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ABSTRACT Energy use in buildings is increasing to provide optimal comfort for the occupants. People
spend 90% of their lifetime in buildings. Therefore, indoor environment quality and comfort management
have a crucial role in maintaining occupants’ health and productivity. Reducing energy consumption for
optimal comfort management is important to minimize CO2 emission and global warming by the building
sector. According to the literature, it is possible to control and reduce energy consumption by monitoring
occupants’ behavior and estimating the number of occupants. A critical review is carried out in this paper to
analyze the existing methodologies for modeling occupant behavior and prediction with respect to comfort
and energymanagement. A comprehensive analysis is also performed on recent developments and challenges
in modeling, along with recommendations and future perspectives.

INDEX TERMS Building comfort, energy consumption, occupancy prediction, occupant behavior, stochas-
tic behavior, smart building.

I. INTRODUCTION
Life expectancy of modern life has increased and humans are
spending most of their times in indoors due to the present-day
life style. Researches show that around 90% of people spend
their time indoors and 65% of time in offices [1]. Poor func-
tioning buildings have adverse effects on occupants health.
For example, cognitive performance of a person depends on
the indoor environment; presence of high concentration air
pollutants in indoor affects the respiratory health, lower ambi-
ent temperature can cause cardiovascular disease and chronic
respiratory problems majorly in old occupants. Furthermore,
low indoor air quality of the building is the reason for Sick
Building Syndrome (SBS); feeling cold, headache, dizziness,
confusion, nausea, fatigue, respiratory problems, irritation of
eyes, throat, nose and skin. Evenwith the technological devel-
opment, 23% of the office workers comment about indoor
air quality [2], [3]. Therefore, significant attention is required
towards maintaining a healthy and comfort ambience inside
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the building for occupants enhanced life style. Indoor envi-
ronment quality is basically categorised as:

1) Thermal comfort
2) Visual comfort
3) Air quality
4) Acoustic comfort
These comfort factors are dependent on many physical

and physiological factors such as geographical location, rel-
ative humidity, metabolism rate, air velocity, lighting, noise,
human behavior, etc. [4]–[6]. Enhanced life style and atten-
tion towards indoor environment shows the necessity tomain-
tain a healthy and comfort ambience inside the building.

Thus, the fundamental expectation of the occupant from a
building is to achieve maximum indoor comfort, regardless
the outdoor weather conditions. Buildings consume major
factor of global energy and account for considerable CO2
emission as shown in Fig. 1. In China, 84% of the total energy
is consumed at the Urban areas and majorly responsible for
CO2 emissions [8], [9].

Statistics show that buildings consume 40% of total global
energy demand (Fig. 2) and more than half of it is used
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FIGURE 1. Share of CO2 emission according to building sector in global level [7].

FIGURE 2. Global share of buildings and construction industry final
energy consumption, 2018 [7].

for thermal comfort. Likewise, buildings emit 33% of the
total greenhouse gas. In USA, lighting (25.5%), heating
(14.2%), and cooling (13.1%) of energy used in commercial
buildings [4]. Energy consumption by the residential sector
in European Union (EU) is as shown in Fig. 3. Heating,
ventilation and air conditioning (HVAC) in the building is
responsible for 40% of energy consumption in USA [11].
Furthermore, [12] projected an average increase of 1.5%
per year in the energy consumption for HVAC in buildings
for next 20 years. Therefore, reduction of building energy
consumption is crucial for sustainable development, to min-
imize its impact on global warming and climate change.
Nevertheless, the comfortability and energy consumption are
directly proportional to each other [13]. Hence, a rational
approach is required to minimize the energy consumption

FIGURE 3. Final energy consumption in the residential sector by use in
EU [10].

by providing maximum comfort.‘‘How human beings can
better live in harmony with nature?’’ has become the wor-
rying factor for the society as global warming is in alarming
situation. However, there have been increase in the research
of occupant behavior and prediction. Especially after 2014,
number of studies in the global level have reached a booming
development as shown in Fig. 4. The EU Climate change
adaptation strategy (2013) and the Paris Climate Agreement
(2015) are legally trying to reduce global warming by global
commitment [14], [15]. As buildings have huge part in global
warming, researches on occupancy prediction and behav-
ior analysis to reduce energy consumption are considerably
increased. By the state-of-art, country wise researches are
shown in Fig. 5.
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FIGURE 4. Global yearly researches on occupant behavior and prediction.

FIGURE 5. Country wise researches on occupant behavior and prediction.

Complex in nature and mutual relationship of environ-
ment and human behavior, it is required to understand the
environmental aspects of a building from both natural and
socio-environmental contexts [16]. To achieve this, myriad
of researches have been done on smart building, occupant
behavior and comfort analysis, renewable energy resources
for buildings, green building, and net zero-energy build-
ing, etc.

Several review papers have addressed occupant estimation
considering the behavior. Occupancy estimation and detec-
tion methodologies with sensor fusion are reviewed in [17].
Machine learning models for occupancy prediction and win-
dow opening behavior is reviewed in [18]. Detailed state-
of-the art review is done on occupant behavior and energy
consumption in [19]. Occupant comfort in high-rise multi-
unit residential buildings were reviewed based on survey
and measurement method considering thermal, visual and air
quality in [20]. The effectiveness of green certification and
comfortability are also analyzed in the same article. Recent
approaches for occupant behavior analysis are studied in [21].
The difficulties for occupant behavior modeling are reviewed
in [22]. The summary and main topics of above reviews are
summarised in Table 1.

Unlike review papers mentioned above, this paper does
a detailed review of building architecture, occupant com-
fort types, necessity of occupant behavior modeling, single
and multi-occupant behavior analysis methodologies, occu-
pant detection, estimation, prediction modeling and various
occupant comfort influencing parameters for modeling and

current research development. Number of occupants pre-
diction methodology review is also covered by this review.
The current review paper presents importance of occupant
comfort and achieving it using occupant behavior analysis
and prediction methodology by reducing energy consump-
tion. Section 2 provides overview of occupant comfort types
and its importance. Occupant behavior modeling method-
ologies, parameter considerations are discussed in detail in
section 3. Critical analysis of existing occupant number pre-
diction, detection and estimation are reviewed in section 4.
Section 5 provides the discussion of the overall paper.

II. OCCUPANT COMFORT
Occupant comfort is the influential parameter that determines
the well-being, overall satisfaction, productivity of the occu-
pant. Occupant comfort is also a state of mind which refers
to an inhabitant’s overall satisfaction with the indoor envi-
ronment. Overall indoor comfortability also reflects the occu-
pant’s quality of life. Many factors have a negative impact on
the occupant’s comfort level. A significant amount of energy
can be saved by knowing the number of occupants present and
understanding their behavior and preferences [22]. Occupant
comfort is majorly categorised as thermal comfort, visual
comfort, air quality, acoustic comfort and along with the
consideration of psychosocial factors.

A. THERMAL COMFORT
Thermal comfort is the major factor in building for energy
consumption due to heating and/or cooling. Thermal com-
fort definition according to Hensen states that ‘‘A state in
which there are no driving impulses to correct the environ-
ment by the behavior’’ [23]. According to American Society
of Heating, Refrigerating and Air-Conditioning Engineers
(ASHRAE), thermal comfort definition is ‘‘The condition of
the mind in which satisfaction is expressed with the thermal
environment’’ [24]. Thermal comfort is basically a state of
mind, which is influenced by many inputs such as geograph-
ical, physical and psychological characteristics, metabolism
rate, age, gender, and other factors [25]–[27]. Thermal com-
fort is the crucial factor that is responsible for major energy
consumption by buildings as shown in Fig. 3 [28]–[30].

Thermal comfort has been discussed since 1930s [31] and
there have been many researches and reviews. Thermal com-
fort model approaches started with the analysis of thermal
tolerance [32]. After that the first classical thermal comfort
model; Fanger’s Predictive Mean Vote (PMV) model was
developed taking into account only the most important ther-
mal parameters that influence human comfort for a large
group of people [27]. Based on PMV, percentage of dissatis-
faction (PPD) index is derived. PPD estimates number of peo-
ple who feel ‘‘slightly warm’’ and ‘‘slightly cold’’ in Fanger’s
PMV model as shown in Fig. 6. The correlation between
PMV and PPD is calculated using below equation 1 [33].

PPD(%) = 100− 95× e−(0.03353×PMV
4
+0.2179×PMV 2) (1)
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TABLE 1. State of the art reviews related to occupancy comfort, behavior, and prediction modeling.

FIGURE 6. Predicted mean vote and percentage of dissatisfaction.

Fanger’s model is the basis for standards like ASHRAE
55-1992 [34], ISO 7730 [35] that were developed to calculate
the thermal comfort index and are widely used around the
world. PMV measures thermal sensation in the scale of 7
points having central categories as ‘slightly cool’, ‘neutral’
and ‘slightly warm’. People voting for these categories are
considered as comfortable. Despite the difficulty to obtain
the specific criterion like mean radiant temperature and air
velocity [36], many studies tested the applicability and effi-
ciency of Fanger’s model and proved that Fanger’s model is
not suitable for outdoor climate, non-uniform habitat, elderly
people, disables and children [36]–[39].

In recent decade, several new thermal scale models are
developed to overcome the drawbacks of the Fanger’s model
[40]–[43]. Earlier, thermal properties of air inside a zone
decided heating, ventilating, and air-conditioning details.
In the future, occupant-specific and highly responsive frame-
works will be the standard for heating, ventilating, and
air-conditioning details [44].

Though thermal comfort is more researched area than other
comforts, due to the inter-connectivity of different domains,
complexity of human thinking; deepened research is required
in the domain to analyze and accurately predict the thermal
comfort. Existing models have many limitations and due to
that, they are not yet completely accepted in international
standards.

B. VISUAL COMFORT
Visual comfort is one of the most influencing factors for
occupant productivity and visual well-being.

In EU, 14% of the total energy is used for artificial light-
ing [7], [10]. In Malaysia, artificial lighting accounts for

20% of the commercial electricity usage [45], South Korea
uses around 30% of lighting energy among overall building
energy [46]. Researches have shown that energy savings can
be achieved to a significant extent by using artificial lights
whose intensity can be varied based on occupancy. Lighting
energy consumption is dependent on maximum acceptable
window luminance threshold, occupants comfort threshold,
and activities. By proper control of artificial light and daylight
(using shades), indoor light can be regulated with minimum
energy consumption [47], [48]. In the educational and office
buildings, cognitive performance of occupants are important
along with mental and physical state. As a result, a greater
number of visual comfort studies have been conducted in
conjunction with HVAC thermal comfort research [49].

Countries with more solar radiation have the added conve-
nience to get more natural light and visual comfort. Natural
light reduces the dependency on artificial light, thus mini-
mizes energy consumption. Furthermore, natural light also
proved to elevate the mood and well-being of the occupant.
According to research studies, low-light environments have
a negative impact on physiology, psychology, and cognitive
performance. A pleasant visual environment is essential for
healthier work and living places. Therefore analysing the
illumination level required for the particular application and
reducing the artificial light usage by utilizing the maximum
available natural light are the main ways to enhance visual
comfort [9], [50]–[53]. Application of shading devices such
as blinds, façades, overhangs, are used to capture the sunlight
coming into the building while reducing glare [49]. Similarly,
by altering their geometry and configuration; the amount as
well as direction of the light distribution can be altered.

1) SHADING
Natural light can be increased in the building using large and
transparent windows. Windows are usually difficult for con-
trolling heat gain and energy loss. To overcome this problem,
solar shading is an efficient technique. Shadings are of two
types:

• Fixed shadings
• Movable shadings

Fixed shades are used to block the unwanted glare in the
summer that also blocks the required sunlight during winter.
By using optimal hanging of the shades, the winter lights are
generally let inside the buildings. Nevertheless, it’s not the
optimal way to control the sunlight in two seasons due to
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the diffused sun light. On the other hand, implementing the
movable shades functions better by adjusting them according
to the climate. Among the movable shading, external shading
has better performance, and the cost is relatively high. Due
to the mentioned reasons, movable internal shades are widely
used. Effective blinding systems can save 30%-77% of the
lighting energy. Rotation angle, shape, improved controlling,
size, configuration, optimal slat angle, and colour of slats
decide the amount of radiation that should be transmitted,
reflected and absorbed [54]–[57].

Lee and Tavil [58] presented switchable electrochromic
(EC) windows combined with overhead shades that reduce
peak electricity demand while maintaining visual comfort in
summer and winter. Yao [59] showed that 8% of the energy
can be saved by movable solar shades compared to bare win-
dows and improves visual comfort by 19.9%. Furthermore,
[46] proposed a methodology using glare index to calculate
the visual comfort and achieve it by blind slanting, and
by lighting control. However, the control strategy depends
on season, and priority. Fasi and Budaiwi [60] enhanced
the energy efficiency of the building by using glare index
and daylight factor. The analysis shows that using double-
pane, clear-glass windows with daylight integration reduces
total energy consumption by 14% compared to double-pane
clear-glass windows without daylight integration. Further-
more, simulation results demonstrate that windowswith auto-
mated Venetian blinds enhance visual comfort by reducing
energy consumption. Similarly, the issue of blinds efficiency
improvement using control techniques has been discussed
in [61].

Façades are also used for shading purposes, their use main-
tains the desired level of the indoor and outdoor interaction;
thus help to maintain warmth during winter, shading in sum-
mer, provide acoustic comfort and hence provides well indoor
comfort for occupants. Their design depends on the geome-
try of window, environment, occupant, etc. There has been
many advances in adaptive solar façades which havemodular,
dynamic, flexibility. However, there is still requirement for
the façades that can adapt to the climate change, optimal
visual comfort. Also to use maximum solar light without
causing glare and thermal discomfort [62]–[65].

Switchable EC windows are used to control the indoor
lighting that keeps the place warm during winter by passive
heating [66], [67]. Visual comfort can be enhanced by proper
orientation of the buildings, various shading and glazing
strategies based on the solar radiation, and light dimming
[49], [61], [68].

C. AIR QUALITY
To provide healthy and comfortable surrounding for the
occupant, high indoor environment quality (IEQ) should
be maintained. Air pollution inside the building can cause
serious health problems. Despite the fact that individuals
commonly spend over 90% of their time inside, in many
countries no government law explicitly controls indoor air
quality (IAQ). Toxin levels are commonly a few times to a

few hundred times higher inside than outside, thus indoor
air normally represents more than 90% of human exposed
to toxins [69]. The subsequent social and financial effects
are critical. For instance, more than 4.5 million instances
of asthma result from openness to sudden exposure and the
yearly financial expense due to the same reason is roughly
$3.5 billion [70].

Air temperature and relative dampness cause develop-
ment of microorganisms, and several hundred varieties of
fungi and bacteria species. Surface building materials are
porous, rough and in the damped environment, will be favor-
able for the rapid increase of these micro-organisms. Due
to the indoor moulds, IAQ degrades considerably. These
moulds may produce spores, allergens, toxins, air born par-
ticles, and other metabolites. Indoor air humidity has major
effects on respiratory system, eyes, work performance, sleep
quality, voice disruptions, concentration, etc. [71]. Gener-
ally, health risk due to indoor air quality may depend upon
different factors like exposure time, just as on individ-
ual characteristics like age, sex, genetics, and basic health
condition.

Wargocki et al. [72] have shown that doubling the ven-
tilation rate at a constant pollution load, or by doubling
the contamination load at a constant ventilation rate can
improve overall air-conditioning performance efficiency by
1.9%. Whereas [73] presented the relation between ventila-
tion SBS and ventilation rate per healthy occupant. Exper-
imental results for one day show that poor ventilation
caused 12% for headache, 19% each for eye, nasal side
effects, and 31% for exhaustion affecting the occupants’
performance.

Most of the indoor air quality researches have been done at
schools as children are more vulnerable for some pollutants
than adults and they spend more time indoors. Moreover,
adverse effect of this will have immediate and long-term
issues. Outdoor air quality also plays major role in deter-
mining the IAQ. Especially particulate matter (PM) which
can cause respiratory problems, CO produced by vehicles
can add to hemoglobin in human blood to create carboxy-
hemoglobin, which disrupts oxygen exchange to human tis-
sues. Researches have proved outdoor traffic pollution has
severe effects on IAQ of nearby schools. Avoiding exposure
to toxic environments such as microbiologic and chemical
substances, controllingmoisture, and providing adequate out-
door ventilation will mitigate and prevent adverse effects of
poor environmental quality [74]–[76].

Due to occupants breathing, CO2 concentration is an
indoor specific issue. The concentration of it increases as the
ventilation rate per person decreases. CO2 has serious health
consequences, including deep breathing, visual disturbances,
while 25% indoor concentration will cause death. When the
concentration is above 5000 ppm, it affects the decision mak-
ing, this shows the importance of keeping CO2 level below in
the admissible rage in the indoors [77], [78]. TheHVACbased
controlling system hasmajorly focused on CO2 concentration
while calculating the indoor air quality as it’s the main waste
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produced in the system. The CO2 based comfort optimization
reduces a lot of energy consumption [79], [80].

It is difficult to quantify indoor air quality and understand
occupant comfort by survey for the following reasons:

• The absence of steady measurements, principles, agree-
ment on what comprises good IAQ,

• The variety, intricacy of pollutants discovered indoor
that can influence human well-being and prosperity,

• The lacking comprehension of connections between
toxin levels, risk of those toxins, and their consequences
(both intense and continuous),

• The reach of health impacts identified with indoor impu-
rities exposure, and that the same exposure can influence
various people in different ways,

• Whether or not the toxins being estimated are the ones
that truly matter

• The absence of necessities to measure and screen IAQ,
prompting an absence of attention to potential issues and
cures [81].

Volatile compounds, carbon dioxide, microbes, carbon
monoxide, formaldehyde are the typically considered air pol-
lutants inside the buildings. Indoor air quality is generally
managed by following three steps:

• Emission source control: can be done using low emitting
source materials such as paints and interior furnitures
during construction and renovation.

• Ventilation: the objective is to provide exchange
between indoor/outdoor air to maintain high IAQ.

• Indoor air measurement: verify if indoor concentrations
are consistent with the given thresholds and therefore
to monitor the efficiency of emission source control
methods and ventilation [82].

Among the three, ventilation is the easiest and effective
way. Natural ventilation is preferred over mechanical ventila-
tion because it consumes less energy, costs less, and requires
less maintenance [44]. While constructing new building, low
carbon emitting buildings can be constructed. To improve
air quality, Knudstrup et al. [83] proposed a passive design
strategy and hybrid ventilation system as an alternative to
integrating renewable energy sources. Environmental emis-
sions can be significantly minimized by integrating renew-
able energy sources.

D. ACOUSTIC COMFORT
Providing isolation from the disturbing noise is called
acoustic comfort. This can be achieved by stopping noise
source or by isolating the indoor from noise. To deter-
mine the acoustic comfort, noise level reduction is calcu-
lated for indoor envelope and determined. However, due to
the multidisciplinary nature of both the problem and solu-
tion methods, ensuring indoor comfort is a complex proce-
dure. Although there are many regulations to maintain the
IEQ, the idea and meaning of a healthy building is as yet
advancing due to complexity to analyze and involves many
factors [84], [85].

III. OCCUPANT BEHAVIOR
Building occupants’ direct interaction with the building, such
as adjusting temperature, shades, lighting, and ventilation and
so on, has a significant impact on building energy consump-
tion. A detailed research and understanding of occupants
behavior is essential to maintain comfort and better control
the building energy.

Modeling of the occupant behavior involves following
steps:

1) Data collection: in data collection, required data to
access the condition and/or to build algorithms are
collected. Data collection is the base for many modern
predictive techniques.

2) Data preparation: after collecting the raw data, it is rear-
ranged as per the requirement and this process is called
data preparation. Here, collected raw data are prepared
for modeling by averaging, cleaning the redundancy
and missing data, and scaling or by merging according
to the need.

3) Model selection, development and evaluation: after
having the processed data, modeling type such as sta-
tistical, categorical or numerical. According to the data,
complexity to execute the algorithm, resources, run-
time, efficiency, and error factor; the type of algorithm
is selected and executed.

4) Model evaluation:model convergence is evaluated after
executing the model, runtime, efficiency, error factor,
and prediction accuracy to determine the performance
of the model.

5) Continuous learning: after establishing the model and
evaluation, new data has to be continuously fed, remov-
ing the old and irrelevant data to update the model to
make it adaptive.

To model occupant behavior, researches have majorly
adopted sensors and survey methods to collect the daily infor-
mation of the occupant. Occupants behavior is influenced by
many parameters as shown Fig. 7. Although, considering all
the parameters make the model extremely complex and diffi-
cult to analyze. Hence, only the most important environmen-
tal and non-environmental parameters influencing occupant
behavior are considered for modeling. Using sensors an intel-
ligent environment is created to observe the occupant closely
and collected data is saved in the database. Sensors are used to
automatically detect the number of occupants using different
parameters like temperature, IR radiation, humidity, and CO2
detector. Sensors are also used to comprehend dweller behav-
ior, environmental aspects, occupant interaction with devices,
and to model and predict occupant behavior. As the collected
data set increases, it will be easier to train the model or to
understand the behavior. Along with the size of the dataset,
relevance of collected data determines the effectiveness of the
model. However, some of the missing data can be handled
using artificial intelligence techniques. More references on
data recovery can be found in [87].
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FIGURE 7. Influential factors on occupant behavior [86].

Sensors are more convenient to collect data as they do
not interrupt the daily life of the occupant. However, some
sensorsmay intrude on the inhabitant privacywhile collecting
data and may also necessitate the interface of other electronic
devices. Whereas, surveying gives direct interaction with the
occupant. This helps to understand the occupant better and
may give additional data as well. However, determining fre-
quency of data surveying determines the quality of data. This
is because often inspecting decreases the error but disturbs
the occupant. Sensors are preferred on this matter as the data
resolution can be as less than 1 min [88]. Collecting data
using sensors is majorly categorised as ‘‘direct approach’’
and ‘‘indirect approach’’. Direct approach is using sensors
straightforward and direct detection of occupants such as
Passive Infrared radiation (PIR) sensors, video cameras,
radio-frequency identification (RFID). These approaches are
effective and direct, maintaining the privacy is difficult.
Therefore, researchers are preferring to use indirect approach
and environmental data for occupant behavior analysis and
prediction. Indirect approach involves calculating CO2 con-
centration, monitoring motion sensor, using other indirect
measurements to predict the occupants [89]. In the indirect
set of sensors, occupants are monitored without disturbing
their privacy. Temperature, relative humidity, CO2 level, elec-
tric meter reading, water consumption in a building, etc.
are used to in this category. Table 2 summarizes a com-
monly used list of sensors, along with their applications and
problems.

Literature studies show that combination of sensors are
used to model occupancy behavior and prediction. Easy,
effective and instant data collection of occupant feeling and
behavior is not yet practical due to the complex nature of
the human being. Individual occupant behavior modeling is
easier than a cumulative one as modeling parameters gets
complex.

A. GENERAL APPROACHES
Yun et al. [102] presents a survey results of lighting in 4
offices. The results showed that occupants behavior pattern is
significantly related to reduce energy consumption. Optimal
utilization of indoor light can save up to 30% of lighting
energy. However, the model performance can be better ana-
lyzed by implementing it to other types of buildings.

Using window operation status, occupant behavior mod-
eling is presented in [98]. Stochastic nature of window
operation behavior based on temperature is analyzed by
implementing probability model.

Dynamic thermal sensation-basedmodel predictive control
is proposed in [103] to control the centralized HVAC. This
methodology determines optimum supply of air temperature
for HVAC chamber. Dynamic thermal sensation (DTS) based
controller proved to perform better than PMV based Model
predictive control (MPC) in terms of better energy consump-
tion (25%) energy saving.

In [11] presented MPC for HVAC controlling considering
occupant consideration to obtain thermal comfort. Analysis
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TABLE 2. List of sensors used for occupant data collection.

showed that 8% of the electricity consumption is reduced
with enhanced occupant comfort. However, the model
is focused on thermal comfort and has only simulated
results.

Jia et al. [95] modeled occupant behavior considering
interaction with window, light, door, and environmental con-
ditions. Sensors are used to detect indoor environment and
survey is used for understanding occupant behavior. Proposed
method is systematically developed and analyzed changes in
occupant behavior individually and collectively for a given
situation. However, detailed study of stochastic nature of
occupants and affectivity of the model for different building
types and environment is not analyzed.

Li et al. [104] tested personalized occupant behavior model
with cost sensitivity analysis (POBM–CSA) using many
advanced algorithms. Though it is complex to design, model-
ing is focused on the single occupant behavior. Cost analysis
helps to consider the varied opinion of the occupants while
modeling. Further validation on different andmixed occupant
behavior and testing in different environment will be defi-
nitely interesting to know the applicability.

Tabak and Vries [105] presented the probabilistic and
S-curve prediction models to understand the occupant behav-
ior in intermittent break times. Experimental data sources
were used for prediction and accuracy of the model depends
on the input data that is very uncertain. They concluded that
accurate data will help to better predict the occupant behavior
and increase the efficiency of work place, provide better
comfort and to utilize the energy effectively.

Linear and logistic regression models are developed to
manage the missing data and to understand occupant detec-
tion as well as to know the occupant activity level. Method-
ologies are experimentally implemented. Accuracy of the
model is calculated using R2 and mean absolute percentage
error in [106].

Piselli and Piselli [107] developed data driven occupant
behavior model to monitor, analyze and reduce energy con-
sumption. They analyzed 2 years of data collected from sen-
sors and energy consumption profile. The analysis showed
that generalisation of the occupant behavior model is not
feasible as humans are stochastic and occupants’ attitudes,
emotions changes which influences the comfort.

Currently used automatic light can save lot of energy while
occupant is absent. Although, data survey showed that there
are occupants who are not happy due to the malfunctioning
of the sensors. Also if the building is intelligent and high
performance, effective energy saving is possible by training
the occupant to better understand the building features [108].

B. MACHINE LEARNING ALGORITHMS
Li and Yao [109] considered occupant behavior to determine
heating and cooling loads in a building. Linear regression,
State vector regression (SVR) and Artificial neural net-
work (ANN) are the three machine learning techniques were
used to predict the energy usage depending on the user behav-
ior. Data for heating and cooling load intensities were gen-
erated in EnergyPlus. Gaussian radial basis function kernel
SVR model performs better than other models by providing
less than 4% normalised root mean square error (RMSE) for
cooling and heating load estimations.

Khosrowpoura et al. [110] modelled to predict occupants’
short term energy-use patterns using support vector machine,
K-means clustering method is implemented for the means
of classification to increase the effectiveness of energy effi-
ciency programs. Predictions showed that 50% of low effi-
cient occupants are highly predictable and another 36.6% are
predictable in average. The modeling of occupant behavior is
done by taking survey that can be improved by using sensor
fusion.
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Mahmoud et al. [111] presented the necessity to predict
the occupant behavior by experimenting on elderly people
having dementia. Data were collected using sensors and
modeling is done using nonlinear autoregressive exogenous
model (NARX) and Elman neural algorithms. Comparison
with other existing methods and predicting the behavior will
help to improvise the model.

Penga et al. [112] presented short detection of occu-
pants using sensors development of behavioral model using
K means clustering methodology. Occupancy prediction is
modeled using k-nearest neighbour (kNN). Monitoring occu-
pant behavior related to energy consumption and using
demand driven control strategy to maintain comfort and
to save energy. Using 11 case studies and model saved
7%- 52% of energy during cooling. Applicability of compli-
cated algorithm may be difficult for the local controllers.

To increase the efficiency of the system, paper [113]
presents how to extract occupant schedules from the data
and if data is missed out, how to extract it from normally
logged parameters. Combination of k-Shape clustering and
change-point detection method is used to derive the occupant
schedule from data. The proposition considered temporal
variation of occupants behavior.

Spataru et al. [89] analyzed occupant behavior in relation
with domestic house to reduce energy consumption. Occu-
pancy profiles from data driven models generated diverse
and non-diverse occupant presence models. The results show
that assumptions about occupants are conservative in nature
and it cannot provide accurate results. For estimating district
energy demand, occupant profile and density are very impres-
sionable aspects. They showed, 30% of the cooling demand
and 20% of greenhouse gases can be reduced by controlling
occupant behavior.

Virote and Neves-Silva [114] proposed Markov chain
model for occupant behavior modeling. The occupants
behavior is further utilized for the energy consumption mod-
eling. The presented occupant behavior model including
assumptions and hidden Markov model (HMM) is applied
only on occupant behavior towards lighting system. Themod-
eling will get complex as the building size increases. How-
ever, proposed energy consumptionmodel predicts accurately
with less than 2% error.

HMM has established temporal relation between the occu-
pants and environmental parameters in each step. Using
HMM, the Markov model and log-logistic survival model are
used in [94] to determine and control of lighting and shading
in offices. The maximum error rate for predicting lighting
energy consumption was 13.04%. The model is also capable
of predicting the occupant behavior.

Ding et al. [94] compared log-logistic and Markov model
with general methods such as considering the classification
of occupants, the average statistical data. The model did
not consider the coupling relationship between the two sys-
tems, ignoring coupling relationship and diversity between
occupants. Proposed method performed well than mentioned
conventional methods by providing 13.04% of error rate

while estimating lighting energy usage. The experiment
proved that coupling had greater positive impact for the
prediction.

Yan et al. [116] proposed Markov chain-based Monte
Carlo method for occupants behavior for energy usage.
Data were collected using electric meters. User behav-
ior towards energy action, energy working hours model,
and air-conditioner energy use behavior were modelled and
experimentally tested. The methodology is applicable for sta-
tistical patterns of users’ behavior. The modeling is adaptive
for different buildings that can be implemented on other
buildings, and data collection method can also be varied.
Further improvement is possible to increase accuracy and to
do analysis with large data set.

Ryu and Moon [90] used indirect data collection to know
about occupant behavior. Decision tree and HMM algorithms
are used to predict the occupants arrival time on next day.
Occupancy profile, CO2 concentration, and electricity con-
sumption are three majorly collected data for behavioral anal-
ysis and prediction. They concluded that proposed model is
well suited for controlling application in buildings maintain-
ing the privacy of the occupants.

Occupant behavior studies show that occupants’ light sen-
sitivity and preferences have a greater influence on control-
ling the lighting in a building. Different occupancy patterns
have different effects on the building and use energy in
different ways. Age, gender, psychological state, location,
comfort level, schedule, and environmental factors all have
an impact on occupant behavior. In a building, occupancy
behavior cannot be analyzed solely using sensors because
humans behave differently in different situations. A person-
alisedmodel or surveymethodology provides amore accurate
insight of occupant behavior inside a building. The survey
and questionnaire methods provide a quick and easy way
to understand the status of building behavior. The voting
results can be used to determine the building’s operational
and comfort status.

Baird and Dykes [121] conducted a large survey
in 45 buildings and discovered that negative comments out-
weighed positive comments, and if 10 are negative comments
and 1 is positive, the building’s performance is considered
poor.

Existing research has primarily analyzed occupant behav-
ior with respect to thermal comfort, focusing on heating and
cooling systems, and visual comfort regarding sunlight, glare,
and artificial light. Summary of occupant behavior method-
ologies with their pros and cons are listed in Table 3. The anal-
ysis shows that majorly machine learning approaches have
been utilized for modeling. SVM, Markov chain and neural
networks have been utilized for occupant behavior modeling.
Without large database and detailed analysis, the general-
isation of the existing approaches cannot be done. Listed
methodologies provide around ±15% of the error factor for
the behavior modeling in different error calculating matrices.
The adaptability of the presented technologies has not been
thoroughly examined.
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TABLE 3. Critical analysis of occupant behavior methodologies.

IV. OCCUPANT PREDICTION METHODOLOGIES
The ability to detect the occupants presence and estimate
the number of occupants inside the building at any given
point of time provides more advantage for optimal building
energymanagement. Detection of occupancy presence means
detecting the existence of occupant in given controlled envi-
ronment. Whereas, occupancy prediction is estimating the
number of people in the particular building. When compared
between detection and prediction, detection can be done
through multiple sensors, however predicting the occupancy
is a difficult task due to the heterogeneity of occupancy
behavior. Prediction is done by monitoring occupants using
sensors and studying their behavior. Different types of sen-
sors are used to monitor various characteristic of occupants
and their behavior for the current state. The occupants behav-
ior and prediction modeling architecture is as shown in Fig. 8.
The strong and sensitive relation between the occupant, com-

fort and energy consumption are the main hindrance to set
standard scale of energy usage per person.

Variation of the energy demand is mainly due to the
occupancy interaction with the building to keep indoor con-
ditions comfortable to them. External environmental con-
ditions and building itself are main influential parameters
for change in indoor conditions. Using building energy
management system (BEMS) based on occupancy behav-
ioral data, overall comfort can be regulated optimally while
saving significant amount of energy. BEMS considerably
increases the overall building performance and efficiency.
Recreation of various schedules and practices inside business
structures has shown energy use changes from 30%-150%
[97], [122]–[124]. Despite the fact that occupancy behavioral
analysis is critical for energy optimization, prediction of exact
occupant behavior is still a difficult task. Lack of understand-
ing of human behavior, complex interaction with buildings,
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FIGURE 8. Occupancy behavior and prediction modeling process in buildings.

and relation between environmental condition; occupancy
behavior and prediction have limited the application of such
controllers in the building.

A. ANALYSIS OF OCCUPANT PREDICTION MODELING
Many researches have tried to detect and predict the occupant
in conditioned environment and thus to control and optimiza-
tion the energy consumption.

Tachikawa et al. [125] proposed estimating the number
of occupants using CO2 concentration. The CO2 sensor is
used at the Keio University Network oriented Intelligent and
Versatile Energy saving System (KNIVES) that controls the
power demand and supply. The advantage of this methodol-
ogy is only CO2 sensor data and low pass filter are used for
occupancy estimation. The low computational time (15 sec) is
the added advantage. Although, ventilation has huge impact
on CO2 concentration and estimation accuracy. Measurement
of estimated and measured number of occupants’ error would
have added value for the research.

Lawrence and Braun [96] presented estimation CO2 gener-
ation, flow rate evaluation, and influence of ventilation using
quasi-static model and parameter estimation methods. Short-
term experiment in a controlled environment proved that error
in the estimation of CO2 concentration is 4%-15%, which is
within the acceptable accuracy range. However, the patterns
were distinct for various building structures such as restau-
rant, schools, and homes.

Zikos et al. [122] worked on detecting, estimating the
density and predicting number of occupant by using con-
ditional random fields-based approach. Data was collected

using multi sensors like CO2, motion and acoustic sensors.
Experiment was carried out at 4 different places with sep-
arate characteristics to compare the results and for model
validation. Minimum occupant prediction accuracy of the
methodology is 75%. The proposed model performed better
than HMM in different places, number of occupants and
short period data set. By reducing the time consumption for
building and training model may improve performance of the
proposed technique.

Liang et al. [126] used data mining technique for occu-
pant prediction in offices. Occupancy schedules pattern is
observed using cluster analysis, learning the behavior rules
using decision trees and prediction is done based on the
scheduled rules. Hidden patterns and characteristics can be
identified in this method. To model the proposed method,
simple data set is enough and experimental result at an office
building at Philadelphia proves that a simple algorithm pro-
vides 8.5% of mean absolute error (MAE).

B. MACHINE LEARNING APPROACHES
Qolomany et al. [101] proposed replacing existing sen-
sors by available Wi-Fi database and to estimate the occu-
pancy in the building by using Auto Regression Integrating
Moving Average (ARIMA) models and Long Short-Term
Memory (LSTM) time series models. LSTM performed bet-
ter than ARIMA by decreasing the RMSE error around
88.2-93.4%. Computational efficiency of LSTM is also better
than ARIMA.

Ding et al. [127] presented occupancy modeling using
Gaussian distribution, and used this model in the controller
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to minimize energy consumption. The experiment carried
out in dormitory, educational, and office building using the
monitoring system (cameras) and surveymethods. Themodel
performance error showed 15% RMSE.

Vafeiadis et al. [100] utilized water consumption and elec-
tric meters to detect the occupancy. The estimation model is
developed using Monte-Carlo simulation and machine learn-
ing algorithms. Among them, Random forest method resulted
in 80% accuracy and F-measure showed 84% of accuracy.
Larger data set and verification on various buildings would
help for the further improvisation of the proposed model.

Wang et al. [128] compared three modeling techniques:
k-nearest neighbours, support vector machine, and artificial
neural network, to predict the number of occupants inside an
institutional building. Data was collected using environmen-
tal sensors (CO2, temperature and humidity level detector),
Wi-Fi probe and camera for verification. Data were tested
in different ways; environmental data, Wi-Fi data, and fused
data to understand the better way to utilize the sensors.
Short-term experiment and analysis proved that artificial neu-
ral network performs better for fused data and SVM functions
well with Wi-Fi data. However, the error is always above
20% measured in mean absolute percentage error (MAPE)
in all the cases. By including more environmental sensors,
the accuracy of estimation of the proposed model may be
elevated.

Amayri et al. [129] proposed sensor combinations to deter-
mine the number of occupants inside a room.Motion detector,
power consumption, CO2 concentration and window/door
position detector are utilized in this research work. Decision
tree algorithm is used for occupant prediction and C45 as well
as random forest algorithms are applied to execute recogni-
tion tests. The performance error of proposed methodology is
around 19%.

Meyn et al. [130] presented sensor-utility-network (SUN)
for data collection in office buildings. Occupancy behavior is
modelled using HMM method and Bayesian network for the
prediction utilizing the collected data. The error of estimating
occupants reduced from 70% to 11% after applying SUN for
collecting data. The SUNperformance is also compared in the
research with CO2 estimator, video cameras and PIR sensors.
Sangogboye et al. [131] evaluated the performance of

occupant predictive models using multi-label classifica-
tion (MLC) methodology. In the research, performance of
SVM and Preheat methodologies were compared. Results
show that MLC has increased the accuracy of prediction for
each predictivemodel by 6%. SVM is preferred to work better
than PreHeat method during high occupancy frequency and
proposed modeling conditions.

Liao and Barooah [132] developed Mixed Agent-based
Rules Model (MARM), to simulate the occupant behavior
and Monte-Carlo method to extract the models to detect the
occupant in a room. Simulations were carried out to eval-
uate the performance of proposed methodology and results
showed that estimated results were almost accurate with real
occupancy number. The mean error of estimated and real

value was 0.1 and a standard deviation of 2.1 that was within
acceptable range. Simulation and experimentation verifica-
tion and multi-occupant in multi-room condition testing may
improve performance of the model. Complexity to model
each occupant graphical model is one of the major drawbacks
of the methodology.

Wang et al. [133] presented predicting reliable occupancy
using Dynamic Markov Time-Window Inference (DMTWI)
model considering stochastic and time dependent nature of
the occupant. Performance of the presented model is deter-
mined by comparing presented model with Auto- Regressive
Moving Average (ARMA) and Support Vector Regres-
sion (SVR) methodologies. DMTWI model performed better
than SVM and ARMA by providing performance accuracy
above 80%. Some limitations of the model are reliability of
Wi Fi probes along with privacy of data.

Wang et al. [134] presented using Markov based feedback
recurrent neural network (M-FRNN) algorithm to model and
predict the occupant profiles. Wi-Fi probes are used for data
collection and collected data was verified using cameras. Pro-
posed methodology performs better than Markov model for
shorter days and smaller number of people. Privacy concern,
verification of the methodology on different buildings and
different occupant conditions have not been included in the
modeling. Though minimum accuracy of the model is above
80%, data reliability is less as only one sensor is used, over
the time if the signal is weakened or the Wi-Fi router gets
technical problems, data update to the model will not be
possible.

Ryu and Moon [90] developed occupant prediction model
using decision tree and HMM algorithms. Data for the mod-
eling are collected using electricity consumption by lighting,
CO2 concentration in indoor and outdoor for every 1 min
interval in the Building Integrated Control Test-bed (BICT)
at Dankook University. Maintaining privacy of the occupants,
present as well future prediction of occupant’s arrival time
are the added advantages of the proposed methodology along
with its adaptive nature. Proposed model performs better
when occupant number is high.

Flett and Kelly [135] modeled Markov based occupancy
profile considering their interactions with related individu-
als and occupancy prediction duration. Data for modeling
are collected using survey method from United Kingdom
Time-Use Survey and the model has considered occupant
profile with corresponding characteristics. Enhancements of
the model may be done by improving the model consistency,
and status duration prediction. The model provides idea of
occupant variation in communities that is difficult to apply
for single houses. The error percentage of HMM model
were ranging from 1.4%- 22%, which were within acceptable
range.

Andersena et al. [92] presented occupancy presence
sequence modeling using inhomogeneous and homogeneous
Markov chain models for an office building. The data was
collected using 57 sensors for every 2 mins intervals. The
results show that inhomogeneous method improved one step
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predictions. Model clearly distinguishes the occupants status
as ‘‘present’’ or ‘‘absent’’. However, correlations between
occupants and days are not considered in the model.

Whereas, [136] presented an approach to estimate occu-
pancy presence in the provided zone using the inhomoge-
neous Markov chain model. Motion sensor data collected
over 5 years for 20 zones, the model is simple and effective
that is flexible to use in all types of buildings with any
type of occupancy pattern. The accuracy of the proposed
model, error in the prediction has to be evaluated yet and
movements of occupant between the zones have not been
considered.

Salimi et al. [137] presented modeling the status of the
occupant continuously for individual, zone and room levels
using inhomogeneous Markov model. The model updates,
adapts and improves as the time progress is the added value.
Performance of the model is analyzed using R2 prediction
model. As the model can capture various resolution levels
and self-adaptive; frequent update of occupant behavior will
enhance the performance of the model. Privacy issue of the
data collection is still a concerning factor.

Li andDong [138] presented occupant existence estimation
using inhomogeneous Markov model. The data was collected
from 4 houses using passive infrared sensors for 5 min inter-
vals. The occupant prediction is short term, i.e., the prediction
horizon is 24-hours. experiment is tested for 15 min, 30 min,
and 60 min prediction window for houses. They observed a
behavior pattern that occupants weremostly in kitchen during
afternoons and evenings, and in bedroom during night. The
results of the model show that for short term forecast the
Markov model performs better with more than 80% accuracy
whereas ANN and SVR outperformed the proposed model
in 24 hour predictions. The proposed model is able to adapt
to the changes in occupancy of the house.

Occupancy prediction is important to control the energy
consumption by maintaining the comfort for the residing
occupants. Occupant predictions are of various types; occu-
pancy detection which refers identifying the presence of
the occupant at the moment in the controlled environment,
occupancy estimation which refers measuring the density of
people at a given moment inside the building, number of
occupancy detection which predicts the number of people
inside the building. Estimating the number of occupants by
preserving their privacy is challenging due to the complexity
of the influencing parameters and stochastic nature of human.
Summary of existing occupant prediction methodologies is
listed in Table 4. Occupants number prediction again can be
categorised as short term prediction and long term prediction
based on the prediction horizon. However, the analysis clearly
shows that occupant number prediction for future is not yet
well established.

V. DISCUSSION
Providing comfortability for all occupants in the controlled
indoor environment with optimised energy consumption is
the objective of intelligent buildings [141]. Studies show that

30%-42% of energy can be saved by accurate occupancy
prediction even after maintaining comfort [93], [142], [143].
Researches show that huge amount of energy is wasted dur-
ing non-occupant hours. Miscellaneous energy loads (MEL)
contribute 20% total building energy consumption [144],
[145]. Although, there are researches and optimized solu-
tions for energy usage and reliability considering buildings
as distributed nanogrids, user behavior analysis and occupant
prediction are necessary because they are an integral part
of buildings [146]. Nevertheless, there are only few studies
that have been conducted to understand energy consumption
when occupant is absent and to provide comfort when occu-
pant returns back [139]. Though by improving the technol-
ogy, efficiency of the system can be enhanced; occupants role
and their interaction with the building is crucial to save the
energy because amount of energy consumption in any build-
ing is closely related to occupant habits, their living style,
income, and their preference. For these reasons, prediction
of occupancy and understanding their behavior are essential.
Since the human nature is very stochastic, it is difficult to
predict the exact behavior and reaction in every state. Here
the research on occupant presence, behavior, and prediction
stands out.

Collecting data and computational time are time consum-
ing while modeling occupant behavior and prediction model.
The quality of building indoor environment comfort such
as thermal, visual, acoustic, indoor air quality along with
occupant behavior and prediction are analyzed and deter-
mined by data mining techniques. Occupant data collection
using fusion of unobtrusive sensors and questionnaire pro-
vides accurate modeling of occupant behavior. Humidity and
temperature sensor with local weather forecast is utilized to
collect data related to thermal aspect of the occupant mod-
eling. Using illuminance sensor and weather report, indoor
lighting requirement is analyzed. Related to air quality of
the building and to determine the number of occupants, CO2
level is commonly adapted method. However, CO2 concen-
tration in indoor may vary due to the status of window, door
and ventilators. Furthermore, energy waste by non-human
produces CO2, which may affect the data. Motion sensors,
pressure sensors, electricity consumption are also used to
model the occupant behavior and prediction. Researches are
also using on Wi-Fi probes as sensors. In the modern era,
almost all the buildings are using Wi-Fi. It does not need
extra infrastructure and miscellaneous products. The main
concern with Wi-Fi is privacy of the occupant as address is
related with occupant information. Applying dynamic Media
Access Control Address (MAC) masks, a universally unique
identifier (UUID) hashes or aggregated results are solutions
proposed in [134]. Sensitivity and dynamics of data recog-
nition of sensor are factors techniques advanced the data
accuracy. However, As there is no sensor that can measure
all indoor parameters together, methodologies like sensor
fusion, artificial intelligence, and data mining are commonly
used to collect and deal with missing data along with col-
lected data. [147] Eliminating risk of cyber-physical attacks,
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TABLE 4. Critical analysis of occupant prediction methodologies.

providing privacy are the focusing area for further research.
Comfortability of occupants to monitor their behavior is also
concerning aspect while collecting data.

Individual and cumulative occupant behavior are the two
types of modeling focused on thermal and visual comfort.

Furthermore, stochastic, deterministic and combination of
both (agent-based) approaches are available for occupant
behavior models. Occupant interaction with building, series
of events and predicting the socio-economic and emotional
behavior which affect the building energy consumptions are
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difficult to monitor and model. Occupant behavior is majorly
modeled using combination of various types of algorithms.
ANN [148], regression models, MPC [149]–[151], Gaussian
distribution model, Markov chain models, clustering algo-
rithm, are to name a few. Different energy related platforms,
open plat forms are utilized to simulate the modeling such as
MATLAB, EnergyPlus [152], GridLab [153], Python [154],
etc. With recent developments in wearable sensors, which
can measure heart rate, skin temperature, metabolism rate,
heath status, neural reactions, there are various improvements
in the modeling by better understanding physiological and
psychological effects of occupant with the building. Detailed
analysis of individual and group occupants behavior related
to energy consumption and intelligent environment can be
expected in near future [22].

Accurate occupant prediction is important for the effi-
ciency and facility control of buildings along with occu-
pant behavior modeling. Improved sensor technology and
intelligent building provide greater opportunity to detect and
predict the occupants more accurately. Occupant prediction
can be categorised as follows: occupant detection to know
if the occupant is present inside the building or not, occu-
pant estimation for huge commercial buildings to evaluate
the density of occupants. Occupant estimation is generally
categorised as low, medium and high density. The last one
is predicting the accurate number of occupants using sensor
fusion, data mining and prediction technologies. In addi-
tion, occupant prediction is done for current time, short
term and long term prediction. Due to the unpredictable
nature and various parameter inclusion, estimating exact
number of occupants is still difficult. Self-adaptive mod-
els using machine learning models, considerably Markov
chain derived models are used for accurate occupant
prediction.

The main technique used for occupant behavior modeling
and prediction is machine learning technology. Modeling
with general methods is time-consuming, and generalizing
the concept to every building is difficult. Machine learn-
ing models are developed on the basis of collected data.
Furthermore, using machine learning techniques, behav-
ioral and prediction models can be implemented with the
same set of input data. Especially, advanced techniques
from Markov model such as HMM, inhomogeneous hidden
Markov method, SVM, etc. are majorly used algorithms as
they can better handle stochastic nature of humans. Various
artificial neural network algorithms are also used to under-
stand occupant behavior and predictions. Neural network
algorithms generally take time to train the model. Algo-
rithms for behavior and prediction modeling are selected
considering flexibility to adapt for diverse set of data and
conditions, computational time, efficiency, complexity of
modeling.

If the data is reliable and self-adaptable, the prediction
models are capable of self-updating and improvising their
performance as the time progresses. Various input param-
eters influence the efficiency of the model. Unreliable and

wrong assumptions will affect the performance of models.
Predicting the exact number of occupants and behavior in a
building is difficult and generalised, simple technique is not
yet established due to complexity of input parameters and
more research is required in this domain.

VI. CONCLUSION
Reducing energy consumption, carbon footprint while
maintaining optimal comfort is the major objective of energy
efficient buildings. By integrating advanced technologies,
efficiency of the system can be enhanced. However, occu-
pants’ role and their interaction with the building has sig-
nificant influence on the building performance. Hence, pre-
diction of number of occupants present in the building and
understanding their behavior is essential to reduce consider-
able amount of energy while maintaining the comfort level.

Thermal, lighting, IAQ, and acoustic comfort are major
comfort factors considered with respect to the inhabitant.
These comfort levels are mainly influenced by architec-
ture, age, health, gender, culture, environment factors, and
emotions. Furthermore, collecting data from the building
and occupants is easier with the development of IoT and
wearable sensors, but it is still difficult to analyze and
predict exact human behavior. Difficulty is also due to
the research gap between human behavioral science and
the building industry. Strong interconnection of emotions
and cognitive behavior, the time-varying nature, the diffi-
culty in quantifying, the influencing parameters have made
future and current prediction of occupant behavior are
complicated.

Advancements in machine learning have made it possi-
ble to model occupant behavior and prediction to a large
extent. Different types of Markov chain models and arti-
ficial neural networks are mainly used to model occupant
behavior and predictions. As of now, if the occupants are
following routine and pattern, the developed models can
predict effectively. Thus, in the future more research is
needed on behavioral analysis for single andmulti-occupancy
prediction.
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