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INTEGER POINTS CLOSE TO A TRANSCENDENTAL CURVE
AND CORRECTLY-ROUNDED EVALUATION OF A FUNCTION

NICOLAS BRISEBARRE AND GUILLAUME HANROT

Abstract. Despite several significant advances over the last 30 years, guar-
anteeing the correctly rounded evaluation of elementary functions, such as
cos, exp, 3√· for instance, is still a difficult issue. This can be formulated as a
Diophantine approximation problem, called the Table Maker’s Dilemma, which
reduces to determining points with integer coordinates that are close to a curve.
In this article, we propose two algorithmic approaches to tackle this problem,
closely related to a celebrated work by Bombieri and Pila and to the so-called
Coppersmith’s method. We establish the underlying theoretical foundations,
prove the algorithms, study their complexity and present practical experiments;
we also compare our approach with previously existing ones. In particular, our
results show that the development of a correctly rounded mathematical library
for the binary128 format is now possible at a much smaller cost than with
previously existing approaches.
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1. Introduction

Modelling real numbers on a computer is by no means a trivial task. Until the mid-
80s, processor manufacturers developed their own representations and conventions,
leading to a difficult era – a time of weird, unexpected and dangerous behaviours [34].
This motivated the publication in 1984 of the IEEE-754 standard [17, 3], since then
revised in 2008 [30, 49] and 2019 [29], for binary floating-point (FP) arithmetic1,
which remains the best trade-off for representing real numbers on a computer [52].
This put an end to this dangerous era of “numerical insecurity”.

In particular, the IEEE-754 standard clearly specifies the formats of the FP
representations of numbers, and the behaviour of the four arithmetic operations and
the square root. And yet, as of today, the standard still does not rule the behaviour
of usual functions, such as the ones contained in the C mathematical library (libm),
as precisely as it does for the four arithmetic operations and the square root.

The issue that we address in this paper is the problem of correctly-rounded
evaluation of a one-variable function. Usually, when one wants to evaluate a
function such as the cube root or the exponential functions, one actually evaluates
a very good approximation of it (such as a polynomial for instance). This raises a
problem, that is correct rounding: how can one guarantee that the rounding of the
value of the function coincides with the rounding of the value of the approximation?
This issue is related to a problem called Table’s Maker Dilemma (TMD), which we
shall describe in further detail in Section 1.2.

1and the radix independent IEEE-854 [16, 4] standard that followed
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This paper presents two heuristic approaches to address the TMD. Both mix
ingredients from approximation theory and algorithmic number theory (actually
Euclidean lattice basis reduction). The first approach can be viewed as an effective
variant of Bombieri and Pila’s approach developed in [6]. The second one is an
improvement over the algorithmic approaches developed in [63, 61]. Rather than
reducing the problem for 𝑓 to the same problem for an approximation (Taylor)
polynomial for 𝑓 as it is done in [63, 61], we work with the function 𝑓 itself as long
as possible. The difference may seem subtle, but it raises significant difficulties,
while bringing two major improvements: smaller matrices and the prereduction trick
(see Section 8).

In particular, we give the first significant results for the binary128 format and
this work paves the way for the first development of an efficient correctly rounded
mathematical library in the three fundamental formats binary32, binary64 and
binary128. As of today, the library CRlibm [39] offers correctly rounded evaluation
of the binary64 precision C99 standard elementary functions.

We believe that our results are interesting in themselves. In particular, beyond
their application to the Table Maker’s Dilemma for which we improve on some of
the theoretical and practical results of [40, 42, 41, 63, 61], they offer a practical
means to compute integer points in a strip around a transcendental analytic curve2.

Note that we restrict ourselves in the present paper to transcendental function.
Our methods, as we describe them, are bound to fail for algebraic functions of small
degree. They may however be adapted in this case (similarly to Bombieri and Pila’s
adaptation in the algebraic case). We intend to come back to this in a sequel of this
paper.

1.1. Arithmetic framework. We first recall the definition of a FP number.
Definition 1.1. Let 𝛽, 𝑝, 𝐸min, 𝐸max ∈ Z, 𝛽, 𝑝 ⩾ 2, 𝐸min < 0 < 𝐸max, a (normal)
radix-𝛽 FP number in precision 𝑝 with exponent range [𝐸min, 𝐸max] is a number of
the form

𝑥 = (−1)𝑠 𝑀

𝛽𝑝−1 · 𝛽
𝐸 ,

where :
∙ the exponent 𝐸 ∈ Z is such that 𝐸𝑚𝑖𝑛 ⩽ 𝐸 ⩽ 𝐸𝑚𝑎𝑥,
∙ the integral significand 𝑀 ∈ N represented in radix 𝛽 satisfies 𝛽𝑝−1 ⩽𝑀 ⩽
𝛽𝑝 − 1,

∙ 𝑠 ∈ {0, 1} is the sign bit of 𝑥.
In the sequel, we shall leave the exponent range implicit unless it is explicitly

required, and simply talk about “radix-𝛽 FP numbers in precision 𝑝”.
Remark 1.2. For the sake of clarity, we chose not to mention subnormal FP numbers
since they will not appear in the text. One can find the complete definition in [52,
Chap. 2.1].

The number zero is a special case, cf. [52, Chap. 3], that we add to the set of
radix-𝛽 and precision-𝑝 FP numbers. This yields a set denoted ℱ𝛽,𝑝.
Remark 1.3. In this paper, we use radix 2 for the sake of clarity but our approach
remains valid for any radix, in particular radix 10, the importance of which grows
at a steady pace. The set ℱ2,𝑝 will thus be denoted ℱ𝑝.

2We mean here a representative curve of a transcendental analytic function.
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precision 𝑝 minimal exponent 𝐸𝑚𝑖𝑛 maximal exponent 𝐸𝑚𝑎𝑥
binary32 24 −126 127
binary64 53 −1022 1023
binary128 113 −16382 16383

Table 1. Main parameters of the three basic binary formats (up
to 128 bits) specified by the standard [29].

Table 1 gives the main parameters of the three basic binary formats specified by
IEEE 754-2019.

The result of an arithmetic operation whose input values belong to ℱ𝑝 may not
belong to ℱ𝑝 (in general it does not). Hence that result must be rounded. The
IEEE standard defines 5 different rounding functions; in the sequel, 𝑥 is any real
number to be rounded:

∙ round toward +∞, or upwards: ∘𝑢(𝑥) is the smallest element of ℱ𝑝 that is
greater than or equal to 𝑥;

∙ round toward −∞, or downwards: ∘𝑑(𝑥) is the largest element of ℱ𝑝 that is
less than or equal to 𝑥;

∙ round toward 0: ∘𝑧(𝑥) is equal to ∘𝑢(𝑥) if 𝑥 < 0, and to ∘𝑑(𝑥) otherwise;
∙ round to nearest ties to even, denoted ∘𝑛𝑒(𝑥) and round to nearest ties

to away, denoted ∘𝑛𝑎(𝑥). If 𝑥 is exactly halfway between two consecutive
elements of ℱ𝑝, ∘𝑛𝑒(𝑥) is the one for which the integral significand 𝑀 is an
even number and ∘𝑛𝑎(𝑥) is the one for which the integral significand 𝑀 is
largest. Otherwise, both return the element of ℱ𝑝 that is the closest to 𝑥.

The first three rounding functions are called directed rounding functions.
The following real numbers will play a key role in the problem that we address.

Definition 1.4. A rounding breakpoint (or simply, a breakpoint) is a point where
the rounding function changes (namely a discontinuity point). For round-to-nearest
functions, the rounding breakpoints are the exact middles of consecutive floating-
point numbers. For the other rounding functions, they are the floating-point numbers
themselves.

1.2. Correct rounding, Table Maker’s Dilemma. The standard requires that
the user should be able to choose one rounding function among these ones, called
the active rounding function. An active rounding function being chosen, when
performing one of the 4 arithmetic operations, or when computing square roots, the
obtained rounded result should be equal to the rounding of the exact result: this
requirement on the quality of the computation is called correct rounding.

Being able to provide correctly rounded functions is of utter interest:
∙ it greatly improves the portability of software;
∙ it allows one to design algorithms that use this requirement;
∙ this requirement can be used for designing formal proofs of pieces of software;
∙ one can easily implement interval arithmetic, or more generally one can get

certain lower or upper bounds on the exact result of a sequence of arithmetic
operations.

While the IEEE 754-1985 and 854-1987 standards required correctly rounded
arithmetic operations and square root, they did not do it for the most common
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mathematical functions, such as simple algebraic3 functions like 1/
√
·, 3
√
·, . . . and

also a few transcendental4 functions like sine, cosine, exponentials, and logarithms
of radices 𝑒, 2, and 10, etc. More generally, a natural target is the whole class of
elementary functions5. A subset of these functions is usually available from the
libms delivered with compilers or operating systems.

This lack of requirement is mainly due to a difficult problem known as the
Table Maker’s Dilemma (TMD), a term coined by Kahan. When evaluating most
elementary functions, one has to compute an approximation to the exact result,
using an intermediate precision somewhat larger than the “target” precision 𝑝. The
TMD is the problem of determining, given a function 𝑓 , what this intermediate
precision should be in order to make sure that rounding that approximation yields
the same result as rounding the exact result. Ideally, we aim at getting the minimal
such precision htr𝑓 (𝑝), that we call hardness to round of 𝑓 (see Definition 2.3).

If we have 𝑁 FP numbers in the domain being considered, it is expected that
htr𝑓 (𝑝) is of the order of 𝑝+log2(𝑁) (hence 2𝑝 for most usual functions and binades6).
This is supported by a probabilistic heuristic approach that is presented in detail
in [52, 51]. It has been studied in [10] where O. Robert and the authors of the
present paper gave, under some mild hypothesis on 𝑓 ′′, solid theoretical foundations
to some instances of this probabilistic heuristic, targeting in particular the cases
that the CRlibm library uses in practice.

1.3. Fast and cheap correctly-rounded function evaluation in binary64.
Diophantine approximation-type methods yield – not fully satisfactory — upper
bounds for htr𝑓 (𝑝) for algebraic functions: the precision to which the computations
must be performed is, in general, grossly overestimated [31, 38, 11]. On the other
hand, regarding transcendental functions, either no theoretical statement exists
or they provide results that are off by such a margin that they cannot be used in
practical computations [53, 36, 35].

Therefore, algorithmic approaches to the TMD [40, 42, 41, 63, 27] had to be
developed. They allowed for solving the TMD for the IEEE binary64 format (also
known as "double precision").

As a consequence, the revised IEEE-754 standard now recommends (yet does not
require, due to the lack of results in the case of binary128) that the following functions
should be correctly rounded: 𝑒𝑥, 𝑒𝑥 − 1, 2𝑥, 2𝑥 − 1, 10𝑥, 10𝑥 − 1, ln(𝑥), log2(𝑥),
log10(𝑥), ln(1 +𝑥), log2(1 +𝑥), log10(1 +𝑥),

√︀
𝑥2 + 𝑦2, 1/

√
𝑥, (1 +𝑥)𝑛, 𝑥𝑛, 𝑥1/𝑛 (𝑛

is an integer), sin(𝑥), cos(𝑥), tan(𝑥), arcsin(𝑥), arccos(𝑥), arctan(𝑥), arctan(𝑦/𝑥),
sin(𝜋𝑥), cos(𝜋𝑥), tan(𝜋𝑥), arcsin(𝑥)/𝜋, arccos(𝑥)/𝜋, arctan(𝑥)/𝜋, arctan(𝑦/𝑥)/𝜋,
sinh(𝑥), cosh(𝑥), tanh(𝑥), sinh−1(𝑥), cosh−1(𝑥), tanh−1(𝑥).

Thanks to these results, it is now possible to obtain correct rounding in binary64
in two steps only (inspired by a strategy developed by A. Ziv [72] and implemented

3We say that a function 𝜙 is algebraic if there exists 𝑃 ∈ Z[𝑥, 𝑦] ∖ {0} such that for all 𝑥 such
that 𝜙(𝑥) is defined, 𝑃 (𝑥, 𝜙(𝑥)) = 0.

4A function is transcendental if it is not algebraic.
5An elementary function is a function of one variable which is the composition of a finite

number of arithmetic operations (+, −, ×, /), exponentials, logarithms, constants, and solutions
of algebraic equations [12, Def. 5.1.4].

6A binade is an interval of the form [2𝑘, 2𝑘+1) or (−2𝑘+1, −2𝑘] for 𝑘 ∈ Z.
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in the libultim library7), which one may then optimize separately. This is the
approach used in CRlibm:

∙ the first quick step is as fast as a current libm, and provides a relative
accuracy of 2−52−𝑘 (𝑘 = 11 for the exponential function for instance), which
is sufficient to round correctly to the 53 bits of binary64 in most cases;

∙ the second accurate step is dedicated to challenging cases. It is slower but
has a reasonable bounded execution time, being tightly targeted at the
hardest-to-round cases computed by Lefèvre et al. [43, 42, 62, 63, 61]. In
particular, there is no need for arbitrary multiple precision anymore.

This approach [21, 22] leads to correctly-rounded function evaluation routines that
are fast and have a reasonable memory consumption. Unfortunately, the lack of
useful information about the TMD in binary128 has so far prevented the development
of an extension of CRlibm to this format.

1.4. Goal and outline of the paper. In this paper, we present two new algorithmic
approaches to tackle the TMD. For both, we follow the standard strategy to subdivide
the interval under study into subintervals; but instead of approximating the function
𝑓 by a polynomial function using Taylor expansion at the center of such a tiny interval
𝐼, as it was done in [40, 42, 41, 63, 61], we approximate 𝑓 by an algebraic function
using uniform approximation: if we assume for instance 𝑓 : [1/2, 1)→ [1/2, 1) (hence
every involved FP number has denominator 2𝑝),we search for 𝑃0 and 𝑃1 ∈ Z[𝑋,𝑌 ]
that are small on the “weighted” curve (2𝑝𝑥, 2𝑝𝑓(𝑥)) (first approach) or in a strip
around this “weighted” curve (second approach). This smallness implies that the
bad cases for rounding are common roots to 𝑃0 and 𝑃1. Then, we use a heuristic
argument of coprimality of 𝑃0 and 𝑃1, analogous to the one used in [7, 63, 61] to
obtain these bad cases.

In order to compute 𝑃0 and 𝑃1, we use ideas and techniques developed by
the first author and S. Chevillard [9]. Very roughly speaking, if we still assume
𝑓 : [1/2, 1)→ [1/2, 1), the key idea is to find 𝑃 ∈ Z[𝑋1, 𝑋2] that is small at some
points (2𝑝𝑥𝑖, 2𝑝𝑓(𝑥𝑖)) of the “weighted” curve (first approach) or (2𝑝𝑥𝑖, 2𝑝(𝑓(𝑥𝑖)+𝑦𝑖))
of a strip around the “weighted” curve (second approach). If the points 𝑥𝑖 (resp.
the pairs (𝑥𝑖, 𝑦𝑖)) are carefully chosen, these discrete smallness constraints imply
uniform smallness over the curve, resp. the strip around the curve, cf. Section 4.1.
The discrete constraints can be reformulated as the fact that the values of 𝑃 at
the (2𝑝𝑥𝑖, 2𝑝𝑓(𝑥𝑖)) (resp. the (2𝑝𝑥𝑖, 2𝑝(𝑓(𝑥𝑖) + 𝑦𝑖))) are the coordinates of a certain
short vector in a Euclidean lattice. The celebrated LLL algorithm, cf. Section 4.2,
then allows for computing a reasonable candidate for 𝑃 .

The first approach which favours smallness on the curve (2𝑝𝑥, 2𝑝𝑓(𝑥)), 𝑥 ∈ 𝐼
is somehow akin to [6] whereas the second one, which forces smallness on a strip
around this curve, is somehow analogous to [63, 61].

As our reader will see, our work does not lead, with respect to the previous
algorithmic approaches, to an improvement for the determination of worst cases for
rounding and optimal values of htr𝑓 (𝑝). On the other hand, for certain elementary
or special functions evaluated in binary128, we are able to provide:

∙ upper bounds for htr𝑓 (𝑝) that are useful in practice. For instance, for
the exponential function, which plays a central role for correctly-rounded
evaluation of the elementary functions of the C mathematical library, we

7libultim was released by IBM.
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provide a roadmap to reach, in practice8, the upper bound htr𝑓 (𝑝) ⩽ 12𝑝
for 𝑝 = 113 which corresponds to the binary128 format;

∙ an effective determination of the FP values whose evaluation by 𝑓 is exactly
an FP number or the middle of two consecutive FP numbers. This is a
key issue in the development of correctly-rounded evaluation routines. An
exhaustive evaluation is possible in binary32 and theoretical results [32] yield
lists of these values for some restricted classes of functions and algorithmic
approaches [43, 42, 62, 63, 61] make it possible to address this problem in
binary64. However, before the present paper, the only practical means to
tackle the binary128 format was S. Torres’ implementation of [61] in his
PhD thesis [66] and we will show in Section 8 that our work significantly
improves the situation. As an example, we address the case of the Euler
function Γ, a function of the C mathematical library, for which theoretical
results from Transcendental Number Theory are almost nonexistent.

This hopefully paves the way to an extension of CRlibm to the binary128 format,
provided that we adopt the following three step strategy for this format:

∙ a first quick step identical to the one mentioned in the previous subsection;
∙ a second step, slower but with a reasonable bounded execution time, where

the evaluation is performed using a precision of 260 = 2𝑝 + 34 bits, say.
Heuristically, this should cover all the hardest-to-round cases;

∙ a third step, where the evaluation is performed using a precision of 12𝑝 =
1356 bits. Heuristically, this step should never be called, so it is important
to write routines simple enough to be formally proved in order to guarantee
its validity.

We will formalize the problem we address in Section 2. We then give a state of the
art in Section 3. The theoretical results are presented in Section 3.1, including appli-
cations of [36, 35] that, to the best of our knowledge, are reviewed for the first time
and offer theoretical upper bounds for htr𝑓 (𝑝) in the binary64 and binary128 cases
which greatly improve upon the existing ones. The existing algorithmic approaches
are sketched in Section 3.2. Our approach relies on tools from Approximation
Theory and Euclidean lattice basis reduction and an idea presented in [9, 15]. We
recall them in Section 4. Our first approach is presented in Section 5 and our second
one in Section 6. We present a comparison with previous work in Section 7 and we
conclude with experimental results in Section 8.

2. Formalization of the problem

Assume we wish to correctly round a real-valued function 𝜙. Note that if 𝑥 is a
bad case for 𝜙 (i.e., 𝜙(𝑥) is difficult to round), then it is also a bad case for −𝜙 and
−𝑥 is a bad case for 𝑡 ↦→ 𝜙(−𝑡) and 𝑡 ↦→ −𝜙(−𝑡). Hence we can assume that 𝑥 ⩾ 0
and 𝜙(𝑥) ⩾ 0.

We consider that all input values are elements of ℱ𝑝 ∩ [2𝑒1 , 2𝑒1+1). The method
must be applied for each possible integer value of 𝑒1.

If the values of 𝜙(𝑥), for 𝑥 ∈ [2𝑒1 , 2𝑒1+1), are not all included in the binade
[2𝑒2 , 2𝑒2+1), we split the input interval into subintervals such that for each subinterval,
there is an integer 𝑒2 such that the values 𝜙(𝑥), for 𝑥 in the subinterval, are in
[2𝑒2 , 2𝑒2+1). We now restrict to one of those subintervals 𝐼 included in [2𝑒1 , 2𝑒1+1).

8A few days for a binade, see Section 8.
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For directed rounding functions, the problem to be solved is the following:

Problem 2.1 (TMD, directed rounding functions). What is the minimum 𝜇(𝑝) ∈ Z
such that, for 2𝑝−1 ⩽ 𝑋 ⩽ 2𝑝 − 1 (and, possibly, the restrictions implied by
𝑋/2−𝑒1+𝑝−1 ∈ 𝐼) such that 𝜙

(︀
𝑋2𝑒1−𝑝+1)︀ /∈ ℱ𝑝 and for 2𝑝−1 ⩽ 𝑌 ⩽ 2𝑝−1, we have⃒⃒⃒⃒

2−𝑒2𝜙

(︂
𝑋

2−𝑒1+𝑝−1

)︂
− 𝑌

2𝑝−1

⃒⃒⃒⃒
⩾

1
2𝜇(𝑝) .

For rounding to nearest functions, the problem to be solved is the following:

Problem 2.2 (TMD, rounding to nearest functions). What is the minimum 𝜇(𝑝) ∈ Z
such that, for 2𝑝−1 ⩽ 𝑋 ⩽ 2𝑝 − 1 (and, possibly, the restrictions implied by
𝑋/2−𝑒1+𝑝−1 ∈ 𝐼) such that 𝜙

(︀
𝑋2𝑒1−𝑝+1)︀ is not the middle of two consecutive

elements of ℱ𝑝 and for 2𝑝−1 ⩽ 𝑌 ⩽ 2𝑝 − 1, we have⃒⃒⃒⃒
2−𝑒2𝜙

(︂
𝑋

2−𝑒1+𝑝−1

)︂
− 2𝑌 + 1

2𝑝

⃒⃒⃒⃒
⩾

1
2𝜇(𝑝) .

These statements lead to the following definition.

Definition 2.3 (hardness to round). Let a precision 𝑝 be given, ∘ be a rounding
function and 𝜙 be a real valued function. Let 𝑥 be a FP number in precision 𝑝 and
𝑒2 ∈ Z be the unique integer such that 𝜙(𝑥) ∈ [2𝑒2 , 2𝑒2+1) (here again, we assume 𝑥
and 𝜙(𝑥) ⩾ 0, since the extension to the other cases is straightforward).

The hardness to round 𝜙(𝑥), denoted htr𝜙,{𝑥},∘(𝑝) is equal to:
∙ −∞ if 𝜙(𝑥) is a breakpoint;
∙ the smallest integer 𝑚 such that the distance of 𝜙(𝑥) to the nearest break-

point is larger than or equal to 2−𝑚+𝑒2 .
The hardness to round 𝜙 over an interval 𝐼, denoted htr𝜙,𝐼,∘(𝑝), is then the maximum
of the hardness to round 𝜙(𝑥) for all FP 𝑥 ∈ ℱ𝑝 ∩ 𝐼, while the hardness to round
𝜙 is the hardness to round 𝜙 over R, simply denoted htr𝜙,∘(𝑝). When there is no
ambiguity over the rounding function, we get rid of the symbol ∘.

Remark 2.4. Note that both Problem 2.1 and Problem 2.2 for precision 𝑝 are
subproblems of Problem 2.1 for precision 𝑝+ 1.

Remark 2.5. If we assume that 𝜙 admits an inverse 𝜙−1 and is differentiable over 𝐼
and that we have a precise control over the image of 𝜙′ over 𝐼, it follows from the
mean value theorem that addressing Problems 2.1 and 2.2 for 𝜙 over 𝐼 is analogous
to addressing Problems 2.1 and 2.2 for 𝜙−1 over 𝜙(𝐼). For instance, one can think
of exp and log or 𝑥 ↦→ 3

√
𝑥 and 𝑥 ↦→ 𝑥3.

The problem that we actually tackle in this paper is the following.

Problem 2.6. Let 𝑎, 𝑏 ∈ R, 𝑎 < 𝑏, 𝑓 : [𝑎, 𝑏] → R be a transcendental function
analytic in a (complex) neighbourhood of [𝑎, 𝑏]. Let 𝑢, 𝑣, 𝑤 ∈ N ∖ {0}, determine the
integers 𝑋, 𝑎 ⩽ 𝑋/𝑢 ⩽ 𝑏 for which there exists 𝑌 ∈ Z satisfying

(2.1)
⃒⃒⃒⃒
𝑓

(︂
𝑋

𝑢

)︂
− 𝑌

𝑣

⃒⃒⃒⃒
<

1
𝑤
.

This problem encompasses the TMD: consider 𝑎 = 2𝑒1 , 𝑏 = 2𝑒1+1 − 1, 𝑢 =
2𝑝−𝑒1−1, 𝑣 = 2𝑝−𝑒2−1 and 𝑓 = 𝜙 (for directed rounding functions) or 𝑓 = 𝜙− 1/(2𝑣)
(for rounding to nearest functions).
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It also includes a generalization of the question addressed in [6], which corresponds
to the case 𝑎 = 0, 𝑏 = 1, 𝑢 = 𝑣.

Remark 2.7. Note that the status of 𝑤 in Problem 2.6 may vary. In Section 5, we’ll
consider 𝑤 as an output of the algorithm: on input 𝑢, 𝑣, 𝑎, 𝑏, Algorithm 2 heuristically
returns a value of 𝑤 and a set (𝑋,𝑌 ) of solutions of (2.1). This comes from the fact
that Algorithm 2 is primarily devoted to finding solutions to 𝑌/𝑣 = 𝑓(𝑋/𝑢), and
that it happens that from the work done on this curve, one can deduce information
close to the curve. A parameter 𝜔0 gives some influence on 𝑤, but no complete
control.

On the other hand, in Section 6, 𝑤 will be an input of the problem: on input
𝑢, 𝑣, 𝑤, 𝑎, 𝑏, Algorithm 4 heuristically returns the set (𝑋,𝑌 ) of solutions of (2.1).

3. State of the art

In this section, we review the state of the art on the TMD; we shall start by
discussing results which can be derived from previous estimates in Diophantine
approximation, then shall account on the algorithmic approaches which have been
developed since the late 90s. One can find a more complete (but slightly outdated
since the results of [36, 35] on the exponential function are not considered) state of
the art in [52, Chap. 12].

3.1. Diophantine approximation results: the exponential and the loga-
rithm functions. In this section, we use the conventions and notations that we
introduced in Section 2.

The exponential function is central in the study of correctly-rounded evaluation
of the elementary functions of libms: a relevant information on its hardness to
round yields relevant information as well on trigonometric and hyperbolic functions,
and their respective reciprocals, see [52, §12.4.4] and Remark 2.5, the logarithm
function and inverse trigonometric functions.

Following the works [53] and [36], Khémira and Voutier proved in [35] a lower
bound (called transcendence measure) for the expression

⃒⃒
𝑒𝛽 − 𝛼

⃒⃒
, where 𝛼 and 𝛽

are algebraic numbers, 𝛽 ̸= 0. When specialized in FP numbers, their result provides
interesting upper bounds for htrexp(𝑝).

Let 𝑚 and 𝑛 ∈ N, we put

𝑑𝑛 = l.c.m.(1, . . . , 𝑛) and 𝐷𝑚,𝑛 = 𝑚!∏︀
𝑞⩽𝑛,
𝑞 prime

𝑞𝑣𝑞(𝑚!) ,

where 𝑣𝑞(𝑚!) is the 𝑞-adic valuation of 𝑚!. We can now state Khémira and Voutier’s
Theorem in the particular case where 𝛼 is a FP number and 𝛽 is a FP number
(directed rounded functions) or the middle of two consecutive FP numbers (round-to-
nearest functions). As mentioned above, we can get a similar result for the logarithm
function.

Theorem 3.1 (Khemira and Voutier [35], specialized here to FP numbers, directed
rounded functions). Let a precision 𝑝 be given, let 𝑥 ≠ 0 and 𝑦 ∈ ℱ𝑝 such that 𝑦
and 𝑒𝑥 are in the same binade. We denote by 𝑒𝑥, resp. 𝑒𝑦, the exponent of 𝑥, resp.
𝑦. We have 𝑒𝑦 = ⌊log2(exp(𝑥))⌋ = ⌊𝑥/ log(2)⌋. Let 𝐾 and 𝐿 ∈ N ∖ {0}, 𝐾 ⩾ 2,9

9The condition 𝐾 ⩾ 2 is not stated in [35] but it is actually necessary to have Inequality (3.1)
satisfied here.
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𝐿 ⩾ 2 and 𝐸 ∈ (1,+∞) which satisfy

𝐾𝐿 log𝐸 ⩾𝐾𝐿 log 2 + (𝐾 − 1)(1 + log(
√

3𝐿𝑑𝐿−1)) + log(𝐷𝐾−1,𝐿−1)
+ (1 + 2 log 2)(𝐿− 1) + log

(︀
min

(︀
𝑑𝐾−1
𝐿−2 , (𝐿− 2)!

)︀)︀
+ log((𝐾 − 1)!)(3.1)

+ (𝐾 − 1) max(𝑝− 2− 𝑒𝑥,−1) log 2 + 𝐿𝐸|𝑥|+ 𝐿 log𝐸
+ (𝐿− 1) max(𝑝− 2− 𝑒𝑦,−1) log 2.

Then we have |𝑒𝑥 − 𝑦| ⩾ 𝐸−𝐾𝐿.

Remark 3.2. For the round-to-nearest functions, we assume that 𝑦 is the middle of
two consecutive FP numbers and that the numbers 𝑦 and 𝑒𝑥 are in the same binade.
If we denote again 𝑒𝑦 = ⌊𝑥/ log(2)⌋, the conclusion of the theorem remains valid if
we replace max(𝑝− 2− 𝑒𝑦,−1) with max(𝑝− 1− 𝑒𝑦,−1) in the last line of (3.1).

For instance, using the following sets of parameters, we are able to compute the
following upper bounds for the hardness to round exp on [1/4, 1/2):

∙ In binary64 (𝑝 = 53), the triple (𝐾,𝐿,𝐸) = (61, 29, 81.29...) yields
htrexp,[1/4,1/2)(53) ⩽ 11225 ∼ 211𝑝.

∙ In double extended precision (𝑝 = 64), the triple (𝐾,𝐿,𝐸) = (62, 37, 82.62...)
yields htrexp,[1/4,1/2)(64) ⩽ 14610 ∼ 228𝑝.
∙ In binary128 (𝑝 = 113), the triple (𝐾,𝐿,𝐸) = (84, 59, 109.44...) yields

htrexp,[1/4,1/2)(113) ⩽ 33573 ∼ 297𝑝.

3.2. Algorithmic approaches. In view of the lack of practicality (or in order
to improve on it) of fundamental results discussed in the previous subsection,
algorithmic approaches have been developed and used in an extensive way since the
late 90s.

A first straightforward idea consists in testing all possible FP values 𝑥; for each
value of 𝑥 one computes a sufficiently accurate interval approximation to 𝑓(𝑥) and
determines the hardness to round 𝑓(𝑥). The cost of the approach is obviously
proportional to the number of different FP numbers of the format under study
i.e., 2𝑝+𝐸max−𝐸min , which makes it basically tractable for binary32 [60]. In [23], the
exhaustive evaluations are performed on an FPGA using a tabulated difference
approach, which makes it possible to address the binary64 case. Currently, the double
extended or binary128 formats seem completely out of reach of such approaches.

More subtle ideas proceed by splitting the domain into subintervals and replacing
the function (assumed to be sufficiently smooth) by a polynomial, in practice a
Taylor approximation, over the interval under study; one is then reduced to study
the problem in the polynomial case.

Lefèvre, together with Muller [40, 42, 41], studied the degree 1 case; in this case,
the remaining Diophantine problem is to find two integers 𝑥, 𝑦, |𝑥| ⩽ 𝑋, |𝑦| ⩽ 𝑌 such
that |𝛼𝑥+ 𝛽 − 𝑦| is minimal, which is solved by elementary Diophantine arguments,
either the three distance theorem, or continued fractions (see e.g., [5]). These ideas
lead to an algorithm of complexity 𝑂̃(22𝑝/3) for floating-point numbers of precision
𝑝, as 𝑝 → ∞, which computes all worst cases for rounding in the domains under
consideration.

Highly optimized and parallel implementations of this method have proved
invaluable to find optimal values of htr𝑓 (53) for several functions of the standard
libm. This was a key step towards the development of CRlibm.
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Higher degree approximations give rise to more complicated Diophantine problems.
Stehlé, Lefèvre and Zimmermann [63], further refined by Stehlé [61], make use of a
technique due to Coppersmith [19, 20] and based on lattice basis reduction to solve
it. We recall Corollaries 4 & 5 of [61], adapted to our context.

Theorem 3.3 (Stehlé [61]). For all 𝜀 > 0, there exists a heuristic algorithm of
complexity 2𝑝(1+𝜀)/2 which, given a function 𝑓 , returns all FP numbers 𝑥 ∈ [1/2, 1)
of precision 𝑝 such that the hardness to round 𝑓(𝑥) is ⩾ 2𝑝.

There exists a polynomial-time heuristic algorithm which returns all FP numbers
𝑥 ∈ [1/2, 1) of precision 𝑝 such that the hardness to round 𝑓(𝑥) is ⩾ 4𝑝2; the latter
works by reducing a lattice of dimension 𝑂(𝑝2) of R𝑚 for some 𝑚 = 𝑂(𝑝4).

The heuristic character of the algorithm is rather mild (i.e., the algorithm works
in practice as expected on almost all inputs).

We use a somewhat different approach: the algorithmic content of our method
remains based on lattice basis reduction, but rather than reducing the problem
to a polynomial problem, we keep the problem linked to the function, which we
shall make possible thanks to rigorous uniform approximation techniques based
on Chebyshev interpolation. In order to develop our approach, we thus now need
to give a short survey of Chebyshev interpolation/approximation and lattice basis
reduction.

4. A quick overview of uniform approximation and lattice basis
reduction

We shall require some tools from uniform approximation theory [24, 59, 58, 14,
8, 50, 67] and algorithmic geometry of numbers [48, 26, 18, 13, 55, 69].

4.1. Relation between uniform approximation and interpolation. Let 𝑛 ∈ N,
the 𝑛-th Chebyshev polynomial of the first kind is defined by 𝑇𝑛 ∈ R𝑛[𝑥] and
𝑇𝑛(cos 𝑡) = cos(𝑛𝑡) for all 𝑡 ∈ [0, 𝜋]. The 𝑇𝑛’s can also be defined by

𝑇0(𝑥) = 1, 𝑇1(𝑥) = 𝑥, 𝑇𝑛+2(𝑥) = 2𝑥𝑇𝑛+1(𝑥)− 𝑇𝑛(𝑥),∀𝑛 ∈ N.

4.1.1. Interpolation at the Chebyshev nodes. The zeros of 𝑇𝑛+1 are

𝜇𝑘,𝑛 = cos
(︂

(𝑛− 𝑘 + 1/2)𝜋
𝑛+ 1

)︂
, 𝑘 = 0, . . . , 𝑛.

They are called (𝑛+ 1)-Chebyshev nodes of the first kind. Polynomials interpolating
functions at this family give rise to very good uniform approximations over [−1, 1]
to these functions [50, 67]. To be able to work on an interval [𝑎, 𝑏], we will need
scaled versions of Chebyshev polynomials and nodes. We then define, for 𝑛 ∈ N,

(4.1) 𝑇𝑛,[𝑎,𝑏] := 𝑇𝑛

(︂
2𝑥− 𝑏− 𝑎
𝑏− 𝑎

)︂
, 𝜇𝑘,𝑛,[𝑎,𝑏] := (𝑏− 𝑎)𝜇𝑘,𝑛 + 𝑎+ 𝑏

2 , 𝑘 = 0, . . . , 𝑛.

Here again, when there is no ambiguity, we denote the nodes as 𝜇𝑘,[𝑎,𝑏]. Note that
𝑇𝑛,[𝑎,𝑏]

(︀
𝜇𝑘,𝑛,[𝑎,𝑏]

)︀
= 𝑇𝑛(𝜇𝑘,𝑛).

Let 𝑁 ⩾ 1, let 𝑓 be a function defined over [𝑎, 𝑏], if we interpolate 𝑓 by a
polynomial in R𝑁−1[𝑥] at the scaled Chebyshev nodes of the first kind, we have the
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following expressions for the interpolation polynomial 𝑃 [50, Chap. 6]:

𝑃 (𝑥) =
∑︁′

0⩽𝑘⩽𝑁−1
𝑐𝑘𝑇𝑘,[𝑎,𝑏](𝑥) ∈ R𝑁−1[𝑥] with

𝑐𝑘 = 2
𝑁

∑︁
0⩽ℓ⩽𝑁−1

𝑓(𝜇ℓ,𝑁−1,[𝑎,𝑏])𝑇𝑘,[𝑎,𝑏](𝜇ℓ,𝑁−1,[𝑎,𝑏]) for 𝑘 = 0, . . . , 𝑁 − 1,

= 2
𝑁

∑︁
0⩽ℓ⩽𝑁−1

𝑓(𝜇ℓ,𝑁−1,[𝑎,𝑏])𝑇𝑘(𝜇ℓ,𝑁−1).

The symbol
∑︁′

means that the first coefficient has to be halved. Note that, if
we introduce ̂︀𝑓 : 𝑧 ∈ [−1, 1] ↦→ 𝑓

(︀
𝑧 𝑏−𝑎2 + 𝑎+𝑏

2
)︀
, the coefficients 𝑐𝑘 are also the

coefficients of the interpolation polynomial in R𝑁−1[𝑥] of ̂︀𝑓 at the Chebyshev nodes
of the first kind.

4.1.2. Uniform approximation using interpolation polynomials. Let 𝜌 > 1, if 𝑎 < 𝑏
are two real numbers, we define the ellipse

ℰ𝜌,𝑎,𝑏 =
{︂
𝑏− 𝑎

2
𝜌𝑒𝑖𝜃 + 𝜌−1𝑒−𝑖𝜃

2 + 𝑎+ 𝑏

2 , 𝜃 ∈ [0, 2𝜋]
}︂

and let 𝐸𝜌,𝑎,𝑏 be the closed region bounded by the ellipse ℰ𝜌,𝑎,𝑏. For 𝑓 a function
analytic in a neighbourhood of 𝐸𝜌,𝑎,𝑏, we define 𝑀𝜌,𝑎,𝑏(𝑓) = max𝑧∈ℰ𝜌,𝑎,𝑏 |𝑓(𝑧)|.

Let 𝑁 ∈ N, 𝑁 ⩾ 1, we also define

𝜂𝜌,0 = 1 and 𝜂𝜌,𝑘 = 𝜌2 + 1
𝜌2 − 1 for 𝑘 = 1, . . . , 𝑁 − 1.

The following two propositions establish Cauchy’s inequalities for interpolation
polynomials at (scaled) Chebyshev nodes.

Proposition 4.1. Let 𝜌 > 1, 𝑎 < 𝑏, let 𝑁 ∈ N, 𝑁 ⩾ 1, 𝑓 be a function analytic in
a neighbourhood of 𝐸𝜌,𝑎,𝑏, the coefficients 𝑐𝑘, 𝑘 = 0, . . . , 𝑁 − 1, of the interpolation
polynomial 𝑝𝑁−1 of 𝑓 at the (scaled) Chebyshev nodes of the first kind over [𝑎, 𝑏],
(𝜇𝑘,𝑁−1,[𝑎,𝑏])0⩽𝑘⩽𝑁−1 satisfy

|𝑐𝑘| ⩽ 2𝑀𝜌,𝑎,𝑏(𝑓)
𝜌𝑘

𝜂𝜌,𝑘 for 𝑘 = 0, . . . , 𝑁 − 1,

Moreover, we have

‖𝑓 − 𝑝𝑁−1‖∞,[𝑎,𝑏] ⩽
4𝑀𝜌,𝑎,𝑏(𝑓)
𝜌𝑁−1(𝜌− 1) .

Proof. See Appendix A. □

Let 𝜌1, 𝜌2 > 1, 𝑎1 < 𝑏1, 𝑎2 < 𝑏2, we define ℰ𝜌1,𝑎1,𝑏1,𝜌2,𝑎2,𝑏2 = ℰ𝜌1,𝑎1,𝑏1 × ℰ𝜌2,𝑎2,𝑏2

and 𝐸𝜌1,𝑎1,𝑏1,𝜌2,𝑎2,𝑏2 = 𝐸𝜌1,𝑎1,𝑏1 × 𝐸𝜌2,𝑎2,𝑏2 .

Proposition 4.2. Let 𝜌1, 𝜌2 > 1, 𝑎1 < 𝑏1, 𝑎2 < 𝑏2, let 𝑀1,𝑀2 ∈ N,𝑀1,𝑀2 ⩾ 2,
𝑓 be a function analytic in a neighbourhood of 𝐸𝜌1,𝑎1,𝑏1,𝜌2,𝑎2,𝑏2 , the coefficients
𝑐𝑘1,𝑘2 , 𝑘1 = 0, . . . ,𝑀1 − 1, 𝑘2 = 0, . . . ,𝑀2 − 1 of the interpolation polynomial
𝑃𝑀1−1,𝑀2−1 of 𝑓 at pairs of Chebyshev nodes of the first kind satisfy, for 𝑘1 =
0, . . . ,𝑀1 − 1, 𝑘2 = 0, . . . ,𝑀2 − 1,

|𝑐𝑘1,𝑘2 | ⩽ 4𝑀𝜌1,𝑎1,𝑏1,𝜌2,𝑎2,𝑏2(𝑓)
𝜌𝑘1

1 𝜌𝑘2
2

𝜂𝜌1,𝑘1𝜂𝜌2,𝑘2 ,
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where 𝑀𝜌1,𝑎1,𝑏1,𝜌2,𝑎2,𝑏2(𝑓) = max𝑧∈ℰ𝜌1,𝑎1,𝑏1,𝜌2,𝑎2,𝑏2
|𝑓(𝑧)|. Moreover, we have

‖𝑓 − 𝑃𝑀1−1,𝑀2−1‖∞,[𝑎1,𝑏1]×[𝑎2,𝑏2] ⩽
16𝜌1𝜌2𝑀𝜌1,𝜌2(𝑓)
(𝜌1 − 1)(𝜌2 − 1)

(︂
1
𝜌𝑀1

1
+ 1
𝜌𝑀2

2

)︂
.

Proof. See Appendix A. □

4.2. A quick reminder on Euclidean lattices and the LLL algorithm. In
this subsection, we shortly review basic facts concerning lattices and lattice basis
reduction algorithms.

Definition 4.3. Let 𝑀 ∈ N, 𝑀 ⩾ 1, a lattice of R𝑀 is a discrete subgroup of
R𝑀 ; equivalently, a lattice 𝐿 ⊂ R𝑀 is the set of integer linear combinations of a
family (𝑏1, . . . , 𝑏𝑁 ) of R-linearly independent vectors of R𝑀 . We shall then say that
(𝑏𝑖)1⩽𝑖⩽𝑁 is a basis of 𝐿, and that 𝑁 ⩽𝑀 is the dimension (or the rank) of 𝐿.

Proposition 4.4. The sets 𝐵 = (𝑏𝑖)1⩽𝑖⩽𝑁 , 𝐶 = (𝑐𝑖)1⩽𝑖⩽𝑁 are two bases of the
same lattice, given in (row) matrix form if and only if there exists 𝑈 ∈ ℳ𝑁 (Z),
det𝑈 ∈ {±1}, such that 𝐶 = 𝑈𝐵. As a consequence, the quantity (det𝐶𝐶𝑡)1/2 =
(det𝐵𝐵𝑡)1/2 is independent of the basis and is associated to the lattice itself – we
shall call it the volume of the lattice and denote it by vol𝐿.

Given a basis (𝑏1, . . . , 𝑏𝑁 ) of 𝐿 as input, finding a shortest nonzero vector in 𝐿 is
called the shortest vector problem. The decision version of this problem has been
shown [1] to be hard under randomized reductions; in practice, one thus has to
content oneself with approximation algorithms, such as the LLL algorithm [44]:

Theorem 4.5 (Lenstra, Lenstra, Lovász, 1982). The LLL algorithm, given 𝑁
R-linearly independent vectors (𝑏1, . . . , 𝑏𝑁 ) ∈ Z𝑀 , returns a basis (𝑐1, . . . , 𝑐𝑁 ) such
that ‖𝑐1‖2 ⩽ 2(𝑁−1)/4(vol𝐿)1/𝑁 , and ‖𝑐1‖2 ⩽

(︀
2(𝑁−1)/4)︀2 min𝑥∈𝐿−{0}‖𝑥‖2. One

also has ‖𝑐2‖2 ⩽ 2(𝑁−1)/4(vol𝐿)1/(𝑁−1).
The time complexity of the LLL algorithm is polynomial in the maximal bit-length

of the coefficients of the 𝑏𝑖’s, the lattice rank 𝑁 , and the space dimension 𝑀 .

Proof. See Theorems 9 and 10 from [55, Chap. 2], except for the last inequality on
‖𝑐2‖ which is a consequence of the proof of Fact 3.3 in [7]. □

The constant 2 in the terms 2(𝑁−1)/4 of the inequalities of the theorem is arbitrary,
and could be replaced by any real number > 4/3.

We now discuss shortly an improvement due to Akhavi & Stehlé [2] to the LLL
algorithm in the case where 𝑁 is much smaller than 𝑀 , the dimension of the
ambient space. Let 𝐴 be an 𝑁 ×𝑀 matrix, the rows of which generate the lattice 𝐿;
the idea is to reduce a smaller 𝑁 × 𝑁 matrix obtained by a random projection
(i.e., multiplying 𝐴 on the right by a random 𝑀 ×𝑁 matrix), and apply the same
transformation to the original matrix.

Theorem 4.6 (Akhavi & Stehlé, 2008). For all 𝑁 , there is an 𝑛0(𝑁) such that
for 𝑀 ⩾ 𝑛0(𝑁), if 𝑃 is an 𝑀 ×𝑁 matrix whose columns are independent random
vectors picked up uniformly independently inside the 𝑀-th dimensional unit ball,
and 𝐴′ = LLL(𝐴 · 𝑃 ); then, with probability ⩾ 1− 2−𝑁 , the first column vector of
the matrix 𝐴′(𝐴 · 𝑃 )−1𝐴 is a vector of 𝐿 of norm ⩽ 24𝑁 (vol𝐿)1/𝑁 .

S. Torres [66] showed that this idea indeed improves the practical outcome of [61].
As for us, cf. Section 8, we noticed that this idea works even for simpler models
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for the random matrix 𝑃 such as random, uniform {0,±1} coefficients, which give
equally good results.

5. The one-variable method, à la Liouville

Let 𝑢, 𝑣 ∈ N ∖ {0}, 𝑎 < 𝑏 be two real numbers and 𝑓 : [𝑎, 𝑏]→ R. The starting
point of this approach to Problem 2.6 follows a simple (but fundamental!) idea due
to J. Liouville [45, 46, 47], which we now recall.

For any 𝑃 ∈ Z[𝑋1, 𝑋2], for any 𝑥 ∈ [𝑎, 𝑏], 𝑦 ∈ [𝑓(𝑥)− 1/𝑣, 𝑓(𝑥) + 1/𝑣], we know,
from the mean value theorem, that there exists 𝑧 between 𝑣𝑓(𝑥) and 𝑣𝑦 (hence
𝑧 ∈ [𝑣𝑓(𝑥)− 1, 𝑣𝑓(𝑥) + 1]), such that

(5.1) 𝑃 (𝑢𝑥, 𝑣𝑓(𝑥))− 𝑃 (𝑢𝑥, 𝑣𝑦) = 𝑣(𝑓(𝑥)− 𝑦)𝜕𝑃
𝜕𝑦

(𝑢𝑥, 𝑧).

Then we compute, by combining Chebyshev interpolation and lattice reduction,
two polynomials 𝑃0, 𝑃1 ∈ Z[𝑋1, 𝑋2] such that, for 𝑖 = 0, 1, for all 𝑥 ∈ [𝑎, 𝑏],
𝑧 ∈ [𝑣𝑓(𝑥) − 1, 𝑓(𝑥) + 1)], |𝑃𝑖(𝑢𝑥, 𝑣𝑓(𝑥))| < 1/2, while

⃒⃒⃒
𝜕𝑃𝑖
𝜕𝑦 (𝑢𝑥, 𝑧)

⃒⃒⃒
is bounded by

“not too large” an 𝑀 . Let 𝑥0 = 𝑋/𝑢 ∈ [𝑎, 𝑏], 𝑋 ∈ Z, 𝑦0 = 𝑌/𝑣, 𝑌 ∈ Z, we have
𝑃𝑖(𝑢𝑥0, 𝑣𝑦0) = 𝑃𝑖(𝑋,𝑌 ) ∈ Z. If 𝑃𝑖(𝑋,𝑌 ) is non zero for some 𝑖, say 𝑖 = 0, then it
follows from (5.1)

|𝑃0(𝑋,𝑌 )|⏟  ⏞  
⩾1

− |𝑃0(𝑋, 𝑣𝑓(𝑋/𝑢))|⏟  ⏞  
<1/2

⩽ 𝑣|𝑓(𝑋/𝑢)− 𝑌/𝑣|
⃒⃒⃒⃒
𝜕𝑃0

𝜕𝑦
(𝑢𝑥0, 𝑧0)

⃒⃒⃒⃒
⏟  ⏞  

⩽𝑀

,

hence |𝑣𝑓(𝑋/𝑢)− 𝑌 | > 1/(2𝑀). Otherwise, we have 𝑃0(𝑋,𝑌 ) = 𝑃1(𝑋,𝑌 ) = 0. We
now use our heuristic assumption, that is 𝑃0 and 𝑃1 have no nonconstant common
factor: we then perform elimination of one of the variables and retrieve the list of
all the bad cases, i.e., the 𝑋 such that |𝑣𝑓(𝑋/𝑢)− 𝑌 | ⩽ 1/(2𝑀). In the sequel of
this section, we give all the details of this approach: we first give estimates of the
determinants of the lattices that we use, we present our algorithm, the proof of its
correctness and analyse its complexity.

5.1. Volume estimates for rigorous interpolants at the Chebyshev nodes.
Let 𝑁 ⩾ 2, for 𝑖 = 0, . . . , 𝑁 − 1, let 𝑓𝑖 be a function defined over [𝑎, 𝑏] and 𝑄𝑖 be
its interpolation polynomials in R𝑁−1[𝑥] at Chebyshev nodes of the first kind. We
shall use the following results for the functions 𝑓𝑖 defined in (5.5).

Let DCT-II denote the discrete cosine transform of type 2:

DCT-II : R𝑁 → R
𝑁

(𝑥0, . . . , 𝑥𝑁−1) ↦→ (𝑋0, . . . , 𝑋𝑁−1) with

𝑋𝑘 =
∑︁

0⩽ℓ⩽𝑁−1
𝑥ℓ cos

(︂
𝑘(ℓ+ 1/2)𝜋

𝑁

)︂
, for 𝑘 = 0, . . . , 𝑁 − 1.

This function is often introduced with slightly different normalisations [64, 57] and
we can take advantage of fast algorithms [57, §6.3] that make possible to compute
it in at most 𝒪(𝑁 log𝑁) operations for a fixed and given precision. Recall, cf.
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Section 4.1.1, that for 𝑖 = 0, . . . , 𝑁 − 1,

𝑄𝑖(𝑥) =
∑︁′

0⩽𝑘⩽𝑁−1
𝑐𝑘,𝑖𝑇𝑘,[𝑎,𝑏](𝑥) ∈ R𝑁−1[𝑥] with

(𝑐0,𝑖, . . . , 𝑐𝑁−1,𝑖) = 2
𝑁

DCT-II(𝑓𝑖(𝜇𝑁−1,[𝑎,𝑏]), . . . , 𝑓𝑖(𝜇0,[𝑎,𝑏])).(5.2)

Let us introduce two real parameters 𝜌 > 1 and 𝜔0 ⩾ 0 (to be chosen later on).
We now assume that all the 𝑓𝑖’s are analytic in a neighbourhood of 𝐸𝜌,𝑎,𝑏. For

𝑖 = 0, . . . , 𝑁 − 1, let 𝑅𝑖 = 4𝑀𝜌,𝑎,𝑏(𝑓𝑖)/(𝜌𝑁−1(𝜌− 1)). We have, by Proposition 4.1,
‖𝑓𝑖 − 𝑄𝑖‖∞,[𝑎,𝑏] ⩽ 𝑅𝑖. For 𝐵,𝐶 two complex matrices with the same number of
rows 𝑟 and respectively 𝑚 and 𝑛 columns, we shall denote by (𝐵|𝐶) the 𝑟× (𝑚+𝑛)
matrix obtained by concatenating these two matrices. If 𝛿𝑖𝑗 denotes the Kronecker
delta, we introduce the 𝑁 × 2𝑁 matrix 𝐴 = (𝐴1|𝐴2), where

(5.3) 𝐴1 =
(︀
𝑐𝑗,𝑖/2𝛿𝑗0

)︀
0⩽𝑖,𝑗⩽𝑁−1 , 𝐴2 = (𝛿𝑖𝑗𝜌𝜔0𝑅𝑖)0⩽𝑖,𝑗⩽𝑁−1 .

Its rows generate the lattice that will be reduced in our algorithm. The (diagonal)
right half of the matrix are weights that will be used for two tasks:

∙ (remainders) controlling that 𝑃0(𝑢𝑥, 𝑣𝑓(𝑥)), 𝑃1(𝑢𝑥, 𝑣𝑓(𝑥)) are uniformly
small, where 𝑃0 , 𝑃1 are two polynomials, with integer coefficients, output
by the lattice reduction process. Matrix 𝐴1 helps us securing uniform
smallness of the interpolation polynomial of 𝑃0, resp. 𝑃1, and matrix 𝐴2
helps us securing smallness of the corresponding approximation remainders
(this accounts for the presence of the 𝑅𝑖 term);
∙ (coefficients) controlling the size of the coefficients of the polynomial, hence

the quality of the lower bound deduced from the output of Algorithm 2;
this accounts for the presence of the 𝜌𝜔0 term. We shall assume later on
(in Section 5.2) that 4𝜌𝜔0𝑣𝑀𝜌,𝑎,𝑏(𝑓)/(𝜌𝑁−1(𝜌− 1)) < 1. This is a necessary
condition for the success of the method; otherwise, most of the 𝜌𝜔0𝑅𝑖 are
too large, and the method is bound to fail. Note that this assumption can
be made without loss of generality on 𝑓 , as for fixed 𝑓, 𝑎, 𝑏, 𝜔0, 𝜌 it holds for
𝑁 large enough.

We now establish a slightly improved version of [61, Theorem 2]10. Let an 𝑁 ×𝑀
matrix 𝐵 whose rows span a lattice 𝐿. We assume that the entries of 𝐵 satisfy:
|𝐵𝑖,𝑗 | ⩽ r𝑖 · c𝑗 , for some r𝑖’s and c𝑗 ’s, 0 ⩽ 𝑖 ⩽ 𝑁 − 1 and 0 ⩽ 𝑗 ⩽ 𝑀 − 1. As
mentioned in [61], this is typical for Coppersmith-type lattice bases.

Theorem 5.1. Let 𝐵 be an 𝑁 ×𝑀 matrix (with 𝑀 ⩾ 𝑁), the entries of which are
bounded by the product of some quantities r𝑖’s and c𝑗’s as described above. Let 𝐿 be
the lattice spanned by the rows of the matrix 𝐵, and P the product of the 𝑁 largest
c𝑗’s. We have:

vol𝐿 = (det𝐵𝐵𝑡)1/2 ⩽

(︂
𝑀

𝑁

)︂1/2
𝑁𝑁/2

(︃
𝑁−1∏︁
𝑖=0

r𝑖

)︃
P.

Proof. Let us denote C0, . . . ,C𝑀−1 the columns of 𝐵. The classical Lagrange’s
identity, which is a particular case of Cauchy-Binet formula [25, 37], then states

10Note that there is an inaccuracy in the statement of [61, Theorem 2] :
√

𝑛 should be replaced
with

(︀
𝑛
𝑑

)︀1/2
𝑑!1/2.
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that

(5.4) det𝐵𝐵𝑡 =
∑︁

0⩽𝑗1<···<𝑗𝑁⩽𝑀−1
det(C𝑗1 , . . . ,C𝑗𝑁 )2

⩽

(︂
𝑀

𝑁

)︂
max

0⩽𝑗1<···<𝑗𝑁⩽𝑀−1
det(C𝑗1 , . . . ,C𝑗𝑁 )2.

We can assume
(︁∏︀𝑁−1

𝑖=0 r𝑖

)︁
≠ 0: otherwise, there is at least one row of 𝐵 that is

identically 0, hence vol𝐿 = 0.
Now, for a given 0 ⩽ 𝑗1 < · · · < 𝑗𝑁 ⩽ 𝑀 − 1, if one of the c𝑗 is zero, it follows

that at least one column of (C𝑗1 , . . . ,C𝑗𝑁 ) is zero, hence det(C𝑗1 , . . . ,C𝑗𝑁 ) = 0.
Otherwise, we consider the matrix (C′

𝑗1
. . .C′

𝑗𝑁
) obtained from (C𝑗1 . . .C𝑗𝑁 ) after

having divided the 𝑖-th row by r𝑖 for all 𝑖 = 0, . . . , 𝑁 − 1 and the 𝑗𝑘-th column by
𝑐𝑐𝑗𝑘 for all 𝑘 = 1, . . . , 𝑁 . All the coefficients of (C′

𝑗1
. . .C′

𝑗𝑁
) have an absolute value

less or equal to 1. Hadamard’s inequality then implies det(C′
𝑗1
, . . . ,C′

𝑗𝑁
)2 ⩽ 𝑁𝑁 .

It follows

det(C𝑗1 , . . . ,C𝑗𝑁 )2 =
(︃
𝑁−1∏︁
𝑖=0

r𝑖

)︃2(︃ 𝑁∏︁
𝑘=1

c𝑗𝑘

)︃2

det(C′
𝑗1
, . . . ,C′

𝑗𝑁 )2

⩽

(︃
𝑁−1∏︁
𝑖=0

r𝑖

)︃2

P2𝑁𝑁 .

We conclude by combining the last inequality with (5.4). □

Then, we upper bound det𝐴𝐴𝑡, where 𝐴 is the matrix defined by (5.3).

Theorem 5.2. Let 𝜌 > 1, 𝜔0 ⩾ 0, 𝑎 < 𝑏, 𝑁 ⩾ 2, 𝑓0, . . . , 𝑓𝑁−1 be functions analytic
in a neighbourhood of 𝐸𝜌,𝑎,𝑏. We have

(det𝐴𝐴𝑡)1/2 ⩽ (64𝑁)𝑁/2
(︂

𝜌

𝜌− 1

)︂𝑁 ∏︀𝑁−1
𝑖=0 𝑀𝜌,𝑎,𝑏(𝑓𝑖)

𝜌𝑁(𝑁−1)/2+⌊𝜔0⌋(⌊𝜔0⌋−2𝜔0+1)/2

Proof. For 0 ⩽ 𝑖, 𝑗 ⩽ 𝑁 − 1, we have from Proposition 4.1 and Lemma A.6,

|𝐴1,𝑖,𝑗 | ⩽
⃒⃒⃒ 𝑐𝑗,𝑖
2𝛿𝑗0

⃒⃒⃒
⩽ 2𝑀𝜌,𝑎,𝑏(𝑓𝑖)

1
𝜌𝑗
𝜌2 + 1
𝜌2 − 1 ⩽ 2𝑀𝜌,𝑎,𝑏(𝑓𝑖)

𝜌𝑗
𝜌

𝜌− 1 .

Now, let us write, for 0 ⩽ 𝑖, 𝑗 ⩽ 𝑁 − 1,

|𝐴2,𝑖,𝑗 | ⩽ 𝜌𝜔0𝑅𝑖 = 4𝜌𝜔0
𝑀𝜌,𝑎,𝑏(𝑓𝑖)
𝜌𝑁−1(𝜌− 1) = 4𝜌𝜔0

𝜌

𝜌− 1
𝑀𝜌,𝑎,𝑏(𝑓𝑖)

𝜌𝑁
.

In view of these estimates, we can apply Theorem 5.1 with r𝑖 = 2𝜌/(𝜌− 1)𝑀𝜌,𝑎,𝑏(𝑓𝑖)
for 𝑖 = 0, . . . , 𝑁 − 1,

c𝑗 =
{︂
𝜌−𝑗 , 0 ⩽ 𝑗 ⩽ 𝑁 − 1,
2𝜌𝜔0−𝑁 , 𝑁 ⩽ 𝑗 ⩽ 2𝑁 − 1.

Hence, P is the maximum, for 𝑠 = 0, . . . , 𝑁 , of
𝑠∏︁

𝑘=1

1
𝜌𝑘−1

𝑁∏︁
𝑘=𝑠+1

2𝜌𝜔0

𝜌𝑁
= 1
𝜌𝑠(𝑠−1)/2

(2𝜌𝜔0)𝑁−𝑠

𝜌𝑁(𝑁−𝑠) .
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Finally, Theorem 5.1 yields

(det𝐴𝐴𝑡)1/2 ⩽

(︂
2𝑁
𝑁

)︂1/2
𝑁𝑁/22𝑁

(︂
𝜌

𝜌− 1

)︂𝑁
max

0⩽𝑠⩽𝑁

(2𝜌𝜔0)𝑁−𝑠

𝜌𝑠(𝑠−1)/2+𝑁(𝑁−𝑠)

𝑁−1∏︁
𝑖=0

𝑀𝜌,𝑎,𝑏(𝑓𝑖)

⩽ (64𝑁)𝑁/2
(︂

𝜌

𝜌− 1

)︂𝑁
max

0⩽𝑠⩽𝑁

𝜌𝜔0(𝑁−𝑠)

𝜌𝑠(𝑠−1)/2+𝑁(𝑁−𝑠)

𝑁−1∏︁
𝑖=0

𝑀𝜌,𝑎,𝑏(𝑓𝑖).

Then, if 𝑃𝑠 = 𝜌𝜔0(𝑁−𝑠)/𝜌𝑠(𝑠−1)/2+𝑁(𝑁−𝑠), we have 𝑃𝑠+1/𝑃𝑠 = 𝜌𝑁−𝑠−𝜔0 , hence 𝑃𝑠
is maximal for 𝑠 = 𝑁 − ⌊𝜔0⌋, which completes the proof of the Theorem. □

We now specialize the previous estimate to our situation, where we shall use the
ordered list of functions

(5.5) [𝑓𝑖, 0 ⩽ 𝑖 ⩽ (𝑑+ 1)(𝑑+ 2)/2− 1]
= [𝑥 ↦→ 𝑢𝑘𝑥𝑘𝑣ℓ𝑓(𝑥)ℓ, ℓ = 0, . . . , 𝑑, 𝑘 = 0, . . . , 𝑑− ℓ].

Let the 𝑐𝑗,𝑖’s be defined by (5.2), using the same ordering for the functions and
[𝑅2,𝑖, 𝑖 = 0, . . . , 𝑁 − 1] be the ordered list[︂

4𝑢
𝑘𝑀𝜌,𝑎,𝑏(𝑥)𝑘𝑣ℓ𝑀𝜌,𝑎,𝑏(𝑓)ℓ

𝜌𝑁−1(𝜌− 1) ; ℓ = 0, . . . , 𝑑, 𝑘 = 0, . . . , 𝑑− ℓ
]︂
.

We denote again 𝐴 = (𝐴1|𝐴2) the 𝑁 × 2𝑁 matrix defined11 by

(5.6) 𝐴1 =
(︀
𝑐𝑗,𝑖/2𝛿𝑗0

)︀
0⩽𝑖,𝑗⩽𝑁−1 , 𝐴2 = (𝛿𝑖𝑗𝜌𝜔0𝑅2,𝑖)0⩽𝑖,𝑗⩽𝑁−1 .

Corollary 5.3. Let 𝜌 > 1, 𝑎 < 𝑏, 𝑓 be a function analytic in a neighbourhood of
𝐸𝜌,𝑎,𝑏. Let 𝑑 ⩾ 1, 𝑁 = (𝑑+ 1)(𝑑+ 2)/2, 𝜔0 ⩾ 0, 𝑢, 𝑣 ∈ N ∖ {0}. Define

𝑓𝑘,ℓ(𝑥) = 𝑢𝑘𝑥𝑘𝑣ℓ𝑓(𝑥)ℓ, 0 ⩽ ℓ ⩽ 𝑑, 0 ⩽ 𝑘 ⩽ 𝑑− ℓ,

the matrices 𝐴1, 𝐴2, 𝐴 = (𝐴1|𝐴2) as in (5.6), and the quantity Δ𝑁,[𝑎,𝑏],𝜔0 :=
(det𝐴𝐴𝑡)1/2. We have

(5.7) Δ1/(𝑁−1)
𝑁,[𝑎,𝑏],𝜔0

⩽ 30
√
𝑁

(︂
𝜌

𝜌− 1

)︂𝑁/(𝑁−1) (𝑢𝑣)2𝑁/(3(𝑑+3))

𝜌𝑁/2+⌊𝜔0⌋(⌊𝜔0⌋−2𝜔0+1)/(2(𝑁−1))(︂
𝑏− 𝑎

2

(︂
𝜌+ 𝜌−1

2

)︂
+
⃒⃒⃒⃒
𝑏+ 𝑎

2

⃒⃒⃒⃒)︂2𝑁/(3(𝑑+3))

𝑀𝜌,𝑎,𝑏(𝑓)2𝑁/(3(𝑑+3)).

Proof. Follows from Theorem 5.2, the facts that 𝑀𝜌,𝑎,𝑏(𝑥𝑘𝑓(𝑥)ℓ) ⩽ 𝑀𝜌,𝑎,𝑏(𝑥)𝑘
𝑀𝜌,𝑎,𝑏(𝑓)ℓ, the inequality

𝑀𝜌,𝑎,𝑏(𝑥) ⩽ 𝑏− 𝑎
2

(︂
𝜌+ 𝜌−1

2

)︂
+
⃒⃒⃒⃒
𝑏+ 𝑎

2

⃒⃒⃒⃒
,

and finally the fact that (8
√
𝑁)𝑁/(𝑁−1) ⩽ 30

√
𝑁 for 𝑁 ⩾ 3. □

11This is the same definition as (5.3) where we have specialized the 𝑓𝑖.
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5.2. Statement of the algorithms. Our main routine is Algorithm 2. It comes
together with Algorithm 1 that mainly constructs the lattice to be reduced in
Algorithm 2. We shall make use of the following notation: for any 𝑥 ∈ R, [𝑥]0 = ⌊𝑥⌋
if 𝑥 ⩾ 0 and ⌈𝑥⌉ otherwise. In the sequel, as in Corollary 5.3, we define 𝑁 =
(𝑑+ 1)(𝑑+ 2)/2.

Before writing the algorithm, we explain how we turn our problem, which leads
to the reduction of a sublattice of R2𝑁 , into a problem leading to the reduction of
a sublattice of Z2𝑁 .

From a mathematical point of view, the lattice that we would ideally work with is
the one generated by the rows of 𝐴 defined in (5.6), the volume of which is estimated
in Corollary 5.3. And yet, in order to perform lattice reduction computations, it is
safer to work with lattices given by vectors defined over Z, hence the introduction
of 𝐴 = (𝐴1|𝐴2):

(5.8)
𝐴1 =

(︀[︀
2tprec𝐴1[𝑖, 𝑗]

]︀
0 /2

tprec)︀
0⩽𝑖,𝑗⩽𝑁−1 ,

𝐴2 =
(︀
⌊2tprec𝐴2[𝑖, 𝑗]⌋/2tprec)︀

0⩽𝑖,𝑗⩽𝑁−1 ,

where tprec = ⌈− log2(min0⩽𝑖⩽𝑁−1 𝐴2[𝑖, 𝑖]) + log2(𝑁)⌉+ 5. The integer tprec cor-
responds to a truncation precision that will allow us to work over Z𝑁 and keep
enough information from 𝐴 at the same time.

Remark 5.4. By construction,
⃒⃒⃒
𝐴[𝑖, 𝑗]

⃒⃒⃒
⩽ |𝐴[𝑖, 𝑗]| for all 𝑖, 𝑗. Hence, Theorem 5.2

and its corollaries, which proceed by upper bounding the absolue values of the
coefficients of 𝐴 and applying Theorem 5.1, also hold for (det𝐴𝐴𝑡)1/2.

Note that the matrices 𝑀𝑐 and 𝑀𝑟 computed in Algorithm 1 correspond to the
scaled matrices 2tprec𝐴1 and 2tprec𝐴2.

The rows of 𝐴 generate the lattice that will be reduced in our algorithm.
Lemma 5.5. The Z-module generated by the rows of 𝐴 is a lattice of rank 𝑁 .
Proof. Recall that tprec = ⌈− log2(min0⩽𝑖⩽𝑁−1 𝐴2[𝑖, 𝑖]) + log2(𝑁)⌉+ 5. Thus, for
𝑖 = 0, . . . , 𝑁 − 1, 2tprec𝐴2[𝑖, 𝑖] ⩾ 25𝑁 , hence 𝐴2[𝑖, 𝑖] ⩾ 25−tprec𝑁 > 0. This shows
that the matrix 𝐴2 is an invertible diagonal matrix, so that the matrix 𝐴 has full
rank 𝑁 . □

We now give an equivalent but more convenient form for tprec. In order to do
that, we henceforth assume that the set 𝑢[𝑎, 𝑏], resp. 𝑣𝑓([𝑎, 𝑏]), contains at least
one nonzero integer 𝑛𝑥, resp. 𝑛𝑓 ; note that this assumption is made without loss of
generality with respect to our problem, since if the assumption does not hold the
problem is trivial.
Lemma 5.6. We have

tprec =⌈− log2(𝜌𝜔0𝑅2,0) + log2(𝑁)⌉+ 5
=⌈(𝑁 − 𝜔0 − 1) log2(𝜌) + log2(𝜌− 1) + log2(𝑁)⌉+ 3

and
8𝑁𝜌𝑁−𝜔0−1(𝜌− 1) ⩽ 2tprec ⩽ 16𝑁𝜌𝑁−𝜔0−1(𝜌− 1).

Proof. From our assumption, we have 𝑢𝑀𝜌,𝑎,𝑏(𝑥) ⩾ |𝑛𝑥| ⩾ 1 and 𝑣𝑀𝜌,𝑎,𝑏(𝑓) ⩾
|𝑛𝑓 | ⩾ 1. It then follows 𝑅2,𝑖 ⩾ 4/(𝜌𝑁−1(𝜌− 1)) = 𝑅2,0 for all 𝑖. Therefore, we get
tprec = ⌈− log2(𝜌𝜔0𝑅2,0) + log2(𝑁)⌉+ 5. □
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Algorithm 1 Computation of the lattice to be reduced (1D approach)
Input: Two real numbers 𝑎 < 𝑏, 𝑓 a transcendental function analytic in a complex

neighbourhood of [𝑎, 𝑏], three positive integers 𝑑, 𝑢, 𝑣, two real numbers 𝜌 >
1, 𝜔0 ⩾ 0 such that 4𝜌𝜔0𝑣𝑀𝜌,𝑎,𝑏(𝑓) < 𝜌𝑁−1(𝜌− 1), where 𝑁 = (𝑑+ 1)(𝑑+ 2)/2.

Output: An integer tprec which is the truncation precision, two matrices 𝑀𝑐,𝑀𝑟 ∈
ℳ𝑁 (Z), respectively storing scaled values of the coefficients and of the remain-
ders, namely 2tprec𝐴1 and 2tprec𝐴2, 𝐴1 and 𝐴2 being defined in (5.8).

1: 𝑅𝜔0 ←
4𝜌𝜔0

𝜌𝑁−1(𝜌−1) , tprec← ⌈− log2(𝑅𝜔0) + log2(𝑁)⌉+ 5
2: 𝐿𝑐ℎ𝑒𝑏 ←

[︀
𝑏−𝑎

2 cos
(︀
(𝑗 + 1/2) 𝜋𝑁

)︀
+ 𝑎+𝑏

2
]︀

0⩽𝑗⩽𝑁−1 // Computation of the Cheby-
shev nodes, listed in reverse order

3: 𝑀𝑐 ← [0]𝑁×𝑁 ;𝑀𝑟 ← [0]𝑁×𝑁
4: 𝐵𝑥 ←

⃒⃒
𝑎+𝑏

2
⃒⃒
+ 𝑏−𝑎

4 (𝜌+ 𝜌−1)
5: 𝑔 ←

(︀
𝑥 ↦→

⃒⃒
𝑓
(︀
𝑎+𝑏

2 + 𝑏−𝑎
4 (𝜌 exp(𝑖𝑥) + 𝜌−1 exp(−𝑖𝑥))

)︀⃒⃒)︀
6: 𝐵𝑓 ← max (𝑔([0, 2𝜋]))
7: for ℓ = 0 to 𝑑 do
8: for 𝑘 = 0 to 𝑑− ℓ do
9: 𝜙← (𝑥 ↦→ (𝑢𝑥)𝑘(𝑣𝑓(𝑥))ℓ)

// We compute the coefficient matrix : for each function, we compute its
value at points of 𝐿𝑐ℎ𝑒𝑏, use DCT and scale.

10: 𝑈 ← [𝜙(𝐿𝑐ℎ𝑒𝑏[0]), . . . , 𝜙(𝐿𝑐ℎ𝑒𝑏[𝑁 − 1])]
11: 𝐿DCT ← 2

𝑁DCT-II(𝑈), 𝐿DCT[0]← 1
2𝐿DCT[0]

12: for 𝑗 = 0 to 𝑁 − 1 do
13: 𝑀𝑐[𝑖, 𝑗]← [2tprec𝐿DCT[𝑗]]0 // Scaling of the coefficient matrix
14: end for

// We compute the scaled remainder matrix.
15: 𝑀𝑟[𝑖, 𝑖]←

⌊︀
2tprec𝑅𝜔0(𝑢𝐵𝑥)𝑘(𝑣𝐵𝑓 )ℓ

⌋︀
, 𝑖← 𝑖+ 1

16: end for
17: end for
18: Return tprec,𝑀𝑐,𝑀𝑟

5.2.1. Heuristic character of Algorithm 2. We will see in the sequel of the section
that, up to a suitable choice of parameters, the condition stated at Step 4 can always
be satisfied. On the other hand, we do not know how to simultaneously guarantee
both this condition and the condition stated at Step 8. It is even likely that it is
not possible when 𝑓 is close to an algebraic function of small height.

5.3. Practical remarks. Algorithm 1 has been written with readability in mind.
We now add some practical clarifications. We will discuss some experiments in
Section 8.

5.3.1. Efficiency. The number of DCT calls (see Step 11 in Algorithm 1) can be
reduced from 𝑂(𝑁) to 𝑂(𝑑) by noticing that the DCT 𝛿′ of the vector 𝑢′ associated
to 𝑥𝜙(𝑥) can be deduced from the DCT 𝛿 of the vector 𝑢 associated to 𝜙(𝑥)
via the following formulas, which are easily deduced from the recurrence relation
2𝑥𝑇𝑛(𝑥) = 𝑇𝑛+1(𝑥) + 𝑇𝑛−1(𝑥):

∙ 𝛿′[0] = (𝑏− 𝑎)𝛿[1]/4 + (𝑏+ 𝑎)𝛿[0]/2,
∙ 𝛿′[𝑘] = (𝑏− 𝑎)(𝛿[𝑘 − 1] + 𝛿[𝑘 + 1])/4 + (𝑏+ 𝑎)𝛿[𝑘]/2, 1 ⩽ 𝑘 ⩽ 𝑛− 2,
∙ 𝛿′[𝑛− 1] = (𝑏− 𝑎)𝛿[𝑛− 2]/4 + (𝑏+ 𝑎)𝛿[𝑛− 1]/2.
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Algorithm 2 1D approach to Problem 2.6
Input: Two real numbers 𝑎 < 𝑏, 𝑓 a transcendental function analytic in a complex

neighbourhood of [𝑎, 𝑏], three positive integers 𝑑, 𝑢, 𝑣, two real numbers 𝜌 >
1, 𝜔0 ⩾ 0 such that 4𝜌𝜔0𝑣𝑀𝜌,𝑎,𝑏(𝑓) < 𝜌𝑁−1(𝜌− 1), where 𝑁 = (𝑑+ 1)(𝑑+ 2)/2.

Output: If successful, return 𝐾 ∈ R>0 and a list ℒ of integers, #ℒ ⩽ 𝑑2, such
that for all integers 𝑋, 𝑎 ⩽ 𝑋/𝑢 ⩽ 𝑏 and 𝑋 /∈ ℒ, for all integers 𝑌 , we have⃒⃒
𝑓
(︀
𝑋
𝑢

)︀
− 𝑌

𝑣

⃒⃒
⩾ 1/𝐾. The bound 𝐾 is guaranteed to be at most 𝑑𝜌𝑁−𝜔0−1(𝜌−1)

2𝑀𝜌,𝑎,𝑏(𝑓) .
1: (tprec,𝑀𝑐,𝑀𝑟)← Algorithm 1 (𝑎, 𝑏, 𝑓, 𝑑, 𝑢, 𝑣, 𝜌, 𝜔0)
2: 𝑀𝐿𝐿𝐿 ← LLL-reduce the rows of (𝑀𝑐 |𝑀𝑟)
3: 𝑈 ← 𝑀𝐿𝐿𝐿,𝑟𝑀

−1
𝑟 // This is the LLL change of basis matrix; 𝑀𝐿𝐿𝐿,𝑟 is the

right part of the matrix 𝑀𝐿𝐿𝐿. Note that 𝑀𝑟 is diagonal.
4: if max(‖(𝑀𝐿𝐿𝐿[0, 𝑗])0⩽𝑗⩽2𝑁−1‖2, ‖(𝑀𝐿𝐿𝐿[1, 𝑗])0⩽𝑗⩽2𝑁−1‖2) ⩽ 2tprec/(2𝑁)

then
5: [𝐿𝑚[𝑗], 𝑗 = 0, . . . , 𝑁 − 1]← [𝑋𝑘

1𝑋
ℓ
2 for 𝑘 = 0 to 𝑑− ℓ for ℓ = 0 to 𝑑]

// List of monomials, ordered in a way compatible with Algorithm 1, Steps 7–
9.

6: 𝑃0 ←
∑︀𝑁−1
𝑗=0 𝑈 [0, 𝑗]𝐿𝑚[𝑗], 𝑃1 ←

∑︀𝑁−1
𝑗=0 𝑈 [1, 𝑗]𝐿𝑚[𝑗],

7: 𝑅(𝑋1)← Res𝑋2(𝑃0(𝑋1, 𝑋2), 𝑃1(𝑋1, 𝑋2))
8: if 𝑅(𝑋1) ̸= 0 then
9: ℒ ← {𝑡 ∈ Z;𝑅(𝑡) = 0}

10: (𝐵0, 𝐵1)← (0, 0)
// Monomials in 𝑋1 do not contribute to the 𝐵𝑖’s; given the ordering of
𝐿𝑚 we can thus start the loop at 𝑘 = 𝑑+ 1.

11: for 𝑘 = 𝑑+ 1 to 𝑁 − 1 do
12: 𝐽 ← 𝑑𝐿𝑚[𝑘]

𝑑𝑋2
(𝑋1 = 𝑢max(|𝑎|, |𝑏|), 𝑋2 = 𝑣max |𝑓 |([𝑎, 𝑏])),

13: 𝐵0 ← 𝐵0 + |𝑈 [0, 𝑘]|𝐽 , 𝐵1 ← 𝐵1 + |𝑈 [1, 𝑘]|𝐽
14: end for
15: return 𝐾 = 4𝑣max(𝐵0, 𝐵1, 𝑑/2), ℒ
16: else
17: return “FAIL”
18: end if
19: else
20: return “FAIL”
21: end if

This gives, in practice, a significant speedup in the construction of the matrix for
large 𝑑. Note that these formulas must be applied to 𝐿DCT before the renormalisation
instruction 𝐿DCT[0]← 1

2𝐿DCT[0].
A similar strategy applies for the computation of the remainder matrix 𝑀𝑟.

5.3.2. Overestimation issues. We now discuss the instruction 𝐵𝑓 ← max (𝑔([0, 2𝜋])),
presented at Step 6 of Algorithm 1. For some functions such as exp or Γ, we can take
advantage of a closed expression for this maximum. Otherwise, either we develop
a dedicated routine to derive a tight estimate of this value, or we can use interval
or ball arithmetic [68, 33] to quickly obtain an upper bound, which then may raise



CORRECTLY-ROUNDED EVALUATION OF A FUNCTION 21

overestimation issues. So far, our experiments, which use Arb12, resp. MPFI13,
for every ball, resp. interval, arithmetic based computation, did not show any
problematic overestimation – we thus did not have to develop dedicated routines.

This remark leads to the fact that we may overestimate 𝐵𝑓 , thus 𝑀𝑟, in imple-
mentations of the Algorithm. Still, if the condition stated at Step 4 of Algorithm 2
is satisfied with these (possibly overestimated) computed values, then this condition
is also satisfied for the actual values and Theorem 5.8 and Corollary 5.11 apply.

5.3.3. Rounding issues. In Algorithm 1, the computation of tprec at Step 1, as well
as those performed at Steps 13 and 15, as written, require correct rounding, and
may raise issues such as those this paper aims at solving.

In this context, we can, however quite easily avoid them, using the classical
remark that if we let 𝑥̃ be an underapproximation of 𝑥 with 𝑥̃ ⩽ 𝑥 ⩽ 𝑥̃+ 1/2, then
we have ⌈𝑥⌉ ∈ {⌈𝑥̃⌉, ⌈𝑥̃⌉ + 1}. Similarly, if 𝑥̃ is an approximation of a nonzero 𝑥
such that |𝑥̃| − 1/2 ⩽ |𝑥| ⩽ 𝑥̃, we get [𝑥]0 ∈ {[𝑥̃]0, [𝑥̃]0 − sgn(𝑥)}.

It is well known that such approximations are easy to compute, either by using
floating-point with sufficient intermediate precision and ensuring that we work with
over/under-approximations using the suitable rounding mode for each operation, or
using ball arithmetic as provided, for instance, by Arb.

In the sequel, we denote by tpreccomp, 𝑀𝑐,comp, 𝑀𝑟,comp the quantities computed
in this way. Note that 𝑀𝑐 and 𝑀𝑟 are then defined with tpreccomp instead of tprec.
We have tpreccomp ∈ {tprec, tprec + 1}, 𝑀𝑐[𝑖, 𝑗] −𝑀𝑐,comp[𝑖, 𝑗] ∈ {0, sgn(𝑀𝑐[𝑖, 𝑗])},
and 𝑀𝑟[𝑖, 𝑗]−𝑀𝑟,comp[𝑖, 𝑗] ∈ {0, 1} for 𝑖, 𝑗 = 0, . . . , 𝑁 − 1.

The question of the intermediate precision required will be addressed in Appen-
dix C. Note that in this setting, Remark 5.4 must be replaced by:

Remark 5.7. Let 𝐴comp = 2−tpreccomp(𝑀𝑐,comp 𝑀𝑟,comp) be the actual computed matrix,
we notice that since

⃒⃒⃒
𝐴comp[𝑖, 𝑗]

⃒⃒⃒
⩽ |𝐴[𝑖, 𝑗]| for all 𝑖, 𝑗, the same argument as in

Remark 5.4 applies: Theorem 5.2 and its corollaries hold for 𝐴comp.

5.3.4. Newton polynomials. In practice, we replace the monomial functions {𝑢𝑘𝑥𝑘}0⩽𝑘⩽𝑑
with Newton polynomial functions {𝑢𝑥(𝑢𝑥− 1) · · · (𝑢𝑥− 𝑘 + 1)/𝑘!}0⩽𝑘⩽𝑑. In both
cases, the substitution 𝑥 = 𝑋/𝑢 yields integer values - respectively {𝑋𝑘}0⩽𝑘⩽𝑑
and {𝑋(𝑋 − 1) · · · (𝑋 − 𝑘 + 1)/𝑘!}0⩽𝑘⩽𝑑. Likewise, we replace the “monomials”
{𝑣𝑘𝑓(𝑥)𝑘}0⩽𝑘⩽𝑑 with “Newton polynomials” {𝑣𝑓(𝑥)(𝑣𝑓(𝑥) − 1) · · · (𝑣𝑓(𝑥) − 𝑘 +
1)/𝑘!}0⩽𝑘⩽𝑑. Hence, the changes to operate are:

∙ Step 9, Algorithm 1,
𝜙←

(︁
𝑥 ↦→

(︁∏︀𝑘
𝑗=1(𝑢𝑥− 𝑗 + 1)/𝑗

)︁(︁∏︀ℓ
𝑗=1(𝑣𝑓(𝑥)− 𝑗 + 1)/𝑗

)︁)︁
,

∙ Step 15, Algorithm 1,
𝑀𝑟[𝑖, 𝑖]←

⌊︁
2tprec 4

𝜌𝑁−𝜔0−1(𝜌−1)
∏︀𝑘
𝑗=1

𝑢𝐵𝑥+𝑗−1
𝑗

∏︀ℓ
𝑗=1

𝑣𝐵𝑓+𝑗−1
𝑗

⌋︁
,

∙ Step 5, Algorithm 2,
𝐿𝑚 ←

[︁∏︀𝑘
𝑗=1

𝑋1−𝑗+1
𝑗

∏︀ℓ
𝑗=1

𝑋2−𝑗+1
𝑗 for 𝑘 = 0 to 𝑑− ℓ for ℓ = 0 to 𝑑

]︁
.

The use of Newton polynomials leads to smaller uniform norms, hence makes it
possible to tackle larger intervals for a same 𝑑. This improvement is asymptotically
negligible (it contributes to a lower order term) but is quite significant in practice.

12https://arblib.org/
13https://gitlab.inria.fr/mpfi

https://arblib.org/
https://gitlab.inria.fr/mpfi


22 N. BRISEBARRE AND G. HANROT

Note that the optimizations described in Section 5.3.1 can easily be adapted to
the case of Newton polynomials.

5.3.5. Choice of norms. Beside the heuristic coprimality condition, the success
condition of Algorithm 2 is expressed at Step 4 in terms of the Euclidean norm of
the vectors. This is a mere convenience related to the fact that the bounds on the
LLL algorithm are expressed in terms of this norm, making it more tractable in our
proofs of correctness / complexity analysis.

Alternatively, one may make the choice of a success condition expressed in terms
of the 1-norm, namely

(5.9) max
𝑖=0,1

(︂
‖(𝑀𝐿𝐿𝐿[𝑖, 𝑗])0⩽𝑗⩽2𝑁−1‖1 + ‖(𝑀𝐿𝐿𝐿[𝑖, 𝑗])𝑁⩽𝑗⩽2𝑁−1‖1

16

)︂
< 2tprec−1.

Indeed, as we shall see in the proof of Theorem 5.8, this condition means that from the
vector we can derive a polynomial 𝑃 such that 𝑃 (𝑢𝑥, 𝑣𝑓(𝑥)) =

∑︀𝑁−1
𝑖=0 𝑐𝑖𝑇𝑖,[𝑎,𝑏](𝑥) +

𝑅(𝑥), with
∑︀𝑁−1
𝑖=0 |𝑐𝑖|+ ‖𝑅(𝑥)‖∞ < 1/2. Since ‖𝑇𝑖,[𝑎,𝑏]‖∞ = 1 for all 𝑖, we see that

(5.9) guarantees that the polynomial 𝑃 verifies ‖𝑃 (𝑢𝑥, 𝑣𝑓(𝑥))‖∞ < 1/2 over [𝑎, 𝑏],
which is the key criterion for the success of the algorithm. As this condition is
slightly more efficient in practice, we recommend using it in any implementation of
our algorithm.

5.4. Proof of correctness. In this section, we shall prove the correctness of
Algorithm 2. This is done in two steps: first, in Subsection 5.4.1 we prove that if
the Algorithm does not return FAIL, then the output is indeed as specified; second,
in Subsection 5.4.2, we prove that for suitable choices of parameters, Algorithm 2
may not return FAIL at Step 20. Recall 𝑁 = (𝑑+ 1)(𝑑+ 2)/2.

5.4.1. Proof of correctness of the output in case of success. This part is devoted to
the proof of the following.

Theorem 5.8. Let 𝑑, 𝑢, 𝑣 be nonzero integers, 𝑁 = (𝑑+1)(𝑑+2)/2, (𝑓𝑗)0⩽𝑗⩽𝑁−1 =
(𝑢𝑘𝑥𝑘𝑣ℓ𝑓(𝑥)ℓ) 0⩽ℓ⩽𝑑

0⩽𝑘⩽𝑑−ℓ
. Let 𝜔0 ⩾ 0, 𝜌 > 1 such that there exists Λ = (𝜆𝑘,ℓ) 0⩽ℓ⩽𝑑

0⩽𝑘⩽𝑑−ℓ
∈

Z𝑁 with ‖Λ𝐴‖2 ⩽ 1/(2𝑁), and let 𝑃 (𝑋1, 𝑋2) =
∑︀

0⩽𝑘+ℓ⩽𝑑 𝜆𝑘,ℓ𝑋
𝑘
1𝑋

ℓ
2.

Then, we have
(1) max𝑥∈[𝑎,𝑏] |𝑃 (𝑢𝑥, 𝑣𝑓(𝑥))| < 1/2;
(2) max𝑥∈[𝑎,𝑏],𝑧∈𝑓([𝑎,𝑏])

0⩽|𝑦−𝑧|⩽|𝑧|/(2𝑑)

⃒⃒⃒
𝑃 (𝑢𝑥,𝑣𝑧)−𝑃 (𝑢𝑥,𝑣𝑦)

𝑧−𝑦

⃒⃒⃒
< 2𝑣𝐵 < 𝑑𝜌𝑁−𝜔0−1(𝜌−1)

4𝑀𝜌,𝑎,𝑏(𝑓) , where

𝐵 =
∑︁

1⩽ℓ⩽𝑑
0⩽𝑘⩽𝑑−ℓ

ℓ|𝜆𝑘,ℓ|𝑢𝑘 max(|𝑎|, |𝑏|)𝑘𝑣ℓ−1‖𝑓‖ℓ−1
∞,[𝑎,𝑏].

Proof. For 𝑗 = 0, . . . , 2𝑁−1, we have |(Λ𝐴)[𝑗]−(Λ𝐴)[𝑗]|1 ⩽
∑︀

0⩽𝑘+ℓ⩽𝑑 |𝜆𝑘,ℓ|2−tprec ⩽∑︀
0⩽𝑘+ℓ⩽𝑑 |𝜆𝑘,ℓ|min𝑖𝐴2[𝑖, 𝑖] 2−5

𝑁 , cf. proof of Lemma 5.5. As∑︁
0⩽𝑘+ℓ⩽𝑑

|𝜆𝑘,ℓ|min
𝑖
𝐴2[𝑖, 𝑖] ⩽ ‖Λ𝐴2‖1,

we get |(Λ𝐴)[𝑗]−(Λ𝐴)[𝑗]| ⩽ 1
32𝑁 ‖Λ𝐴2‖1. Then, it comes ‖Λ𝐴‖1 ⩽ ‖Λ𝐴‖1+ ‖Λ𝐴2‖1

16 ⩽

‖Λ𝐴‖1 +
√
𝑁 ‖Λ𝐴2‖2

16 thanks to Cauchy-Schwarz inequality. Finally, we obtain
‖Λ𝐴‖1 ⩽ ‖Λ𝐴‖1 + 1

32𝑁1/2 from the assumption ‖Λ𝐴‖2 ⩽ 1/(2𝑁).
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Let 𝑃 be as in the statement of the Theorem, and 𝑄(𝑥) =
∑︀𝑁−1
𝑗=0 𝑞𝑗𝑇𝑗,[𝑎,𝑏](𝑥) be

the interpolation polynomial of 𝑃 (𝑢𝑥, 𝑣𝑓(𝑥)) at the order 𝑁 Chebyshev nodes of
the first kind. Then, the coordinates of Λ𝐴1 are exactly 𝑞𝑗 , 0 ⩽ 𝑗 ⩽ 𝑁 − 1: indeed,
the matrix 𝐴1 contains the DCT of the functions (𝑢𝑥)𝑘(𝑣𝑓(𝑥))ℓ, so that Λ𝐴1 is the
DCT of 𝑃 (𝑢𝑥, 𝑣𝑓(𝑥)), meaning (see (5.2)) that it contains the coefficients of the
interpolation polynomial 𝑃 (𝑢𝑥, 𝑣𝑓(𝑥)) in the Chebyshev basis (𝑇𝑗,[𝑎,𝑏](𝑥))0⩽𝑗⩽𝑁−1.

Proposition 4.1 shows that

max
𝑥∈[𝑎,𝑏]

|𝑄(𝑥)− 𝑃 (𝑢𝑥, 𝑣𝑓(𝑥))| ⩽ 4 𝑀𝜌,𝑎,𝑏(𝑃 )
𝜌𝑁−1(𝜌− 1)

⩽ 4
∑︁

0⩽𝑘+ℓ⩽𝑑
|𝜆𝑘,ℓ|

𝑢𝑘𝑀𝜌,𝑎,𝑏(𝑥)𝑘𝑣ℓ𝑀𝜌,𝑎,𝑏(𝑓)ℓ

𝜌𝑁−1(𝜌− 1) ,

hence

max
𝑥∈[𝑎,𝑏]

|𝑃 (𝑢𝑥, 𝑣𝑓(𝑥)| ⩽ max
𝑥∈[𝑎,𝑏]

|𝑄(𝑥)|+ 4
∑︁

0⩽𝑘+ℓ⩽𝑑
|𝜆𝑘,ℓ|

𝑢𝑘𝑀𝜌,𝑎,𝑏(𝑥)𝑘𝑣ℓ𝑀𝜌,𝑎,𝑏(𝑓)ℓ

𝜌𝑁−1(𝜌− 1) .

As max𝑥∈[𝑎,𝑏] |𝑇𝑘,[𝑎,𝑏](𝑥)| = 1 for all 𝑘, we have max𝑥∈[𝑎,𝑏] |𝑄(𝑥)| ⩽
∑︀

0⩽𝑗⩽𝑁−1 |𝑞𝑗 |,
so that:
max
𝑥∈[𝑎,𝑏]

|𝑃 (𝑢𝑥, 𝑣𝑓(𝑥)| ⩽
∑︁

0⩽𝑗⩽𝑁−1
|𝑞𝑗 |+

4𝜌𝜔0
∑︁

0⩽𝑘+ℓ⩽𝑑
|𝜆𝑘,ℓ|

𝑢𝑘𝑀𝜌,𝑎,𝑏(𝑥)𝑘𝑣ℓ𝑀𝜌,𝑎,𝑏(𝑓)ℓ

𝜌𝑁−1(𝜌− 1)(5.10)

= ‖Λ𝐴‖1 ⩽ ‖Λ𝐴‖1 + 1/(25
√
𝑁)

⩽ 1/(25
√
𝑁) +

√
2𝑁‖Λ𝐴‖2 thanks to Cauchy-Schwarz inequality

⩽ 1/(25
√
𝑁) + 1/

√
2𝑁 < 1/2 since 𝑁 ⩾ 3.(5.11)

Finally, let 𝑥 ∈ [𝑎, 𝑏], 𝑧 ∈ 𝑓([𝑎, 𝑏]) such that 0 ⩽ |𝑦 − 𝑧| ⩽ |𝑧|/(2𝑑). Notice that the
quantity 𝑃 (𝑢𝑥,𝑣𝑦)−𝑃 (𝑢𝑥,𝑣𝑧)

𝑦−𝑧 is actually a polynomial, so is well defined for 𝑦 = 𝑧.
First, we note that max(|𝑎|, |𝑏|) ⩽𝑀𝜌,𝑎,𝑏(𝑥) and ‖𝑓‖∞,[𝑎,𝑏] ⩽𝑀𝜌,𝑎,𝑏(𝑓) from the

maximum modulus principle. Then, we have⃒⃒⃒⃒
𝑃 (𝑢𝑥, 𝑣𝑦)− 𝑃 (𝑢𝑥, 𝑣𝑧)

𝑦 − 𝑧

⃒⃒⃒⃒
⩽

∑︁
1⩽ℓ⩽𝑑

0⩽𝑘⩽𝑑−ℓ

ℓ|𝜆𝑘,ℓ|𝑢𝑘|𝑥|𝑘𝑣ℓ max(|𝑧|, |𝑦|)ℓ−1

⩽
∑︁

1⩽ℓ⩽𝑑
0⩽𝑘⩽𝑑−ℓ

ℓ|𝜆𝑘,ℓ|𝑢𝑘|𝑥|𝑘𝑣ℓ|𝑧|ℓ−1
(︂

1 + 1
2𝑑

)︂ℓ−1

⏟  ⏞  
<2

< 2
∑︁

1⩽ℓ⩽𝑑
0⩽𝑘⩽𝑑−ℓ

ℓ|𝜆𝑘,ℓ|𝑢𝑘 max(|𝑎|, |𝑏|)𝑘𝑣ℓ‖𝑓‖ℓ−1
∞,[𝑎,𝑏] =: 2𝑣𝐵(5.12)

⩽ 2𝑑
∑︁

1⩽ℓ⩽𝑑
0⩽𝑘⩽𝑑−ℓ

|𝜆𝑘,ℓ|𝑢𝑘𝑀𝜌,𝑎,𝑏(𝑥)𝑘𝑣ℓ𝑀𝜌,𝑎,𝑏(𝑓)ℓ−1

<
𝑑𝜌𝑁−𝜔0−1(𝜌− 1)

4𝑀𝜌,𝑎,𝑏(𝑓) .(5.13)
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The last inequality follows from the comparison of (5.10) to (5.11). We take the
supremum over the compact set 𝑥 ∈ [𝑎, 𝑏], 𝑧 ∈ 𝑓([𝑎, 𝑏]), 0 ⩽ |𝑦 − 𝑧| ⩽ |𝑧|/(2𝑑); as,
again, the quantity under study is actually a polynomial, this supremum is actually
a maximum, which concludes the proof. □

Remark 5.9. Note that ‖Λ𝐴‖1 ⩾ 4
∑︀

0⩽𝑘+ℓ⩽𝑑 |𝜆𝑘,ℓ|
𝑢𝑘𝑀𝜌,𝑎,𝑏(𝑥)𝑘𝑣ℓ𝑀𝜌,𝑎,𝑏(𝑓)ℓ

𝜌𝑁−1(𝜌−1) in partic-
ular. Since the constraint ‖Λ𝐴‖2 ⩽ 1/(2𝑁) implies ‖Λ𝐴‖1 < 1/2, it comes either
𝜆𝑘,ℓ = 0 or 4𝑢

𝑘𝑀𝜌,𝑎,𝑏(𝑥)𝑘𝑣ℓ𝑀𝜌,𝑎,𝑏(𝑓)ℓ
𝜌𝑁−1(𝜌−1) < 1 for any 𝑘, ℓ. Also, the proof of Lemma 5.6

shows in particular that 𝑅2,𝑖 ⩾ 𝑅2,𝑑+2 = 4𝑣𝑀𝜌,𝑎,𝑏(𝑓)/(𝜌𝑁−1(𝜌−1)) for all 𝑖 ⩾ 𝑑+2.
Hence, if 𝜌𝜔0𝑅2,𝑑+2 ⩾ 1, we thus have 𝜌𝜔0𝑅2,𝑖 ⩾ 1 for all 𝑖 ⩾ 1 and 𝜆𝑘,ℓ = 0 for
any 1 ⩽ ℓ ⩽ 𝑑, 0 ⩽ 𝑘 ⩽ 𝑑− ℓ: the only functions taken into account are the 𝑢𝑘𝑥𝑘’s
and the method fails as claimed at the beginning of this section. This explains the
condition 4𝑣𝜌𝜔0𝑀𝜌,𝑎,𝑏(𝑓) < 𝜌𝑁−1(𝜌− 1).

Remark 5.10. The proof should be slightly adapted if Subsection 5.3.3 is used.
Recall that 𝐴comp = 2−tpreccomp(𝑀𝑐,comp 𝑀𝑟,comp), we obtain for 𝑗 = 0, . . . , 2𝑁 − 1,

|(Λ𝐴)[𝑗]− (Λ𝐴comp)[𝑗]| ⩽
∑︁

0⩽𝑘+ℓ⩽𝑑
|𝜆𝑘,ℓ|21−tpreccomp ⩽

∑︁
0⩽𝑘+ℓ⩽𝑑

|𝜆𝑘,ℓ|min
𝑖
𝐴2[𝑖, 𝑖] 2

−4

𝑁

from which follows ‖Λ𝐴‖1 ⩽ ‖Λ𝐴‖1 + ‖Λ𝐴2‖1
23 ⩽ ‖Λ𝐴‖1 + 1

24𝑁1/2 . The upper bound
in Inequality (5.11) becomes 1/(24𝑁1/2) + 1/

√
2𝑁 < 1/2 since 𝑁 ⩾ 3.

Note also that the success condition (5.9) becomes

max
𝑖=0,1

(︂
‖(𝑀𝐿𝐿𝐿[𝑖, 𝑗])0⩽𝑗⩽2𝑁−1‖1 + ‖(𝑀𝐿𝐿𝐿[𝑖, 𝑗])𝑁⩽𝑗⩽2𝑁−1‖1

8

)︂
< 2tprec−1.

From Theorem 5.8, we can deduce a lower bound for |𝑌/𝑣 − 𝑓(𝑋/𝑢)| in the
following way:

Corollary 5.11. With the notations and assumptions of Theorem 5.8, we have, for
all 𝑋 ∈ Z, 𝑎 ⩽ 𝑋/𝑢 ⩽ 𝑏, all 𝑌 ∈ Z, either:

𝑃 (𝑋,𝑌 ) = 0 or
⃒⃒⃒⃒
𝑌

𝑣
− 𝑓

(︂
𝑋

𝑢

)︂⃒⃒⃒⃒
>

1
2𝑣max(2𝐵, 𝑑) >

2𝑀𝜌,𝑎,𝑏(𝑓)
𝑑𝜌𝑁−𝜔0−1(𝜌− 1) .

Proof. The inequality 1
4𝑣𝐵 >

2𝑀𝜌,𝑎,𝑏(𝑓)
𝑑𝜌𝑁−𝜔0−1(𝜌−1) follows from the second point of Theo-

rem 5.8.
We have, for any 𝑥 ∈ [𝑎, 𝑏], 𝑦 ∈ R,

(5.14) 𝑃 (𝑢𝑥, 𝑣𝑦) = 𝑃 (𝑢𝑥, 𝑣𝑓(𝑥)) + (𝑦 − 𝑓(𝑥))𝑃 (𝑢𝑥, 𝑣𝑦)− 𝑃 (𝑢𝑥, 𝑣𝑓(𝑥))
𝑦 − 𝑓(𝑥) .

As 𝑃 ∈ Z[𝑋1, 𝑋2] and 𝑋,𝑌 ∈ Z, we must have 𝑃 (𝑋,𝑌 ) ∈ Z, so that either
𝑃 (𝑋,𝑌 ) = 0 or |𝑃 (𝑋,𝑌 )| ⩾ 1. In the former case, there is nothing to prove. In the
latter case, we plug 𝑥 = 𝑋/𝑢 and 𝑦 = 𝑌/𝑣 into (5.14) and obtain

(5.15)
⃒⃒⃒⃒
𝑌

𝑣
− 𝑓

(︂
𝑋

𝑢

)︂⃒⃒⃒⃒ ⃒⃒⃒⃒
𝑃 (𝑋,𝑌 )− 𝑃 (𝑋, 𝑣𝑓(𝑋/𝑢))

𝑌/𝑣 − 𝑓(𝑋/𝑢)

⃒⃒⃒⃒
⩾ |𝑃 (𝑋,𝑌 )| − |𝑃 (𝑋, 𝑣𝑓(𝑋/𝑢))| > 1

2
from the first point of Theorem 5.8. If we assume |𝑌/𝑣 − 𝑓(𝑋/𝑢)| ⩽ |𝑓(𝑋/𝑢)|/(2𝑑),
we then derive the expected result from the second point of Theorem 5.8.
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We now assume |𝑌/𝑣 − 𝑓(𝑋/𝑢)| > |𝑓(𝑋/𝑢)|/(2𝑑).
∙ If |𝑓(𝑋/𝑢)| < 1/𝑣, then either 𝑌 = −1, 0, 1 or |𝑌/𝑣 − 𝑓(𝑋/𝑢)| ⩾ 1/𝑣. For
𝑌 = −1, 0, 1, we have⃒⃒⃒⃒

𝑃 (𝑋,𝑌 )− 𝑃 (𝑋, 𝑣𝑓(𝑋/𝑢))
𝑌/𝑣 − 𝑓(𝑋/𝑢)

⃒⃒⃒⃒
⩽

∑︁
1⩽ℓ⩽𝑑

0⩽𝑘⩽𝑑−ℓ

|𝜆𝑘,ℓ||𝑋|𝑘𝑣
∑︁

0⩽𝑗⩽ℓ−1
|𝑌 |⏟ ⏞ 
⩽1

𝑗 |𝑣𝑓(𝑋/𝑢)|⏟  ⏞  
⩽1

ℓ−1−𝑗

⩽
∑︁

1⩽ℓ⩽𝑑
0⩽𝑘⩽𝑑−ℓ

ℓ|𝜆𝑘,ℓ|𝑢𝑘|𝑋/𝑢|𝑘𝑣 ⩽
∑︁

1⩽ℓ⩽𝑑
0⩽𝑘⩽𝑑−ℓ

ℓ|𝜆𝑘,ℓ|𝑢𝑘 max(|𝑎|, |𝑏|)𝑘𝑣(𝑣‖𝑓‖∞,[𝑎,𝑏]⏟  ⏞  
⩾|𝑛𝑓 |⩾1

)ℓ−1

where 𝑛𝑓 was introduced just before Lemma 5.6. The conclusion follows by
combining this upper bound with (5.15).

If |𝑌/𝑣 − 𝑓(𝑋/𝑢)| ⩾ 1/𝑣, the conclusion holds since not all 𝜆𝑘,ℓ are zero
and

𝐵 = 4𝑣
∑︁

1⩽ℓ⩽𝑑
0⩽𝑘⩽𝑑−ℓ

ℓ |𝜆𝑘,ℓ|⏟  ⏞  
∈N

𝑢𝑘 max(|𝑎|, |𝑏|)𝑘⏟  ⏞  
|𝑛𝑥|𝑘⩾1

𝑣ℓ−1‖𝑓‖ℓ−1
∞,[𝑎,𝑏]⏟  ⏞  

|𝑛𝑓 |ℓ−1⩾1

⩾ 4𝑣.

∙ Likewise, if |𝑓(𝑋/𝑢)| ⩾ 1/𝑣, we have

|𝑌/𝑣 − 𝑓(𝑋/𝑢)| > |𝑓(𝑋/𝑢)|
2𝑑 ⩾

1
2𝑑𝑣 >

2𝑀𝜌,𝑎,𝑏(𝑓)
𝑑𝜌𝑁−𝜔0−1(𝜌− 1) ,

since 1 > 4𝑣𝑀𝜌,𝑎,𝑏(𝑓)
𝜌𝑁−𝜔0−1(𝜌−1) thanks to Remark 5.9, the conclusion holds again.

□

We now have all the elements to prove the correctness of Algorithm 2. First, recall
that the matrices 𝑀𝑐 and 𝑀𝑟 computed in Algorithm 1 correspond to the scaled
matrices 2tprec𝐴1 and 2tprec𝐴2. If the condition stated at Step 4 of Algorithm 2 is
satisfied, then Theorem 5.8 and Corollary 5.11 prove that, given an integer pair
(𝑋,𝑌 ), either 𝑃0(𝑋,𝑌 ) = 𝑃1(𝑋,𝑌 ) = 0, or the lower bound of Corollary 5.11 holds.
If the test at Step 8 succeeded, 𝑃0 and 𝑃1 are coprime and since the total degree of
each 𝑃𝑖 is at most 𝑑, we deduce from Bézout’s theorem that the cardinal of ℒ, the
list of integer roots of 𝑃0 and 𝑃1 is at most 𝑑2.

Steps 7 & 9 of Algorithm 2 deal with the former case, by trying to solve the
polynomial system 𝑃0(𝑥, 𝑦) = 𝑃1(𝑥, 𝑦) = 0. If 𝑃0 and 𝑃1 are not coprime, however,
this will fail; this is what makes our algorithm (and actually all bivariate versions
of Coppersmith’s method) heuristic. When this situation occurs, one convenient
solution is to subdivide the interval of interest into two subintervals and to apply
the algorithm again to these subintervals.

When 𝑋 /∈ ℒ, then at least one of the values 𝑃0(𝑋,𝑌 ), 𝑃1(𝑋,𝑌 ) is non-zero.
Then, we deduce from Corollary 5.11 that |𝑓(𝑋/𝑢)− 𝑌/𝑣| > 1/𝐾 >

2𝑀𝜌,𝑎,𝑏(𝑓)
𝑑𝜌𝑁−𝜔0−1(𝜌−1) ,

where 𝐾 is the value computed at Step 15 of Algorithm 2.

5.4.2. Examination of the success of Algorithm 2. If we apply the LLL lattice basis
reduction algorithm to 𝐴, we obtain:

Corollary 5.12. Assume that det(𝐴𝐴𝑡)1/2(𝑁−1) ⩽ 2−(𝑁+3)/4−tprec/(𝑁−1)

𝑁 ; then Theo-
rem 5.8 applies with Λ equal to any of the first two vectors of an LLL-reduced basis
of the lattice generated by the rows of 𝐴.
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Proof. Let 𝐴 = 2tprec𝐴 ∈ ℳ𝑛(Z), we know from Theorem 4.5 that if 𝑤1 and 𝑤2
denote these first two vectors, we have

‖2tprec𝑤𝑖‖2 ⩽ 2(𝑁−1)/4 max(det(𝐴𝐴𝑡)1/2(𝑁−1),det(𝐴𝐴𝑡)1/(2𝑁)).

As 𝐴 is an integer matrix, its determinant is an integer, so that det(𝐴𝐴𝑡)1/2(𝑁−1) ⩾
det(𝐴𝐴𝑡)1/(2𝑁); we thus have

2tprec‖𝑤𝑖‖2 ⩽ 2(𝑁−1)/42𝑁tprec/(𝑁−1) det(𝐴𝐴𝑡)1/2(𝑁−1),

hence
‖𝑤𝑖‖2 ⩽ 2(𝑁−1)/42tprec/(𝑁−1) det(𝐴𝐴𝑡)1/2(𝑁−1) ⩽

1
2𝑁 .

□

We shall base our analysis on Inequality (5.7). The important term in the
analysis is (𝑢𝑣)2𝑁/(3(𝑑+3))𝑀𝜌,𝑎,𝑏(𝑓)2𝑁/(3(𝑑+3))/𝜌𝑁/2+.... The quality of the bound
thus depends on 𝜌 and the growth of 𝑓 .

We shall start by giving a general result. This result will then be turned into
more readable versions under various sets of assumptions in Theorems 5.18, 5.26
and 5.27.

Proposition 5.13. Let 𝑓 be analytic in a neighbourhood of the closed disc 𝒟𝑎,𝑏,𝐾 =
{𝑧 ∈ C : |𝑧−(𝑎+𝑏)/2| ⩽ 𝐾/2}, 𝑑 be an integer ⩾ 1, 𝑁 = (𝑑+1)(𝑑+2)/2, and 𝜔0 ⩾ 0,
𝜌 = 𝐾/(𝑏 − 𝑎) ⩾ 2 be two real parameters. Let 𝑀𝒟𝑎,𝑏,𝐾 (𝑓) := max𝑧∈𝒟𝑎,𝑏,𝐾 |𝑓(𝑧)|
and recall that Δ𝑁,[𝑎,𝑏],𝜔0 = (det𝐴𝐴𝑡)1/2.

Then, if

𝑏− 𝑎 < 𝐾
(︁

26(𝑑+3)𝑢𝑣(|𝑎+ 𝑏|+𝐾)𝑀𝒟𝑎,𝑏,𝐾 (𝑓)
)︁− 2𝑑𝑁

3(𝑁(𝑁−3)+2𝜔0+⌊𝜔0⌋(⌊𝜔0⌋−2𝜔0+1))
,

we have Δ1/(𝑁−1)
𝑁,[𝑎,𝑏],𝜔0

< 2−(𝑁+3)/4−tprec/(𝑁−1)

𝑁 .

Proof. We first notice that under our assumption 𝜌 = 𝐾/(𝑏 − 𝑎) ⩾ 2, we have
𝐸𝜌,𝑎,𝑏 ⊂ 𝒟𝑎,𝑏,𝐾 . Thanks to Corollary 5.3, in view of (𝜌/(𝜌− 1))𝑁/(𝑁−1) ⩽ 23/2, we
have

Δ1/(𝑁−1)
𝑁,[𝑎,𝑏],𝜔0

⩽ 60
√

2𝑁 (𝑢𝑣(|𝑎+ 𝑏|+𝐾)/2)2𝑁/(3(𝑑+3))

𝜌𝑁/2+⌊𝜔0⌋(⌊𝜔0⌋−2𝜔0+1)/(2(𝑁−1))𝑀𝒟𝑎,𝑏,𝐾 (𝑓)2𝑁/(3(𝑑+3)).

Thus, for Δ1/(𝑁−1)
𝑁,[𝑎,𝑏],𝜔0

< 2−(𝑁+3)/42−tprec/(𝑁−1)/𝑁 , it suffices, using Lemma 5.6 that

𝜌 >
(︁

60 · 2(𝑁+5)/4−2𝑁/(3(𝑑+3))+3/(𝑁−1)𝑁3/2

(𝑢𝑣(|𝑎+ 𝑏|+𝐾)𝑀𝒟𝑎,𝑏,𝐾 (𝑓))2𝑁/(3(𝑑+3))
)︁ 2(𝑁−1)
𝑁(𝑁−3)+2𝜔0+⌊𝜔0⌋(⌊𝜔0⌋−2𝜔0+1)

.

We observe that
60 · 2(𝑁+5)/4−2𝑁/(3(𝑑+3))+3/(𝑁−1)𝑁3/2 < 24𝑁

for 𝑑 ⩾ 1, from which the proposition follows. □

Corollary 5.14. Under the assumptions of Proposition 5.13, Algorithm 2 over [𝑎, 𝑏]
produces at Step 6 two polynomials 𝑃0, 𝑃1 such that max𝑥∈[𝑎,𝑏] |𝑃𝑖(𝑢𝑥, 𝑣𝑓(𝑥))| < 1/2
for 𝑖 ∈ {0, 1}. In particular, Algorithm 2 never reaches Step 20 and its output is
valid.
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Proof. It suffices to apply Proposition 5.13, Corollary 5.12, Theorem 5.8 and Corol-
lary 5.11 (in order to get the estimate on |𝑓(𝑋/𝑢)−𝑌/𝑣| which is part of the output
of Algorithm 2). □

Note that the algorithm may still return “FAIL” at Step 17, precisely in the case
where 𝑃0 and 𝑃1 are not coprime – this makes the algorithm heuristic.

5.5. Complexity analysis. In this subsection, we deduce estimates for the com-
plexity of our algorithm applied to a fixed interval [𝛼, 𝛽). This actually requires
several things:

∙ Evaluating the complexity of the basic blocks, namely Algorithms 1 and 2
(Subsection 5.5.1), and the precision required for all intermediate computa-
tions;

∙ Evaluating, thanks to Corollary 5.14, the size of a subinterval [𝑎, 𝑏] which can
be treated at once by those algorithms; the general case will be treated in
Subsection 5.5.2, whereas the case where 𝑓 is entire allows for an asymptotic
improvement in the estimates by letting 𝜌 tend to infinity with 𝑑; we shall
discuss this in Subsection 5.5.4;

∙ Investigating the interplay between 𝑑 and 𝜔0, two parameters which have
an impact on both the complexity and the quality of the final bound on
1/𝑤. (Subsection 5.5.3).

We start by giving complexity estimates for Algorithms 1 and 2.

5.5.1. Complexity of Algorithms 1 and 2. In this subsection, we denote M(𝑛) the
complexity of multiplying two 𝑛-bit integers (or two precision 𝑛 floating-point
numbers). Using naive arithmetic, we have 𝑀(𝑛) = 𝑂(𝑛2) whereas the best known
bound as of today is 𝑀(𝑛) = 𝑂(𝑛 log𝑛), see [28].

We assume that interval evaluation at precision 𝑝 of a function 𝑓 uses 𝑂(1)
evaluations of 𝑓 at precision 𝑝. In our implementation, we used the Arb library [33]
and the MPFI library.

Lemma 5.15. Putℳ = max(𝑢, 𝑣, |𝑎|, |𝑏|, 𝜌, 𝐵𝑓 ,max[𝑎,𝑏] |𝑓 ′(𝑥)|). The computations
of Algorithm 1 on input 𝑎, 𝑏, 𝑓, 𝑑, 𝑢, 𝑣, 𝜌, 𝜔0 can be made in floating-point precision
p = tprec +𝑂(𝑑 logℳ).

In particular, for fixed 𝑎, 𝑏, 𝜌, 𝜔0, 𝑓 , for 𝑢, 𝑣 = 2𝑝, with 𝑝 ⩾ 𝑑, the required
precision is 𝑂(𝑑𝑝).

Proof. It is a corollary of Theorem C.9, see Appendix C. □

Proposition 5.16. On input 𝑎, 𝑏, 𝑓, 𝑑, 𝑢, 𝑣, 𝜌, 𝜔0, assuming that evaluating 𝑓 in
precision 𝑃 costs 𝐶𝑓,𝑃 , and a DCT of size 𝑛 in precision 𝑞 has cost 𝑂(𝑛M(𝑞)),
Algorithm 1 has complexity

𝑂(𝑑4M(p) + 𝑑2𝐶𝑓,p),

where p is as in Lemma 5.15.

Proof. The most costly steps of Algorithm 1 appear in the loop 7-17 which can be
performed using 𝑂(𝑑2) evaluations of 𝑓 at precision 𝑂(tprec), and 𝑂(𝑑4) multiplica-
tions of real numbers in precision 𝑂(tprec), plus 𝑂(𝑑2) DCTs of size 𝑁 in precision
tprec. □
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In particular, for fixed 𝑎, 𝑏, 𝜌, 𝑢 = 𝑣 = 2𝑝, 𝑝 ⩾ 𝑑, 𝐶𝑓,𝑃 = 𝑂̃(M(𝑃 )), M(𝑛) = 𝑂̃(𝑛𝜅),
and ignoring the 𝜔0 log 𝜌 term in tprec, we obtain a complexity of 𝑂̃(𝑑4+𝜅𝑝𝜅). Here,
we use the 𝑂̃(·) notation defined as 𝑓(𝑛) = 𝑂̃(𝑔(𝑛)) iff. there exists a nonnegative
integer 𝑘 such that 𝑓(𝑛) = 𝑂(𝑔(𝑛) log𝑘 𝑔(𝑛)) (𝑔 is implicitly assumed to tend to
+∞ at ∞).

We now turn to the analysis of Algorithm 2. We shall limit ourselves to the
analysis of Steps 1–6, which compute the two auxiliary polynomials. This is, in any
case, the core of the algorithm, but also the choice made in previous papers, and
thus allows for a better comparison.

Proposition 5.17. On input 𝑎, 𝑏, 𝑓, 𝑑, 𝑢, 𝑣, 𝜌, 𝜔0, under the assumption 𝐶𝑓,𝑃 =
𝑂(𝑃 2), Steps 1–6 of Algorithm 2 have complexity 𝑂(𝑑6M(𝑑2)(𝑑2 + p)p).

Proof. The main steps of Algorithm 2 are:
∙ A call to Algorithm 1;
∙ A call to LLL on a lattice of dimension 𝑁 with entries of size 𝑂(p).

For the second part, we use the 𝐿2 algorithm [54] on a lattice of dimension𝑁 = 𝑂(𝑑2),
embedded into R2𝑁 ; we thus have complexity 𝑂(𝑑6M(𝑑2)(𝑑2 + p)p). This cost
dominates the cost of Algorithm 2. □

Note that in typical situations (for instance, either 𝑢, 𝑣 = 2𝑝, 𝑝 ⩾ 𝑑 or 𝜔0 ̸=
𝑁 −𝑜(𝑁), 𝜌 ⩾ 2) we have 𝑑2 = 𝑂(p) and the complexity simplifies to 𝑂(𝑑6M(𝑑2)p2).

5.5.2. Number of subintervals for fixed 𝑑. Thanks to the results of Subsection 5.4.2,
we can estimate the maximum size of an interval [𝑎, 𝑏] ⊂ [𝛼, 𝛽], with 𝛼, 𝛽 fixed,
for which Algorithm 2 succeeds (in the sense of Corollary 5.14). This follows from
Proposition 5.13, and yields at the same time the number of subintervals to be
considered if one wants to deal with a full interval [𝛼, 𝛽].

Theorem 5.18. Given fixed 𝑓 , a fixed parameter 𝑑, two fixed real numbers 𝛼 and
𝛽, Problem 2.6 can heuristically be solved for 𝑢, 𝑣 →∞ over [𝛼, 𝛽] using

(5.16) 𝑂
(︁

(𝛽 − 𝛼)(𝑢𝑣)
2𝑁𝑑

3(𝑁(𝑁−3)+2𝜔0+⌊𝜔0⌋(⌊𝜔0⌋−2𝜔0+1))
)︁

calls to Algorithm 2 with parameter 𝑑.
We then obtain a value

(5.17) 𝑤 = 𝑂

(︂
(𝑢𝑣)

2𝑁(𝑁−𝜔0)𝑑
3(𝑁(𝑁−3)+2𝜔0+⌊𝜔0⌋(⌊𝜔0⌋−2𝜔0+1))

)︂
.

When 𝑑→∞, both statements remain valid if 𝑁 −𝜔0 = Θ(𝑁), or if one replaces
𝑢𝑣 by 𝑢𝑣2𝑂(𝑑).

Proof. This is a direct consequence of Proposition 5.13 and Corollary 5.14, where
we choose 𝐾 = 2. Recall that the heuristic nature of this result comes from the
possibility that the two polynomials obtained in Algorithm 2 are not coprime, in
which case one cannot recover the solutions 𝑋,𝑌 from those two polynomials.

Finally, thanks to Corollary 5.11, the upper bound on 𝑤 is 𝑂(𝜌(𝑁−𝜔0)), from
which the second part of the result follows.

For 𝑑 → ∞, we need to take into account the term 26(𝑑+3) = 2𝑂(𝑑) of Proposi-
tion 5.13. However, if 𝜔 −𝑁 = Θ(𝑁), the global exponent in Proposition 5.13 is
𝑂(1/𝑑) and, overall, this term is absorbed by the 𝑂 notation. □
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Remark 5.19. If one is only interested with the smallest possible complexity, it should
be noted that the exponent in (5.16) is minimal for 𝜔0 ∈ [1, 2], and equal in this
case to 8𝑁/(3(𝑑+ 3)(𝑑2 + 3𝑑− 2)); for 𝜔0 = 2 we then get 𝑤 = 𝑂

(︀
(𝑢𝑣)4𝑁/(3(𝑑+3)))︀.

Remark 5.20. In the case where 𝜔0 is an integer, the bounds take the nicer form

𝑂
(︁

(𝛽 − 𝛼)(𝑢𝑣)
2𝑁𝑑

3(𝑁−𝜔0)(𝑁+𝜔0−3)
)︁

and 𝑤 = 𝑂
(︁

(𝑢𝑣)
2𝑁𝑑

3(𝑁+𝜔0−3)
)︁
.

In particular, this shows the limits of the approach: for 𝜔0 close to 𝑁 , we decrease
the exponent of the bound on 𝑤 by a factor of 2, but can expect nothing better.
We shall see in the next section how to go beyond this limitation.

We now discuss the case where we let 𝑑→∞. This has two goals:
∙ See for what value of 𝑑 we can expect to treat a whole interval [𝛼, 𝛽] at

once; notice that better results will be obtained later (Subsection 5.5.4) on
if 𝑓 is entire and we have control on its growth at infinity;

∙ Give a simplified form of the estimates of Theorem 5.18, which, in reason of
the technical parameter 𝜔0, are rather unpleasant and unintuitive.

Corollary 5.21. Let again 𝛼, 𝛽 be fixed real numbers. For 𝑑 → ∞, for 𝜔0 =
𝜆𝑁(1 + 𝑜(1)), 𝜆 ∈ [0, 1), Problem 2.6 can heuristically be solved for 𝑢, 𝑣 →∞ over
[𝛼, 𝛽] using

(5.18) 𝑂

(︂
(𝛽 − 𝛼)(𝑢𝑣)

4(1+𝑜(1))
3(1−𝜆2)𝑑

)︂
calls to Algorithm 2 with parameter 𝑑, giving a bound

(5.19) 𝑤 = 𝑂
(︁

(𝑢𝑣)
2𝑑(1+𝑜(1))

3(1+𝜆)

)︁
.

Remark 5.22. Note that if we assume 𝑑 = Θ(log(𝑢𝑣)), Corollary 5.21 states that
one call is enough to address an interval of the size 𝛽 − 𝛼 = 𝑂(1) and we then
obtain 𝑤 = 𝑒𝑂(log2(𝑢𝑣)). We will improve this result in Section 5.5.4 under additional
assumptions on the growth of 𝑓 at infinity.

Remark 5.23. In all this section, our complexity estimates should be considered as
slightly pessimistic for fixed 𝑑, at least for usual transcendental functions. Indeed,
we base our complexity estimates on estimates on the size of the second vector of
an LLL-reduced basis, estimates which can only be obtained under a (trivial, thus
pessimistic in practice) lower bound on the size of the first vector.

For a “classical” function such as exp or Γ, we notice in practice that most of the
time, the second vector has a size similar to the size of the first one. This yields the
slighly better bound

𝑂
(︁

(𝛽 − 𝛼)(𝑢𝑣)
2𝑑𝑁

3(𝑁(𝑁−3)+2𝜔0+𝑁⌊𝜔0⌋(⌊𝜔0⌋−2𝜔0+1))
)︁
.

Note that it is easy to build examples where this latter bound does not hold, by
taking a function which has a very good algebraic approximation (which gives a
very short first vector) over the interval under study.

Remark 5.24. The first part of the Corollary, when 𝜆 = 0, is akin to, asymptotically,
Bombieri and Pila’s result [6] on the number of real algebraic curves of degree ⩽ 𝑑
containing all integer points on a given transcendental curve. The only reasons why
we do not get the exact same result as theirs are: the fact that we use a bound on
the second vector (see previous remark); and the fact that in order to get a practical
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algorithm, we truncate our matrix to get an integer matrix – this has a slight effect,
asymptotically negligible, on the final bound.

5.5.3. Tuning 𝑑 and 𝜔0. Again, in order to ease this very technical discussion, we
shall focus on the situation of a fixed 𝑓, 𝑎, 𝑏 for 𝑢𝑣 →∞.

Let us start by pointing that a tedious, but not difficult computation shows that
for 𝑑 ⩾ 2 the exponent in (5.17) is decreasing for 𝜔0 ∈ [0, 𝑁 − 1); the maximal value
of this exponent, for 𝜔0 = 0, is 4𝑑𝑁/(3(𝑑− 1)(𝑑+ 4)) ≈ 2𝑑/3, whereas its minimal
value, for 𝜔0 close to 𝑁 − 1, is 𝑑𝑁/(3𝑁 − 6) ≈ 𝑑/3. We thus have a wall-type
phenomenon: if we want to get access to a good complexity (see (5.16)), we need to
increase 𝑑; but then 𝜔0 fails to prevent the degradation of the estimate on 𝑤, at
least in a significant way. In practice, if we target a sharp bound and let 𝜔0 grow
with this purpose in mind, we observe that the lattice basis reduction step decreases
𝑑 to some 𝛿 on its own simply by not using monomials of degree > 𝛿 for the first
vectors.

We shall however see that setting 𝜔0 to a non-zero value still allows one to
get a better complexity/𝑤 compromise, and shall study a different method giving
complete control on 𝑤 in the next section.

From now on, we thus fix a value of 𝑤 = (𝑢𝑣)𝜇 and try to find a pair (𝑑, 𝜔0)
which minimizes the complexity required to achieve this value of 𝑤.

We start with the asymptotic situation, i.e., 𝑑→∞.

Proposition 5.25. Let 𝑑 → ∞, and 𝜔0 = 𝜆𝑁(1 + 𝑜(1)). The value of 𝑑 such
that the exponent of 𝑢𝑣 in (5.19) is 𝜇 while minimizing the exponent in (5.18) is
𝑑 = 2𝜇(1+𝑜(1)), obtained for 𝜆 = 1/3(1+𝑜(1)). This gives a number of subintervals

𝑂
(︁

(𝛽 − 𝛼)(𝑢𝑣)
3

4𝜇 (1+𝑜(1)
)︁
.

Proof. Elementary calculus. □

Led by this asymptotic statement, we have computed (experimentally), for small
values of 𝜇, the value of 𝑑 giving the best estimate for the complexity in (5.16);
it turns out that in all our computations, the optimal value was 𝑑 = ⌊2𝜇⌋, except
when 𝜇 = 𝑟 + 1/2 is an half-integer, where the optimal 𝑑 is 2𝑟.

Working out a closed form for the exponent of the complexity estimate as a
function of 𝜇 seems thus possible, but would be moderately enlightening; it seems
preferable to give a plot of the corresponding function. Figure 1 gives three curves.
The dashed curve corresponds to the best exponent in Theorem 5.18 as a function
of the exponent of 𝑢𝑣 in the bound on 𝑤. The dotted curve represents a similar
function, but using a version of our bounds controlling only the first vector of the
lattice. Finally, the plain curve is the asymptotic bound 3/(4𝜇).

5.5.4. The case 𝜌(𝑏− 𝑎)→∞. In this subsection, we shall now let 𝐾 depend on
𝑑, namely we shall let it tend to ∞ with 𝑑. We shall thus need the function under
study to be an entire function. Recall that if 𝑓 : C→ C is an entire function, and if
𝜃 = lim sup𝜌→∞ log log max|𝑧|⩽𝜌 |𝑓(𝑧)|/ log 𝜌 is finite, the function 𝑓 is said to have
finite order 𝜃.

The presence of a term 𝑀𝜌,𝑎,𝑏(𝑓), depending on the growth of 𝑓 at infinity, shows
that it is difficult to give a single ready-to-use result. We thus split the discussion
into two parts: the case of entire functions of finite order, such as exp for instance,
in which the value of the order gives sufficiently precise information on the growth
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Figure 1. Exponent estimates

at infinity to obtain a general result; and then two examples of a function of order
zero and of a function of order infinity – in those cases, case-by-case estimates of
the growth at infinity are required.

Theorem 5.26. Let 𝑎 < 𝑏 two fixed real numbers, let 𝜃 be a positive real number, and
let 𝑓 be an entire function of finite order ⩽ 𝜃, 𝑑 ⩾ 2 be an integer, 𝑁 = (𝑑+1)(𝑑+2)/2,
and let 𝜔0 = 𝜆𝑁 + 𝑜(𝑁), for some fixed 𝜆 ∈ [0, 1).

For 𝑢𝑣 →∞, for any constant 𝜈 > 4𝜃
3(1−𝜆2) , for

𝑑 = 𝜈
log(𝑢𝑣)

log log(𝑢𝑣) (1 + 𝑜(1)),

Algorithm 2 succeeds (in the sense of Corollary 5.14) over [𝑎, 𝑏] and yields a bound
on 𝑤 of the form:

𝑤 ⩽ (𝑢𝑣)
𝜈2(1−𝜆)

2𝜃
log(𝑢𝑣)

log log(𝑢𝑣) (1+𝑜(1)).

Proof. Let 𝜃′ > 𝜃 be a parameter which will be fixed later on. We choose𝐾 = 𝑑1/𝜃′
/2,

which is > 2(𝑏− 𝑎) for 𝑑 large enough. The disc 𝒟𝑎,𝑏,𝐾 (see Proposition 5.13) is,
for our choice of 𝜌, included into the ball 𝐵(0, 𝑑1/𝜃′) for 𝑑 large enough; hence, the
assumption that 𝑓 has order ⩽ 𝜃 shows that there exist constants 𝐶𝑓,𝜃′ , 𝜎𝑓,𝜃′ ∈ R
such that

𝑀𝒟𝑎,𝑏,𝐾 (𝑓) ⩽ 𝐶𝑓,𝜃′ exp(𝜎𝑓,𝜃′𝑑) = 2𝑂(𝑑).

Proposition 5.13 then implies that a sufficient condition for the conclusion of the
theorem to hold is

𝑏− 𝑎 < 1
2

(︃
26(𝑑+3)

(︃
|𝑎+ 𝑏|+ 𝑑1/𝜃′

2

)︃
𝑀𝒟𝑎,𝑏,𝐾 (𝑓)⏟  ⏞  

=:𝐴𝑑

)︃−4/(3𝑑(1−𝜆2))(1+𝑜(1))

𝑑1/𝜃′
(𝑢𝑣)−4/(3𝑑(1−𝜆2))(1+𝑜(1)),
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or equivalently

𝑑1/𝜃′
(𝑢𝑣)−4/(3𝑑(1−𝜆2))(1+𝑜(1)) > 2𝐴4/(3𝑑(1−𝜆2))(1+𝑜(1))

𝑑 (𝑏− 𝑎).

As 𝑎, 𝑏 are fixed and 𝐴𝑑 = 2𝑂(𝑑) when 𝑑→∞, the right hand side is bounded and
a sufficient condition for this to hold is simply

𝑑1/𝜃′
(𝑢𝑣)−4/(3𝑑(1−𝜆2))(1+𝑜(1)) →∞,

for which it suffices that, for some 𝜀′ > 0,

𝑑 log 𝑑 ⩾

(︂
4𝜃′

3(1− 𝜆2) + 𝜀′
)︂

log(𝑢𝑣),

which obviously holds under the assumption on 𝑑 made in the theorem for 𝑢𝑣 large
enough and 𝜃′ < 3(1− 𝜆2)𝜈/4.

As for the last part, the bound on 𝑤 is ⩽ 𝜌𝑁(1−𝜆) = 𝐾𝑁(1−𝜆)(1+𝑜(1)), namely we
have

log(𝑤) = (1− 𝜆)𝑑2 log 𝑑
2𝜃′ (1 + 𝑜(1)) ⩽ (1− 𝜆)𝜈2 log2(𝑢𝑣)

2𝜃 log log 𝑢𝑣 (1 + 𝑜(1)),

as claimed. □

In particular, for the TMD over [1/4, 1/2) for the exponential function (𝜃 = 1),
hence for 𝑎 = 1/4, 𝑏 = 1/2 and 𝑢 = 2𝑝+1 and 𝑣 = 2𝑝−1, for 𝑝 → ∞, we obtain
the condition 𝑑 ⩾

(︁
8 log 2

3(1−𝜆2) + 𝜀
)︁

𝑝
log 𝑝 for the full interval [1/4, 1/2), with a bound

𝑤 ⩽ 2
(︀

32 log 2
9(1−𝜆2)(1+𝜆)

+𝜀
)︀
𝑝2

log 𝑝 .
Two other examples. We illustrate, more generally, the fact that we get asymptotic
results depending on the rate of growth of 𝑓 at infinity: the slower the growth of 𝑓 ,
the better the performance.

Theorem 5.27. Let 𝑓 = exp(exp(𝑧)). For 𝑢𝑣 large enough, for any constant 𝜈 >
4

3(1−𝜆2) , for 𝑑 = ⌈𝜈 log(𝑢𝑣)
log log log(𝑢𝑣)⌉, Algorithm 2 succeeds in the sense of Corollary 5.14

and we obtain
𝑤 = (𝑢𝑣)𝜈

2(1−𝜆) log(𝑢𝑣) log log(𝑢𝑣)
(log log log(𝑢𝑣))2 (1+𝑜(1))

.

Let 𝑔(𝑧) =
∑︀
𝑛⩾0 exp(−𝑛2)𝑧𝑛. For 𝑢𝑣 large enough, for any constant 𝜈 > 4

3(1−𝜆2) ,
for 𝑑 = ⌈𝜈

√︀
log(𝑢𝑣)⌉, Algorithm 2 succeeds in the sense of Corollary 5.14 and we

obtain 𝑤 = (𝑢𝑣) 3
2𝜈

2(1−𝜆2)(1−𝜆)
√

log(𝑢𝑣)(1+𝑜(1)).

Proof. The proof is similar to the proof of the previous theorem, with 𝐾 = log 𝑑 for
𝑓 and 𝐾 = exp(3(1− 𝜆2)𝑑/2) for 𝑔. See Appendix B. □

6. The two-variable method

We consider 𝑢, 𝑣 ∈ N ∖ {0}, 𝑎1 < 𝑏1 and 𝑎2 < 𝑏2, and 𝑓 : [𝑎1, 𝑏1]→ R a function
that is analytic in a neighbourhood of [𝑎1, 𝑏1]. In this section, we develop a heuristic
algorithmic approach to determine the integers 𝑋,𝑌 such that
(6.1) 𝑋/𝑢 ∈ [𝑎1, 𝑏1] and 𝑎2 < 𝑌/𝑣 − 𝑓(𝑋/𝑢) < 𝑏2.

Note that this is a mere reformulation of Problem 2.6: let 𝑤 ∈ N ∖ {0}, we set
[𝑎, 𝑏] = [𝑎1, 𝑏1] and 𝑏2 = −𝑎2 = 1/𝑤. Actually, without loss of generality, we can
assume 𝑏2 = −𝑎2 by replacing 𝑓 by 𝑓 + (𝑎2 + 𝑏2)/2.
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We prefer to keep 𝑎2 and 𝑏2 arbitrary in the sequel to put more emphasis on the
symmetry between (𝑎1, 𝑏1) and (𝑎2, 𝑏2) in the formulas and statements.

Our approach aims at building a trap for these pairs (𝑋,𝑌 ). We compute,
by combining two-dimensional Chebyshev interpolation and lattice reduction, two
polynomials 𝑃0, 𝑃1 ∈ Z[𝑋1, 𝑋2] such that, for 𝑖 = 0, 1, for all 𝑥 ∈ [𝑎1, 𝑏1], 𝑡 ∈ [𝑎2, 𝑏2],
we have |𝑃𝑖(𝑢𝑥, 𝑣(𝑓(𝑥)+𝑡))| < 1. Let𝑋 ∈ Z be such that𝑋/𝑢 =: 𝑥0 ∈ [𝑎1, 𝑏1] and let
𝑌 ∈ Z be such that 𝑌/𝑣 =: 𝑓(𝑥0)+𝑡0 with 𝑡0 ∈ [𝑎2, 𝑏2]. Then 𝑃𝑖(𝑢𝑥0, 𝑣(𝑓(𝑥0)+𝑡0)) =
𝑃𝑖(𝑋,𝑌 ) ∈ Z ∩ (−1, 1) = {0}, that is to say (𝑋,𝑌 ) is a common root to 𝑃0 and 𝑃1.
As in Section 5, we use our heuristic assumption: 𝑃0 and 𝑃1 are supposed to have
no nonconstant common factor. We eliminate one of the variables and get the list
of all the integers 𝑋,𝑌 that satisfy (6.1).

In the sequel of this section, we start with estimates of the determinants of the
lattices that we use, we present our algorithm, the proof of its correctness and
analyse its complexity. When the proofs of the statements are similar to the ones
presented in Section 5, we shall postpone them to Appendix E.

Throughout this section, 𝑁1, 𝑁2 ⩾ 2 and 𝑁 ⩾ 2, will be three integers. In order to
avoid degenerate situations and trivial output, we shall always assume 𝑁1𝑁2 ⩾ 𝑁 .

6.1. Volume estimates for rigorous interpolants at the Chebyshev nodes.
We start by introducing the two dimensional extension of the DCT-II:

2D-DCT-II : R𝑁1 ×R𝑁2 → R𝑁1 ×R𝑁2

(𝑥ℓ1,ℓ2)0⩽ℓ1⩽𝑁1−1
0⩽ℓ2⩽𝑁2−1

↦→ (𝑋𝑘1,𝑘2)0⩽𝑘1⩽𝑁1−1
0⩽𝑘2⩽𝑁2−1

with

𝑋𝑘1,𝑘2 =
∑︁

0⩽ℓ1⩽𝑁1−1

∑︁
0⩽ℓ2⩽𝑁2−1

𝑥ℓ1,ℓ2 cos
(︂
𝑘1(ℓ1 + 1/2)𝜋

𝑁1

)︂
cos
(︂
𝑘2(ℓ2 + 1/2)𝜋

𝑁2

)︂
,

for 𝑘1 = 0, . . . , 𝑁1 − 1, 𝑘2 = 0, . . . , 𝑁2 − 1.
Let 𝑁 ∈ N, 𝑁 ⩾ 2, let 𝑖 = 0, . . . , 𝑁 − 1, let 𝑓𝑖 a function defined over [𝑎1, 𝑏1]×

[𝑎2, 𝑏2]. We shall use the following results for the functions 𝑓𝑖 defined in (6.8).
If we interpolate 𝑓𝑖 by 𝑄𝑖(𝑥, 𝑡) ∈ R𝑁1−1,𝑁2−1[𝑥, 𝑡]14 at pairs of Chebyshev nodes
𝜇𝑘1,𝑘2 = (𝜇𝑘1,𝑁1−1,[𝑎1,𝑏1], 𝜇𝑘2,𝑁2−1,[𝑎2,𝑏2])0⩽𝑘1⩽𝑁1−1

0⩽𝑘2⩽𝑁2−1
, cf. Section 4.1, we have the

following expressions for the interpolation polynomials (the proof is identical to the
one variable case [50, Chap. 6]), for 𝑖 = 0, . . . , 𝑁 − 1:

𝑄𝑖(𝑥, 𝑡) =
𝑁1−1∑︁′

𝑘1=0

𝑁2−1∑︁′

𝑘2=0
𝑐𝑘1,𝑘2,𝑖𝑇𝑘1,[𝑎1,𝑏1](𝑥)𝑇𝑘2,[𝑎2,𝑏2](𝑡) ∈ R𝑁1−1,𝑁2−1[𝑥, 𝑡]

with

(6.2) (𝑐𝑘1,𝑘2,𝑖)0⩽𝑘1⩽𝑁1−1
0⩽𝑘2⩽𝑁2−1

=

4
𝑁1𝑁2

2D-DCT-II
(︂

(𝑓𝑖(𝜇𝑁1−1−ℓ1,𝑁2−1−ℓ2))0⩽ℓ1⩽𝑁1−1
0⩽ℓ2⩽𝑁2−1

)︂
.

Let 𝜌1, 𝜌2 > 1, 𝑎1 < 𝑏1, 𝑎2 < 𝑏2, we recall from Section 4.1.2, ℰ𝜌1,𝑎1,𝑏1,𝜌2,𝑎2,𝑏2 =
ℰ𝜌1,𝑎1,𝑏1 × ℰ𝜌2,𝑎2,𝑏2 and 𝐸𝜌1,𝑎1,𝑏1,𝜌2,𝑎2,𝑏2 = 𝐸𝜌1,𝑎1,𝑏1 × 𝐸𝜌2,𝑎2,𝑏2 . We also recall
𝑀𝜌1,𝑎1,𝑏1,𝜌2,𝑎2,𝑏2(𝑔) := max𝑧∈ℰ𝜌1,𝑎1,𝑏1,𝜌2,𝑎2,𝑏2

|𝑔(𝑧)| if 𝑔 is analytic in a neighbourhood

14This denotes the set of polynomials in two indeterminates 𝑥 and 𝑡 with real coefficients,
degree in 𝑥 less than 𝑁1 and degree in 𝑡 less than 𝑁2.
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of 𝐸𝜌1,𝑎1,𝑏1,𝜌2,𝑎2,𝑏2 . Let 𝑁1, 𝑁2 ⩾ 2, and 𝑁 ⩽ 𝑁1𝑁2. Let 𝑓0, . . . , 𝑓𝑁−1 be functions
analytic in a neighbourhood of 𝐸𝜌1,𝑎1,𝑏1,𝜌2,𝑎2,𝑏2 . We introduce the 𝑁 × (𝑁1𝑁2 +𝑁)
matrix 𝐴 = (𝐴1|𝐴2), defined by

(6.3)

(𝐴1)𝑖,(𝑘1,𝑘2) =
(︁ 𝑐𝑘1,𝑘2,𝑖

2𝛿0𝑘1 +𝛿0𝑘2

)︁
0⩽𝑖⩽𝑁−1

0⩽𝑘1⩽𝑁1−1, 0⩽𝑘2⩽𝑁2−1
,

(𝐴2)𝑖,𝑗 = 𝛿𝑖𝑗
16𝜌1𝜌2𝑀𝜌1,𝑎1,𝑏1,𝜌2,𝑎2,𝑏2(𝑓𝑖)

(𝜌1 − 1)(𝜌2 − 1)

(︂
1
𝜌𝑁1

1
+ 1
𝜌𝑁2

2

)︂
, 0 ⩽ 𝑖, 𝑗 ⩽ 𝑁 − 1.

Recall from Proposition 4.2 that ‖𝑓𝑖 −𝑄𝑖‖∞ ⩽ 𝐴2[𝑖, 𝑖], 𝑖 = 0, . . . , 𝑁 − 1.
Once again, the diagonal right part, 𝐴2, of the matrix will be used for controlling

that the functions 𝑃0(𝑢𝑥, 𝑣(𝑓(𝑥) + 𝑡)), 𝑃1(𝑢𝑥, 𝑣(𝑓(𝑥) + 𝑡)), output by the lattice
basis reduction process, are uniformly small; this accounts for the presence of

the 16𝜌1𝜌2𝑀𝜌1,𝑎1,𝑏1,𝜌2,𝑎2,𝑏2 (𝑓𝑖)
(𝜌1−1)(𝜌2−1)

(︂
1
𝜌
𝑁1
1

+ 1
𝜌
𝑁2
2

)︂
remainder term for the approximation of

𝑃𝑖(𝑢𝑥, 𝑣(𝑓(𝑥) + 𝑡)) by its interpolation polynomial at the 2D Chebyshev points.
We start with a convenient combinatorial lemma.

Lemma 6.1. Let 𝛾 ∈ R, 𝛾 ⩾ 1, 𝑁,𝑁1, 𝑁2 positive integers. Consider the multiset15

𝑆 = {𝑘 + 𝛾𝑘′, (𝑘, 𝑘′) ∈ [0, 𝑁1 − 1] × [0, 𝑁2 − 1]} + {𝑁1, . . . , 𝑁1⏟  ⏞  
𝑁times

}, and order the

elements of 𝑆 as 𝜎0 ⩽ . . . ⩽ 𝜎card𝑆−1.
Define

Ω𝛾(𝑁1, 𝑁2, 𝑁) = 𝜎0 + · · ·+ 𝜎𝑁−1,

the sum of the 𝑁 smallest elements of 𝑆.
Let now 𝑠 ⩽ 𝑁1 be a real number, let 𝒦𝑠 = {(𝑖, 𝑗) ∈ [0, 𝑁1 − 1] × [0, 𝑁2 − 1] :

𝑖+ 𝛾𝑗 ⩽ 𝑠}. Then,

Ω𝛾(𝑁1, 𝑁2, 𝑁) ⩾ 𝑠(𝑁 − card𝒦𝑠) +
∑︁

(𝑖,𝑗)∈𝒦𝑠

(𝑖+ 𝛾𝑗).

Proof. Putℳ𝑠 = {𝑖+𝑗𝛾, (𝑖, 𝑗) ∈ 𝒦𝑠}. Then, if card𝒦𝑠 ⩽ 𝑁 ,ℳ𝑠 ⊂ {𝜎0, . . . , 𝜎𝑁−1},
and any element in {𝜎0, . . . , 𝜎𝑁−1} ∖ℳ𝑠 is at least equal to 𝑠.

Otherwise, we have {𝜎0, . . . , 𝜎𝑁−1} ⊂ ℳ𝑠, and any element inℳ𝑠∖{𝜎0, . . . , 𝜎𝑁−1}
is at most equal to 𝑠. □

Remark 6.2. The quantity Ω𝛾(𝑁1, 𝑁2, 𝑁) plays a key role in the analysis of our
bivariate method, as 𝜌Ω𝛾(𝑁1,𝑁2,𝑁)

1 will turn to play the role that 𝜌𝑁(𝑁−1)/2 played
in the univariate case. For fixed values of 𝑁,𝑁1, 𝑁2, 𝛾, it is easy to compute explicit
values of Ω𝛾(𝑁,𝑁1, 𝑁2). We thus focus in the sequel on the asymptotic (for 𝑁 →∞)
behaviour of Ω𝛾(𝑁,𝑁1, 𝑁2) and shall hence mostly study the asymptotic behaviour
of this bivariate method – even though the analysis itself is not asymptotic by nature
(see e.g. Theorem 6.4).

We now give explicit expressions for card𝒦𝑠 and
∑︀

(𝑖,𝑗)∈𝒦𝑠(𝑖+ 𝑗𝛾).

Lemma 6.3. Let 𝑠 ∈ R, 𝑠 < 𝑁1 and 𝛾 ⩾ 𝑁1/𝑁2 ⩾ 1. We have

(6.4) card𝒦𝑠 =
⌊𝑠/𝛾⌋∑︁
𝑗=0

(1 + ⌊𝑠− 𝑗𝛾⌋) = (1 + ⌊𝑠/𝛾⌋) +
⌊𝑠/𝛾⌋∑︁
𝑗=0
⌊𝑠− 𝑗𝛾⌋

15By sum of multisets, we mean that the multiplicity of an element of the union is the sum of
its multiplicities in the multisets.
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and

(6.5)
∑︁

(𝑖,𝑗)∈𝒦𝑠

(𝑖+ 𝑗𝛾) =
⌊𝑠/𝛾⌋∑︁
𝑗=0

(1 + ⌊𝑠− 𝑗𝛾⌋)
(︂
𝑗𝛾 + ⌊𝑠− 𝑗𝛾⌋2

)︂
.

This implies
(6.6) (1 + ⌊𝑠/𝛾⌋)(𝑠− 𝛾⌊𝑠/𝛾⌋/2) ⩽ card𝒦𝑠 ⩽ (1 + ⌊𝑠/𝛾⌋)(1 + 𝑠− 𝛾⌊𝑠/𝛾⌋/2)
and

(6.7)
(1 + ⌊𝑠/𝛾⌋)6𝑠(𝑠− 1) + 𝛾⌊𝑠/𝛾⌋(3− 𝛾 − 2𝛾⌊𝑠/𝛾⌋)

12 ⩽
∑︁

(𝑖,𝑗)∈𝒦𝑠

(𝑖+ 𝑗𝛾)

⩽ (1 + ⌊𝑠/𝛾⌋)6𝑠(𝑠+ 1) + 𝛾⌊𝑠/𝛾⌋(3− 𝛾 − 2𝛾⌊𝑠/𝛾⌋)
12 .

Proof. First, note that 𝑠/𝛾 < 𝑁1/𝛾 ⩽ 𝑁1/(𝑁1/𝑁2) = 𝑁2, hence ⌊𝑠/𝛾⌋ ⩽ 𝑁2 − 1.
Let (𝑖, 𝑗) ∈ 𝒦𝑠, the largest possible value of 𝑗 corresponds to the case 𝑖 = 0: we then
have 𝑗𝛾 ⩽ 𝑠, that is to say 𝑗 ⩽ ⌊𝑠/𝛾⌋. Now, in order to count the elements of 𝐾𝑠, we
enumerate, for 𝑗 = 0, . . . , ⌊𝑠/𝛾⌋, the elements of each slice {𝑖+𝑗𝛾 ⩽ 𝑠, 𝑖 ∈ [0, 𝑁1−1]}:
there are 1 + ⌊𝑠− 𝑗𝛾⌋ such elements, which proves (6.4).

Now, for 𝑗 = 0, . . . , ⌊𝑠/𝛾⌋, we sum the values 𝑖+ 𝑗𝛾 for 𝑖 in the slice {𝑖+ 𝑗𝛾 ⩽
𝑠, 𝑖 ∈ [0, 𝑁1 − 1]}, i.e., 𝑖 ∈ [0, ⌊𝑠 − 𝑗𝛾⌋]. Hence, for 𝑗 = 0, . . . , ⌊𝑠/𝛾⌋, we sum the
values ⌊𝑠− 𝑗𝛾⌋(1 + ⌊𝑠− 𝑗𝛾⌋)/2 + (1 + ⌊𝑠− 𝑗𝛾⌋)𝑗𝛾, from which (6.5) follows.

We use 𝑠− 𝑗𝛾 − 1 ⩽ ⌊𝑠− 𝑗𝛾⌋ ⩽ 𝑠− 𝑗𝛾 for 𝑗 = 0, . . . , ⌊𝑠/𝛾⌋ to derive from (6.4)
(1 + ⌊𝑠/𝛾⌋)(𝑠− 𝛾⌊𝑠/𝛾⌋/2) ⩽ card𝒦𝑠 ⩽ (1 + ⌊𝑠/𝛾⌋)(1 + 𝑠− 𝛾⌊𝑠/𝛾⌋/2).

Likewise, we derive from (6.5)
⌊𝑠/𝛾⌋∑︁
𝑗=0

(𝑠− 𝑗𝛾)(𝑠+ 𝑗𝛾 − 1)
2 ⩽

∑︁
(𝑖,𝑗)∈𝒦𝑠

(𝑖+ 𝑗𝛾) ⩽
⌊𝑠/𝛾⌋∑︁
𝑗=0

(1 + 𝑠− 𝑗𝛾)(𝑠+ 𝑗𝛾)
2 ,

which yields (6.7). □

The next result gives an upper bound for the volume of the lattice generated by
the rows of 𝐴:

Theorem 6.4. Let 𝜌1, 𝜌2 > 1, 𝑎1 < 𝑏1, 𝑎2 < 𝑏2. We further assume that 𝜌𝑁1
1 ⩽

𝜌𝑁2
2 , and define 𝛾 = log 𝜌2/ log 𝜌1. Let 𝑓0, . . . , 𝑓𝑁−1 be functions analytic in a

neighbourhood of 𝐸𝜌1,𝑎1,𝑏1,𝜌2,𝑎2,𝑏2 . Then, we have

(det𝐴𝐴𝑡)1/2 ⩽
(︁

32
√
𝑁
)︁𝑁

2𝑁1𝑁2

(︂
𝜌1𝜌2

(𝜌1 − 1)(𝜌2 − 1)

)︂𝑁 ∏︀𝑁−1
𝑖=0 𝑀𝜌1,𝑎1,𝑏1,𝜌2,𝑎2,𝑏2(𝑓𝑖)

𝜌
Ω𝛾(𝑁,𝑁1,𝑁2)
1

.

Proof. See Appendix E. □

We now give two statements on the behaviour of Ω𝛾(𝑁,𝑁1, 𝑁2) when 𝑁 →∞,
for a fixed (essentially optimal) choice of 𝑁1, 𝑁2. The proofs are elementary, but
long and we postpone them to Appendix D.

Proposition 6.5. Let 𝜙 be the function from [1,+∞) to [1,+∞) defined by 𝜙(𝑥) =
(1 + ⌊𝑥⌋)(𝑥− ⌊𝑥⌋/2). Then 𝜙 is invertible. We further define 𝜓 by

𝜓(𝑥) = 1 + ⌊𝜙−1(𝑥)⌋
12𝑥

(︀
6𝜙−1(𝑥)2 − ⌊𝜙−1(𝑥)⌋ − 2⌊𝜙−1(𝑥)⌋2

)︀
;
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we then have, for any 𝑦 ∈ [1,+∞),

𝜓−1(𝑦) = 𝑘 + 1
2

(︁
2𝑦 − 𝑘 +

√︀
4𝑦(𝑦 − 𝑘) + 2𝑘(2𝑘 + 1)/3

)︁
,

where 𝑘 = ⌊3𝑦/2 + 1/4⌋. Further, when 𝑥 → ∞, 𝜙−1(𝑥) =
√

2𝑥 + 𝑂(1), 𝜓(𝑥) =
2
√

2𝑥/3 +𝑂(1).

Proof. See Corollary D.3. □

Note that for 𝑥 ⩾ 1, we prove in Lemma D.4 the inequalities 𝜓(𝑥)− 2
√

2𝑥/3 ∈
[−5/6, 0] and observe numerically that 𝜓(𝑥) − 2

√
2𝑥/3 ∈ [−1/2,−0.44], meaning

that for our purposes 𝜓(𝑥) is very well approximated by 2
√

2𝑥/3− 1/2.

Proposition 6.6. Let 𝛾 ∈ R such that 3 ⩽ 𝛾 ⩽ 𝑁 . Put 𝑁1 = ⌊
√

2𝑁𝛾⌋ and
𝑁2 = ⌈

√︀
2𝑁/𝛾⌉. Then, we have 𝛾 ⩾ 𝑁1/𝑁2 and

Ω𝛾(𝑁,𝑁1, 𝑁2) = 𝜓(𝑁/𝛾)𝑁𝛾 +𝑂(𝑁).

In particular, for 𝛾 = 𝑜(𝑁), we have

Ω𝛾(𝑁,𝑁1, 𝑁2) = 2
√

2
3 𝑁3/2𝛾1/2 +𝑂(𝑁𝛾).

Proof. See Corollary D.3. □

Remark 6.7. We can obtain a similar result for 1 < 𝛾 < 3 if we set 𝑁1 = 1+⌊
√

2𝑁𝛾⌋
and 𝑁2 = 1 + ⌈

√︀
2𝑁/𝛾⌉.

This allows us to give asymptotic versions of Theorem 6.4, which will be more
convenient in the sequel.

Corollary 6.8. Let 𝜌1, 𝜌2 > 1 such that 𝛾 = log 𝜌2/ log 𝜌1 ∈ [3, 𝑁 ]. Let 𝑎1 < 𝑏1,
𝑎2 < 𝑏2, 𝑠 = 𝛾𝜙−1(𝑁/𝛾), 𝑁1 = ⌊

√
2𝑁𝛾⌋ and 𝑁2 = ⌈

√︀
2𝑁/𝛾⌉. Let 𝑓0, . . . , 𝑓𝑁−1 be

functions analytic in a neighbourhood of 𝐸𝜌1,𝑎1,𝑏1,𝜌2,𝑎2,𝑏2 .
Assume that 𝑁 →∞, we obtain

(det𝐴𝐴𝑡)1/2 ⩽ 2𝑂(𝑁 log𝑁)
(︂

𝜌1𝜌2

(𝜌1 − 1)(𝜌2 − 1)

)︂𝑁 ∏︀𝑁−1
𝑖=0 𝑀𝜌1,𝑎1,𝑏1,𝜌2,𝑎2,𝑏2(𝑓𝑖)
𝜌
𝜓(𝑁/𝛾)𝑁𝛾+𝑂(𝑁)
1

.

Again, we specialize this statement to the case of the ordered list of functions

(6.8) [𝑓𝑖, 0 ⩽ 𝑖 ⩽ (𝑑+ 1)(𝑑+ 2)/2− 1]
= [𝑥 ↦→ 𝑢𝑘𝑥𝑘𝑣ℓ(𝑓(𝑥) + 𝑡)ℓ, ℓ = 0, . . . , 𝑑, 𝑘 = 0, . . . , 𝑑− ℓ].

Corollary 6.9. Let 𝜌1, 𝜌2 > 1 such that 𝛾 = log 𝜌2/ log 𝜌1 ∈ [3, 𝑁 ]. Let 𝑎1 < 𝑏1,
𝑎2 < 𝑏2, 𝑠 = 𝛾𝜙−1(𝑁/𝛾), 𝑁1 = ⌊

√
2𝑁𝛾⌋ and 𝑁2 = ⌈

√︀
2𝑁/𝛾⌉. Let 𝑓 be a function

analytic in a neighbourhood of 𝐸𝜌,𝑎1,𝑏1 . Define

𝑓𝑘,ℓ(𝑥, 𝑡) = 𝑢𝑘𝑥𝑘𝑣ℓ(𝑓(𝑥) + 𝑡)ℓ, 0 ⩽ ℓ ⩽ 𝑑, 0 ⩽ 𝑘 ⩽ 𝑑− ℓ,
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the matrices 𝐴1, 𝐴2, 𝐴 = (𝐴1|𝐴2) as in (6.3), and the quantity Δ𝑁,𝑁1,𝑁2,[𝑎1,𝑏1],[𝑎2,𝑏2],𝜌1,𝜌2 :=
(det𝐴𝐴𝑡)1/2. We have, as 𝑑→ +∞,

(6.9) Δ1/(𝑁−1)
𝑁,𝑁1,𝑁2,[𝑎1,𝑏1],[𝑎2,𝑏2],𝜌1,𝜌2

⩽ 2𝑂(1)
(︂√

𝑁
𝜌1𝜌2

(𝜌1 − 1)(𝜌2 − 1)

)︂1+𝑜(1)

(𝑢𝑣)𝑑/3+𝑂(1)

𝜌
𝜓(𝑁/𝛾)𝛾+𝑂(1)
1

(︂
𝑏1 − 𝑎1

2

(︂
𝜌1 + 𝜌−1

1
2

)︂
+
⃒⃒⃒⃒
𝑏1 + 𝑎1

2

⃒⃒⃒⃒)︂𝑑/3+𝑂(1)

(︂
𝑀𝜌1,𝑎1,𝑏1(𝑓) + 𝑏2 − 𝑎2

2

(︂
𝜌2 + 𝜌−1

2
2

)︂
+
⃒⃒⃒⃒
𝑏2 + 𝑎2

2

⃒⃒⃒⃒)︂𝑑/3+𝑂(1)

.

Proof. Note that each 𝑓𝑘,ℓ is analytic in a neighbourhood of 𝐸𝜌1,𝑎1,𝑏1,𝜌2,𝑎2,𝑏2 . Also,
since

∑︀
0⩽𝑘+ℓ⩽𝑑 𝑘 =

∑︀
0⩽𝑘+ℓ⩽𝑑 ℓ = 𝑑𝑁/3, the exponent of 𝑢𝑣, 𝑏1−𝑎1

2

(︁
𝜌1+𝜌−1

1
2

)︁
+⃒⃒

𝑏1+𝑎1
2
⃒⃒

and 𝑀𝜌1,𝑎1,𝑏1(𝑓) + 𝑏2−𝑎2
2

(︁
𝜌2+𝜌−1

2
2

)︁
+
⃒⃒
𝑏2+𝑎2

2
⃒⃒

is 𝑑𝑁
3(𝑁−1) = 𝑑

3 +𝑂(1). □

6.2. Statement of the algorithms. Our main routine is Algorithm 4. It comes
together with Algorithm 3 that mainly constructs the lattice to be reduced in
Algorithm 4.

Let [𝑅𝑖, 𝑖 = 0, . . . , 𝑁 − 1] be the ordered list[︂
16𝜌1𝜌2𝑢

𝑘𝑀𝜌1,𝑎,𝑏(𝑥)𝑘𝑣ℓ𝑀𝜌1,𝑎1,𝑏1,𝜌2,𝑎2,𝑏2(𝑓(𝑥) + 𝑡)ℓ

(𝜌1 − 1)(𝜌2 − 1)

(︂
1
𝜌𝑁1

1
+ 1
𝜌𝑁2

2

)︂
;

ℓ = 0, . . . , 𝑑, 𝑘 = 0, . . . , 𝑑− ℓ
]︂
.

Let 𝐴 = (𝐴1|𝐴2) and 𝐴 =
(︁
𝐴1|𝐴2

)︁
be the 𝑁 × (𝑁1𝑁2 +𝑁) matrices defined by

𝐴1 =
(︁ 𝑐𝑘1,𝑘2,𝑖

2𝛿0𝑘1 +𝛿0𝑘2

)︁
0⩽𝑖⩽𝑁−1

0⩽𝑘1⩽𝑁1−1, 0⩽𝑘2⩽𝑁2−1
, 𝐴2 = (𝛿𝑖𝑗𝑅𝑖)0⩽𝑖,𝑗⩽𝑁−1 ,

𝐴1 =
(︀[︀

2tprec𝐴1[𝑖, 𝑗]
]︀

0 /2
tprec)︀

0⩽𝑖⩽𝑁−1
0⩽𝑗⩽𝑁1𝑁2−1

, 𝐴2 =
(︀
⌊2tprec𝐴2[𝑖, 𝑗]⌋/2tprec)︀

0⩽𝑖,𝑗⩽𝑁−1 ,

where16 tprec = ⌈− log2(min0⩽𝑖⩽𝑁−1 𝐴2[𝑖, 𝑖]) + log2(𝑁)⌉+ 2. The reasons for intro-
ducing 𝐴 and tprec are the same as in Section 5.

By construction,
⃒⃒⃒
𝐴[𝑖, 𝑗]

⃒⃒⃒
⩽ |𝐴[𝑖, 𝑗]| for all 𝑖, 𝑗. Hence, Theorem 6.4 and its

corollaries, which proceed by upper bounding the coefficients of 𝐴 and applying The-
orem 5.1, also hold for (det𝐴𝐴𝑡)1/2.

The rows of 𝐴 generate the lattice that will be reduced in our algorithm.
Lemma 6.10. The Z-module generated by the rows of 𝐴 is a lattice of rank 𝑁 .
Proof. Identical to the proof of Lemma 5.5. □

The matrices 𝑀𝑐 and 𝑀𝑟 computed in Algorithm 3 correspond to the scaled
matrices 2tprec𝐴1 and 2tprec𝐴2.

We now derive an explicit expression for tprec in this bivariate context. In order
to do so, we assume that the set 𝑢[𝑎1, 𝑏1], resp. 𝑣(𝑓([𝑎1, 𝑏1]) + [𝑎2, 𝑏2]), contains at
least one nonzero integer 𝑛𝑥, resp. 𝑛𝑓 . Again, this assumption is made without loss

16We shall prove in Lemma 6.11 that this value coincides with the definition of tprec at Step 1
of Algorithm 3.
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of generality with respect to our problem, since if the assumption does not hold the
problem is trivial.

Lemma 6.11. We have
tprec = ⌈− log2(𝑅0) + log2(𝑁)⌉+ 2

=
⌈︁
log2(1− 1/𝜌1) + log2(1− 1/𝜌2)− log2(𝜌−𝑁1

1 + 𝜌−𝑁2
2 ) + log2(𝑁)

⌉︁
− 2

and
𝑁(𝜌1 − 1)(𝜌2 − 1)𝜌𝑁1−1

1 𝜌𝑁2−1
2

4(𝜌𝑁1
1 + 𝜌𝑁2

2 )
⩽ 2tprec ⩽

𝑁(𝜌1 − 1)(𝜌2 − 1)𝜌𝑁1−1
1 𝜌𝑁2−1

2

2(𝜌𝑁1
1 + 𝜌𝑁2

2 )
.

Proof. Under our assumption, it comes 𝑣(𝑀𝜌1,𝑎1,𝑏1,𝜌2,𝑎2,𝑏2(𝑓(𝑥) + 𝑡)) ⩾ |𝑛𝑓 | ⩾ 1
and 𝑢𝑀𝜌1,𝑎1,𝑏1(𝑥) ⩾ |𝑛𝑥| ⩾ 1. It then follows 𝑅𝑖 ⩾ 16𝜌1𝜌2(𝜌−𝑁1

1 + 𝜌−𝑁2
2 ))/((𝜌1 −

1)(𝜌2− 1)) = 𝑅0 for all 𝑖. Therefore, we get tprec = ⌈− log2(𝑅0) + log2(𝑁)⌉+ 2. □

6.3. Practical remarks. All practical details and optimizations mentioned in
Section 5.3 apply mutatis mutandis to Algorithms 3 and 4: optimization of the
construction of the matrix using properties of the DCT (Section 5.3.1), overestimation
issues (Section 5.3.2), rounding issues (Section 5.3.3), use of Newton polynomials
(Section 5.3.4). Concerning Section 5.3.5, one should replace (5.9) by the following
inequality, cf. proof of Theorem 6.12:

(6.10) max
𝑖=0,1

(︂
‖(𝑀𝐿𝐿𝐿[𝑖, 𝑗])0⩽𝑗⩽𝑁+𝑁1𝑁2−1‖1

+ (𝑁 +𝑁1𝑁2)‖(𝑀𝐿𝐿𝐿[𝑖, 𝑗])𝑁1𝑁2⩽𝑗⩽𝑁+𝑁1𝑁2−1‖1

4𝑁

)︂
< 2tprec.

6.4. Proof of correctness. We shall now prove the correctness of Algorithm 4.

6.4.1. Uniformly small polynomials in the vicinity of a transcendental analytic curve.
We now state a key result for the proof of Algorithm 4.

Theorem 6.12. Let 𝑑 ⩾ 1, 𝑚 ⩾ 2 be two integers, 𝑁 = (𝑑+ 1)(𝑑+ 2)/2, 𝑢, 𝑣 > 0
and (𝑓𝑗)1⩽𝑗⩽𝑁 = (𝑢𝑘𝑥𝑘𝑣ℓ(𝑓(𝑥) + 𝑡)ℓ)0⩽𝑘+ℓ⩽𝑑. Let 𝜌1, 𝜌2 > 1, 𝑎1 < 𝑏1, 𝑎2 < 𝑏2,
𝑁1, 𝑁2 ⩾ 2, and 𝑁 ⩽ 𝑁1𝑁2. Let Λ = (𝜆𝑘,ℓ)0⩽𝑘+ℓ⩽𝑑 ∈ Z𝑁 be such that ‖Λ𝐴‖2 ⩽
1/(𝑁 +𝑁1𝑁2), and let 𝑃 (𝑋,𝑌 ) =

∑︀
0⩽𝑘+ℓ⩽𝑑 𝜆𝑘,ℓ𝑋

𝑘𝑌 ℓ, we have

max
𝑥∈[𝑎1,𝑏1]
𝑡∈[𝑎2,𝑏2]

|𝑃 (𝑢𝑥, 𝑣(𝑓(𝑥) + 𝑡))| < 1.

Proof. See Appendix E. □

Remark 6.13. The proof of Theorem 6.12 yields in particular that

‖Λ𝐴‖1 ⩾∑︁
0⩽𝑘+ℓ⩽𝑑

|𝜆𝑘,ℓ|
16𝑢𝑘𝑀𝜌1,𝑎1,𝑏1(𝑥)𝑘𝑣ℓ𝑀𝜌1,𝑎1,𝑏1,𝜌2,𝑎2,𝑏2(𝑓(𝑥) + 𝑡)ℓ𝜌1𝜌2

(𝜌1 − 1)(𝜌2 − 1)

(︂
1
𝜌𝑁1

1
+ 1
𝜌𝑁2

2

)︂
⏟  ⏞  

=:𝑄𝑘,ℓ

.

Since the constraint ‖Λ𝐴‖2 ⩽ 1/(𝑁 +𝑁1𝑁2) implies ‖Λ𝐴‖1 < 1, cf. Appendix E,
it comes either 𝜆𝑘,ℓ = 0 or 𝑄𝑘,ℓ < 1 for any 𝑘, ℓ. Also, the proof of Lemma 6.11
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Algorithm 3 Computation of the lattice to be reduced (2D approach)
Input: Four real numbers 𝑎1 < 𝑏1, 𝑎2 < 𝑏2, 𝑓 a transcendental function analytic

in a complex neighbourhood of [𝑎1, 𝑏1], five positive integers 𝑑,𝑁1, 𝑁2, 𝑢, 𝑣, two
real numbers 𝜌1, 𝜌2 > 1 such that 𝑁1, 𝑁2 ⩾ 2, 𝑁1𝑁2 ⩾ 𝑁 := (𝑑+ 1)(𝑑+ 2)/2
and 16𝜌1𝜌2(𝜌−𝑁1

1 + 𝜌−𝑁2
2 )𝑣𝑀𝜌1,𝑎1,𝑏1,𝜌2,𝑎2,𝑏2(𝑓(𝑥) + 𝑡) < (𝜌1 − 1)(𝜌2 − 1).

Output: Two matrices 𝑀𝑐 ∈ℳ𝑁,𝑁1𝑁2(Z),𝑀𝑟 ∈ℳ𝑁 (Z), where 𝑁 = (𝑑+ 1)(𝑑+
2)/2, respectively storing scaled values of the coefficients and the remainders,
an integer tprec which is the truncation precision.

1: 𝑅0 ←
16(𝜌1−𝑁1

1 𝜌2+𝜌1𝜌
1−𝑁2
2 )

(𝜌1−1)(𝜌2−1) , tprec← ⌈− log2(𝑅0) + log2(𝑁)⌉+ 2
// Computation of the Chebyshev nodes, listed in reverse order

2: 𝐿𝑐ℎ𝑒𝑏,𝑥 ←
[︁
𝑏1−𝑎1

2 cos
(︁

(𝑗 + 1/2) 𝜋
𝑁1

)︁
+ 𝑎1+𝑏1

2

]︁
0⩽𝑗⩽𝑁1−1

3: 𝐿𝑐ℎ𝑒𝑏,𝑡 ←
[︁
𝑏2−𝑎2

2 cos
(︁

(𝑗 + 1/2) 𝜋
𝑁2

)︁
+ 𝑎2+𝑏2

2

]︁
0⩽𝑗⩽𝑁2−1

4: 𝑀𝑐 ← [0]𝑁×𝑁1𝑁2 ;𝑀𝑟 ← [0]𝑁×𝑁
5: 𝐵𝑥 ←

⃒⃒
𝑎1+𝑏1

2
⃒⃒
+ 𝑏1−𝑎1

4 (𝜌1 + 𝜌−1
1 ), 𝐵𝑡 ← 𝜌2 max(|𝑎2|, |𝑏2|)

6: 𝑔 ←
(︀
𝑥 ↦→

⃒⃒
𝑓
(︀
𝑎1+𝑏1

2 + 𝑏1−𝑎1
4 (𝜌1 exp(𝑖𝑥) + 𝜌−1

1 exp(−𝑖𝑥))
)︀⃒⃒)︀

7: 𝐵𝑓 ← max (𝑔([0, 2𝜋])) , 𝑖← 0
8: for ℓ = 0 to 𝑑 do
9: for 𝑘 = 0 to 𝑑− ℓ do

10: 𝜙← ((𝑥, 𝑡) ↦→ (𝑢𝑥)𝑘(𝑣(𝑓(𝑥) + 𝑡))ℓ)
// We compute the coefficient matrix : for each function, we compute its
value at points of 𝐿𝑐ℎ𝑒𝑏,𝑥 × 𝐿𝑐ℎ𝑒𝑏,𝑡, use DCT and scale.

11: 𝑈 ← 4
𝑁1𝑁2

2D-DCT-II
(︂

(𝜙(𝐿𝑐ℎ𝑒𝑏,𝑥[ℓ1], 𝐿𝑐ℎ𝑒𝑏,𝑡[ℓ2]))0⩽ℓ1⩽𝑁1−1
0⩽ℓ2⩽𝑁2−1

)︂
,

12: for 𝑘1 = 0 to 𝑁1 − 1 do
13: for 𝑘2 = 0 to 𝑁2 − 1 do
14: 𝑀𝑐[𝑖, 𝑘2 + 𝑘1𝑁2]← 𝑈 [𝑘1, 𝑘2].
15: end for
16: end for
17: for 𝑘1 = 0 to 𝑁1 − 1 do
18: 𝑀𝑐[𝑖, 𝑘1𝑁2]← 1

2𝑀𝑐[𝑖, 𝑘1𝑁2]
19: end for
20: for 𝑘2 = 0 to 𝑁2 − 1 do
21: 𝑀𝑐[𝑖, 𝑘2]← 1

2𝑀𝑐[𝑖, 𝑘2]
22: end for
23: for 𝑗 = 0 to 𝑁1𝑁2 − 1 do
24: 𝑀𝑐[𝑖, 𝑗]← [2tprec𝑀𝑐[𝑖, 𝑗]]0
25: end for

// We compute the scaled remainder matrix.
26: 𝑀𝑟[𝑖, 𝑖]←

⌊︀
2tprec𝑅0(𝑢𝐵𝑥)𝑘(𝑣(𝐵𝑓 +𝐵𝑡))ℓ

⌋︀
, 𝑖← 𝑖+ 1

27: end for
28: end for
29: Return 𝑀𝑐,𝑀𝑟, tprec
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Algorithm 4 2D approach to Problem 2.6
Input: Four real numbers 𝑎1 < 𝑏1, 𝑎2 < 𝑏2, 𝑓 a transcendental function analytic

in a complex neighbourhood of [𝑎1, 𝑏1], five positive integers 𝑑,𝑁1, 𝑁2, 𝑢, 𝑣, two
real numbers 𝜌1, 𝜌2 > 1 such that 𝑁1, 𝑁2 ⩾ 2, 𝑁1𝑁2 ⩾ 𝑁 := (𝑑+ 1)(𝑑+ 2)/2
and 16𝜌1𝜌2(𝜌−𝑁1

1 + 𝜌−𝑁2
2 )𝑣𝑀𝜌1,𝑎1,𝑏1,𝜌2,𝑎2,𝑏2(𝑓(𝑥) + 𝑡) < (𝜌1 − 1)(𝜌2 − 1).

Output: If successful, return a list ℒ such that ℒ ⊃ {𝑋 ∈ Z such that 𝑎1 ⩽ 𝑋/𝑢 ⩽
𝑏1 and there exists 𝑌 ∈ Z, 𝑌

𝑣 ∈
[︀
𝑓
(︀
𝑋
𝑢

)︀
+ 𝑎2, 𝑓

(︀
𝑋
𝑢

)︀
+ 𝑏2

]︀
}.

1: (𝑀𝑐,𝑀𝑟, tprec)← Algorithm 3 (𝑎1, 𝑏1, 𝑎2, 𝑏2, 𝑓, 𝑑,𝑁1, 𝑁2, 𝑢, 𝑣, 𝜌1, 𝜌2),
2: 𝑀𝐿𝐿𝐿 ← LLL-reduce the rows of (𝑀𝑐 |𝑀𝑟)
3: 𝑈 ← 𝑀𝐿𝐿𝐿,𝑟𝑀

−1
𝑟 // This is the LLL change of basis matrix; 𝑀𝐿𝐿𝐿,𝑟 is the

right part of the matrix 𝑀𝐿𝐿𝐿. Note that 𝑀𝑟 is diagonal.
4: if max(‖(𝑀𝐿𝐿𝐿[0, 𝑗])0⩽𝑗⩽𝑁+𝑁1𝑁2−1‖2, ‖(𝑀𝐿𝐿𝐿[1, 𝑗])0⩽𝑗⩽𝑁+𝑁1𝑁2−1‖2) ⩽

2tprec/(𝑁 +𝑁1𝑁2) then
5: 𝐿𝑚 ← [𝑋𝑘

1𝑋
ℓ
2 for 𝑘 = 0 to 𝑑− ℓ for ℓ = 0 to 𝑑] // List of monomials, ordered

in a way compatible with Algorithm 3, Steps 8–10.
6: 𝑃0 ←

∑︀𝑁−1
𝑗=0 𝑈 [0, 𝑗]𝐿𝑚[𝑗], 𝑃1 ←

∑︀𝑁−1
𝑗=0 𝑈 [1, 𝑗]𝐿𝑚[𝑗]

7: 𝑅(𝑋1)← Res𝑋2(𝑃0(𝑋1, 𝑋2), 𝑃1(𝑋1, 𝑋2))
8: if 𝑅(𝑋1) ̸= 0 then
9: ℒ ← {𝑡 ∈ Z;𝑅(𝑡) = 0}

10: return ℒ
11: else
12: return “FAIL”
13: end if
14: else
15: return “FAIL”
16: end if

shows in particular that 𝑅𝑖 ⩾ 𝑅𝑑+2 = 16𝑣𝑀𝜌1,𝑎1,𝑏1,𝜌2,𝑎2,𝑏2 (𝑓(𝑥)+𝑡)𝜌1𝜌2
(𝜌1−1)(𝜌2−1)

(︂
1
𝜌
𝑁1
1

+ 1
𝜌
𝑁2
2

)︂
for all 𝑖 ⩾ 𝑑 + 2. Hence, if 𝑅𝑑+2 ⩾ 1, we thus have 𝑅𝑖 ⩾ 1 for all 𝑖 ⩾ 𝑑 + 2
and 𝜆𝑘,ℓ = 0 for any 1 ⩽ ℓ ⩽ 𝑑, 0 ⩽ 𝑘 ⩽ 𝑑 − ℓ: the only functions taken
into account are the 𝑢𝑘𝑥𝑘’s and the method fails. This explains the condition
16𝜌1𝜌2(𝜌−𝑁1

1 + 𝜌−𝑁2
2 )𝑣𝑀𝜌1,𝑎1,𝑏1,𝜌2,𝑎2,𝑏2(𝑓(𝑥) + 𝑡) < (𝜌1 − 1)(𝜌2 − 1) in the input of

Algorithm 3 and 4.

We deduce the following corollary.

Corollary 6.14. Under the assumptions and notations of the previous theorem, for
all 𝑥, 𝑦 such that 𝑢𝑥, 𝑣𝑦 ∈ Z, we have either 𝑃 (𝑢𝑥, 𝑣𝑦) = 0, or 𝑦 ̸∈ [𝑓(𝑥) +𝑎2, 𝑓(𝑥) +
𝑏2].

6.4.2. Proof of success of Algorithm 4. If we apply the LLL lattice basis reduction
algorithm to 𝐴, we obtain:

Corollary 6.15. Assume that det(𝐴𝐴𝑡)1/2(𝑁−1) ⩽ 2−(𝑁−1)/4−tprec/(𝑁−1)

𝑁+𝑁1𝑁2
; then Theo-

rem 6.12 applies with Λ any of the first two vectors of an LLL-reduced basis of the
lattice generated by the rows of 𝐴.

Proof. Identical to the proof of Corollary 5.12. □
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We now study the case 𝜌1 = 𝐾1/(𝑏1−𝑎1) and similarly 𝜌2 = 𝐾2/(𝑏2−𝑎2), where
𝐾1 > 2(𝑏1 − 𝑎1) and 𝐾2 > 2(𝑏2 − 𝑎2) are fixed real numbers (note that 𝜌1, 𝜌2 > 2);
we further assume 𝜌𝑁1

1 ⩽ 𝜌𝑁2
2 .

Proposition 6.16. Let 𝑓 be analytic in a neighbourhood of the closed disc 𝒟𝑎1,𝑏1,𝐾1 =
{𝑧 ∈ C : |𝑧 − (𝑎1 + 𝑏1)/2| ⩽ 𝐾1/2}, 𝑑 be an integer ⩾ 2, 𝑁 = (𝑑 + 1)(𝑑 + 2)/2,
𝜌1 = 𝐾1/(𝑏1 − 𝑎1) > 2, 𝜌2 = 𝐾2/(𝑏2 − 𝑎2) > 2, 𝛾 = log 𝜌2/ log 𝜌1 ∈ [3, 𝑁 ], 𝑁1 =
⌊
√

2𝛾𝑁⌋, 𝑁2 = ⌈
√︀

2𝑁/𝛾⌉ two integers. Let 𝑀𝒟𝑎1,𝑏1,𝐾1
(𝑓) := max𝑧∈𝒟𝑎1,𝑏1,𝐾1

|𝑓(𝑧)|.
Then, for 𝑑→∞, if

𝑏1 − 𝑎1 < 𝐾12𝑂
(︀

− 𝑁
𝜓(𝑁/𝛾)𝛾

)︀
(︂
𝑢𝑣

2 (|𝑎1 + 𝑏1|+𝐾1)
(︂
𝑀𝒟𝑎1,𝑏1,𝐾1

(𝑓) + 𝐾2 + |𝑎2 + 𝑏2|
2

)︂)︂− 𝑑
3𝜓(𝑁/𝛾)𝛾 (1+𝑂(1/𝑑))

,

we have Δ1/(𝑁−1)
𝑁,𝑁1,𝑁2,[𝑎1,𝑏1],[𝑎2,𝑏2],𝜌1,𝜌2

< 2−(𝑁−1)/4−tprec/(𝑁−1)

𝑁+𝑁1𝑁2
.

Proof. Since 𝜌1 = 𝐾1/(𝑏1 − 𝑎1) > 2, we have 𝐸𝜌1,𝑎1,𝑏1 ⊂ 𝒟𝑎1,𝑏1,𝐾1 . Thanks to
Corollary 6.9, in view of (𝜌𝑖/(𝜌𝑖 − 1))𝑁/(𝑁−1) ⩽ 23/2 for 𝑖 ∈ {1, 2}, we have

Δ1/(𝑁−1)
𝑁,𝑁1,𝑁2,[𝑎1,𝑏1],[𝑎2,𝑏2],𝜌1,𝜌2

⩽ 2𝑂(1)𝑁1/2+𝑜(1)

(𝑢𝑣(|𝑎1 + 𝑏1|+𝐾1)/2)𝑑/3+𝑂(1)

𝜌
𝜓(𝑁/𝛾)𝛾+𝑂(1)
1

(︂
𝑀𝒟𝑎1,𝑏1,𝐾1

(𝑓) + 𝐾2 + |𝑎2 + 𝑏2|
2

)︂𝑑/3+𝑂(1)
.

Note that, using Lemma 6.11, as 𝜌𝑁1
1 ⩽ 𝜌𝑁2

2 ,

2−tprec ⩾
4
𝑁

(︁
𝜌−𝑁1

1 + 𝜌−𝑁2
2

)︁
⩾

8
𝑁
𝜌−𝑁2

2 = 8
𝑁
𝜌−𝛾𝑁2

1

⩾ 2−𝑜(𝑁)𝜌
−𝑂(𝑁)
1 , as 𝛾𝑁2 <

√
2𝑁𝛾 + 𝛾 ⩽ 𝑁(1 +

√
2).

Thus, for Δ1/(𝑁−1)
𝑁,𝑁1,𝑁2,[𝑎1,𝑏1],[𝑎2,𝑏2],𝜌1,𝜌2

< 2−(𝑁−1)/4−tprec/(𝑁−1)/(𝑁 +𝑁1𝑁2), it suf-
fices that Δ1/(𝑁−1)

𝑁,𝑁1,𝑁2,[𝑎1,𝑏1],[𝑎2,𝑏2],𝜌1,𝜌2
< 2−𝑂(𝑁)𝜌

−𝑂(1)
1 , or again that

𝜌1 > 2𝑂
(︀

𝑁
𝜓(𝑁/𝛾)𝛾

)︀
(︂
𝑢𝑣

2 (|𝑎1 + 𝑏1|+𝐾1)
(︂
𝑀𝒟𝑎1,𝑏1,𝐾1

(𝑓) + 𝐾2 + |𝑎2 + 𝑏2|
2

)︂)︂ 𝑑
3𝜓(𝑁/𝛾)𝛾 (1+𝑂(1/𝑑))

.

□

Corollary 6.17. Under the assumptions of Proposition 6.16, Algorithm 4 over
[𝑎1, 𝑏1] and [𝑎2, 𝑏2] produces at Step 6 two polynomials 𝑃0, 𝑃1 such that

max
𝑥∈[𝑎1,𝑏1], 𝑡∈[𝑎2,𝑏2]

|𝑃𝑖(𝑢𝑥, 𝑣(𝑓(𝑥) + 𝑡))| < 1 for 𝑖 ∈ {0, 1}.

In particular, Algorithm 4 never executes Step 15 and its output is valid.

Proof. It suffices to apply Proposition 6.16, Corollary 6.15, and Theorem 6.12. □

Note again that 𝑃0 and 𝑃1 may not be coprime, in which case the algorithm
returns “FAIL” at Step 12. This is what makes the algorithm heuristic.
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6.5. Complexity analysis. In this subsection, we deduce estimates for the com-
plexity of our algorithm applied to a fixed interval [𝛼, 𝛽). As in the univariate case,
this actually requires several things:

∙ An evaluation of the complexity of the basic blocks, namely Algorithms 3
and 4.

∙ Use Corollary 6.17 to evaluate the size of a subinterval [𝑎1, 𝑏1] which can be
treated at once by those algorithms.

We start by giving complexity estimates for Algorithms 3 and 4.

6.5.1. Complexity of Algorithms 3 and 4. In this subsection, we keep notations and
assumptions of Section 5.5.1.

Proposition 6.18. On input 𝑎1, 𝑏1, 𝑎2, 𝑏2, 𝑓, 𝑑,𝑁1, 𝑁2, 𝑢, 𝑣, 𝜌1, 𝜌2, if

ℳ := max(𝑢, 𝑣, |𝑎1|, |𝑏1|, 𝜌1, |𝑎2|, |𝑏2|, 𝜌2, 𝐵𝑓 , max
[𝑎1,𝑏1]

|𝑓 ′(𝑥)|),

under the assumption 𝐶𝑓,p = 𝑂(p2), the computations of Algorithm 3 can be made
in floating-point precision p = tprec + 𝑂(max(𝑑 logℳ, | log((𝜌1 − 1)(𝜌2 − 1))|).
Hence, Steps 1–6 of Algorithm 4 have complexity 𝑂(𝑑6M(𝑑2)(𝑑2 + p)p) using the 𝐿2

algorithm.

Proof. Similar to Propositions 5.16 and 5.17. □

6.5.2. Number of subintervals for fixed 𝑑. Thanks to the results of the previous
subsection, given a value 𝛾, we can estimate the maximum size of an interval [𝑎1, 𝑏1] ⊂
[𝛼, 𝛽], with 𝛼, 𝛽 fixed, for which Algorithm 4 succeeds (in the sense of Corollary 6.17)
and yields an upper bound of the order of magnitude 𝑤 = 𝑂(|𝑏1 − 𝑎1|−𝛾).

This follows from Proposition 6.16, and yields at the same time the number of
subintervals to be considered if one wants to deal with a full interval [𝛼, 𝛽].

Theorem 6.19. Given fixed 𝑓 and two fixed real numbers 𝛼, 𝛽, Problem 2.6 can
heuristically be solved for 𝑢, 𝑣 →∞, 𝑑→∞, 𝛾 ∈ [3, 𝑁 ], over [𝛼, 𝛽] using

(6.11) (𝛽 − 𝛼)2𝑂
(︀

𝑁
𝛾𝜓(𝑁/𝛾)

)︀
(𝑢𝑣)

𝑑
3𝜓(𝑁/𝛾)𝛾 (1+𝑂(1/𝑑))

calls to Algorithm 4 with parameter 𝑑.
We then obtain a value

(6.12) 𝑤 = 2𝑂(𝑁/𝜓(𝑁/𝛾))(𝑢𝑣)
𝑑

3𝜓(𝑁/𝛾) (1+𝑂(1/𝑑)).

Proof. This is a direct consequence of Corollary 6.17, where we note that 𝑎1, 𝑎2, 𝑏1, 𝑏2
are bounded, and we choose 𝐾1 = 2(𝑏1 − 𝑎1), 𝐾2 = 1 and 𝜌2 = 𝜌𝛾1 .

The heuristic nature of this result comes from the possibility that the two
polynomials obtained in Algorithm 4 are not coprime, in which case one cannot
recover the solutions 𝑋,𝑌 from those two polynomials.

Finally, we can take 1/𝑤 = 𝑏2−𝑎2, thus the upper bound on 𝑤 is 𝑂((𝑏1−𝑎1)−𝛾),
from which the second part of the result follows. □

Remark 6.20. To get a better feeling of this result we should distinguish two cases:
∙ We let 𝛾 tend to infinity as 𝑁/𝜅, 𝜅 ⩾ 1. Then, we obtain an upper

bound for the number of intervals 𝑂
(︁

(𝛽 − 𝛼)(𝑢𝑣)
2𝜅

3𝑑𝜓(𝜅) (1+𝑂(1/𝑑))
)︁

, with

𝑤 = (𝑢𝑣)
𝑑

3𝜓(𝜅) (1+𝑂(1/𝑑)).
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∙ If, on the other hand, 𝛾 = 𝑜(𝑁), 𝑁/𝛾 tends to infinity and we can use the
asymptotic estimate (see Proposition 6.5) 𝜓(𝑁/𝛾) = 2

3

√︁
2𝑁
𝛾 +𝑂(1) to get

a bound on the number 𝑛𝐼 of intervals and on 𝑤 of the respective forms

𝑛𝐼 = (𝛽 − 𝛼)2𝑂(𝑑/√
𝛾)(𝑢𝑣)1/(2√

𝛾)(1+𝑂(√
𝛾/𝑑)),

𝑤 = 2𝑂(𝑑√
𝛾)(𝑢𝑣)

√
𝛾/2(1+𝑂(√

𝛾/𝑑)).

The first case resembles the results obtained in the previous section with the
univariate algorithm (but with a different constant), whereas the second part is
unattainable using the methods of the previous section.

For 𝑢 = 𝑣 = 2𝑝, 𝛾 = 4 + 𝑜(1), 𝑑 = 𝑜(𝑝), we recover Stehlé’s result [61], namely the
fact that we can solve the TMD (i.e., get the bound 1/𝑤 = 2−2𝑝 in time 2𝑝/2(1+𝑜(1)).

For examples of practical values of 𝑑, 𝛾, the reader might consult Table 4. This
table shows that the relevant regime for the TMD problem seems to be 𝛾/𝑁 bounded
rather that 𝛾 = 𝑜(𝑁), the relevance of which seems more theoretical.

Remark 6.21. One can adapt Remark 5.22, Theorems 5.26 and 5.27 in the case
of this bivariate method. However, for the last two results, the region where the
discussion makes sense is restricted to 𝛾 ≫ 𝑁/(log𝑁)2, as otherwise the impact of
choosing an optimal 𝜌1 occurs only on second order terms.

Further, this leads to a somewhat delicate discussion and, in the end, yields the
same result up to some improvement in the constants. We thus chose not to include
the corresponding theorems.

7. Comparison with previous work

The following table summarizes the main results of the paper and compares them
to [61]. The columns complexity and bound on 𝑤 should be understood as the
exponent of 𝑢𝑣 in the corresponding values. For the sake of readability,

∙ In the first row, we restrict to 𝜔0 ∈ Z>0 just in order to get a more compact
bound ;

∙ In the fourth row, we shall assume that 𝑑 = 𝑜(log(𝑢𝑣)) ;
∙ We shall omit all factors (1 + 𝑜(1)) in the asymptotic results.

Rows labelled “1D” refer to Section 5 (Algorithms 1 and 2) whereas rows labelled
“2D” refer to Section 6 (Algorithms 3 and 4).

References Parameters Matrix Complexity Bound on 𝑤
to be chosen dimensions (exponent of 𝑢𝑣) (exponent of 𝑢𝑣)

1D Rk. 5.20 𝜔0 ∈ [0, 𝑁) ∩ Z>0 𝑁 × 2𝑁 2𝑁𝑑
3(𝑁−𝜔0)(𝑁+𝜔0−3)

2𝑁𝑑
3(𝑁+𝜔0−3)

1D𝑑→∞ Cor. 5.21 𝜆 = 𝜔0/𝑁 ∈ [0, 1) 𝑁 × 2𝑁 4
3(1−𝜆2)𝑑

2𝑑
3(1+𝜆)

2D𝑑→∞ Rk. 6.20 𝛾 = 𝑁/𝜅, 𝜅 ⩾ 1 ≈ 𝑁 × 3𝑁 2𝜅
3𝑑𝜓(𝜅)

𝑑
3𝜓(𝜅)

2D𝑑→∞ Rk. 6.20 𝛾 = 𝑜(𝑁) ≈ 𝑁 × 3𝑁 1
2√
𝛾

√
𝛾/2

S𝛼→∞ [61, Thm. 3] 𝜉 ⩾ 1 (𝛼+1)(𝛼+2)
2

1
2
√
𝜉

√
𝜉/2

×𝑂(𝜉𝛼2)

Table 2. Comparison of the main methods of this paper and [61]
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Concerning [61], we have introduced a parameter 𝜉 for a clearer comparison;
namely, we have put (with Stehlé’s notations) 𝑛1 − 𝑡 = log2(𝑢𝑣)/(2

√
𝜉), which gives

𝑛2 +𝑚 =
√
𝜉 log(𝑢𝑣)/2. Note that Stehlé’s 𝛼 corresponds to our 𝑑, while his 𝑑 is a

technical parameter with a completely different meaning of our 𝑑; finally, Stehlé’s 𝑡
corresponds to our notations 𝑝− 1− log2(𝑏1 − 𝑎1). To avoid any confusion, we will
denote them 𝑑Ste, 𝛼Ste and 𝑡Ste in the sequel.

Remark 7.1. Table 2 only estimates the exponential part of the complexity; it
would remain to estimate the polynomial part, which is dominated by the cost
of lattice basis reduction. Akhavi-Stehlé’s trick reduces greatly the influence of
the dimension, but the size of the integers involved in the different methods differ.
Roughly speaking, and ignoring the dependency on 𝑓, 𝑎, 𝑏 which is similar for the
two methods:

∙ in the case of the univariate method, the size of the integers involved is
≈ tprec + 𝑑 log(max(𝑢, 𝑣)) ≈ 𝑑 log max(𝑢, 𝑣) +𝑁 log 𝜌, which is of the order
of 𝑂(𝑑 log max(𝑢, 𝑣) + log𝑤). As for this method, log(𝑤) = 𝑂(𝑑 log(𝑢𝑣)),
the size of the integers is 𝑂(𝑑 log max(𝑢, 𝑣));

∙ in the case of the bivariate method, the size of the integers involved is
≈ 𝑑 log(max(𝑢, 𝑣)) + tprec ≈ 𝑑 log max(𝑢, 𝑣) + log max(𝜌𝑁1

1 , 𝜌𝑁2
2 ), whereas

the bound on 𝑤 is of the order of 𝜌2; as we expect, for optimal choices of pa-
rameters, that 𝑁1 log 𝜌1 and 𝑁2 log 𝜌2 have the same order of magnitude, this
size is thus 𝑂(𝑑 log max(𝑢, 𝑣) +𝑁2 log 𝜌2) = 𝑂(𝑑 log max(𝑢, 𝑣) +𝑁2 log𝑤).
As 𝑁2 ≍ 𝑑/

√
𝛾, this is 𝑂(𝑑

(︀
log max(𝑢, 𝑣) + log𝑤/√𝛾

)︀
);

∙ in Stehlé’s paper, the integers involved are of the order of (𝑀𝑁2𝑁
𝑑Ste
1 )𝛼Ste ,

which, in our notations, means that their size is of the order of 𝑂(𝑑(log𝑤 +
log max(𝑢, 𝑣))).

This difference in the size of the integers involved may, at least partially, explain
the fact that lattice basis reduction performs somewhat better in our method than
in the BaCSeL implementation of Stehlé’s method (see Section 8).

7.1. Univariate method and Bombieri and Pila’s approach. Our univariate
method bears a strong resemblance to Bombieri & Pila’s approach [6] of bounding
the number of integer points on an analytic curve. The method that we develop is
effective, and yields a way to not only control integer points on the curve, but close
to the curve.

Note that we (asymptotically) recover Bombieri and Pila’s estimate [6, Main
Lemma] under the form (𝑢𝑣)

4
3(𝑑+3) , which is the number of intervals required. We

can thus recover, following Bombieri and Pila’s arguments based on [6, Thm. 5]
or [56], their bound for the number of points on the curve (without any heuristic).
Our method also allows for the explicit determination of those points, but is on this
point only (mildly) heuristic.

Our variation with the 𝜔0, on the other hand, is new; it worsens the quality of
Bombieri-Pila’s bound, but improves the distance around the curve in which we are
able to detect points with denominator dividing 𝑣.

7.2. Bivariate method vs. Stehlé’s approach. On the other hand, our bivariate
method bears a strong resemblance with Stehlé’s work [61]. Our approach mostly
differs by the use of approximation-related techniques (Chebyshev interpolants)
rather than a computer-algebra oriented vision of functions using Taylor expansions.
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We have a dense representation of our auxiliary polynomials, which leads us to
manipulate almost square matrices, whereas Stehlé’s matrices are inherently more
rectangular, because he has to represent all coefficients of the bivariate polynomials
he manipulates.

Table 5 shows that our approach is better in practice. We propose an analysis of
this favourable situation in Section 8.3.

Note two further facts :
∙ our analysis is sharper in the case of entire functions, as we are able to take

into account the growth of the function at infinity. The same results could
probably be derived in Stehlé’s paper using Cauchy inequalities to estimate
Taylor coefficients.

This sharper analysis allows us to a obtain, in Problem 2.6, a lower bound
1/𝑤 ⩾ (𝑢𝑣)−𝑂(𝑝2/ log 𝑝) in the case where we want to solve the problem
without any subdivision. This improves at the same time on Stehlé’s
method and, heuristically, Nesterenko-Waldschmidt paper which, though
with different goals and through a purely theoretical (vs. algorithmic)
method, both obtain the upper bound 𝑤 ⩽ (𝑢𝑣)−𝑂(𝑝2).

∙ Our analysis is also sharper in the more practical domain where we choose
𝛾 = 𝑁/𝜅 for some constant 𝜅. We obtain better constants in the exponents
for both the overall complexity of the method and the bound on 𝑤.

8. Experimental results

We have implemented TMD-oriented versions of our algorithms in SageMath17.
Our codes are available from https://perso.ens-lyon.fr/nicolas.brisebarre/tmd.html.
The tests hereafter were executed on an Intel Xeon E5620 2.40GHz CPU with a
64-bit Linux-based system.

In the two examples that we address, we cut the binades under consideration into
subintervals of the same size and we apply the algorithms to each subinterval. For
Algorithms 1 and 2, the subinterval will correspond to the interval [𝑎, 𝑏] considered
in these algorithms. For Algorithms 3 and 4, the subinterval will correspond to the
interval [𝑎1, 𝑏1], while [𝑎2, 𝑏2] will be equal to [−1/𝑤, 1/𝑤], cf. Problem 2.6.

Currently, the most expensive part of our algorithms is the LLL reduction. In
our implementations, the following two optimizations led to a significant speedup of
the LLL reduction part:

(1) we use a random projection trick inspired from [2], cf. Theorem 4.6.
(2) If we consider two contiguous subintervals 𝐼0 and 𝐼1, the matrices 𝑀𝑐,𝐼0 and

𝑀𝑟,𝐼0 , 𝑀𝑐,𝐼1 and 𝑀𝑟,𝐼1 , output by Algorithm 1 (resp. Algorithm 3) applied
to 𝐼0 and 𝐼1 will be close by construction. Hence, our optimization consists
in:
∙ retrieving the change-of-basis matrix 𝑈𝐼0 computed at Step 3 of Algo-

rithm 2 (resp. Step 3 of Algorithm 4) applied to 𝐼0,
∙ then left-multiplying 𝑀𝑐,𝐼1 and 𝑀𝑟,𝐼1 by 𝑈𝐼0 , which operates in practice

as a significant prereduction of the lattice built from 𝑀𝑐,𝐼1 and 𝑀𝑟,𝐼1 ,
∙ eventually, we apply LLL to these prereduced matrices.

17https://www.sagemath.org/

https://perso.ens-lyon.fr/nicolas.brisebarre/tmd.html
https://www.sagemath.org/


46 N. BRISEBARRE AND G. HANROT

Another optimization comes from the use of Newton polynomials instead of
monomials (as pointed in Section 5.3.4): for given values of 𝑑,𝑁,𝑁1, 𝑁2, it makes
it possible to process larger subintervals.

The timings and the values of log2(𝑤) presented with a * are estimated ones: we
performed our computations on a subinterval and then extrapolate the timing to
address the whole binade, and the corresponding value of log2(𝑤).

We chose to limit the evaluation of our algorithms on feasible computations in
binary128, namely computations that could be performed in real life, possibly using
a large cluster. In terms of the bound on 𝑤, we have thus excluded the optimal case
of the TMD, namely 𝑤 ≈ 22𝑝, and have started at 𝑤 ≈ 26𝑝.

8.1. Algorithms 1 and 2 in action: the TMD for the gamma function in
binary128. Euler’s gamma [65, Chap. 3] is one of the functions of the C mathe-
matical library. Very little is known about the Diophantine properties of its values
at rational numbers: we have Γ(𝑘 + 1) = 𝑘! for any 𝑘 ∈ N and the transcendence of
the numbers Γ(1/2),Γ(1/3),Γ(1/4),Γ(1/6),Γ(2/3),Γ(3/4),Γ(5/6) [70]. We used our
implementation of Algorithms 1 and 2 to address the TMD over [1, 2), for directed
rounding functions and for the precision 𝑝 = 113. More precisely, we address the
following question, for various values of the parameters 𝑑 and 𝜔0: compute 𝑤 > 0
and all the integers 𝑋, 1 ⩽ 𝑋/2𝑝−1 < 2 for which there exists 𝑌 ∈ Z satisfying⃒⃒⃒⃒

Γ
(︂

𝑋

2𝑝−1

)︂
− 𝑌

2𝑝

⃒⃒⃒⃒
<

1
𝑤
.

We report in Table 3 our results. We first set 𝑝 = 113, 𝑢 = 2𝑝−1, 𝑣 = 2𝑝, then the
integer 𝑑 and the real number 𝜔0, and finally we choose 𝜌 in order to maximize
the width of the subinterval [𝑎, 𝑏] of [1, 2) which we apply the algorithms to. The
column ‖𝑀‖∞ stands for the size (in bits) of the largest coefficient of the integer
matrix 𝑀 = (𝑀𝑐 |𝑀𝑟) which is LLL-reduced during the algorithm.

𝑑 𝑁 𝜌 𝑏− 𝑎 𝜔0 ‖𝑀‖∞ log2(𝑤) Timing
6 28 232 2−31 0 ≈ 1575 bits 7.86𝑝* 35.53* years
8 45 226 21/229 0 ≈ 2070 bits 10.11𝑝* 510* days
10 66 221 13/224 0 ≈ 2510 bits 12.24𝑝 102 days
12 91 219 25/223 14 ≈ 2810 bits 12.92𝑝 84 days
12 91 219 21/222 8 ≈ 2920 bits 13.79𝑝 57 days
12 91 218 15/221 0 ≈ 2985 bits 14.44𝑝 46 days

Table 3. Algo. 1 and 2: The gamma function over the binade
[1, 2)

8.2. Using 𝜔0 in Algorithms 1 and 2 : the TMD for the exponential
function in binary128 - experimental validation of Figure 1. Using the exp
function over [1/4, 1/2), we have also studied the influence of 𝜔0, in order to build
the experimental equivalent of the theoretical curves of Figure 1.

The exponential function is also part of the C mathematical library. We recall
that Section 3.1 presents up-to-date, to the best of our knowledge, theoretical results
regarding the TMD in the case of the exponential function.
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Here, we address the TMD for exp over [1/4, 1/2), for directed rounding functions
and for the precision 𝑝 = 113: we compute 𝑤 > 0 and all the integers 𝑋, 1/4 ⩽
𝑋/2𝑝+1 < 1/2 for which there exists 𝑌 ∈ Z satisfying⃒⃒⃒⃒

exp
(︂

𝑋

2𝑝+1

)︂
− 𝑌

2𝑝−1

⃒⃒⃒⃒
<

1
𝑤
.

Here, we set 𝑢 = 2𝑝+1 and 𝑣 = 2𝑝−1.
For each value of the bound on 𝑤 we have tried to find, for various values of 𝑑,

the 𝜔0 allowing to attain this bound in minimal time (in the case of exp, we use
𝜌 = 𝑑/(𝑏− 𝑎), cf. Theorem 5.26). Figure 2 represents the log2 of the time to treat a
binade (𝑦-axis) as a function of log2(𝑤)/𝑝 (𝑥-axis); this is indeed the experimental
equivalent of Figure 1, up to a rescaling of the 𝑥-axis (by a factor of 2, as Figure 1
is expressed in terms of powers of 𝑢𝑣 = 22𝑝) and 𝑦-axis.
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Figure 2. Exponent estimates

8.3. Algorithms 3 and 4 in action: the TMD for the exponential function
in binary128. We used our implementation of Algorithms 3 and 4 to address the
TMD over [1/4, 1/2), for directed rounding functions and for the precision 𝑝 = 113.
More precisely, we address the following question, for various values of the parameter
𝑤: determine the integers 𝑋, 1/4 ⩽ 𝑋/2𝑝+1 < 1/2 for which there exists 𝑌 ∈ Z
satisfying ⃒⃒⃒⃒

exp
(︂

𝑋

2𝑝+1

)︂
− 𝑌

2𝑝−1

⃒⃒⃒⃒
<

1
𝑤
.

We report in Table 4 our results. We first set 𝑝 = 113, 𝑢 = 2𝑝+1, 𝑣 = 2𝑝−1, 𝑏2 =
−𝑎2 = 1/𝑤 and the value of 𝑑. The choice of the parameters 𝑁1, 𝑁2, 𝜌1, 𝑎1 and18 𝑏1
is then made in order to maximize the width of the subinterval [𝑎1, 𝑏1] of [1/4, 1/2).
We finally fix 𝜌2 = min(𝜌𝑁1/𝑁2

1 , 1/𝑏2).
The column ‖𝑀‖∞ stands for the largest coefficient of the integer matrix 𝑀 =

(𝑀𝑐 |𝑀𝑟) which is to be LLL-reduced.
For the sake of practical comparison, we have attempted a comparison with

BaCSeL-4.019, which implements [61]. For the latter, we used BaCSel-4.0 only for

18Actually, it is the value of 𝑏1 − 𝑎1 which matters and not the values of 𝑎1 and 𝑏1.
19https://gitlab.inria.fr/zimmerma/bacsel

https://gitlab.inria.fr/zimmerma/bacsel
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log2(𝑤) 𝑑 𝑁 𝑁1 𝑁2 𝜌1 𝑏1 − 𝑎1 𝛾 ‖𝑀‖∞ Timing
6𝑝 6 28 24 2 236 7/235 18.8 ≈ 1540 bits 22.63* years
6𝑝 12 91 60 3 229 59/230 23.4 ≈ 3080 bits 3.41* years
8𝑝 8 45 39 2 230 15/229 30.1 ≈ 2065 bits 203* days
8𝑝 12 91 59 3 226 2−21 34.8 ≈ 2870 bits 137 days
10𝑝 10 66 59 2 225 7/223 45.2 ≈ 2590 bits 25.8 days
10𝑝 12 91 61 3 224 7/222 47.1 ≈ 3260 bits 37.7 days
12𝑝 12 91 80 2 221 5/219 64.6 ≈ 3020 bits 8.7 days

Table 4. Algo. 3 and 4: exp over the binade [1/4, 1/2)

the generation of the corresponding matrix, and simply measured the cost of the
LLL step (which dominates the total cost anyway), using the same implementation
of fplll as in our code.

For the comparison to be fair, we have included the Akhavi-Stehlé’s trick (cf.
Theorem 4.6) in BaCSeL. We have also tried to include the prereduction trick but
the latter, in the setting of [61], seems to make the reduction more costly. In this
case, the complete timings are merely estimates for the cost of treating a whole
binade.

The results are reported in Table 5. Again, the column ‖𝑀‖∞ stands for the
largest coefficient of the integer matrix which is to be LLL-reduced.

log2(𝑤) 𝛼Ste 𝑑Ste 𝑡Ste ‖𝑀 |‖∞ Timing Comparison with
this paper

‖𝑀 |‖∞ Timing
6𝑝 6 16 78.7 ≈ 3870 bits 169* years ×2.5 ×7.5
6𝑝 12 20 86.2 ≈ 7780 bits 334* years ×2.5 ×98
8𝑝 8 30 86.3 ≈ 7220 bits 16.82* years ×3.5 ×30
8𝑝 12 30 90.1 ≈ 10230 bits 35.01* years ×3.5 ×93
10𝑝 10 40 90.8 ≈ 11150 bits 7.37* years ×4.3 ×104
10𝑝 12 55 93.2 ≈ 13545 bits 10.53* years ×4.2 ×102
12𝑝 12 60 94.6 ≈ 16255 bits 3.81* years ×5.4 ×160

Table 5. Stehlé’s BaCSeL parameters and timings for the expo-
nential function over the binade [1/4, 1/2)

We observe that we gain a significant constant factor, increasing with the value
of 𝛼Ste (= 𝑑); our method allows for slightly larger intervals (by a factor around 2,
which seems to decrease with 𝑑), but the main factors explaining the difference are
the fact that our lattices seem somewhat easier to reduce and that the “prereduction
trick” also plays an important role. These three terms each account for a small 2 to
5 (depending on the cases) factor, explaining overall the factors ≈ 9-100 that we
observe above.

It should finally be recalled that the comparison is biased in favour of [61] : we
are comparing optimized C code to an algorithm implemented in an interpreted
language. The comparison remains rather fair as long as the lattice basis reduction
dominates (which is the case for 𝛼Ste = 10, 12) but a low-level implementation of
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our algorithms is required in order to get reliable results when our parameter 𝑑 ⩽ 8,
where the gap is probably larger than suggested by Table 5.

Remark 8.1. Note that, regarding the targets log2(𝑤) = 6𝑝, 8𝑝, a more relevant
comparison between Table 4 and Table 5 would probably be obtained by comparing

∙ Row 2 of Table 4 with Row 1 of Table 5, which corresponds to the best
choice of parameters for the problem with log2(𝑤) = 6𝑝; with this criterion,
the ratio is ≈ 50.

∙ Row 4 of Table 4 with Row 3 of Table 5, which corresponds to the best
choice of parameters for the problem with log2(𝑤) = 8𝑝; with this criterion,
the ratio is ≈ 45.

9. Conclusion

We expect this work to be used in practice to address the TMD for the binary128
format, but we also hope that it will be of practical use for the determination of
integer points close to a transcendental curve. Moreover, we believe that the tools
that we have developed are of a more general interest in the context of practical
applications of Coppersmith’s method, and allow easier analysis of some “rectangular”
variants.

Regarding future work, we plan, first, to improve our current implementations
and then to study the case of algebraic functions, for which we have some preliminary
results.
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Appendix A. Proofs of facts regarding Chebyshev polynomials

First, we recall the aliasing phenomenon in the case of Chebyshev nodes of the
first kind.

Proposition A.1. For all 𝑁 ⩾ 1,
∙ for 𝑘 = 0, . . . , 𝑁−1, the polynomials 𝑇𝑘,−𝑇2𝑁−𝑘,−𝑇2𝑁+𝑘, 𝑇4𝑁−𝑘, 𝑇4𝑁+𝑘, . . .

take the same values at the 𝜇𝑗,𝑁−1, 𝑗 = 0, . . . , 𝑁 − 1,
∙ for 𝑗 ⩾ 0, let

𝑚 = |(𝑗 +𝑁 − 1)(mod2𝑁)−𝑁 + 1| and 𝑝 =
⌊︂
𝑁 + 𝑗

2𝑁

⌋︂
,

the polynomials 𝑇𝑗 and (−1)𝑝𝑇𝑚 take the same values at the 𝜇𝑗,𝑁−1, 𝑗 =
0, . . . , 𝑁 − 1.

Proof. These are Theorems 1 and 2 of [71]. □

https://tel.archives-ouvertes.fr/tel-01396907
https://www.chebfun.org/ATAP/
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Let 𝑓 be Lipschitz continuous over [−1, 1], we know [73, Chap. VI] that 𝑓 admits
a series expansion

∑︁′

𝑛⩾0
𝑎𝑛𝑇𝑛(𝑥) in 𝐿2

(︀
[−1, 1], (1− 𝑥2)−1/2)︀ which converges

uniformly to 𝑓 . We now state a straightforward consequence of Proposition A.1.

Corollary A.2. Let 𝑁 ∈ N, 𝑁 ⩾ 1, Let 𝑓 be Lipschitz continuous over [−1, 1],
its Chebyshev coefficients (𝑎𝑘)𝑘⩾0 and the coefficients 𝑐𝑘, 𝑘 = 0, . . . , 𝑁 − 1, of the
interpolation polynomial 𝑝𝑁−1 of 𝑓 at the Chebyshev nodes of the first kind satisfy,
for 𝑘 = 0, . . . , 𝑁 − 1,

𝑐𝑘 = 𝑎𝑘 − 𝑎2𝑁−𝑘 − 𝑎2𝑁+𝑘 + 𝑎4𝑁−𝑘 + 𝑎4𝑁−𝑘 − · · ·(A.1)

=
+∞∑︁
𝑗=0

(−1)𝑗𝑎2𝑗𝑁+𝑘 +
+∞∑︁
𝑗=1

(−1)𝑗𝑎2𝑗𝑁−𝑘.

Let 𝑁 ∈ N, 𝑁 ⩾ 1, we also define

𝛾𝜌,0,𝑁−1 = 1 and 𝛾𝜌,𝑘,𝑁−1 = 1
1− 𝜌−2𝑁

(︂
1 + 1

𝜌2(𝑁−𝑘)

)︂
for 𝑘 = 1, . . . , 𝑁 − 1.

Proposition A.3. Let 𝜌 > 1, let 𝑁 ∈ N, 𝑁 ⩾ 1, 𝑓 be a function analytic in a
neighbourhood of 𝐸𝜌, the coefficients (𝑐𝑘)𝑘=0,...,𝑁−1 of the interpolation polynomial
of 𝑓 at the Chebyshev nodes of the first kind satisfy

|𝑐𝑘| ⩽ 2𝑀𝜌(𝑓)
𝜌𝑘

𝛾𝜌,𝑘,𝑁−1, 𝑘 = 0, . . . , 𝑁 − 1,

where 𝑀𝜌(𝑓) = max𝑧∈ℰ𝜌 |𝑓(𝑧)|. Moreover, we have

‖𝑓 − 𝑝𝑁−1‖∞,[−1,1] ⩽
4𝑀𝜌(𝑓)

𝜌𝑁−1(𝜌− 1) .

Proof. First, we use the following consequence of [67, Thm 8.1]: the Chebyshev
coefficients satisfy

(A.2) |𝑎0| ⩽𝑀𝜌(𝑓) and |𝑎𝑘| ⩽ 2𝑀𝜌(𝑓)
𝜌𝑘

.

Then, we combine Equation (A.1) and Inequalities (A.2) to obtain, for 𝑘 = 1, . . . , 𝑁−
1.

|𝑐𝑘| ⩽ |𝑎𝑘|+ |𝑎2𝑁−𝑘|+ |𝑎2𝑁+𝑘|+ |𝑎4𝑁−𝑘|+ |𝑎4𝑁−𝑘|+ · · · ,

⩽ 2𝑀𝜌(𝑓)
𝜌𝑘

+ 2𝑀𝜌(𝑓)
𝜌2𝑁−𝑘 + 2𝑀𝜌(𝑓)

𝜌2𝑁+𝑘 + 2𝑀𝜌(𝑓)
𝜌4𝑁−𝑘 + 2𝑀𝜌(𝑓)

𝜌4𝑁+𝑘 + · · · ,

⩽ 2𝑀𝜌(𝑓)
𝜌𝑘

(︂
1 + 1

𝜌2𝑁−2𝑘 + 1
𝜌2𝑁 + 1

𝜌4𝑁−2𝑘 + 1
𝜌4𝑁 + · · ·

)︂
,

⩽ 2𝑀𝜌(𝑓)
𝜌𝑘

1
1− 𝜌−2𝑁

(︂
1 + 1

𝜌2(𝑁−𝑘)

)︂
.

Moreover, recall that 𝑐0 = 2
𝑁

∑︀
1⩽ℓ⩽𝑁 𝑓(𝜇ℓ), hence |𝑐0| = 2 max𝑥∈[−1,1] |𝑓(𝑥)| ⩽

2𝑀𝜌(𝑓) by the maximum principle.
Now, we turn to the estimate on the remainder. Corollary A.2 yields, for any

𝑥 ∈ [−1, 1],
𝑓(𝑥)− 𝑝𝑁−1(𝑥) =

∑︁
𝑘⩾𝑁

𝑎𝑘(𝑇𝑘(𝑥)− (−1)𝑝𝑇𝑚(𝑥))
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where 𝑚 and 𝑝 are defined as in Proposition A.1. Hence, we have, for any 𝑥 ∈ [−1, 1],

|𝑓(𝑥)− 𝑝𝑁−1(𝑥)| ⩽
∑︁
𝑘⩾𝑁

|𝑎𝑘||𝑇𝑘(𝑥)− (−1)𝑝𝑇𝑚(𝑥)|

⩽ 2
∑︁
𝑘⩾𝑁

|𝑎𝑘| ⩽ 4𝑀𝜌(𝑓)
∑︁
𝑘⩾𝑁

𝜌−𝑘 = 4𝑀𝜌(𝑓)
𝜌𝑁−1(𝜌− 1) .

□

Regarding the two variable case, we start by establishing results analogous to [67,
Thms 8.1 and 8.2]. Let 𝑓 in 𝐿2

(︀
[−1, 1]× [−1, 1], (1− 𝑥2)−1/2(1− 𝑦2)−1/2)︀, we

denote by
∑︁′

𝑛1⩾0

∑︁′

𝑛2⩾0
𝑎𝑛1,𝑛2𝑇𝑛1(𝑥)𝑇𝑛2(𝑦) its series expansion.

Proposition A.4. Let 𝜌1, 𝜌2 > 1, 𝑓 be a function analytic in a neighbourhood of
𝐸𝜌1,𝜌2 , the coefficients 𝑎𝑛1,𝑛2 , 𝑛1, 𝑛2 ⩾ 0, of the Chebyshev series of 𝑓 satisfy, for
all 𝑛1 and 𝑛2 ∈ N,

(A.3) |𝑎𝑛1,𝑛2 | ⩽ 4𝑀𝜌1,𝜌2(𝑓)
𝜌𝑛1

1 𝜌𝑛2
2

,

where 𝑀𝜌1,𝜌2(𝑓) = max𝑧∈ℰ𝜌1,𝜌2
|𝑓(𝑧)|. Moreover, we have, for all 𝑛1 and 𝑛2 ∈ N,⃦⃦⃦⃦

⃦𝑓(𝑥, 𝑦)−
𝑛1∑︁′

𝑘1=0

𝑛2∑︁′

𝑘2=0
𝑎𝑘1,𝑘2𝑇𝑘1(𝑥)𝑇𝑘2(𝑦)

⃦⃦⃦⃦
⃦

∞,[−1,1]×[−1,1]

⩽
4𝜌1𝜌2𝑀𝜌1,𝜌2(𝑓)
(𝜌1 − 1)(𝜌2 − 1)

(︂
1

𝜌𝑛1+1
1

+ 1
𝜌𝑛2+1

2

)︂
.

Proof. For 𝜌 > 0, we define 𝒞𝜌 = {𝑧 ∈ C, |𝑧| = 𝜌}. Extending what is done
in the proof of [67, Thm. 8.1], we now introduce the change of variables 𝑥 =
(𝑧1 + 𝑧−1

1 )/2, 𝑦 = (𝑧2 + 𝑧−1
2 )/2 where 𝑧1, 𝑧2 ∈ 𝒞1 and the function

𝑓(𝑥, 𝑦) = 𝐹 (𝑧1, 𝑧2) =
∑︁′

𝑛1⩾0

∑︁′

𝑛2⩾0
𝑎𝑛1,𝑛2

𝑧𝑛1 + 𝑧−𝑛1

2
𝑧𝑛2 + 𝑧−𝑛2

2 .

Now we use Cauchy’s integral formula in two variables: for all 𝑛1, 𝑛2 ∈ N,

1
(2𝑖𝜋)2

∫︁
𝒞1×𝒞1

𝐹 (𝑧1, 𝑧2)
𝑧𝑛1+1

1 𝑧𝑛2+1
2

d𝑧1d𝑧2 = 1
2𝛿0𝑛1 +𝛿0𝑛2

2𝛿0𝑛1 +𝛿0𝑛2

4 𝑎𝑛1,𝑛2 .

If 𝑔 : (𝑧1, 𝑧2) ↦→ ((𝑧1 + 𝑧−1
1 )/2, (𝑧2 + 𝑧−1

2 )/2, the domain 𝐸𝜌1,𝜌2 is the image of
ℛ𝜌1 ×ℛ𝜌2 , where ℛ𝜌 = {𝑧 ∈ C, 𝜌−1 < |𝑧| < 𝜌}, via the application 𝑔. Note that,
since 𝐹 = 𝑓 ∘ 𝑔, 𝐹 is analytic in a neighbourhood of ℛ𝜌1 × ℛ𝜌2 since it is the
composition of two analytic functions, hence, for all 𝑛1, 𝑛2 ∈ N,

𝑎𝑛1,𝑛2 = 1
(𝑖𝜋)2

∫︁
𝒞𝜌1 ×𝒞𝜌2

𝐹 (𝑧1, 𝑧2)
𝑧𝑛1+1

1 𝑧𝑛2+1
2

d𝑧1d𝑧2,

from which follows

|𝑎𝑛1,𝑛2 | ⩽
(2𝜋)2𝜌1𝜌2

𝜋2

max(𝑧1,𝑧2)∈𝒞𝜌1 ×𝒞𝜌2
|𝐹 (𝑧1, 𝑧2)|

𝜌𝑛1+1
1 𝜌𝑛2+1

2
= 4𝑀𝜌1,𝜌2(𝑓)

𝜌𝑛1
1 𝜌𝑛2

2
for all 𝑛1, 𝑛2 ∈ N.
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As for the remainder, for all 𝑥, 𝑦 ∈ [−1, 1], for all 𝑛1 and 𝑛2 ∈ N, we have

𝑓(𝑥, 𝑦)−
𝑛1∑︁′

𝑘1=0

𝑛2∑︁′

𝑘2=0
𝑎𝑘1,𝑘2𝑇𝑘1(𝑥)𝑇𝑘2(𝑦)

=
∑︁

𝑘1⩾𝑛1+1

∑︁′

𝑘2⩾0
𝑎𝑘1,𝑘2𝑇𝑘1(𝑥)𝑇𝑘2(𝑦) +

𝑛1∑︁′

𝑘1=0

∑︁
𝑘2⩾𝑛2+1

𝑎𝑘1,𝑘2𝑇𝑘1(𝑥)𝑇𝑘2(𝑦),

hence,⃦⃦⃦⃦
⃦𝑓(𝑥, 𝑦)−

𝑛1∑︁′

𝑘1=0

𝑛2∑︁′

𝑘2=0
𝑎𝑘1,𝑘2𝑇𝑘1(𝑥)𝑇𝑘2(𝑦)

⃦⃦⃦⃦
⃦

∞,[−1,1]×[−1,1]

=
∑︁

𝑘1⩾𝑛1+1

∑︁′

𝑘2⩾0
|𝑎𝑘1,𝑘2 |+

𝑛1∑︁′

𝑘1=0

∑︁
𝑘2⩾𝑛2+1

|𝑎𝑘1,𝑘2 |,

⩽ 4𝑀𝜌1,𝜌2(𝑓)
(︂

1
𝜌𝑛1+1

1
+ 1
𝜌𝑛2+1

2

)︂
𝜌1𝜌2

(𝜌1 − 1)(𝜌2 − 1) .

□

Now we can prove:

Proposition A.5. Let 𝜌1, 𝜌2 > 1, let 𝑀1,𝑀2 ∈ N,𝑀1,𝑀2 ⩾ 2, 𝑓 be a function
analytic in a neighbourhood of 𝐸𝜌1,𝜌2 , the coefficients 𝑐𝑘1,𝑘2 , 𝑘1 = 0, . . . ,𝑀1−1, 𝑘2 =
0, . . . ,𝑀2−1 of the interpolation polynomial 𝑃𝑀1−1,𝑀2−1 of 𝑓 at pairs of Chebyshev
nodes of the first kind satisfy, for 𝑘1 = 1, . . . ,𝑀1 − 1, 𝑘2 = 1, . . . ,𝑀2 − 1,

|𝑐𝑘1,𝑘2 | ⩽ 4𝑀𝜌1,𝜌2(𝑓)
𝜌𝑘1

1 𝜌𝑘2
2

𝛾𝜌1,𝑘1,𝑀1−1𝛾𝜌2,𝑘2,𝑀2−1,

where 𝑀𝜌1,𝜌2(𝑓) = max𝑧∈ℰ𝜌1,𝜌2
|𝑓(𝑧)|. Moreover, we have

‖𝑓 − 𝑃𝑀1−1,𝑀2−1‖∞,[−1,1]×[−1,1] ⩽
16𝜌1𝜌2𝑀𝜌1,𝜌2(𝑓)
(𝜌1 − 1)(𝜌2 − 1)

(︂
1
𝜌𝑀1

1
+ 1
𝜌𝑀2

2

)︂
.

Proof. Let
∑︁′

𝑛1⩾0

∑︁′

𝑛2⩾0
𝑎𝑛1,𝑛2𝑇𝑛1(𝑥)𝑇𝑛2(𝑦) the series expansion of 𝑓 , the

aliasing phenomenon presented above still exists: for 𝑘1 = 0, . . . ,𝑀1 − 1, 𝑘2 =
0, . . . ,𝑀2 − 1,

(A.4) 𝑐𝑘1,𝑘2 =
+∞∑︁
𝑝1=0

+∞∑︁
𝑝2=0

(−1)𝑝1+𝑝2𝑎2𝑝1𝑀1+𝑘1,2𝑝2𝑀2+𝑘2

+
+∞∑︁
𝑝1=0

+∞∑︁
𝑝2=1

(−1)𝑝1+𝑝2𝑎2𝑝1𝑀1+𝑘1,2𝑝2𝑀2−𝑘2 +
+∞∑︁
𝑝1=1

+∞∑︁
𝑝2=0

(−1)𝑝1+𝑝2𝑎2𝑝1𝑀1−𝑘1,2𝑝2𝑀2+𝑘2

+
+∞∑︁
𝑝1=1

+∞∑︁
𝑝2=1

(−1)𝑝1+𝑝2𝑎2𝑝1𝑀1−𝑘1,2𝑝2𝑀2−𝑘2 .
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We now combine Equation (A.4) and Inequalities (A.3) to obtain, for 𝑘1 = 1, . . . ,𝑀1−
1, 𝑘2 = 1, . . . ,𝑀2 − 1,

|𝑐𝑘1,𝑘2 | ⩽
+∞∑︁
𝑝1=0

+∞∑︁
𝑝2=0
|𝑎2𝑝1𝑀1+𝑘1,2𝑝2𝑀2+𝑘2 |+

+∞∑︁
𝑝1=0

+∞∑︁
𝑝2=1
|𝑎2𝑝1𝑀1+𝑘1,2𝑝2𝑀2−𝑘2 |

+
+∞∑︁
𝑝1=1

+∞∑︁
𝑝2=0
|𝑎2𝑝1𝑀1−𝑘1,2𝑝2𝑀2+𝑘2 |+

+∞∑︁
𝑝1=1

+∞∑︁
𝑝2=1
|𝑎2𝑝1𝑀1−𝑘1,2𝑝2𝑀2−𝑘2 |

⩽
+∞∑︁
𝑝1=0

+∞∑︁
𝑝2=0

4 𝑀𝜌1,𝜌2(𝑓)
𝜌2𝑝1𝑀1+𝑘1

1 𝜌2𝑝2𝑀2+𝑘2
2

+
+∞∑︁
𝑝1=0

+∞∑︁
𝑝2=1

4 𝑀𝜌1,𝜌2(𝑓)
𝜌2𝑝1𝑀1+𝑘1

1 𝜌2𝑝2𝑀2−𝑘2
2

+
+∞∑︁
𝑝1=1

+∞∑︁
𝑝2=0

4 𝑀𝜌1,𝜌2(𝑓)
𝜌2𝑝1𝑀1−𝑘1

1 𝜌2𝑝2𝑀2+𝑘2
2

+
+∞∑︁
𝑝1=1

+∞∑︁
𝑝2=1

4 𝑀𝜌1,𝜌2(𝑓)
𝜌2𝑝1𝑀1−𝑘1

1 𝜌2𝑝2𝑀2−𝑘2
2

⩽ 4𝑀𝜌1,𝜌2(𝑓)
𝜌𝑘1

1 𝜌𝑘2
2

1
1− 𝜌−2𝑀1

1

1
1− 𝜌−2𝑀2

2(︃
1 + 1

𝜌
2(𝑀1−𝑘1)
1

+ 1
𝜌

2(𝑀2−𝑘2)
2

+ 1
𝜌

2(𝑀1−𝑘1)
1 𝜌

2(𝑀2−𝑘2)
2

)︃
.

If we use Equation (6.2), we get
|𝑐0,0| ⩽ 4𝑀𝜌1,𝜌2(𝑓) thanks to the maximum principle,

|𝑐𝑘1,0| ⩽ 4𝑀𝜌1,𝜌2(𝑓)
𝜌𝑘1

1

1
1− 𝜌−2𝑀1

1

(︃
1 + 1

𝜌
2(𝑀1−𝑘1)
1

)︃
for 𝑘1 = 1, . . . ,𝑀1 − 1,

|𝑐0,𝑘2 | ⩽ 4𝑀𝜌1,𝜌2(𝑓)
𝜌𝑘2

2

1
1− 𝜌−2𝑀2

2

(︃
1 + 1

𝜌
2(𝑀2−𝑘2)
2

)︃
for 𝑘2 = 1, . . . ,𝑀2 − 1.

The last two inequalities are consequences of Proposition A.3.
As for the remainder, for all 𝑥, 𝑦 ∈ [−1, 1], for all 𝑛1 and 𝑛2 ∈ N, we have thanks

to the aliasing phenomenon

𝑓(𝑥, 𝑦)−
𝑀1−1∑︁′

𝑘1=0

𝑀2−1∑︁′

𝑘2=0
𝑐𝑘1,𝑘2𝑇𝑘1(𝑥)𝑇𝑘2(𝑦)

=
∑︁

𝑘1⩾𝑀1

∑︁′

𝑘2⩾0
𝑎𝑘1,𝑘2(𝑇𝑘1(𝑥)− (−1)𝑝1𝑇𝑚1(𝑥))(𝑇𝑘2(𝑦)− (−1)𝑝2𝑇𝑚2(𝑦))

+
𝑀1−1∑︁′

𝑘1=0

∑︁
𝑘2⩾𝑀2

𝑎𝑘1,𝑘2(𝑇𝑘1(𝑥)− (−1)𝑝1𝑇𝑚1(𝑥))(𝑇𝑘2(𝑦)− (−1)𝑝2𝑇𝑚2(𝑦)),

where 𝑚1,𝑚2 and 𝑝1, 𝑝2 are defined as in Proposition A.1. Hence,

‖𝑓(𝑥, 𝑦)− 𝑃𝑀1−1,𝑀2−1(𝑥, 𝑦)‖∞,[−1,1]×[−1,1] =
∑︁

𝑘1⩾𝑀1

∑︁′

𝑘2⩾0
4|𝑎𝑘1,𝑘2 |

+
𝑀1−1∑︁′

𝑘1=0

∑︁
𝑘2⩾𝑀2

4|𝑎𝑘1,𝑘2 | ⩽ 16𝑀𝜌1,𝜌2(𝑓)
(︂

1
𝜌𝑀1

1
+ 1
𝜌𝑀2

2

)︂
𝜌1𝜌2

(𝜌1 − 1)(𝜌2 − 1) ,

thanks to Proposition A.4. □
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The next lemma eases the computations. Recall that we introduce in Section 4.1.2
𝜂𝜌,0 = 1 and 𝜂𝜌,𝑘 = (𝜌2 + 1)(𝜌2 − 1) for 𝑘 = 1, . . . , 𝑁 − 1.

Lemma A.6. Let 𝜌 > 1, 𝑁 ⩾ 2, for 𝑘 = 0, . . . , 𝑁 − 1, we have
𝛾𝜌,𝑘,𝑁−1 ⩽ 𝜂𝜌,𝑘.

In particular, if 𝜌 ⩾ 2, 𝜂𝜌,𝑘 ⩽ 2 for 𝑘 = 1, . . . , 𝑁 − 1.

Proof. The case 𝑘 = 0 is straightforward. For 𝑘 = 1, . . . , 𝑁 − 1, we have

𝛾𝜌,𝑘,𝑁−1 = 1
1− 𝜌−2𝑁

(︂
1 + 1

𝜌2(𝑁−𝑘)

)︂
= 1
𝜌2𝑁 − 1

(︀
𝜌2𝑁 + 𝜌2𝑘)︀ ⩽ 𝜌2𝑁

𝜌2𝑁 − 1
(︀
1 + 𝜌−2)︀ .

The function 𝑢 ↦→ 𝑢/(𝑢− 1) is strictly decreasing over (1,+∞), hence

𝛾𝜌,𝑘,𝑁−1 ⩽
𝜌2𝑁

𝜌2𝑁 − 1
(︀
1 + 𝜌−2)︀ ⩽ 𝜌2

𝜌2 − 1
(︀
1 + 𝜌−2)︀ = 𝜌2 + 1

𝜌2 − 1 .

The last statement is obvious. □

Proof of Proposition 4.1. We introduce ̂︀𝑓 : ̂︀𝑓(𝑧) = 𝑓
(︀
𝑧 𝑏−𝑎2 + 𝑎+𝑏

2
)︀

for any 𝑧
in a suitable neighbourhood of 𝐸𝜌. The coefficients 𝑐𝑘 are also the coefficients of
the interpolation polynomial in R𝑁−1[𝑥] of ̂︀𝑓 at the Chebyshev nodes of the first
kind. Therefore, we obtain Proposition 4.1 by applying Proposition A.3 to ̂︀𝑓 and
Lemma A.6.

Proof of Proposition 4.2. It is identical to the previous one: it suffices to introducê︀𝑓 : ̂︀𝑓(𝑧1, 𝑧1) = 𝑓
(︀
𝑧1
𝑏1−𝑎1

2 + 𝑎1+𝑏1
2 , 𝑧2

𝑏2−𝑎2
2 + 𝑎2+𝑏2

2
)︀

for any (𝑧1, 𝑧2) in a suitable
neighbourhood of 𝐸𝜌1,𝜌2 , and then to apply Proposition A.5 to ̂︀𝑓 and Lemma A.6.

Appendix B. Proof of Theorem 5.27

For 𝑓(𝑧) = exp(exp(𝑧)), we take 𝐾 = log 𝑑. A sufficient condition for success of
Algorithm 2 is, in view of Proposition 5.13, (for 𝑑 large enough)

𝑏− 𝑎 < 1
4
(︀
(|𝑎+ 𝑏|+ log 𝑑)𝑀𝒟𝑎,𝑏,𝐾 (𝑓)

)︀−4/(3(1−𝜆2)𝑑)(1+𝑜(1))

(𝑢𝑣)−4/(3(1−𝜆2)𝑑)(1+𝑜(1)) log 𝑑.

We have 𝑀𝒟𝑎,𝑏,𝐾 (𝑓) = 2𝑂(𝑑); hence, as in the proof of Theorem 5.26, a sufficient
condition is

(𝑢𝑣)−4/(3(1−𝜆2)𝑑) log 𝑑→∞,
for which it suffices that

𝑑 log log 𝑑 ⩾

(︂
4

3(1− 𝜆2) + 𝜀′
)︂

log(𝑢𝑣),

for some 𝜀′ > 0, which follows from the assumption of the Theorem. The statement
on 𝑤 follows from simple calculus using 𝑤 = 𝑂(𝐾𝑁(1−𝜆)).

For 𝑔(𝑧) =
∑︀
𝑛⩾0 exp(−𝑛2)𝑧𝑛, we have

max
|𝑧|=𝜌

|𝑔(𝑧)| = 𝑔(𝜌) = exp(log2 𝜌/4)
∑︁
𝑛⩾0

exp(−(𝑛− log 𝜌/2)2)

⩽ exp(log2 𝜌/4)
∑︁
𝑛∈Z

exp(−𝑛2) ⩽ 2 exp(log2 𝜌/4).
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We choose 𝐾 = exp(3(1−𝜆2)𝑑/2). In this case, we have 𝑀𝒟𝑎,𝑏,𝐾 (𝑓) = exp(9(1−
𝜆2)2𝑑2/16 +𝑂(𝑑)).

A sufficient success condition for Algorithm 2 is thus, as 𝑑→∞,

𝑏− 𝑎 < 1
4(|𝑎+ 𝑏|+ exp(3(1− 𝜆2)𝑑/2))−4/(3(1−𝜆2)𝑑)(1+𝑜(1))

exp(3(1− 𝜆2)𝑑/2)(𝑢𝑣𝑀𝒟𝑎,𝑏,𝐾 (𝑓))−4/(3(1−𝜆2)𝑑)(1+𝑜(1)).

It follows from
3(1− 𝜆2)𝑑

2 − 4(1 + 𝑜(1))
3(1− 𝜆2)𝑑

(︂
log(𝑢𝑣) + 9(1− 𝜆2)2𝑑2

16

)︂
→∞,

for which it suffices to have

𝑑2 ⩾

(︂
16

9(1− 𝜆2)2 + 𝜀′
)︂

log(𝑢𝑣),

for some 𝜀′ > 0.
Again, the statement on 𝑤 follows from simple calculus using 𝑤 = 𝑂(𝐾𝑁(1−𝜆)).

Appendix C. Precision required, 1D case

We now estimate the precision required for the computations performed in
Algorithm 1. We shall use a computation model where our real numbers are
represented by fixed point numbers, with p ⩾ 1 binary digits following the binary
point. This means that for each elementary operation, the result differs from the
ideal mathematical result by at most 2−p (such a result is usually called faithful
rounding in precision p). The notations used hereafter correspond to those of
Algorithm 1. This somewhat artificial model is a simplification of the natural model,
which is a floating-point model where the total precision is p + 𝑃 , where 𝑃 is the
size of the largest real number encountered during the computation. It allows for a
simpler, though probably slightly rougher, analysis; as a consequence, Theorem C.9
is valid for floating-point computations in precision p + 𝑃 .

The following lemma summarizes basic facts on this model:

Lemma C.1. Let 𝑥, 𝑦 be real numbers and 𝑋,𝑌 be fixed-point numbers in preci-
sion p which are approximations of those, such that |𝑋 − 𝑥| ⩽ 𝜀𝑥, |𝑌 − 𝑦| ⩽ 𝜀𝑦,
with max(𝜀𝑥, 𝜀𝑦) < 1/2. Then, if ⊕ and ⊗ are the arithmetic operations of our
computational model, we have

|(𝑋 ⊕ 𝑌 )− (𝑥+ 𝑦)| ⩽ 𝜀𝑥 + 𝜀𝑦,(C.1)
|𝑋 ⊗ 𝑌 − 𝑥 · 𝑦| ⩽ 𝜀𝑥𝑌 + |𝑥|𝜀𝑦 + 2−p ⩽ 𝜀𝑥|𝑦|+ |𝑥|𝜀𝑦 + 𝜀𝑥𝜀𝑦 + 2−p.(C.2)

Further, if 𝑍1 is the fixed point result of the operation exp(𝑋), and if 𝑔 is a 𝐶1

function over [𝑎, 𝑏], 𝑍2 the fixed point result of the operation 𝑔(𝑋), we have:

(C.3) |𝑍1 − exp(𝑥)| ⩽ 2−p + 2𝜀𝑥 exp(𝑥), |𝑍2 − 𝑓(𝑥)| ⩽ 2−p + 𝜀𝑥 max
[𝑥−𝜀,𝑥+𝜀]

|𝑔′|.

As a consequence, if 𝑥1, . . . , 𝑥𝑛 are real numbers and 𝑋1, . . . , 𝑋𝑛 be fixed-point
numbers in precision p which are approximations of those such that max1⩽𝑖⩽𝑛 |𝑥𝑖 −
𝑋𝑖| ⩽ 𝜀, the error on the sum 𝑥1 + · · ·+ 𝑥𝑛 (which can be evaluated in any order)
is at most 𝑛𝜀.
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In the sequel, we shall put

𝐶 = max(1, 𝑢, 𝑣) max(1, 𝐵𝑥, 𝐵𝑓 ) max(1,max
[𝑎,𝑏]
|𝑓 ′|).

The error analysis of the DCT follows:

Proposition C.2. Assume that each 𝜙(𝐿𝑐ℎ𝑒𝑏[𝑖]) is given by an approximation with
error 𝜀 < 1, with 𝜀 ⩾ 2−p and that the cosines involved in the DCT definition
are given by an approximation ⩽ 1 with error 2−p. Assume that we compute each
coefficient of the DCT by computing first the 𝑁 products, then the sum. Then, we
obtain an approximation Δ of DCT- II(𝑈) at Step 11 of Algorithm 1 such that

‖Δ−DCT- II(𝑈)‖∞ ⩽ 𝑁(𝜀+ 2−p(1 + 𝐶𝑑)).

Proof. We deduce from (C.2) that each product 𝜙(𝐿𝑐ℎ𝑒𝑏[𝑖]) cos(𝑘(𝑖 + 1/2)𝜋)/𝑁
incurs an error at most 𝜀+ 2−p|𝜙(𝐿𝑐ℎ𝑒𝑏[𝑖])|+ 2−p ⩽ 𝜀+ 2−p(1 + 𝐶𝑑). The sum of
those terms then, cf. (C.1), incurs an error ⩽ 𝑁(𝜀+ 2−p(1 + 𝐶𝑑)), from which the
result follows. □

We now turn to the computation of 𝛼𝑘; our practical application cases have 𝛼≫ 1,
and we need all the values 𝛼, . . . , 𝛼𝑘, so that we compute 𝛼𝑘 by the recurrence
𝛼𝑘 = 𝛼𝑘−1 · 𝛼.

Proposition C.3. Let 𝑥 be a nonnegative real number, and 𝑋 a fixed point number
in precision p approximating 𝑥, so that |𝑋 − 𝑥| ⩽ 𝜀, with 1 ⩾ 𝜀 ⩾ 2−p. If 𝑘 is an
integer, and if we define 𝑋1 = 𝑋 and 𝑋𝑘 = 𝑋 ⊗𝑋𝑘−1 we have, for 𝑘 ⩾ 1,

|𝑋𝑘 − 𝑥𝑘| ⩽ 𝑘𝜀(𝑥+ 1)𝑘−1.

Proof. Induction on 𝑘, clear for 𝑘 = 1. We let 𝜀𝑘 be |𝑋𝑘 − 𝑥𝑘|. Then, we have

|𝑋𝑘+1 − 𝑥𝑘+1| = |𝑋𝑘+1 −𝑋 ·𝑋𝑘|+ |𝑋 · (𝑋𝑘 − 𝑥𝑘)|+ |𝑋 − 𝑥|𝑥𝑘

⩽ 2−p + (𝑥+ 𝜀)𝜀𝑘 + 𝑥𝑘𝜀,

from (C.2) and the induction hypothesis, so that

𝜀𝑘+1 ⩽ (𝑥+ 𝜀)𝜀𝑘 + 𝑥𝑘𝜀+ 2−p ⩽ (𝑥+ 𝜀)𝜀𝑘 + (𝑥𝑘 + 1)𝜀 ⩽ (𝑥+ 1)𝜀𝑘 + (𝑥+ 1)𝑘𝜀,

from which the result follows by induction. □

Corollary C.4. Assume that 𝜀 ⩽ 1/𝑑. Let 𝛼 be a real number with |𝛼| ⩽ 𝐵𝑥, and
𝛽 be a real number with |𝛽| ⩽ 𝐵𝑓 . If 𝑋 is a fixed-point approximation of 𝑢𝛼 with
error ⩽ 𝜀 and 𝑌 is a fixed-point approximation of 𝑣𝛽 with error ⩽ 𝜀, and if 𝑋𝑘 and
𝑌ℓ are defined as in Proposition C.3, we define 𝑍 = 𝑋𝑘 ⊗ 𝑌ℓ. If 𝑘 + ℓ ⩽ 𝑑, we have

|𝑍 − (𝑢𝛼)𝑘(𝑣𝛽)ℓ| ⩽ 2−p + 2𝑑𝜀(𝐶 + 1)𝑑−1.

Proof. By Proposition C.3, the error on 𝑋𝑘 compared to (𝑢𝛼)𝑘 is ⩽ 𝑘𝜀(𝐶 + 1)𝑘−1;
the error on 𝑌ℓ compared to (𝑣𝛽)ℓ is at most ⩽ ℓ𝜀(𝐶 + 1)ℓ−1. Finally, we have

|𝑍 − (𝑢𝛼)𝑘(𝑣𝛽)ℓ| ⩽ |𝑍 −𝑋𝑘 · 𝑌ℓ|+ |𝑋𝑘 − (𝑢𝛼)𝑘||𝑌ℓ|+ |𝑢𝛼|𝑘|𝑌ℓ − (𝑣𝛽)ℓ|
⩽ 2−p + 𝑘𝜀(𝐶 + 1)𝑘−1(𝐶ℓ + ℓ𝜀(𝐶 + 1)ℓ−1) + ℓ𝜀(𝐶 + 1)ℓ−1𝐶𝑘

⩽ 2−p + 2𝑑𝜀(𝐶 + 1)𝑑−1,

using (C.2) and ℓ𝜀 ⩽ 𝑑𝜀 ⩽ 1. □
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We can now combine the previous results to get an estimate of the precision
required for 𝑀𝑐[𝑖, 𝑗]; for the sake of simplicity, we assume that approximations of
the cos((𝑘 + 1/2)𝜋/𝑁)’s to the precision 2−p are known and that all are less than 1.

Theorem C.5. Assume that 𝑎, 𝑏, 𝑢, 𝑣 are exactly representable in our computation
model. Then, the error on the values 𝑢𝐿𝑐ℎ𝑒𝑏[𝑖] and 𝑣𝑓(𝐿𝑐ℎ𝑒𝑏[𝑖]) is at most 23−p𝐶,
and the error on the vector 𝐿DCT is at most 𝑑(𝐶 + 1)𝑑24−p.

Proof. The computations of (𝑏 − 𝑎)/2 and (𝑏 + 𝑎)/2 each incur an error ⩽ 2−p.
Hence, we deduce from Lemma C.1 that 𝐿𝑐ℎ𝑒𝑏[𝑖] is computed with an error

⩽ 2−p + 1 · 2−p + (𝑏− 𝑎)/2 · 2−p⏟  ⏞  
error on (𝑏−𝑎)/2 cos((𝑗+1/2)𝜋/𝑁)

+2−p = (3 + (𝑏− 𝑎)/2) · 2−p.

Hence, 𝑓(𝐿𝑐ℎ𝑒𝑏[𝑖]) incurs an error ⩽ 2−p
(︀
1 + (3 + (𝑏− 𝑎)/2) max[𝑎,𝑏] |𝑓 ′|

)︀
, as we

know that 𝐿𝑐ℎ𝑒𝑏[𝑖] is in [𝑎, 𝑏] and can always ensure that the approximation of
𝐿𝑐ℎ𝑒𝑏[𝑖] is also in [𝑎, 𝑏], up to replacing it by min(𝑏,max(𝑎, 𝐿𝑐ℎ𝑒𝑏[𝑖])).

Thus, the error incurred on 𝑢𝑥 and 𝑣𝑓(𝑥) for 𝑥 = 𝐿𝑐ℎ𝑒𝑏[𝑖] is at most, cf. (C.3),

2−p + 2−p max(𝑢 · (3 + (𝑏− 𝑎)/2), 𝑣(1 + (3 + (𝑏− 𝑎)/2 max
[𝑎,𝑏]
|𝑓 ′|)))

⩽ 2−p(1 + 5𝐶) ⩽ 6 · 2−p𝐶.

Corollary C.4 finally bounds the error on 𝑈 by 2−p(1 + 12𝑑(𝐶 + 1)𝑑−1𝐶) ⩽ 13𝑑(𝐶 +
1)𝑑2−p.

Hence, thanks to Proposition C.2, the overall error on DCT-II(𝑈) is at most
𝑁(13𝑑(𝐶 + 1)𝑑2−p + 2−p(1 + 𝐶𝑑)) ⩽ 𝑁(13𝑑 + 1)(𝐶 + 1)𝑑2−p. As 𝑁 is exactly
representable, after multiplication by 2/𝑁 (or 1/𝑁 for the zero-th coefficient), we
obtain, from (C.2), an error on 𝐿DCT of at most

(13𝑑+ 1)(𝐶 + 1)𝑑2−p + 2−p ⩽ 𝑑(𝐶 + 1)𝑑24−p.

□

Remark C.6. This theorem can be read as a proof in this case of the rule of
thumb valid in this computational model that one should use as a precision “the
final precision required, plus the size of the largest element encountered in the
computation, plus a few guard bits”.

We now turn to similar estimates for the remainders. For the sake of simplicity
again, we shall assume that 𝜌, 𝜌−1, 𝜔 are exactly representable in our computational
model – which is, in practice, a very mild restriction. As 𝑁 is an integer and p ⩾ 0,
𝑁 and 𝑁 − 1 are also exactly representable in our computational model.

We compute 𝑅𝜔0 as exp(−(𝑁 − 1− 𝜔0) log 𝜌)/(𝜌− 1)/4).

Proposition C.7. Define 𝐶 ′ = max(1, (𝑁 − 𝜔0)/(𝜌− 1)). Then, the quantity 𝑅𝜔0

can be computed with error at most 7 ·2−p𝐶 ′, and the quantity − log2(𝑅𝜔0)+log2(𝑁)
with error at most 5 · 2−p(𝜌− 1)𝐶 ′.

Proof. The error on (𝑁−1−𝜔0) log 𝜌 is at most, cf. (C.2), 2−p(log 𝜌+𝑁−1−𝜔0+1) ⩽
2𝐶 ′(𝜌− 1)2−p.

The error on 𝜌−(𝑁−1−𝜔0) is upper bounded by 2−p(1+4𝐶 ′(𝜌−1))𝜌−(𝑁−1−𝜔0) ⩽ 5·
2−p𝐶 ′(𝜌−1)𝜌−(𝑁−1−𝜔0). Then, we deduce from (C.3) that the error on 𝜌−(𝑁−1−𝜔0)/(𝜌−
1) is ⩽ 2−p(1 + 5𝐶 ′𝜌−(𝑁−1−𝜔0)) ⩽ 6𝐶 ′2−p, and division by 4 incurs a precision loss
of 2−p, so the total error on 𝑅𝜔0 is ⩽ 7 · 2−p𝐶 ′.
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Similarly, the error on (𝑁−1−𝜔0) log2 𝜌 is at most 2−p(log2 𝜌+𝑁−1−𝜔0 +1) ⩽
3𝐶 ′(𝜌− 1)2−p, while the errors on log2(𝜌− 1) and log2(𝑁) are each at most 2−p.
Hence, the total error on − log2(𝑅𝜔0) + log2(𝑁) is at most 5𝐶 ′(𝜌− 1)2−p. □

As we inherently have to allow for overestimation of the quantity 𝐵𝑓 , as has been
pointed, up to rounding upwards this overestimated quantity we shall assume that
𝐵𝑓 is exactly representable.

Corollary C.8. The error on 𝑅𝜔0(𝑢𝐵𝑥)𝑘(𝑣𝐵𝑓 )ℓ is at most 2−p𝐶 ′(𝐶 + 4𝑢𝜌)(𝐶 +
1)𝑑−1(24𝑑+ 8).

Proof. The error on 𝐵𝑥 is at most, cf. (C.1), the sum of the error on (𝑎 + 𝑏)/2,
which is ⩽ 2−p, and the error on the product (𝑏 − 𝑎)(𝜌 + 𝜌−1)/4, which is ⩽
2−p((𝑏 − 𝑎)/4 + 𝜌 + 𝜌−1 + 2−p) + 2−p ⩽ ((𝑏 − 𝑎)/4 + 4𝜌)2−p, cf. (C.2). Hence,
the error on 𝑢𝐵𝑥 is at most (𝐶 + 4𝑢𝜌)2−p and the error on 𝑣𝐵𝑓 at most 𝐶 · 2−p ;
thus, Corollary C.4 bounds the error on (𝑢𝐵𝑥)𝑘(𝑣𝐵𝑓 )ℓ by 2−p + 2𝑑(𝐶 + 4𝑢𝜌)(𝐶 +
1)𝑑−12−p ⩽ 3𝑑(𝐶 + 4𝑢𝜌)(𝐶 + 1)𝑑−12−p.

Further, note that max((𝑢𝐵𝑥)𝑘, (𝑣𝐵𝑓 )ℓ) ⩽ 𝐶𝑑 and 𝑅𝜔0 ⩽ 1/(𝜌− 1), and recall
that the error on 𝑅𝜔0 is at most 7 · 2−p𝐶 ′ (cf. Proposition C.7). Hence, finally, the
error on the product is at most

7 · 2−p𝐶 ′(𝐶𝑑 + 3𝑑(𝐶 + 4𝑢𝜌)(𝐶 + 1)𝑑−12−p) + 3𝑑(𝐶 + 4𝑢𝜌) (𝐶 + 1)𝑑−1

𝜌− 1 2−p + 2−p,

which is in turn upper bounded by

2−p𝐶 ′(𝐶 + 4𝑢𝜌)(𝐶 + 1)𝑑−1(24𝑑+ 8),

as claimed. □

Now we can state:

Theorem C.9. Put ℳ = max(𝑢, 𝑣, |𝑎|, |𝑏|, 𝜌, 𝐵𝑓 ,max[𝑎,𝑏] |𝑓 ′|). For p ⩾ tprec +
𝑂(max(𝑑 logℳ, | log(𝜌 − 1)|)), if the faithful rounding mode is set at each step,
the computation in a fixed precision model with p bits after the binary point
allows for the computation of tpreccomp,𝑀𝑐,comp,𝑀𝑟,comp with the property that
tpreccomp ∈ {tprec, tprec + 1}, 𝑀𝑐[𝑖, 𝑗] − 𝑀𝑐,comp[𝑖, 𝑗] ∈ {0, sgn(𝑀𝑐[𝑖, 𝑗])}, and
𝑀𝑟[𝑖, 𝑗]−𝑀𝑟,comp[𝑖, 𝑗] ∈ {0, 1} for 𝑖, 𝑗 = 0, . . . , 𝑁 − 1.

Proof. Follows from Proposition C.7, Theorems C.5 and C.8 and the discussion in
Subsection 5.3.3. □

Note as a conclusion that as the largest real number encountered in this computa-
tion has size 𝑂(max(𝑑 logℳ, | log(𝜌− 1)|), the result stated in the theorem remains
valid in a floating-point model with precision tprec +𝑂(max(𝑑 logℳ, | log(𝜌− 1)|)).

Appendix D. Lemmata on 𝜙,𝜓

In this appendix, we group the facts concerning the function 𝜓 of Section 6.

Lemma D.1. Let 𝜙 be the function from [1,+∞) to [1,+∞) defined by 𝜙(𝑥) = (1 +
⌊𝑥⌋)(𝑥−⌊𝑥⌋/2). Then 𝜙 is continuous and strictly increasing, and defines a bijection
from [1,+∞) to [1,+∞). For any 𝑥 ⩾ 1, we have 𝑥(𝑥+ 1)/2 ⩽ 𝜙(𝑥) ⩽ (𝑥+ 1/2)2/2
and
√

2𝑥− 1/2 ⩽ 𝜙−1(𝑥) ⩽
√︀

2𝑥+ 1/4− 1/2.
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Proof. For 𝑥 ̸∈ Z, it is clear that 𝜙 is 𝒞1 in a neighbourhood of 𝑥 and that 𝜙′(𝑥) ⩾ 1.
For 𝑥 in Z, we have 𝜙(𝑥) = lim𝑡→𝑥+ 𝜙(𝑡) = (1 + 𝑥)𝑥/2, whereas lim𝑡→𝑥− 𝜙(𝑡) =

𝑥(𝑥− (𝑥− 1)/2) = 𝑥(𝑥+ 1)/2. This proves continuity, and the remaining assertions
follow.

Let 𝑘 ∈ N, 𝑎 ∈ R and 𝑔𝑎(𝑥) = (𝑥 + 1 − 𝑎)(𝑥 + 𝑎)/2. We denote by 𝜙𝑘 the
restriction of 𝜙 to [𝑘, 𝑘 + 1]. For all 𝑥 ∈ [𝑘, 𝑘 + 1], (𝜙𝑘 − 𝑔𝑎)′(𝑥) = 𝑘 + 1/2− 𝑥 : the
function 𝜙𝑘 − 𝑔𝑎 is decreasing over [𝑘, 𝑘 + 1/2] and increasing over [𝑘 + 1/2, 𝑘 + 1].
Now, we remark that 𝜙𝑘(𝑘) = 𝑔0(𝑘) and 𝜙𝑘(𝑘 + 1) = 𝑔0(𝑘 + 1), which yields
𝜙𝑘(𝑥) ⩾ 𝑔0(𝑥) = 𝑥(𝑥+ 1)/2 for all 𝑥 ∈ [𝑘, 𝑘 + 1], and 𝜙𝑘(𝑘 + 1/2) = 𝑔1/2(𝑘 + 1/2),
which yields 𝜙𝑘(𝑥) ⩽ 𝑔1/2(𝑥) = (𝑥+ 1/2)2/2 for all 𝑥 ∈ [𝑘, 𝑘 + 1].

The proof of the remaining inequalities is straightforward.
□

Lemma D.2. Let 3 ⩽ 𝛾 ⩽ 𝑁 , 𝑠 = 𝛾𝜙−1(𝑁/𝛾), 𝑁1 = ⌊
√

2𝑁𝛾⌋ and 𝑁2 = ⌈
√︀

2𝑁/𝛾⌉.
We have 𝛾 ⩾ 𝑁1/𝑁2 ⩾ 1, 𝑠 < 𝑁1 and

√
2𝑁(
√

2𝑁 −
√

3/3) ⩽ 𝑁1𝑁2 ⩽ (2 +
√

2)𝑁 .
Assume that 𝑁 →∞, then card𝒦𝑠 ⩽ 𝑁 +𝑂(𝑠/𝛾).

Proof. We have √︀
2𝑁𝛾 −

√︀
2𝑁/𝛾 =

√︀
2𝑁𝛾(1− 1/𝛾) ⩾ 1,

since 𝑁 ⩾ 𝛾 ⩾ 3. It follows 𝑁1 = ⌊
√

2𝑁𝛾⌋ ⩾ ⌈
√︀

2𝑁/𝛾⌉ = 𝑁2, hence 𝑁1/𝑁2 ⩾ 1.
Moreover, for any 𝛾 ⩾ 3,

𝑁1 = ⌊
√︀

2𝑁𝛾⌋ ⩽ 𝛾
√︀

2𝑁/𝛾 ⩽ 𝛾𝑁2.

Also,
(
√︀

2𝑁𝛾 − 1)
√︀

2𝑁/𝛾 ⩽ 𝑁1𝑁2 ⩽
√︀

2𝑁𝛾(1 +
√︀

2𝑁/𝛾),
hence √

2𝑁(
√

2𝑁 −
√

3/3) ⩽ 𝑁1𝑁2 ⩽ (2 +
√

2)𝑁
since 𝑁 ⩾ 𝛾 ⩾ 2.

Finally, from Lemma D.1 and the fact that (
√

8𝑥+ 1 − 1)/2 <
√

2𝑥 − 3/8 for
all 𝑥 ⩾ 1, we have 𝑠 = 𝛾𝜙−1(𝑁/𝛾) < 𝛾(

√︀
2𝑁/𝛾 − 3/8) <

√
2𝑁𝛾 − 1 ⩽ 𝑁1 since

𝑁 ⩾ 𝛾 ⩾ 3. Therefore, we can apply Lemma 6.3: we have, from (6.6),

card𝒦𝑠 = 𝛾(1+⌊𝑠/𝛾⌋)(𝑠/𝛾−⌊𝑠/𝛾⌋/2)+𝑂(𝑠/𝛾) ⩽ 𝛾𝜙(𝑠/𝛾)+𝑂(𝑠/𝛾) ⩽ 𝑁+𝑂(𝑠/𝛾).

□

Corollary D.3. With the assumptions of Lemma D.2, put 𝜆 = 𝑁/𝛾. Then, we
have

Ω𝛾(𝑁,𝑁1, 𝑁2) = 𝜓(𝜆)𝑁𝛾 +𝑂(𝑁),
where

𝜓(𝜆) = 1 + ⌊𝜙−1(𝜆)⌋
12𝜆

(︀
6𝜙−1(𝜆)2 − ⌊𝜙−1(𝜆)⌋ − 2⌊𝜙−1(𝜆)⌋2

)︀
.

Note that if 𝛾 = 𝑜(𝑁), we have 𝜆 → ∞ and 𝜙−1(𝜆) =
√

2𝜆 + 𝑂(1), so that
𝜓(𝜆) = 2

√
2𝜆/3 +𝑂(1) and

Ω𝛾(𝑁,𝑁1, 𝑁2) = 2
√

2
3 𝑁3/2𝛾1/2 +𝑂(𝑁𝛾).
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Proof. Lemma D.2 shows us that the assumptions of Lemma 6.3 are satisfied; we
thus get ∑︁

(𝑖,𝑗)∈𝒦𝑠

(𝑖+ 𝑗𝛾) = 𝜓(𝜆)𝑁𝛾 +𝑂(𝑁).

Further, note that for our value of 𝑠, the term 𝑠(𝑁 − card𝒦𝑠) from Lemma 6.1 is
𝑂(𝑠2/𝛾), which is 𝑂(𝛾𝜙−1(𝜆)2) = 𝑂(𝑁𝜙−1(𝜆)2/𝜆) = 𝑂(𝑁), thanks to Lemma D.1.
The result follows. □

Lemma D.4. For 𝑥 ∈ [1,+∞), we have

−5/6 < 𝜓(𝑥)− 2
√

2𝑥
3 < 0.

Proof. We have

𝜓(𝜙(𝑥)) = 6𝑥2 − ⌊𝑥⌋ − 2⌊𝑥⌋2

12𝑥− 6⌊𝑥⌋ .

For 𝑣 ⩽ 𝑢 < 𝑣 + 1, define

𝐹 (𝑢, 𝑣) = 6𝑢2 − 𝑣 − 2𝑣2

12𝑢− 6𝑣 − 2𝑢/3,

so that 𝜓(𝜙(𝑥))− 2𝑥/3 = 𝐹 (𝑥, ⌊𝑥⌋).
We maximize 𝐹 (𝑢, 𝑣) for fixed 𝑣, hence computing

𝜕𝐹

𝜕𝑣
(𝑢, 𝑣) = −2𝑢2 + 2𝑢𝑣 + 𝑣

3(4𝑢2 − 4𝑢𝑣 + 𝑣2) .

By evaluating 2𝑢2− 2𝑢𝑣− 𝑣 = 0 at 𝑣 and 𝑣+ 1, one checks that for fixed 𝑣, there
is a unique 𝑢0 ∈ [𝑣, 𝑣 + 1) such that 𝐹 (𝑢, 𝑣) increases over [𝑣, 𝑢0] and decreases over
[𝑣0, 𝑣 + 1). Hence, for 𝑢 ∈ [𝑣, 𝑣 + 1),
−1
6 = min(𝐹 (𝑣, 𝑣)−2𝑣/3, 𝐹 (𝑣+1, 𝑣)−2(𝑣+1)/3) ⩽ 𝐹 (𝑢, 𝑣)−2𝑢/3 ⩽ 𝐹 (𝑢0, 𝑣)−2𝑢0/3.

Finally, we find
𝐹 (𝑢0, 𝑣)− 2𝑢0

3 = (𝑣 − 𝑢0)/3 ⩽ 0.

(note that the optimal bound for the latter is actually (1 −
√

3)/6, obtained for
𝑣 = 1, 𝑢0 = (1 +

√
3)/2).

Hence, we have
2𝜙−1(𝑥)/3− 1/6 ⩽ 𝜓(𝑥) ⩽ 2𝜙−1(𝑥)/3,

which, in view of
√

2𝑥− 1 < 𝜙−1(𝑥) <
√

2𝑥, gives

−5/6 < 𝜓(𝑥)− 2
√

2𝑥/3 < 0.
□

Remark D.5. Simple numerical experiments suggest that actually 𝜓(𝑥)− 2
√

2𝑥/3 ∈
[−1/2,−0.44] for 𝑥 ⩾ 1, so that the asymptotic expansion 𝜓(𝑥) = 2

√
2𝑥/3− 1/2 +

𝑜(1), once truncated, actually gives an excellent approximation for all 𝑥 ⩾ 1.

The following two lemmas yield useful information on the function 𝜓: invertibility,
and inverse function.

Lemma D.6. The function 𝑥 ↦→ 𝜓(𝑥) is continuous and increasing over [1,∞).
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Proof. For the first part, since 𝜙−1 is continuous and 𝑥 > 0, it suffices to prove that
𝑥 ↦→ 𝑥(𝜓 ∘𝜙(𝑥)) is continuous, namely that 𝐹 : 𝑥 ↦→ (1 + ⌊𝑥⌋)(6𝑥2 − ⌊𝑥⌋ − 2⌊𝑥⌋2) is
continuous.

Obviously, 𝐹 is continuous on [1,∞)∖Z>0. If 𝑛 is an integer, we check that 𝐹 (𝑛) =
(1+𝑛)(4𝑛2−𝑛) whereas lim𝑥→𝑛− 𝐹 (𝑥) = 𝑛(4𝑛2 +3𝑛−1) = 𝑛(𝑛+1)(4𝑛−1) = 𝐹 (𝑛).

To prove that 𝑥 ↦→ 𝜓(𝑥) is increasing, as 𝜙 is increasing it suffices to study 𝑥 ↦→
𝜓(𝜙(𝑥)). As the latter function is continuous over each interval (𝜙−1(𝑛), 𝜙−1(𝑛+1)),
it suffices to prove that it increases over each of those intervals.

Over such an interval, we have 𝜓(𝜙(𝑥)) = 𝐴𝑥2/𝜙(𝑥)−𝐵/𝜙(𝑥) for some nonneg-
ative constants 𝐴, 𝐵; it thus suffices to prove that 𝑥2/𝜙(𝑥) is increasing, or that
𝜙(𝑥)/𝑥2 is decreasing. As this function is continuous and has the form 𝐴′(𝑥+𝐵′)/𝑥2

for some nonnegative 𝐴′, 𝐵′ over each interval (𝑛, 𝑛+ 1) for integer 𝑛, we see that
it is indeed decreasing. □

Proposition D.7. We have, for any 𝜇 ∈ [1,+∞),

𝜓−1(𝜇) = 𝑘 + 1
2

(︁
2𝜇− 𝑘 +

√︀
4𝜇(𝜇− 𝑘) + 2𝑘(2𝑘 + 1)/3

)︁
,

where 𝑘 = ⌊3𝜇/2 + 1/4⌋. For 𝜇→∞, we have 𝜓−1(𝜇) = 9𝜇2/8 +𝑂(𝜇).

Proof. We start by noticing that for all integer ℓ, 𝜓(ℓ(ℓ+ 1)/2) = (4ℓ− 1)/6, which
follows easily from 𝜙−1(ℓ(ℓ+ 1)/2) = ℓ.

Let now 𝑘 = ⌊3𝜇/2 + 1/4⌋; then, 𝜓(𝑘(𝑘 + 1)/2) ⩽ 𝜇 < 𝜓((𝑘 + 1)(𝑘 + 2)/2), so
that

𝑘(𝑘 + 1)/2 ⩽ 𝜓−1(𝜇) < (𝑘 + 1)(𝑘 + 2)/2,

and ⌊𝜙−1(𝜓−1(𝜇))⌋ = 𝑘. The asymptotic expansion follows from these inequalities.
As a consequence, 𝜓−1(𝜇) = 𝜙(𝜙−1(𝜓−1(𝜇))) = (𝑘 + 1)(𝜙−1(𝜓−1(𝜇))− 𝑘/2), so

that 𝜙−1(𝜓−1(𝜇)) = 𝜓−1(𝜇)
𝑘+1 + 𝑘/2.

Hence,

𝜇 = 𝜓(𝜓−1(𝜇)) = 1 + 𝑘

12𝜓−1(𝜇)
(︀
6𝜙−1(𝜓−1(𝜇))2 − 𝑘 − 2𝑘2)︀ ,

so that

12
1 + 𝑘

𝜇𝜓−1(𝜇) = 6
(︂
𝜓−1(𝜇)
𝑘 + 1 + 𝑘/2

)︂2

− 𝑘 − 2𝑘2.

Finally, 𝜓−1(𝜇)/(𝑘 + 1) is the positive root of the equation

𝑋2 + (𝑘 − 2𝜇)𝑋 − 𝑘(𝑘 + 2)
12 = 0,

which gives the explicit form

𝜓−1(𝜇) = 𝑘 + 1
2

(︁
2𝜇− 𝑘 +

√︀
4𝜇(𝜇− 𝑘) + 2𝑘(2𝑘 + 1)/3

)︁
.

□
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Appendix E. Proofs of Theorems 6.4 and 6.12

Proof of Theorem 6.4. For 0 ⩽ 𝑖, 𝑗 ⩽ 𝑁 − 1, 0 ⩽ 𝑘1 ⩽ 𝑁1 − 1, 0 ⩽ 𝑘2 ⩽ 𝑁2 − 1,
we have from Proposition 4.2,

⃒⃒
(𝐴1)𝑖,(𝑘1,𝑘2)

⃒⃒
⩽
⃒⃒⃒ 𝑐𝑘1,𝑘2,𝑖

2𝛿0𝑘1 +𝛿0𝑘2

⃒⃒⃒
⩽

4𝑀𝜌1,𝑎1,𝑏1,𝜌2,𝑎2,𝑏2(𝑓𝑖)
𝜌𝑘1

1 𝜌𝑘2
2

𝜌2
1 + 1
𝜌2

1 − 1
𝜌2

2 + 1
𝜌2

2 − 1 ⩽
4𝜌1𝜌2𝑀𝜌1,𝑎1,𝑏1,𝜌2,𝑎2,𝑏2(𝑓𝑖)

(𝜌1 − 1)(𝜌2 − 1)
1

𝜌𝑘1
1 𝜌𝑘2

2
.

Moreover, from the definition of 𝐴2 and the assumption 𝜌𝑁1
1 ⩽ 𝜌𝑁2

2 , we know that,
for 0 ⩽ 𝑖, 𝑗 ⩽ 𝑁 − 1,

|𝐴2,𝑖,𝑗 | ⩽
16𝜌1𝜌2𝑀𝜌1,𝑎1,𝑏1,𝜌2,𝑎2,𝑏2(𝑓𝑖)

(𝜌1 − 1)(𝜌2 − 1)

(︂
2
𝜌𝑁1

1

)︂
.

We now apply Theorem 5.1. We put r𝑖 = 32𝜌1𝜌2𝑀𝜌1,𝑎1,𝑏1,𝜌2,𝑎2,𝑏2 (𝑓𝑖)
(𝜌1−1)(𝜌2−1) for 𝑖 = 0, . . . , 𝑁−

1. Then, notice that the product of the 𝑁 largest elements among the c𝑗 ’s

1, . . . , 1
𝜌𝑘1

1 𝜌𝑘2
2
, . . . ,

1
𝜌𝑁1−1

1 𝜌𝑁2−1
2

,
1
𝜌𝑁1

1
, . . . ,

1
𝜌𝑁1

1⏟  ⏞  
𝑁times

.

is upper bounded by 𝜌−Ω𝛾(𝑁1,𝑁2,𝑁)
1 thanks to the assumption 𝜌𝛾1 = 𝜌2, or equivalently,

𝜌−𝑖
1 𝜌−𝑗

2 = 𝜌−𝑖−𝛾𝑗
1 .

We can now apply Theorem 5.1 to obtain the bound

(det𝐴𝐴𝑡)1/2 ⩽
(︁

32
√
𝑁
)︁𝑁

2
𝑁1𝑁2+𝑁

2

(︂
𝜌1𝜌2

(𝜌1 − 1)(𝜌2 − 1)

)︂𝑁 ∏︀𝑁
𝑖=1 𝑀𝜌1,𝑎1,𝑏1,𝜌2,𝑎2,𝑏2(𝑓𝑖)

𝜌
Ω𝛾(𝑁,𝑁1,𝑁2)
1

,

from which the Theorem follows, in view of the preliminary assumption that
𝑁1𝑁2 ⩾ 𝑁 . □

Proof of Theorem 6.12. For 𝑗 = 0, . . . , 𝑁 + 𝑁1𝑁2 − 1, we have |(Λ𝐴)[𝑗] −
(Λ𝐴)[𝑗]|1 ⩽

∑︀
0⩽𝑘+ℓ⩽𝑑 |𝜆𝑘,ℓ|2−tprec ⩽

∑︀
0⩽𝑘+ℓ⩽𝑑 |𝜆𝑘,ℓ|min𝑖𝐴2[𝑖, 𝑖] 2−2

𝑁 , cf. proof
of Lemma 6.10. As

∑︀
0⩽𝑘+ℓ⩽𝑑 |𝜆𝑘,ℓ|min𝑖𝐴2[𝑖, 𝑖] ⩽ ‖Λ𝐴2‖1, we get |(Λ𝐴)[𝑗] −

(Λ𝐴)[𝑗]| ⩽ 1
4𝑁 ‖Λ𝐴2‖1. Then, it comes ‖Λ𝐴‖1 ⩽ ‖Λ𝐴‖1 + (𝑁 + 𝑁1𝑁2)‖Λ𝐴2‖1

4𝑁 ⩽

‖Λ𝐴‖1 + (𝑁 + 𝑁1𝑁2)‖Λ𝐴2‖2
4

√
𝑁

thanks to Cauchy-Schwarz inequality. Finally, we
obtain ‖Λ𝐴‖1 ⩽ ‖Λ𝐴‖1 + 1

4𝑁1/2 from the assumption ‖Λ𝐴‖2 ⩽ 1/(𝑁 +𝑁1𝑁2).
Let now 𝑃 be as in the statement of the Theorem, and

𝑄(𝑥, 𝑡) =
∑︁

0⩽𝑗1⩽𝑁1−1
0⩽𝑗2⩽𝑁2−1

𝑞𝑗1,𝑗2𝑇𝑗1,[𝑎1,𝑏1](𝑥)𝑇𝑗2,[𝑎2,𝑏2](𝑡)

be the interpolation polynomial for 𝑃 (𝑢𝑥, 𝑣(𝑓(𝑥) + 𝑡)) at the order (𝑁1, 𝑁2) pairs of
Chebyshev nodes of the first kind. Then, the coordinates of Λ𝐴1 are exactly 𝑞𝑗1,𝑗2 ,
0 ⩽ 𝑗1 ⩽ 𝑁1 − 1, 0 ⩽ 𝑗2 ⩽ 𝑁2 − 1.
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Proposition 4.2 shows that

max
𝑥∈[𝑎1,𝑏1]
𝑡∈[𝑎2,𝑏2]

|𝑄(𝑥, 𝑡)−𝑃 (𝑢𝑥, 𝑣(𝑓(𝑥)+𝑡))| ⩽ 16𝑀𝜌1,𝑎1,𝑏1,𝜌2,𝑎2,𝑏2(𝑃 )𝜌1𝜌2

(𝜌1 − 1)(𝜌2 − 1)

(︂
1
𝜌𝑁1

1
+ 1
𝜌𝑁2

2

)︂

⩽ 16
∑︁

0⩽𝑘+ℓ⩽𝑑
|𝜆𝑘,ℓ|

𝑢𝑘𝑀𝜌1,𝑎1,𝑏1(𝑥)𝑘𝑣ℓ𝑀𝜌1,𝑎1,𝑏1,𝜌2,𝑎2,𝑏2(𝑓(𝑥) + 𝑡)ℓ𝜌1𝜌2

(𝜌1 − 1)(𝜌2 − 1)

(︂
1
𝜌𝑁1

1
+ 1
𝜌𝑁2

2

)︂
hence

max
𝑥∈[𝑎1,𝑏1]
𝑡∈[𝑎2,𝑏2]

|𝑃 (𝑢𝑥, 𝑣(𝑓(𝑥) + 𝑡))| ⩽ max
𝑥∈[𝑎1,𝑏1]
𝑡∈[𝑎2,𝑏2]

|𝑄(𝑥, 𝑡)|+

16
∑︁

0⩽𝑘+ℓ⩽𝑑
|𝜆𝑘,ℓ|

𝑢𝑘𝑀𝜌1,𝑎1,𝑏1(𝑥)𝑘𝑣ℓ𝑀𝜌1,𝑎1,𝑏1,𝜌2,𝑎2,𝑏2(𝑓(𝑥) + 𝑡)ℓ𝜌1𝜌2

(𝜌1 − 1)(𝜌2 − 1)

(︂
1
𝜌𝑁1

1
+ 1
𝜌𝑁2

2

)︂
⩽

∑︁
0⩽𝑗1⩽𝑁1−1
0⩽𝑗2⩽𝑁2−1

|𝑞𝑗1,𝑗2 |+ (recall that max
𝑥∈[𝑎𝑖,𝑏𝑖]

|𝑇𝑘,[𝑎𝑖,𝑏𝑖](𝑥)| = 1 for all 𝑘)

16
∑︁

0⩽𝑘+ℓ⩽𝑑
|𝜆𝑘,ℓ|

𝑢𝑘𝑀𝜌1,𝑎1,𝑏1(𝑥)𝑘𝑣ℓ𝑀𝜌1,𝑎1,𝑏1,𝜌2,𝑎2,𝑏2(𝑓(𝑥) + 𝑡)ℓ𝜌1𝜌2

(𝜌1 − 1)(𝜌2 − 1)

(︂
1
𝜌𝑁1

1
+ 1
𝜌𝑁2

2

)︂
= ‖Λ𝐴‖1 ⩽ ‖Λ𝐴‖1 + 1/(4𝑁1/2)

⩽ 1/(4𝑁1/2) +
√︀
𝑁 +𝑁1𝑁2‖Λ𝐴‖2 thanks to Cauchy-Schwarz inequality

(E.1) ⩽ 1/(4𝑁1/2) + 1/
√︀
𝑁 +𝑁1𝑁2 < 1 since 𝑁 ⩾ 3, 𝑁1, 𝑁2 ⩾ 2.

□.

Remark E.1. The proof should be slightly adapted if the two-variable analogous of
Subsection 5.3.3 is used. Recall that 𝐴comp = 2−tpreccomp(𝑀𝑐,comp 𝑀𝑟,comp), we obtain
for 𝑗 = 0, . . . , 𝑁 +𝑁1𝑁2 − 1,

|(Λ𝐴)[𝑗]− (Λ𝐴comp)[𝑗]| ⩽
∑︁

0⩽𝑘+ℓ⩽𝑑
|𝜆𝑘,ℓ|21−tpreccomp ⩽

∑︁
0⩽𝑘+ℓ⩽𝑑

|𝜆𝑘,ℓ|min
𝑖
𝐴2[𝑖, 𝑖] 1

2𝑁

from which follows ‖Λ𝐴‖1 ⩽ ‖Λ𝐴‖1 + (𝑁 +𝑁1𝑁2)‖Λ𝐴2‖1
2𝑁 ⩽ ‖Λ𝐴‖1 + 1

2𝑁1/2 . The
upper bound in Inequality (E.1) becomes 1/(2𝑁1/2) + 1/

√
𝑁 +𝑁1𝑁2 < 1 since

𝑁 ⩾ 3, 𝑁1, 𝑁2 ⩾ 2.
Note also that the success condition (6.10) becomes

max
𝑖=0,1

(︂
‖(𝑀𝐿𝐿𝐿[𝑖, 𝑗])0⩽𝑗⩽𝑁+𝑁1𝑁2−1‖1

+ (𝑁 +𝑁1𝑁2)‖(𝑀𝐿𝐿𝐿[𝑖, 𝑗])𝑁1𝑁2⩽𝑗⩽𝑁+𝑁1𝑁2−1‖1

2𝑁

)︂
< 2tprec.
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