4.1. We introduce ̂︀ 𝑓 : ̂︀ 𝑓 (𝑧) = 𝑓 for any ︀ (︀ 𝑧 𝑏-𝑎 2 + 𝑎+𝑏 2 )︀ 𝑓 : ̂︀ 𝑓 (𝑧 1 , 𝑧 1 ) = 𝑓 (︀ 𝑧 1 𝑏1-𝑎1 2 + 𝑎1+𝑏1 2 , 𝑧 2 𝑏2-𝑎2 2 + 𝑎2+𝑏2 2

  -𝜆 2 ) 2 + 𝜀 ′

	3(1 -𝜆 2 )𝑑 2	-	4(1 + 𝑜(1)) 3(1 -𝜆 2 )𝑑	(︂	log(𝑢𝑣) +	9(1 -𝜆 2 ) 2 𝑑 2 16	)︂	→ ∞,
	for which it suffices to have					
		𝑑 2 ⩾	(︂	16 9(1 )︂	log(𝑢𝑣),

  1.Let 𝑥, 𝑦 be real numbers and 𝑋, 𝑌 be fixed-point numbers in precision p which are approximations of those, such that |𝑋 -𝑥| ⩽ 𝜀 𝑥 , |𝑌 -𝑦| ⩽ 𝜀 𝑦 , with max(𝜀 𝑥 , 𝜀 𝑦 ) < 1/2. Then, if ⊕ and ⊗ are the arithmetic operations of our computational model, we have|(𝑋 ⊕ 𝑌 ) -(𝑥 + 𝑦)| ⩽ 𝜀 𝑥 + 𝜀 𝑦 , (C.1) |𝑋 ⊗ 𝑌 -𝑥 • 𝑦| ⩽ 𝜀 𝑥 𝑌 + |𝑥|𝜀 𝑦 + 2 -p ⩽ 𝜀 𝑥 |𝑦| + |𝑥|𝜀 𝑦 + 𝜀 𝑥 𝜀 𝑦 + 2 -p . (C.2)Further, if 𝑍 1 is the fixed point result of the operation exp(𝑋), and if 𝑔 is a 𝐶 1 function over [𝑎, 𝑏], 𝑍 2 the fixed point result of the operation 𝑔(𝑋), we have:(C.3) |𝑍 1 -exp(𝑥)| ⩽ 2 -p + 2𝜀 𝑥 exp(𝑥), |𝑍 2 -𝑓 (𝑥)| ⩽ 2 -p + 𝜀 𝑥 max

[𝑥-𝜀,𝑥+𝜀]

  4. Assume that 𝜀 ⩽ 1/𝑑. Let 𝛼 be a real number with |𝛼| ⩽ 𝐵 𝑥 , and 𝛽 be a real number with |𝛽| ⩽ 𝐵 𝑓 . If 𝑋 is a fixed-point approximation of 𝑢𝛼 with error ⩽ 𝜀 and 𝑌 is a fixed-point approximation of 𝑣𝛽 with error ⩽ 𝜀, and if 𝑋 𝑘 and 𝑌 ℓ are defined as in Proposition C.3, we define 𝑍= 𝑋 𝑘 ⊗ 𝑌 ℓ . If 𝑘 + ℓ ⩽ 𝑑, we have |𝑍 -(𝑢𝛼) 𝑘 (𝑣𝛽) ℓ | ⩽ 2 -p + 2𝑑𝜀(𝐶 + 1) 𝑑-1 .Proof. By Proposition C.3, the error on 𝑋 𝑘 compared to (𝑢𝛼) 𝑘 is ⩽ 𝑘𝜀(𝐶 + 1) 𝑘-1 ; the error on 𝑌 ℓ compared to (𝑣𝛽) ℓ is at most ⩽ ℓ𝜀(𝐶 + 1) ℓ-1 . Finally, we have|𝑍 -(𝑢𝛼) 𝑘 (𝑣𝛽) ℓ | ⩽ |𝑍 -𝑋 𝑘 • 𝑌 ℓ | + |𝑋 𝑘 -(𝑢𝛼) 𝑘 ||𝑌 ℓ | + |𝑢𝛼| 𝑘 |𝑌 ℓ -(𝑣𝛽) ℓ | ⩽ 2 -p + 𝑘𝜀(𝐶 + 1) 𝑘-1 (𝐶 ℓ + ℓ𝜀(𝐶 + 1) ℓ-1 ) + ℓ𝜀(𝐶 + 1) ℓ-1 𝐶 𝑘 Proof. For 𝑥 ̸ ∈ Z, it is clear that 𝜙 is 𝒞 1 in a neighbourhood of 𝑥 and that 𝜙 ′ (𝑥) ⩾ 1.For 𝑥 in Z, we have 𝜙(𝑥) = lim 𝑡→𝑥 + 𝜙(𝑡) = (1 + 𝑥)𝑥/2, whereas lim 𝑡→𝑥 -𝜙(𝑡) = 𝑥(𝑥 -(𝑥 -1)/2) = 𝑥(𝑥 + 1)/2. This proves continuity, and the remaining assertions follow. Let 𝑘 ∈ N, 𝑎 ∈ R and 𝑔 𝑎 (𝑥) = (𝑥 + 1 -𝑎)(𝑥 + 𝑎)/2. We denote by 𝜙 𝑘 the restriction of 𝜙 to [𝑘, 𝑘 + 1]. For all 𝑥 ∈ [𝑘, 𝑘 + 1], (𝜙 𝑘 -𝑔 𝑎 ) ′ (𝑥) = 𝑘 + 1/2 -𝑥 : the function 𝜙 𝑘 -𝑔 𝑎 is decreasing over [𝑘, 𝑘 + 1/2] and increasing over [𝑘 + 1/2, 𝑘 + 1]. Now, we remark that 𝜙 𝑘 (𝑘) = 𝑔 0 (𝑘) and 𝜙 𝑘 (𝑘 + 1) = 𝑔 0 (𝑘 + 1), which yields 𝜙 𝑘 (𝑥) ⩾ 𝑔 0 (𝑥) = 𝑥(𝑥 + 1)/2 for all 𝑥 ∈ [𝑘, 𝑘 + 1], and 𝜙 𝑘 (𝑘 + 1/2) = 𝑔 1/2 (𝑘 + 1/2), which yields 𝜙 𝑘 (𝑥) ⩽ 𝑔 1/2 (𝑥) = (𝑥 + 1/2) 2 /2 for all 𝑥 ∈ [𝑘, 𝑘 + 1].The proof of the remaining inequalities is straightforward.□ Lemma D.2. Let 3 ⩽ 𝛾 ⩽ 𝑁 , 𝑠 = 𝛾𝜙 -1 (𝑁/𝛾), 𝑁 1 = ⌊ √ 2𝑁 𝛾⌋ and 𝑁 2 = ⌈ √︀ 2𝑁/𝛾⌉. We have 𝛾 ⩾ 𝑁 1 /𝑁 2 ⩾ 1, 𝑠 < 𝑁 1 and ⩽ 𝑁 1 𝑁 2 ⩽ (2 + √ 2)𝑁 . Assume that 𝑁 → ∞, then card 𝒦 𝑠 ⩽ 𝑁 + 𝑂(𝑠/𝛾). √︀ 2𝑁/𝛾⌉ = 𝑁 2 , hence 𝑁 1 /𝑁 2 ⩾ 1. Moreover, for any 𝛾 ⩾ 3, 𝑁 1 = ⌊ √︀ 2𝑁 𝛾⌋ ⩽ 𝛾 √︀ 2𝑁/𝛾 ⩽ 𝛾𝑁 2 . 𝑥 ⩾ 1, we have 𝑠 = 𝛾𝜙 -1 (𝑁/𝛾) < 𝛾( √︀ 2𝑁/𝛾 -3/8) < √ 2𝑁 𝛾 -1 ⩽ 𝑁 1 since 𝑁 ⩾ 𝛾 ⩾ 3.Therefore, we can apply Lemma 6.3: we have, from (6.6), card 𝒦 𝑠 = 𝛾(1+⌊𝑠/𝛾⌋)(𝑠/𝛾 -⌊𝑠/𝛾⌋/2)+𝑂(𝑠/𝛾) ⩽ 𝛾𝜙(𝑠/𝛾)+𝑂(𝑠/𝛾) ⩽ 𝑁 +𝑂(𝑠/𝛾). With the assumptions of Lemma D.2, put 𝜆 = 𝑁/𝛾. Then, we have Ω 𝛾 (𝑁, 𝑁 1 , 𝑁 2 ) = 𝜓(𝜆)𝑁 𝛾 + 𝑂(𝑁 ),

	√ 3/3) Proof. We have 2𝑁 ( √ 2𝑁 -√
				√︀	2𝑁 𝛾 -	√︀	2𝑁/𝛾 =
	Also,								
	(	√︀	2𝑁 𝛾 -1) √︀	2𝑁/𝛾 ⩽ 𝑁 1 𝑁 2 ⩽	√︀ 2𝑁 𝛾(1 +	√︀	2𝑁/𝛾),
	hence			√	2𝑁 (	√	2𝑁 -	√	3/3) ⩽ 𝑁 1 𝑁 2 ⩽ (2 +	√	2)𝑁
	since 𝑁 ⩾ 𝛾 ⩾ 2. Finally, from Lemma D.1 and the fact that (	√	8𝑥 + 1 -1)/2 <	√	2𝑥 -3/8 for
	all □
	Corollary D.3. where							
	𝜓(𝜆) =	1 + ⌊𝜙 -1 (𝜆)⌋ 12𝜆

⩽ 2 -p + 2𝑑𝜀(𝐶 + 1) 𝑑-1 , using (C.2) and ℓ𝜀 ⩽ 𝑑𝜀 ⩽ 1. □ √︀ 2𝑁 𝛾(1 -1/𝛾) ⩾ 1, since 𝑁 ⩾ 𝛾 ⩾ 3. It follows 𝑁 1 = ⌊ √ 2𝑁 𝛾⌋ ⩾ ⌈

  Finally, 𝜓 -1 (𝜇)/(𝑘 + 1) is the positive root of the equation|𝑄(𝑥, 𝑡)-𝑃 (𝑢𝑥, 𝑣(𝑓 (𝑥)+𝑡))| ⩽ 16 𝑀 𝜌1,𝑎1,𝑏1,𝜌2,𝑎2,𝑏2 (𝑃 )𝜌 1 𝜌 2 (𝜌 1 -1)(𝜌 2 -1) 𝑢 𝑘 𝑀 𝜌1,𝑎1,𝑏1 (𝑥) 𝑘 𝑣 ℓ 𝑀 𝜌1,𝑎1,𝑏1,𝜌2,𝑎2,𝑏2 (𝑓 (𝑥) + 𝑡) ℓ 𝜌 1 𝜌 2 (𝜌 1 -1)(𝜌 2 -1) |𝑃 (𝑢𝑥, 𝑣(𝑓 (𝑥) + 𝑡))| ⩽ max 𝑢 𝑘 𝑀 𝜌1,𝑎1,𝑏1 (𝑥) 𝑘 𝑣 ℓ 𝑀 𝜌1,𝑎1,𝑏1,𝜌2,𝑎2,𝑏2 (𝑓 (𝑥) + 𝑡) ℓ 𝜌 1 𝜌 2 (𝜌 1 -1)(𝜌 2 -1) 𝑢 𝑘 𝑀 𝜌1,𝑎1,𝑏1 (𝑥) 𝑘 𝑣 ℓ 𝑀 𝜌1,𝑎1,𝑏1,𝜌2,𝑎2,𝑏2 (𝑓 (𝑥) + 𝑡) ℓ 𝜌 1 𝜌 2 (𝜌 1 -1)(𝜌 2 -1)

	Proposition 4.2 shows that	
	max 𝑥∈[𝑎1,𝑏1] 𝑡∈[𝑎2,𝑏2]						(︂	1 𝜌 𝑁1 1	+	2 𝜌 𝑁2 1	)︂
	⩽ 16	∑︁						(︂	1 𝜌 𝑁1 1	+	2 𝜌 𝑁2 1	)︂
	hence						
	max						|𝑄(𝑥, 𝑡)|+
	𝑥∈[𝑎1,𝑏1]					𝑥∈[𝑎1,𝑏1]
	𝑡∈[𝑎2,𝑏2]					𝑡∈[𝑎2,𝑏2]
	16	∑︁						(︂	1 𝜌 𝑁1 1	+	2 𝜌 𝑁2 1	)︂
		⩽	∑︁	|𝑞 𝑗1,𝑗2 | + (recall that max
		0⩽𝑗1⩽𝑁1-1				
		0⩽𝑗2⩽𝑁2-1				
	so that					
			12 1 + 𝑘	𝜇𝜓 -1 (𝜇) = 6	(︂	𝜓 -1 (𝜇) 𝑘 + 1	+ 𝑘/2	)︂ 2	-𝑘 -2𝑘 2 .
					𝑋 2 + (𝑘 -2𝜇)𝑋 -	𝑘(𝑘 + 2) 12	= 0,
	which gives the explicit form		
			𝜓 -1 (𝜇) =	𝑘 + 1 2	(︁	2𝜇 -𝑘 +	√︀ 4𝜇(𝜇 -𝑘) + 2𝑘(2𝑘 + 1)/3	)︁	.
								□

2 -𝑘 -2𝑘 2 )︀ , 0⩽𝑘+ℓ⩽𝑑 |𝜆 𝑘,ℓ | 0⩽𝑘+ℓ⩽𝑑 |𝜆 𝑘,ℓ | 𝑥∈[𝑎𝑖,𝑏𝑖] |𝑇 𝑘,[𝑎𝑖,𝑏𝑖] (𝑥)| = 1 for all 𝑘) 16 ∑︁ 0⩽𝑘+ℓ⩽𝑑 |𝜆 𝑘,ℓ |

  1/2 ) + √︀ 𝑁 + 𝑁 1 𝑁 2 ‖Λ Â‖ 2 thanks to Cauchy-Schwarz inequality (E.1) ⩽ 1/(4𝑁1/2 ) + 1/ √︀ 𝑁 + 𝑁 1 𝑁 2 < 1 since 𝑁 ⩾ 3, 𝑁 1 , 𝑁 2 ⩾ 2. Remark E.1. The proof should be slightly adapted if the two-variable analogous of Subsection 5.3.3 is used. Recall that Âcomp = 2 -tpreccomp (𝑀 𝑐,comp 𝑀 𝑟,comp ), we obtain for 𝑗 = 0, . . . , 𝑁 + 𝑁 1 𝑁 2 -1, 𝑖] 1 2𝑁 from which follows ‖Λ𝐴‖ 1⩽ ‖Λ Â‖ 1 + (𝑁 + 𝑁 1 𝑁 2 ) ‖Λ Â2‖1 2𝑁 ⩽ ‖Λ Â‖ 1 + 1 2𝑁 1/2 . The upper bound in Inequality (E.1) becomes 1/(2𝑁 1/2 ) + 1/ √ 𝑁 + 𝑁 1 𝑁 2 < 1 since 𝑁 ⩾ 3, 𝑁 1 , 𝑁 2 ⩾ 2.Note also that the success condition (6.10) becomes

					□.
	(︂			
	max 𝑖=0,1	‖(𝑀 𝐿𝐿𝐿 [𝑖, 𝑗]) 0⩽𝑗⩽𝑁 +𝑁1𝑁2-1 ‖ 1	
		+ (𝑁 + 𝑁 1 𝑁 2 )	‖(𝑀 𝐿𝐿𝐿 [𝑖, 𝑗]) 𝑁1𝑁2⩽𝑗⩽𝑁 +𝑁1𝑁2-1 ‖ 1 2𝑁	)︂	< 2 tprec .

|(Λ𝐴)[𝑗] -(Λ Âcomp )[𝑗]| ⩽ ∑︁ 0⩽𝑘+ℓ⩽𝑑 |𝜆 𝑘,ℓ |2 1-tpreccomp ⩽ ∑︁ 0⩽𝑘+ℓ⩽𝑑 |𝜆 𝑘,ℓ | min 𝑖 Â2 [𝑖,

and the radix independent IEEE-854[START_REF] Cody | A proposed radix and word length independent standard for floating-point arithmetic[END_REF][START_REF]IEEE Standard for Radix Independent Floating-Point Arithmetic[END_REF] standard that followed

We mean here a representative curve of a transcendental analytic function.

A binade is an interval of the form [2 𝑘 , 2 𝑘+1 ) or (-2 𝑘+1 , -2 𝑘 ] for 𝑘 ∈ Z.

A few days for a binade, see Section 8.

Note that there is an inaccuracy in the statement of[START_REF] Stehlé | On the randomness of bits generated by sufficiently smooth functions[END_REF] Theorem 2] : √ 𝑛 should be replaced

This is the same definition as(5.3) where we have specialized the 𝑓 𝑖 .

https://arblib.org/

https://gitlab.inria.fr/mpfi

This denotes the set of polynomials in two indeterminates 𝑥 and 𝑡 with real coefficients, degree in 𝑥 less than 𝑁 1 and degree in 𝑡 less than 𝑁 2 .

https://www.sagemath.org/

Actually, it is the value of 𝑏 1 -𝑎 1 which matters and not the values of 𝑎 1 and 𝑏 1 .

https://gitlab.inria.fr/zimmerma/bacsel
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Another optimization comes from the use of Newton polynomials instead of monomials (as pointed in Section 5.3.4): for given values of 𝑑, 𝑁, 𝑁 1 , 𝑁 2 , it makes it possible to process larger subintervals.

The timings and the values of log 2 (𝑤) presented with a * are estimated ones: we performed our computations on a subinterval and then extrapolate the timing to address the whole binade, and the corresponding value of log 2 (𝑤).

We chose to limit the evaluation of our algorithms on feasible computations in binary128, namely computations that could be performed in real life, possibly using a large cluster. In terms of the bound on 𝑤, we have thus excluded the optimal case of the TMD, namely 𝑤 ≈ 2 2𝑝 , and have started at 𝑤 ≈ 2 6𝑝 . 8.1. Algorithms 1 and 2 in action: the TMD for the gamma function in binary128. Euler's gamma [START_REF] Temme | Special functions[END_REF]Chap. 3] is one of the functions of the C mathematical library. Very little is known about the Diophantine properties of its values at rational numbers: we have Γ(𝑘 + 1) = 𝑘! for any 𝑘 ∈ N and the transcendence of the numbers Γ(1/2), Γ(1/3), Γ(1/4), Γ(1/6), Γ(2/3), Γ(3/4), Γ(5/6) [START_REF] Waldschmidt | Transcendence of periods: the state of the art[END_REF]. We used our implementation of Algorithms 1 and 2 to address the TMD over [START_REF] Ajtai | The Shortest Vector Problem in L 2 is NP-hard for Randomized Reductions (Extended Abstract)[END_REF][START_REF] Akhavi | Speeding-up Lattice Reduction with Random Projections[END_REF], for directed rounding functions and for the precision 𝑝 = 113. More precisely, we address the following question, for various values of the parameters 𝑑 and 𝜔 0 : compute 𝑤 > 0 and all the integers 𝑋, 1 ⩽ 𝑋/2 𝑝-1 < 2 for which there exists 𝑌 ∈ Z satisfying

We report in Table 3 our results. We first set 𝑝 = 113, 𝑢 = 2 2), we have also studied the influence of 𝜔 0 , in order to build the experimental equivalent of the theoretical curves of Figure 1.

The exponential function is also part of the C mathematical library. We recall that Section 3.1 presents up-to-date, to the best of our knowledge, theoretical results regarding the TMD in the case of the exponential function. • for 𝑘 = 0, . . . , 𝑁 -1, the polynomials 𝑇 𝑘 , -𝑇 2𝑁 -𝑘 , -𝑇 2𝑁 +𝑘 , 𝑇 4𝑁 -𝑘 , 𝑇 4𝑁 +𝑘 , . . . take the same values at the 𝜇 𝑗,𝑁 -1 , 𝑗 = 0, . . . , 𝑁 -1,

the polynomials 𝑇 𝑗 and (-1) 𝑝 𝑇 𝑚 take the same values at the 𝜇 𝑗,𝑁 -1 , 𝑗 = 0, . . . , 𝑁 -1.

Proof. These are Theorems 1 and 2 of [START_REF] Xu | The Chebyshev points of the first kind[END_REF]. □ Appendix B. Proof of Theorem 5.27

For 𝑓 (𝑧) = exp(exp(𝑧)), we take 𝐾 = log 𝑑. A sufficient condition for success of Algorithm 2 is, in view of Proposition 5.13, (for 𝑑 large enough)

We have 𝑀 𝒟 𝑎,𝑏,𝐾 (𝑓 ) = 2 𝑂(𝑑) ; hence, as in the proof of Theorem 5.26, a sufficient condition is

for some 𝜀 ′ > 0, which follows from the assumption of the Theorem. The statement on 𝑤 follows from simple calculus using 𝑤 = 𝑂(𝐾 𝑁 (1-𝜆) ).

For

We can now combine the previous results to get an estimate of the precision required for 𝑀 𝑐 [𝑖, 𝑗]; for the sake of simplicity, we assume that approximations of the cos((𝑘 + 1/2)𝜋/𝑁 )'s to the precision 2 -p are known and that all are less than 1.

Theorem C.5. Assume that 𝑎, 𝑏, 𝑢, 𝑣 are exactly representable in our computation model. Then, the error on the values 𝑢𝐿 𝑐ℎ𝑒𝑏 [𝑖] and 𝑣𝑓 (𝐿 𝑐ℎ𝑒𝑏 [𝑖]) is at most 2 3-p 𝐶, and the error on the vector 𝐿 DCT is at most 𝑑(𝐶 + 1) 𝑑 2 4-p .

Proof. The computations of (𝑏 -𝑎)/2 and (𝑏 + 𝑎)/2 each incur an error ⩽ 2 -p . Hence, we deduce from Lemma C.1 that 𝐿 𝑐ℎ𝑒𝑏 [𝑖] is computed with an error

error on (𝑏-𝑎)/2 cos((𝑗+1/2)𝜋/𝑁 ) 

Corollary C.4 finally bounds the error on 𝑈 by 2

Hence, thanks to Proposition C.2, the overall error on DCT-II(𝑈 ) is at most

As 𝑁 is exactly representable, after multiplication by 2/𝑁 (or 1/𝑁 for the zero-th coefficient), we obtain, from (C.2), an error on 𝐿 DCT of at most (13𝑑 + 1)(𝐶 + 1) 𝑑 2 -p + 2 -p ⩽ 𝑑(𝐶 + 1) 𝑑 2 4-p .

□

Remark C.6. This theorem can be read as a proof in this case of the rule of thumb valid in this computational model that one should use as a precision "the final precision required, plus the size of the largest element encountered in the computation, plus a few guard bits".

We now turn to similar estimates for the remainders. For the sake of simplicity again, we shall assume that 𝜌, 𝜌 -1, 𝜔 are exactly representable in our computational model -which is, in practice, a very mild restriction. As 𝑁 is an integer and p ⩾ 0, 𝑁 and 𝑁 -1 are also exactly representable in our computational model.

We compute 𝑅 𝜔0 as exp(-(𝑁 -1 -𝜔 0 ) log 𝜌)/(𝜌 -1)/4).

Proposition C.7. Define 𝐶 ′ = max(1, (𝑁 -𝜔 0 )/(𝜌 -1)). Then, the quantity 𝑅 𝜔0 can be computed with error at most 7 • 2 -p 𝐶 ′ , and the quantitylog 2 (𝑅 𝜔0 ) + log 2 (𝑁 ) with error at most 5 • 2 -p (𝜌 -1)𝐶 ′ .

Proof. The error on (𝑁 -1

The error on 𝜌 -(𝑁 -1-𝜔0) is upper bounded by 2 -p (1+4𝐶 ′ (𝜌-1))𝜌 -(𝑁 -1-𝜔0) ⩽ 5• 2 -p 𝐶 ′ (𝜌-1)𝜌 -(𝑁 -1-𝜔0) . Then, we deduce from (C.3) that the error on 𝜌 -(𝑁 -1-𝜔0) /(𝜌-1) is ⩽ 2 -p (1 + 5𝐶 ′ 𝜌 -(𝑁 -1-𝜔0) ) ⩽ 6𝐶 ′ 2 -p , and division by 4 incurs a precision loss of 2 -p , so the total error on

Similarly, the error on (𝑁 -1 -𝜔 0 ) log 2 𝜌 is at most 2 -p (log 2 𝜌 + 𝑁 -1 -𝜔 0 + 1) ⩽ 3𝐶 ′ (𝜌 -1)2 -p , while the errors on log 2 (𝜌 -1) and log 2 (𝑁 ) are each at most 2 -p . Hence, the total error onlog 2 (𝑅 𝜔0 ) + log 2 (𝑁 ) is at most 5𝐶 ′ (𝜌 -1)2 -p . □

As we inherently have to allow for overestimation of the quantity 𝐵 𝑓 , as has been pointed, up to rounding upwards this overestimated quantity we shall assume that 𝐵 𝑓 is exactly representable.

Corollary C.8. The error on 𝑅

Proof. The error on 𝐵 𝑥 is at most, cf. (C.1), the sum of the error on (𝑎 + 𝑏)/2, which is ⩽ 2 -p , and the error on the product (𝑏 -𝑎)(𝜌 + 𝜌 -1 )/4, which is ⩽ 2 -p ((𝑏 -𝑎)/4 + 𝜌 + 𝜌 -1 + 2 -p ) + 2 -p ⩽ ((𝑏 -𝑎)/4 + 4𝜌)2 -p , cf. (C.2). Hence, the error on 𝑢𝐵 𝑥 is at most (𝐶 + 4𝑢𝜌)2 -p and the error on 𝑣𝐵 𝑓 at most 𝐶 • 2 -p ; thus, Corollary C.4 bounds the error on (𝑢𝐵 𝑥 ) 𝑘 (𝑣𝐵 𝑓 ) ℓ by 2 -p + 2𝑑(𝐶 + 4𝑢𝜌)(𝐶 + 1) 𝑑-1 2 -p ⩽ 3𝑑(𝐶 + 4𝑢𝜌)(𝐶 + 1) 𝑑-1 2 -p .

Further, note that max((𝑢𝐵 𝑥 ) 𝑘 , (𝑣𝐵 𝑓 ) ℓ ) ⩽ 𝐶 𝑑 and 𝑅 𝜔0 ⩽ 1/(𝜌 -1), and recall that the error on 𝑅 𝜔0 is at most 7 • 2 -p 𝐶 ′ (cf. Proposition C.7). Hence, finally, the error on the product is at most 

Appendix D. Lemmata on 𝜙, 𝜓

In this appendix, we group the facts concerning the function 𝜓 of Section 6.

Lemma D.1. Let 𝜙 be the function from [1, +∞) to [1, +∞) defined by 𝜙(𝑥) = (1 + ⌊𝑥⌋)(𝑥-⌊𝑥⌋/2). Then 𝜙 is continuous and strictly increasing, and defines a bijection from [1, +∞) to [1, +∞). For any 𝑥 ⩾ 1, we have 𝑥(𝑥 + 1)/2 ⩽ 𝜙(𝑥)

Proof. Lemma D.2 shows us that the assumptions of Lemma 6.3 are satisfied; we thus get ∑︁ (𝑖,𝑗)∈𝒦𝑠

Further, note that for our value of 𝑠, the term 𝑠(𝑁 -card 𝒦 𝑠 ) from Lemma 6.1 is 𝑂(𝑠 2 /𝛾), which is 𝑂(𝛾𝜙 -1 (𝜆) 2 ) = 𝑂(𝑁 𝜙 -1 (𝜆) 2 /𝜆) = 𝑂(𝑁 ), thanks to Lemma D.1. The result follows. □ Lemma D.4. For 𝑥 ∈ [1, +∞), we have

Proof. We have

For 𝑣 ⩽ 𝑢 < 𝑣 + 1, define

We maximize 𝐹 (𝑢, 𝑣) for fixed 𝑣, hence computing

.

By evaluating 2𝑢 2 -2𝑢𝑣 -𝑣 = 0 at 𝑣 and 𝑣 + 1, one checks that for fixed 𝑣, there is a unique 𝑢 0 ∈ [𝑣, 𝑣 + 1) such that 𝐹 (𝑢, 𝑣) increases over [𝑣, 𝑢 0 ] and decreases over [𝑣 0 , 𝑣 + 1). Hence, for 𝑢 ∈ [𝑣, 𝑣 + 1), -1 6 = min(𝐹 (𝑣, 𝑣)-2𝑣/3, 𝐹 (𝑣+1, 𝑣)-2(𝑣+1)/3) ⩽ 𝐹 (𝑢, 𝑣)-2𝑢/3 ⩽ 𝐹 (𝑢 0 , 𝑣)-2𝑢 0 /3.

Finally, we find

(note that the optimal bound for the latter is actually (1 -√ 3)/6, obtained for 𝑣 = 1, 𝑢 0 = (1 + √ 3)/2). Hence, we have

Simple numerical experiments suggest that actually 𝜓(𝑥) -2 √ 2𝑥/3 ∈ [-1/2, -0.44] for 𝑥 ⩾ 1, so that the asymptotic expansion 𝜓(𝑥) = 2 √ 2𝑥/3 -1/2 + 𝑜(1), once truncated, actually gives an excellent approximation for all 𝑥 ⩾ 1.

The following two lemmas yield useful information on the function 𝜓: invertibility, and inverse function.

Lemma D.6. The function 𝑥 ↦ → 𝜓(𝑥) is continuous and increasing over [1, ∞).

Appendix E. Proofs of Theorems 6.4 and 6.12 Proof of Theorem 6.4.

Moreover, from the definition of 𝐴 2 and the assumption

We now apply Theorem 5.1. We put r 𝑖 =

for 𝑖 = 0, . . . , 𝑁 -1. Then, notice that the product of the 𝑁 largest elements among the c 𝑗 's 1, . . . , 1