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Abstract. In this paper, we propose a novel framework for the synthesis of robust and optimal energy-
aware controllers. The framework is based on energy timed automata, allowing for easy expression of timing
constraints and variable energy rates. We prove decidability of the energy-constrained infinite-run problem in
settings with both certainty and uncertainty of the energy rates. We also consider the optimization problem
of identifying the minimal upper bound that will permit existence of energy-constrained infinite runs. Our
algorithms are based on quantifier elimination for linear real arithmetic. Using Mathematica and Mjollnir, we
illustrate our framework through a real industrial example of a hydraulic oil pump. Compared with previous
approaches our method is completely automated and provides improved results.

Keywords: Energy Timed Automata; Controller Synthesis; Quantifier Elimination

1. Introduction

Design of controllers for embedded systems is a difficult engineering task. Controllers must ensure a variety
of safety properties as well as optimality with respect to given performance properties. Also, for several
systems, e.g. [BGH+16, vBHLO17, PHM14], the properties involve non-functional aspects such as time and
energy.

We provide a novel framework for automatic synthesis of safe and optimal controllers for resource-aware
systems based on energy timed automata. Synthesis of controllers is obtained by solving time- and energy-
constrained infinite run problems. Energy timed automata [BFL+08] extend timed automata [AD94] with
a continuous energy variable that evolves with varying rates and discrete updates during the behaviour of
the model. Addressing an open problem from [BFL+08], we prove decidability of the infinite run problem
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Fig. 1. Overview of the HYDAC system

in settings where rates and updates may be both positive and negative and possibly subject to uncertainty.
Additionally, the accumulated energy may be subject to lower and upper bounds reflecting constraints on
capacity. Also we consider the optimization problems of identifying minimal upper bounds that will permit
the existence of infinite energy-constrained runs. Our decision and optimization algorithms for the energy-
constrained infinite run problems are based on reductions to quantifier elimination (QE) for linear real
arithmetic, for which we combine Mathematica [Wol] and Mjollnir [Mon10] into a tool chain.

To demonstrate the applicability of our framework, we revisit an industrial case study provided by
the HYDAC company in the context of the European project Quasimodo [Qua]. It consists of an on/off
control system (see Fig. 1a) composed of (i) a machine that consumes oil according to a cyclic pattern of
20 s (see Fig. 1b), (ii) an accumulator containing oil and a fixed amount of gas in order to put the oil under
pressure, and (iii) a controllable pump which can pump oil into the accumulator with rate 2.2 l/s. The control
objective for switching the pump on and off is twofold: first the level of oil in the accumulator (and so the
gas pressure) shall be maintained within a safe interval; second, the controller should try to minimize the
(maximum and average) level of oil such that the pressure in the system is kept minimal. We show how to
model this system, with varying constraints on pump operation, as energy timed automata. Thus our tool
chain may automatically synthesize guaranteed safe and optimal control strategies.

The HYDAC case was first considered in [CJL+09] as a timed game using the tool Uppaal-Tiga [CDF+05,
BCD+07] for synthesis. Discretization of oil-level (and time) was used to make synthesis feasible. Be-
sides limiting the opportunity of optimality, the discretization also necessitated posterior verification using
PHAVER [Fre08] to rule out possible resulting incorrectness. Also, identification of safety and minimal oil lev-
els were done by manual and laborious search. In [MFÅL15] the timed game models of [CJL+09] (rephrased
as Timed Discrete Event Systems) are reused, but BDDs are applied for compact representation of the
discrete oil-levels and time-points encountered during synthesis. [JST11] provides a framework for learning
optimal switching strategies by a combination of off-the-shelf numerical optimization and generalization by
learning. The HYDAC case is one of the considered cases. The method offers no absolute guarantees of hard
constraints on energy-level, but rather attempts to enforce these through the use of high penalties. [ZZKL12]
focuses exclusively on the HYDAC case using a direct encoding of the safety- and optimality-constraints
as QE problems. This gives—like in our case—absolute guarantees. However, we are additionally offering a
complete and decidable framework based on energy timed automata, which extends to several other systems.
Moreover, the controllers we obtain perform significantly better than those of [CJL+09] and [ZZKL12] (re-
spectively up to 22% and 16% better) and are obtained automatically by our tool chain combining Mjollnir
and Mathematica. This combination permits quantifier elimination and formula simplification to be done
in a compositional manner, resulting in performance surpassing each tool individually. We believe that this
shows that our framework has a level of maturity that meets the complexity of several relevant industrial
control problems.

Our work is related to controllability of (constrained) piecewise affine (PWA) [BFTM00] and hybrid
systems [ACHH93]. In particular, the energy-constrained infinite-run problem is related to the so called
stability problem for PWAs. Blondel and Tsitsiklis [BT99] have shown that verifying stability of autonomous
piecewise-linear (PWL) systems is NP-hard, even in the simple case of two-component subsystems; several
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global properties (e.g. global convergence, asymptotic stability and mortality) of PWA systems have been
shown undecidable in [BBKT01].

The current paper is an extended and improved version of [BBF+18], containing detailed proofs of the
above mentioned results. Furthermore, we elaborate on the HYDAC case synthesizing strategies for a more
accurate (non-flat) model of the oil pump system.

2. Energy Timed Automata

Given a finite set X of clocks, the set of closed clock constraints over X, denoted C(X), is the set of formulas
built using g ::= x ∼ n | g ∧ g, where x ranges over X, ∼ ranges over {≤,≥} and n ranges over Q≥0. That
a clock valuation v : X → R≥0 satisfies a clock constraint g, denoted v |= g, is defined in the natural way.
For a clock valuation v, a real t ∈ R≥0, and a subset R ⊆ X, we write v + t for the valuation mapping each
clock x ∈ X to v(x) + t, and v[R→ 0] for the valuation mapping clocks in R to zero and clocks not in R to
their value in v. Finally we write 0X (or simply 0) for the clock valuation assigning 0 to every x ∈ X.

For E ⊆ R, we let I(E) be the set of closed intervals of R with bounds in E ∩Q. Notice that any interval
in I(E) is bounded, for any E ⊆ R.

Definition 2.1. An energy timed automaton (ETA for short; a.k.a. priced or weighted timed automa-
ton [ALP01, BFH+01]) is a tuple A = (S, S0, X, I, r, T ) where S is a finite set of states, S0 ⊆ S is the
set of initial states, X is a finite set of clocks, I : S → C(X) assigns invariants to states, r : S → Q assigns
rates to states, and T ⊆ S × C(X)×Q× 2X × S is a finite set of transitions.

An energy timed path (ETP, a.k.a. linear energy timed automaton) is an energy timed automaton for
which S can be written as {si | 0 ≤ i ≤ n} in such a way that S0 = {s0}, and T = {(si, gi, ui, zi, si+1) | 0 ≤
i < n}. We additionally require that all clocks are reset on the last transition, i.e., zn−1 = X.

Let A = (S, S0, X, I, r, T ) be an ETA. A configuration of A is a triple (`, v, w) ∈ S × (R≥0)X × R,
where v is a clock valuation, and w is the energy level. Let τ = (ti)0≤i<n be a finite sequence of transitions,
with ti = (si, gi, ui, zi, si+1) for every i; the first and last components of those 5-tuples are states of the
automaton, while gi represents the clock constraint to be satisfied for the transition to be available, ui is the
amount of energy gained or consumed along the transition, and zi indicates which clocks are reset when the
transition takes place. The runs of an (energy) timed automaton A are the sequences of configurations visited
by the automaton when alternatively taking a transition of the automaton, and letting time elapse [AD94].
Formally, given a sequence τ = (ti)0≤i<n with ti = (si, gi, ui, zi, si+1), a finite run in A on τ is a sequence
of configurations ρ = (`j , vj , wj)0≤j≤2n such that there exists a sequence of delays (di)0≤i<n for which the
following requirements hold:

• for all 0 ≤ j < n, `2j = `2j+1 = sj , and `2n = sn;

• for all 0 ≤ j < n, v2j+1 = v2j + dj and v2j+2 = v2j+1[zj → 0];

• for all 0 ≤ j < n, v2j |= I(sj) and v2j+1 |= I(sj) ∧ gj ;
• for all 0 ≤ j < n, w2j+1 = w2j + dj · r(sj) and w2j+2 = w2j+1 + uj .

We will by extension speak of runs read on ETPs (those runs will then end with clock valuation 0). The
notion of infinite run is defined similarly. Given E ∈ I(Q), such a run is said to satisfy energy constraint E
if wj ∈ E for all j.

Example 2.1. Fig. 2 displays an example of an ETP P and one of its runs ρ. Since no time will be spent
in s2, we did not indicate the invariant and rate of that state. The sequence ρ is a run of P. Spending 0.6
time units in s0, the value of clock x reaches 0.6, and the energy level grows to 3 + 0.6× 2 = 4.2; it equals
4.2− 3 = 1.2 when entering s1. Then ρ satisfies the energy constraint [0; 5].

Definition 2.2. A segmented energy timed automaton (SETA for short) is a tuple A = (S, T, P ) where
(S, T ) is a finite graph (whose states and transitions are called macro-states and macro-transitions), and P
associates with each macro-transition t = (s, s′) of A an ETP with initial state s and final state s′. We require
that for any two different transitions t and t′ of A, the state spaces of P (t) and P (t′) are disjoint and contain
no macro-states, except (for both conditions) for their first and last states.

A SETA is flat if the underlying graph (S, T ) is (i.e., for any s ∈ S, there is at most one non-empty path
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Fig. 2. An energy timed path P, and a run ρ of P with initial energy level 3.
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Fig. 3. A SETA A = (S, T, P ) with implicit global invariant y ≤ 1; omitted discrete updates are assumed to
be zero. The map P associates with each (si, sj) ∈ T the ETP Pi,j . The infinite sequence ρ1 · (ρ2 · ρ3)ω is an
infinite execution of A with initial energy level 3 satisfying the energy constraint E = [0; 5].

in the graph (S, T ) from s to itself [CJ98, BIL06]). It is called depth-1 whenever the graph (S, T ) is tree-like,
with only loops at leaves.

A (finite or infinite) execution of a SETA is a (finite or infinite) sequence of runs ρ = (ρi)i such that for
all i, writing ρi = (`ij , v

i
j , w

i
j)0≤j≤2ni , it holds:

• `i0 and `i2ni
are macro-states of A, and ρi is a run of the ETP P (`i0, `

i
2ni

);

• `i+1
0 = `i2ni

and wi+1
0 = wi

2ni
.

Hence a run in a SETA should be seen as the concatenation of paths ρi between macro-states. Notice also
that each ρi starts and ends with all clock values zero, since all clocks are reset at the end of each ETP, when
a main state is entered. Finally, given an interval E ∈ I(Q), an execution (ρi)i satisfies energy constraint E
whenever all individual runs ρi do.

Remark 2.1. In contrast with ETAs, the class of SETAs is not closed under parallel composition. Intuitively,
the ETA resulting from the parallel composition of two SETAs may not be “segmented” into a graph of energy
timed-paths because the requirement that all clocks are reset on the last transition may not be satisfied.
Furthermore, parallel composition does not preserve flatness because it may introduce nested loops.

Example 2.2. Figure 3 displays a SETA A with two macro-states s0 and s2, and two macro-transitions.
The macro-self-loop on s2 is associated with the energy timed path of Fig. 2. The execution ρ = ρ1 · (ρ2 ·ρ3)ω

is an ultimately-periodic execution of A. This infinite execution satisfies the energy constraint E = [0; 5] (as
well as the (tight) energy constraint [1; 4.6]).

In this paper, we consider the following energy-constrained infinite-run problem [BFL+08]: given an
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Fig. 4. Energy relation for P with E = [0; 5].

energy timed automaton A and a designated state s0, an energy constraint E ∈ I(Q) and an initial energy
level w0 ∈ E, does there exist an infinite execution in A starting from (s0,0, w0) that satisfies E?

In the general case, the energy-constrained infinite-run problem is undecidable, even when considering
ETA with only two clocks [Mar11]. In this paper, we prove:

Theorem 2.1. The energy-constrained infinite-run problem is decidable for flat SETA.

Theorem 2.2. Given a fixed lower bound L, the existence of an upper bound U , such that there is a solution
to the energy-constrained infinite-run problem for energy constraint E = [L;U ], is decidable for flat SETA.
If such a U exists, then for depth-1 flat SETA, we can compute the least one.

The rest of this section is devoted to the proof of the above two decidability results. In Sections 2.1, 2.2,
and 2.3 we first introduce some technical tools that we will use in Section 2.4 for developing the algorithms
witnessing decidability of our problems.

2.1. Binary energy relations

Let P = ({si | 0 ≤ i ≤ n}, {s0}, X, I, r, T ) be an ETP from s0 to sn. Let E ⊆ I(Q) be an energy constraint.
The binary energy relation RE

P ⊆ E × E for P under energy constraint E relates all pairs (w0, w1) for
which there is a finite run of P from (s0,0, w0) to (sn,0, w1) satisfying energy constraint E. This relation is
characterized by the following first-order formula:

RE
P(w0, w1) ⇐⇒ ∃(di)0≤i<n. Φtiming ∧ Φenergy ∧ w1 = w0 +

n−1∑
k=0

(dk · r(sk) + uk)

where Φtiming encodes all the timing constraints that the sequence (di)0≤i<n has to fulfill, while Φenergy

encodes the energy constraints. More precisely:

• timing constraints are obtained by computing the clock valuations in each state of the execution, and
expressing that those values must satisfy the corresponding invariants and guards. The value of a clock
in a state is the sum of the delays dj since the last reset of that clock along the ETP.

• energy constraints are obtained by expressing the value of the energy level in each state as the sum of
the initial energy level, the energy r(si) · di gained or consumed in each intermediary state, and the
updates ui of the transitions that have been traversed. All those values are constrained to lie in E.

Fourier-Motzkin elimination is a classical technique for removing existentially-quantified formulas from
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conjunctions of linear expressions such as the one defining RR
P . Basically, there exists a value for variable x

satisfying a conjunction E(x, Y ) of linear constraints defined as∧
1≤j≤m

x ≤ φj(Y ) ∧
∧

1≤k≤n

x ≥ ψk(Y )

if, and only if, for any 1 ≤ j ≤ m and any 1 ≤ k ≤ n, it holds ψk(Y ) ≤ φj(Y ). In other terms,

{Y | ∃x. E(x, Y )} = {Y | ∀j ∈ [1;m]. ∀k ∈ [1;n]. ψk(Y ) ≤ φj(Y )}.

By noticing that ∃x. (E(x, Y ) ∨ E ′(x, Y )) is equivalent to ∃x. (E(x, Y ) ∨ ∃x. E ′(x, Y )), we can eliminate
existentially-quantified variables for any boolean combination of linear constraints. By duality, universally-
quantified variables can be eliminated with the same procedure.

It follows that RE
P is a closed, convex subset of E ×E, and can be described as a conjunction of a finite

set of linear constraints over w0 and w1 (with non-strict inequalities).

Example 2.3. We illustrate this computation on the ETP of Fig. 2. For energy constraint [0; 5], the energy
relation can be written (after removing redundant constraints) as

RE
P(w0, w1) ⇐⇒ ∃d0, d1. d0 ∈ [0.25; 1] ∧ d1 ∈ [0; 1] ∧ d0 + d1 = 1 ∧

w0 ∈ [0; 5] ∧ w0 + 2d0 ∈ [0; 5] ∧ w0 + 2d0 − 3 ∈ [0; 5] ∧
w1 = w0 + 2d0 + 4d1 − 3 ∧ w1 ∈ [0; 5].

Applying quantifier elimination, the above simplifies to

RE
P(w0, w1) ⇐⇒ (w1 + 2 ≤ 2w0 ≤ w1 + 4) ∧ (w1 − 0.5 ≤ w0 ≤ w1 + 1).

The corresponding polyhedron is depicted in Fig. 4.

2.2. Energy functions

We now focus on properties of energy relations. First notice that for any interval E ∈ I(Q), the partially-
ordered set (I(E),⊇) is ω-complete, meaning that for any chain (Ij)j∈N, with Ij ⊇ Ij+1 for all j, the limit⋂

j∈N Ij also belongs to I(E). By Cantor’s Intersection Theorem, if additionally each interval Ij is non-empty,

then so is the limit
⋂

j∈N Ij .

With an energy relation RE
P , we associate an energy function (also denoted with RE

P , or simply R, as
long as no ambiguity may arise), defined for any closed subinterval I ∈ I(E) as

R(I) = {w1 ∈ E | ∃w0 ∈ I. R(w0, w1)}.

Symmetrically, we let

R−1(I) = {w0 ∈ E | ∃w1 ∈ I. R(w0, w1)}.

Observe that R(I) and R−1(I) also belong to I(E) (because the relation R is closed and convex). Moreover,
R and R−1 are monotonic: for any two intervals I and J in I(E) such that I ⊆ J , it holds that R(I) ⊆ R(J)
and R−1(I) ⊆ R−1(J).

The energy functions R and R−1 also satisfy the following continuity properties:

Lemma 2.1. Let (Ij)j∈N be a chain of intervals of I(E), such that Ij ⊇ Ij+1 for all j ∈ N. Then
R−1(

⋂
j∈N Ij) =

⋂
j∈NR−1(Ij).

Proof. For any i ∈ N, we have Ii ⊇
⋂

j∈N Ij . By monotonicity of R−1, we get R−1(Ii) ⊇ R−1(
⋂

j∈N Ij).

It follows that
⋂

i∈NR−1(Ii) ⊇ R−1(
⋂

j∈N Ij).

Now, let w0 ∈
⋂

j∈NR−1(Ij). Then for all i ∈ N, there exists wi
1 such that R(w0, w

i
1). It follows that for

any i ∈ N,R({w0})∩Ii is a non-empty interval of I(E). Applying Cantor’s Intersection Theorem, we get that⋂
i∈NR({w0})∩ Ii is a non-empty interval of I(E). This intersection can be rewritten as R({w0})∩

⋂
i∈N Ii;

hence there exists w1 ∈
⋂

i∈N Ii such that R(w0, w1), which proves that w0 ∈ R−1(
⋂

i∈N Ii). �
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2.3. Composition and fixpoints of energy functions

Consider a finite sequence of paths (Pi)1≤i≤k. Clearly, the energy relation for this sequence can be obtained
as the composition of the individual energy relations RE

Pk
◦ · · · ◦ RE

P1
; the resulting energy relation still is a

closed convex subset of E × E that can be described as the conjunction of finitely many linear constraints
over w0 and w1. As a special case, we write (RE

P)k for the composition of k copies of the same relations RE
P .

Now, using Lemma 2.1, we get that the greatest fixpoint νR−1 of R−1 in the complete lattice (I(E),⊇)
exists and equals:

νR−1 =
⋂
i∈N

(R−1)i(E).

Moreover νR−1 is a closed (possibly empty) interval. Note that νR−1 is the maximum subset SR of E such
that, starting with any w0 ∈ SR, it is possible to iterate R infinitely many times (that is, for any w0 ∈ SR,
there exists w1 ∈ SR such that R(w0, w1)—any such set S is a post-fixpoint of R−1 in the sense that
S ⊆ R−1(S)).

In the end, if R is the energy relation of a cycle C in the SETA, then νR−1 precisely describes the set of
initial energy levels allowing infinite runs through C satisfying the energy constraint E.

Now if R is the energy relation for a cycle C, described as the conjunction φC of a finite set of linear
constraints, we can characterize those intervals [a, b] ⊆ E that constitute a post-fixpoint for R−1 by the
following first-order formula:

a ≤ b ∧ a ∈ E ∧ b ∈ E ∧ ∀w0 ∈ [a; b]. ∃w1 ∈ [a; b]. φC(w0, w1). (1)

Applying quantifier eliminination (to w0 and w1), the above formula may be transformed into a di-
rect constraint on a and b, characterizing all post-fixpoints of R−1. We get a characterization of νR−1 by
computing the values of a and b that satisfy these constraint and maximizing b− a.

Example 2.4. We again consider the SETA of Fig. 3, and consider the energy constraint E = [0; 5]. We first
focus on the cycle C on the macro-state s2: as explained in Example 2.3, the energy relation for this cycle
can be written as

RE
C (w0, w1) ⇐⇒ (w1 + 2 ≤ 2w0 ≤ w1 + 4) ∧ (w1 − 0.5 ≤ w0 ≤ w1 + 1).

Our first-order formula for the fixpoint then reads as follows:

0 ≤ a ≤ b ≤ 5 ∧ ∀w0 ∈ [a; b]. ∃w1 ∈ [a; b].
(
(w1 + 2 ≤ 2w0 ≤ w1 + 4) ∧ (w1 − 0.5 ≤ w0 ≤ w1 + 1)

)
.

Applying quantifier elimination, we end up with

2 ≤ a ≤ b ≤ 4.

This characterizes all post-fixpoints; the greatest fixpoint then obviously is [2; 4].
Now, the energy relation for the path P from s1 to s2 is

RE
P(w0, w1) ⇐⇒ ∃d0, d1. 0 ≤ d0 ≤ 1 ∧ 0 ≤ d1 ≤ 1 ∧ d0 + d1 ≥ 1 ∧

0 ≤ w0 ≤ 5 ∧ 0 ≤ w0 + 1 ≤ 5 ∧
w1 = w1 + 1− d1 ∧ 0 ≤ w1 ≤ 5

which reduces to 0 ≤ w0 ≤ 4 ∧ w0 ≤ w1 ≤ w0 + 1.
Finally, the initial energy levels w0 for which there is an infinite-run in the whole SETA are characterized

by the following constraint:

∃w1. (0 ≤ w0 ≤ 4 ∧ w0 ≤ w1 ≤ w0 + 1) ∧ (2 ≤ w1 ≤ 4),

which, after quantifier elimination, reduces to 1 ≤ w0 ≤ 4.

2.4. Algorithm for Flat Segmented Energy Timed Automata

Following Example 2.4, we now prove that we can solve the energy-constrained infinite-run problem for any
flat SETA. The next theorem is crucial for our algorithm:
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Theorem 2.3. Let R be the energy relation of an ETP P with energy constraint E, and let I be a closed
sub-interval of E. Then either I ∩ νR−1 6= ∅ or Rn(I) = ∅ for some n.

Proof. We assume that I ∩ νR−1 = ∅, and prove that Rn(I) = ∅ for some n. We have:

I ∩ νR−1 = I ∩
⋂
n∈N

(
R−1

)n
(E)

= I ∩
⋂
n∈N

(
Rn
)−1

(E) (by R−1 ◦ R−1 = (R ◦R)−1)

=
⋂
n∈N

(
I ∩

(
Rn
)−1

(E)
)
.

Note that
(
I ∩ (Rn)−1(E)

)
n∈N is a decreasing sequence because

(
(R−1)n(E)

)
n∈N is. From our assumption

that I ∩νR−1 = ∅, we get that
⋂

n∈N
(
I ∩ (Rn)−1(E)

)
= ∅. By Cantor’s intersection theorem, it follows that

I ∩
(
Rn
)−1

(E) = ∅ for some n ∈ N.
Now, assume Rn(I) 6= ∅, and pick w1 ∈ Rn(I). Then for some w0 ∈ I, we have Rn(w0, w1), so that also

w0 ∈ (Rn)−1(E), so that I ∩
(
Rn
)−1

(E) 6= ∅. Hence Rn(I) must be empty. �

We will show that the energy-constrained infinite run problem is decidable for flat SETAs. For a SETA A,
an infinite run exists if and only if the underlying graph ofA has a path P = (m0,m1)(m1,m2) · · · (mk−1,mk)
and cycle C = (mk,mk+1)(mk+1,mk+2) · · · (mk+n−1,mk+n) where mk = mk+n, such that

νR−1
C ∩RP(I0) 6= ∅ (2)

where RC = RP (mk+n−1,mk+n) ◦ · · · ◦ RP (mk,mk+1) and RP = RP (mk,mk−1) ◦ · · · ◦ RP (m1,m0). Intuitively, the
interval I = RP(I0) represents the energy interval I0 propagated forward along the path P until reaching
mk. Moreover, if the SETA is flat, we have that the cycle C can be unambiguously represented by its initial
state mk —recall that flatness entails that any state belongs to at most one cycle.

The decision procedure traverses the underlying graph of A, forward propagating an initial energy interval
I0 ⊆ E for all reachable macro states m then looking for a simple cycle C starting from m such that
νR−1
C ∩ I 6= ∅, where I ⊆ E is the energy interval forward-propagated until reaching m.
Algorithm 1 gives a detailed description of the decision procedure. It traverses the underlying graph

(S, T ) of the flat SETA A, using a waiting list W to keep track of the macro-state s that need to be further
explored. The list W contains tasks of the form (m, I,flag) where the first component m ∈ S is the current
macro-state reached following some path P in A, the second component I ∈ I(E) is the current energy
interval, i.e., I = RP(I0), and the third component flag ∈ {c, c̄} is a flag indicating whether the algorithm
should consider m as the last element of the prefix path P and explore the cycle it belongs to (flag = c), or
if it should proceed by exiting that cycle (flag = c̄) further extending the prefix path.

The algorithm initialises the waiting list with the initial task (cf. line 1). The main while loop processes
each task in the waiting list, as long as the list is not empty. It picks a task (m, I,flag) from W (line 3).
If flag = c̄, the exploration will continue from macro-state s m′ adjacent to m by forward propagating the
current energy interval I following the timed path P (m,m′) (cf. lines 6-7). Note that the choice of the
arcs (m,m′) ensures that m′ does not belong to the same cycle as m, thus skipping the (unique) cycle
containing m.

Otherwise, if flag = c, the exploration attempts to follow the simple cycle that contains m. If m does
not belong to any cycle, the current task will be simply put back in the waiting list with the opposite flag
(cf. line 23). In case m belongs to the simple cycle C = (m1,m2) · · · (mk,mk+1), the energy relation RE

C
is used to check if, for the current energy interval, there exists an infinite run along the cycle C. If such is
not the case, the cycle will be iterated only finitely many times (cf. lines 17-21). This is done by inserting
in W the current task with the flag set to c̄—corresponding to zero executions of the cycle—then for each
execution i of C, the cycle is unfolded up to its j-th transition and the task (mj+1,RE

Pj
((RE

C)i(I)), c̄) is

added to the waiting list—corresponding to i executions of C followed by a tail (m1,m2) · · · (mj ,mj+1).
Theorem 2.3 ensures termination of the while loop of lines 17-21.

As for the correctness of the procedure, one can note that each task (m, I,flag) is used to represent a
path P from m0 to m having I = RP(I0). In particular, when flag = c the task indicates that the prefix P
should be tested against condition (2) w.r.t. a possible cycle starting from m; whereas, when flag = c the
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Input: A flat SETA A = (S, T, P ); initial state m0 ∈ S; energy interval I0
1. W ← {(m0, I0, c)} / initialise the waiting list
2. while W 6= ∅ do
3. pick (m, I,flag) ∈W / pick an element from the waiting list
4. W ←W \ (m, I,flag) / remove the element from the waiting list
5. if flag = c̄ then / the node m shall be explored without following a cycle
6. for each (m,m′) ∈ T that is not part of a simple cycle of (S, T ) do
7. W ←W ∪ {(m′,RE

P (m,m′)(I), c)} / add this new task to the waiting list

8. else / the node m shall be explored by following a cycle
9. if m belongs to a cycle of (S, T ) then

10. let C = (m1,m2) · · · (mk,mk+1) be the simple cycle s.t. m = m1 = mk+1

11. let RC = RP (mk,mk+1) ◦ · · · ◦ RP (m1,m2) / energy relation of the cycle

12. if I ∩ νR−1
C 6= ∅ then / check if there is an infinite run via the cycle C

13. return tt
14. else / the cycle can be executed only finitely many times
15. W ←W ∪ {(m, I, c̄)} / add a new task to the waiting list
16. i← 0 / initialise the number of cycle executions
17. while Ri

C(I) 6= ∅ do / while i-th energy relation is satified
18. for 1 ≤ j < k do
19. let RPj

= RP (mj ,mj+1) ◦ · · · ◦ RP (m1,m2) / unfold C up to mj+1

20. W ←W ∪ {(mj+1,RPj
(Ri
C(I)), c̄)} / add a task to the waiting list

21. i← i+ 1 / increment the number of cycle executions
22. else / m doesn’t belong to a cycle
23. W ←W ∪ {(m, I, c̄)} / add a new task to the waiting list
24. return ff / no infinite run could be found

Algorithm 1: Infinite Run

task indicates that the prefix P still has to be extended by at least one more step. Note that tasks having
flag = c are inserted in W only if a cycle having m was not already tested against condition (2) (cf. line 4
and 7); while tasks with flag = c̄ are inserted in W only after having tested against condition (2) a cycle
passing through such state (cf. lines 15, 20, and 23). The for loop at lines 6-7 ensures that all reachable states
are eventually inserted in the waiting list; whereas the while loop at lines 17-21 ensures that all extensions
of the current prefix obtained by appending to it a finite unfolding of a cycle are added to the waiting lists.
Therefore, all possible prefixes are eventually tested against condition (2). It is worth noting that the flatness
assumption for the SETA A ensures that all cycles are tested, because for each prefix P ending in m there
exists at most one cycle having m. This proves our first result:

Theorem 2.1. The energy-constrained infinite-run problem is decidable for flat SETA.

Notice that the technique does not trivially extend to SETAs with nested cycles, because they may have
infinitely many different cycles.

Example 2.5. Consider the SETA A = (S, T, P ) depicted in Fig. 5 and the energy constraint E = [0; 6].
We describe a step-by-step execution of Algorithm 1 starting with s0 ∈ S and initial energy interval I0 = [0; 0].

The waiting list is initialised as W0 = {(s0, I0, c)}. After the first execution of the main while loop, W1 =
{(s0, I0, c̄)} because s0 does not belong to any simple cycle of (S, T ). In the second iteration, we pick the task
(s0, I0, c̄) and we update the waiting list as W2 = {(s1, [4; 4], c), (s2, [0; 1], c)}. In the third iteration, we pick
the task (s2, [0; 1], c) from W2. Since s2 belongs to the self-cycle C = (s2, s2), we compute [0; 1] ∩ νR−1

C =
[0; 1] ∩ [ 5

3 ; 6] = ∅. Thus, we proceed by computing R0([0; 1]) = [0; 1], R1([0; 1]) = [0; 0] and R2([0; 1]) = ∅,
and update the waiting list as W3 =

(
W2 \ (s2, [0; 1], c)

)
∪ {(s2, [0; 1], c̄), (s2, [0; 0], c̄)}. In the fourth and

fifth iterations, we pick the tasks (s2, [0; 1], c̄) and (s2, [0; 0], c̄), respectively. Since s2 cannot escape from
the self-cycle, we will not insert any tasks in the waiting list, thus having W5 = {(s1, [4; 4], c)}. During the
sixth iteration, we pick the task (s1, [4; 4], c). Since s1 belongs to the self-cycle C′ = (s1, s1), we compute
[4; 4]∩νR−1

C′ = [4; 4]∩∅ = ∅. Thus we proceed by computing R0([4; 4]) = [4; 4], R1([4; 4]) = [0; 3], R2([4; 4]) =
[2; 2], and R3([4; 4]) = ∅ and obtaining W6 =

(
W5 \ (s1, [4; 4], c)

)
∪ {(s1, [4; 4], c̄), (s1, [0; 3], c̄), (s1, [2; 2], c̄)}.
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s0(S, T ) :

s1

s2

s1

r :− 1

P1,1: s4

r : 3

s1
u :−3 u :− 1x = 1

x := 0

s0

r : 0

P0,1: s1
u : 4x = 1

x := 0

s1

r :− 1

P1,2: s2
u : 2x = 1

x := 0

s0

r : 0

P0,2: s5

r : 5

s2
u : 4 u :− 5x = 1

x := 0

s2

r : 2

P2,2: s6

r : 5

s7

r : 2

s2
u :−3 u : 0 u : 0x = 1

x := 0

Fig. 5. An example of SETA A = (S, T, P ) with implicit global variant x ≤ 1. The map P associates with
each (si, sj) ∈ T the ETP Pi,j .

In the seventh iteration, we pick the task (s1, [4; 4], c̄). The only transition that escapes from the self-cycle
of s1 is (s1, s2), thus we get W7 =

(
W6 \ (s1, [4; 4], c̄)

)
∪ {(s2, [5; 5], c)}. Finally, we pick the task (s2, [5; 5], c)

and since [5; 5] ∩ νR−1
C′′ = [5; 5] ∩ [ 5

3 ; 6] 6= ∅ where C′′ = (s2, s2), we stop the computation and return tt.

We are now ready to prove our second main result of this section.

Theorem 2.2. Given a fixed lower bound L, the existence of an upper bound U , such that there is a solution
to the energy-constrained infinite-run problem for energy constraint E = [L;U ], is decidable for flat SETA.
If such a U exists, then for depth-1 flat SETA, we can compute the least one.

Proof. Let A be a flat SETA and L ∈ Q be the fixed lower bound.
Let C be a simple cycle of A (which may formally be the concatenation of several energy timed paths

but w.l.o.g. we can assume it is a single energy timed path). We analyze when this cycle can be iterated,
and for which upper bound U . Adding U as a parameter, we can refine the approach of Section 2, and safely

define the ternary energy relation RC(w0, w1, U) as R[L;U ]
C (w0, w1). It is a convex subset of R3, described as

a conjunction of a finite set of linear constraints over w0, w1 and U (with non-strict inequalities and rational
coefficients). We can then define the predicate R∞C (a, b, U) as:

R∞C (a, b, U) ⇐⇒ L ≤ a ≤ b ≤ U ∧ ∀w0 ∈ [a; b], ∃w1 ∈ [a; b]. RC(w0, w1, U)

characterizing the intervals [a; b] and upper-bounds U such that C can be iterated infinitely many times from
any initial value in [a; b] with energy constraint [L;U ]. This relation is again a closed convex subset of R3,
described as a conjunction of a finite set of linear constraints over a, b and U (with non-strict inequalities
and rational coefficients).

For a fixed U ∈ Q, this predicate coincides with the greatest fixpoint ν(R[L;U ]
C )−1 that was discussed

on page 7. Hence R∞C (a, b, U) holds if, and only if, for every w0 ∈ [a; b], there is an infinite run starting
at (s0,0, w0) (where s0 is the first state of C) satisfying the energy constraint [L;U ]. Furthermore, the
set {a ∈ R | ∃b, U. R∞C (a, b, U)} is a closed subset of R, defined as a conjunction of linear constraints
with rational coefficients, and bounded below by L; thus there is a least value aCmin ∈ Q such that the set
{(b, U) | R∞C (aCmin, b, U)} is non-empty. For this value aCmin:

Lemma 2.2. The following properties hold

• For any energy level w < aCmin, and for any U , there are no infinite runs from (s0,0, w) cycling around C
and satisfying energy constraint [L;U ];

• For every w ≥ aCmin, there exist U and an infinite run from (s0,0, w) cycling around C and satisfying
energy constraint [L;U ].

Proof. The first part of the lemma is a direct consequence of the analysis of the fixed point ν(R[L;U ]
C )−1

made in Sec. 2.1.
For the second property, we first realize that there is (b, U) ∈ Q2 such that R∞C (aCmin, b, U) (because

relation R∞C (a, b, U) is a finite conjunction of linear contraints with rational coefficients). This means in
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particular that there is an infinite run from (s0,0, a
C
min) cycling around C and satisfying the energy constraint

[L;U ]. By mimicking the same delays from (s0,0, a
C
min), we create an infinite run along which the energy

levels are simply shifted up by w − amin. This way, we have built an infinite run from (s0,0, w) satisfying
the energy constraint [L;U + w − aCmin]. �

Coming back to our automaton A: if there is a solution to the energy-constrained infinite-run problem
in A for some upper bound U , the witness infinite run must end up cycling in one of the cycles of A.
Let C be a cycle. We know from the lemma above that, to be able to generate a witness infinite run cycling
around C, one needs to be able to reach the start of that cycle with at least energy level aCmin. Note that
if we find a finite run reaching the start of cycle C with energy level w ≥ aCmin and satisfying the energy
constraint [L; +∞) (only a lower-bound constraint) along the way, then for some U ′ this finite path satisfies
the energy constaint [L;U ′]; the concatenation of that finite run with a witness infinite run cycling along C
while satisfying some [L;U ]-energy constraint gives a witness infinite run for the existence of an upper bound
(with upper bound max(U ;U ′)).

We therefore study finite runs leading to the start of cycle C, with only the lower bound L on the energy
level. Recall that this problem is in general not easy to solve [BLM14], and only single-clock automata can
be handled in general [BFLM10]. However in the special setting of flat SETA, we are able to decide the
existence of a well-adapted finite run reaching the start of cycle C. Let P be an energy timed path. Following
a similar approach to the approach developed on Section 2.1, one can define a predicate SP(w0, w1) that
is true whenever there is a run satisfying the energy constraint [L; +∞), starting with energy level w0 and

ending with energy level w1. From that predicate, one can derive the predicates S↑P(w0) (resp. S=
P (w0),

S×P (w0)) such that:

• S↑P(w0) ⇐⇒ ∃w1 > w0 s.t. SP(w0, w1);

• S=
P (w0) ⇐⇒ SP(w0, w0) and ¬S↑P(w0);

• S×P (w0) ⇐⇒ ∀w1 ≥ w0, ¬SP(w0, w1).

In the first two cases, and only in these cases, the path can be iterated while satisfying the energy constraint
[L; +∞). In the first case, by iterating the path, one can increase the energy level up to an arbitrarily high
value. In the second case, only energy level w0 can be reached. These properties are straightforward (since
there is no upper bound), and are therefore omitted.

Let A be a SETA with initial energy level w0. We perform the following (partial) labelling λ of the graph
in a forward manner:

• we label the initial macro-state m0 with λ(m0) = > if there is a path P from m0 to itself, where S↑P(e0)
holds; otherwise we set λ(m0) = w0.

• let m be a macro-state which does not belong to a cycle, and such that all its predecessors have been
already labelled with λ. Write (mi)1≤i≤p for a non-empty list of its predecessors, with redundancies if
there are multiple transitions between macro-states. For each 1 ≤ i ≤ p, write Pi for the ETP labelling
the edge (mi,m). If there is some i such that λ(mi) = >, then set λ(m) = >. Otherwise, define w′i for
the largest energy level such that SPi

(wi, w
′
i) holds (w′i can be equal to +∞ whenever w′i can be made

arbitrarily large). If there is a cycle C starting at mi such that S↑C(w′i), then set λ(m) = >. If w′i = +∞
for some i, then set λ(m) = >, otherwise set λ(m) = max1≤i≤p w

′
i.

The following lemma concludes the decidability proof for the existence of an upper bound.

Lemma 2.3. There is a solution to the upper-bound existence problem if, and only if, there is a cycle C
starting at some macro-state m in A such that aCmin is well-defined, and such that λ(m) = > or λ(m) ≥ aCmin.

Proof. We can prove the following invariant to the labelling algorithm:

• λ(m) = > if, and only if, for every α ∈ R there is w ≥ α such that energy level w can be achieved when
reaching m;

• λ(m) = α if, and only if, α is the maximal energy level that can be reached at m. �

It remains to discuss the synthesis of the least upper bound for which there is a solution to the upper
bound synthesis problem. In this case, we will restrict to depth-1 flat SETA, that is the graph underlying
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the SETA is a tree, with self-loops at leaves2. We assume we have found a bound U such that A satisfies the
infinite path problem with energy constraint [L;U ].

Since A is depth-1, it can be decomposed as a union of timed paths followed by a cycle. Let P be such
a path, followed by cycle C. We assume w.l.o.g. that there is an infinite run satisfying the energy constraint
[L;U ] following P and cycling along C. We define the predicate RP·Cω (U ′) by

U ′ ≤ U ∧ ∃L ≤ a ≤ w1 ≤ b ≤ U ′ s.t. RP(w0, w1, U
′) and R∞C (a, b, U ′)

Then RP·Cω (U ′) holds if, and only if, U ′ ≤ U is a correct upper bound for a witness along P · Cω. We can
simplify the predicate RP·Cω (U ′), and obtain the least upper bound as the smallest U ′ such that RP·Cω (U ′)
holds for some P and C in A. �

3. Energy Timed Automata with Uncertainties

The assumptions of perfect knowledge of energy-rates and energy-updates are often unrealistic, as is the
case in the HYDAC oil-pump control problem (see Section 4). Rather, the knowledge of energy-rates and
energy-updates comes with a certain imprecision, and the existence of energy-constrained infinite runs must
take these into account in order to be robust. In this section, we revisit the energy-constrained infinite-run
problem in the setting of imprecisions, by viewing it as a two-player game problem.

3.1. Adding Uncertainty to ETA

Definition 3.1. An energy timed automaton with uncertainty (ETAu for short) is a tuple A = (S, S0, X,
I, r, T, ε,∆), where (S, S0, X, I, r, T ) is an energy timed automaton, with ε : S → Q>0 assigning imprecisions
to rates of states and ∆: T → Q>0 assigning imprecisions to updates of transitions.

In the obvious manner, this notion of uncertainty extends to energy timed paths with uncertainty (ETPu)
as well as to segmented energy timed automata with uncertainty (SETAu).

Let A = (S, S0, X, I, r, T, ε,∆) be an ETAu, and let τ = (ti)0≤i<n be a finite sequence of transitions, with
ti = (si, gi, ui, zi, si+1) for every i. A finite run in A on τ is a sequence of configurations ρ = (`j , vj , wj)0≤j≤2n

such that there exist a sequence of delays d = (di)0≤i<n for which the following requirements hold:

• for all 0 ≤ j < n, `2j = `2j+1 = sj , and `2n = sn;

• for all 0 ≤ j < n, v2j+1 = v2j + dj and v2j+2 = v2j+1[zj → 0];

• for all 0 ≤ j < n, v2j |= I(sj) and v2j+1 |= I(sj) ∧ gj ;
• for all 0 ≤ j < n, it holds that w2j+1 = w2j + dj · αj and w2j+2 = w2j+1 + βj , where αj ∈ [r(sj) −
ε(sj), r(sj) + ε(sj)] and βj ∈ [uj −∆(tj), uj + ∆(tj)].

Notice that uncertainty only affects the measure of energy, not the measure of time. We say that ρ is a
possible outcome of d along τ , and that w2n is a possible final energy level for d along τ , given initial energy
level w0. Note that in the case of uncertainty, any sequence d of delays may have several possible outcomes
(and corresponding energy levels) along a given transition sequence τ due to the uncertainty in rates and
updates. In particular, we say that τ together with d with initial energy level w0 satisfy an energy constraint
E ∈ I(Q) if any possible outcome run ρ for t and d starting with w0 satisfies E. All these notions are formally
extended to ETPu.

Given an ETPu P, and a sequence d of delays for P satisfying a given energy constraint E from initial
level w0, we denote by EEP,d(w0) the set of possible final energy levels. It may be seen that EEP,d(w0) is a
closed subset of E.

Example 3.1. Fig. 6 is the energy timed path P of Fig. 2 extended with uncertainties of ±0.1 on all rates
and updates. The runs associated with P and the delay sequence d = (0.6, 0.4) with initial energy level w0 = 3
satisfy the energy constraint E = [0; 5]. The set of final energy levels in EEP,d(w0) is then [2.5; 3.1].

2 The general case of flat SETA might be solvable, but we do not have a complete proof of that general case yet.
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s0

y ≤ 1

r : +2± 0.1

P: s1

y ≤ 1

r : +4± 0.1

s2

y ≥ 1
4

u : −3± 0.1

y := 0

x = 1

x := 0
y := 0

u : 0± 0.1

w

t
10

s0

s0

s1

s1

s2

Fig. 6. An energy timed path P with uncertainty, and a representation of the runs corresponding to the
delay sequence (0.6, 0.4) with initial energy level 3.

Now let A = (S, T, P ) be an SETAu and let E be an energy constraint. A (memoryless3) strategy σ
returns for any macro-configuration (s, w) (s ∈ S and w ∈ E) a pair (t, d), where t = (s, s′) is a successor
edge in T and d ∈ Rn

≥0 is a delay sequence for the corresponding energy timed path, i.e. n = |P (t)|. A (finite

or infinite) execution of (ρi)i writing ρi = (`ij , x
i
j , w

i
j)0≤j≤2ni

, is an outcome of σ if the following conditions
hold:

• si0 and si2ni
are macro-states of A, and ρi is a possible outcome of P (si0, s

i
2ni

) for d where σ(si0, w
i
0) =(

(si0, s
i
2ni

), d
)
;

• si+1
0 = si2ni

and wi+1
0 = wi

2ni
.

Now we may formulate the infinite-run problem in the setting of uncertainty:

Definition 3.2. Let A be a SETAu, E ∈ I(Q) be an energy constraint, and (s0, w0) an initial macro-
configuration (s0 macro-state of A and w0 ∈ E energy level). The energy-constrained infinite-run problem is
as follows: does there exist a strategy σ for A such that all runs (ρi)i that are outcomes of σ starting from
configuration (s0, w0) satisfy E?

3.2. Ternary Energy Relations

Let P = ({si | 0 ≤ i ≤ n}, {s0}, X, I, r, T, ε,∆) be an ETPu and let E ∈ I(Q) be an energy constraint.
The ternary energy relation UE

P ⊆ E × E × E relates all triples (w0, a, b) for which there is a sequence of
delays whose outcomes from (s0,0, w0) all satisfy E and end in a configuration (sn,0, w1) where w1 ∈ [a; b].
This relation can be characterized by the following first-order formula:

UE
P (w0, a, b) ⇐⇒ ∃(di)0≤i<n.∀(αi ∈ [r(si)− ε(si); r(si) + ε(si)])0≤i<n.

∀(βi ∈ [uj −∆(tj);uj + ∆(tj)])0≤i<n. Φtiming ∧ Φu
energy ∧ a ≤ w0 +

n−1∑
k=0

(dk · αk + βk) ≤ b

where Φtiming encodes all the timing constraints that the sequence (di)0≤i<n has to fulfill and is identical
to that used in the case of full precision. Also Φu

energy encodes the energy constraints relative to E. For-
mula Φu

energy is similar to Φenergy from Sec. 2, but refers to αi and βi rather than to the nominal rates r(sj)
and updates ui.

The expression above has two drawbacks: it mixes existential and universal quantifiers (which may
severely impact efficiency), and the arithmetic expression is quadratic (for which no efficient tools provide

3 For the infinite-run problem we consider it may be shown that memoryless strategies suffice.
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quantifier elimination). A better way to characterize the ternary relation is by expressing inclusion of the
set of reachable energy levels in the energy constraint:

UE
P (w0, a, b) ⇐⇒ ∃(di)0≤i<n. Φtiming ∧ Φi

energy ∧

w0 +

n−1∑
k=0

(r(sk) · dk + uk) +

n−1∑
k=0

([−ε(sk); ε(sk)] · dk + [−∆(tk); ∆(tk)]) ⊆ [a; b]

where Φi
energy encodes the energy constraints as the inclusion of the interval of reachable energy levels in the

energy constraint (in the same way as we do on the second line of the formula). Interval inclusion can then
be expressed as constraints on the bounds of the intervals. This way, we get linear arithmetic expressions and
no quantifier alternations. Applying Fourier-Motzkin elimination, UE

P is a closed, convex subset of E×E×E
and can be described as a finite conjunction of linear constraints over w0, a and b.

Example 3.2. We illustrate the above translation on the ETPu of Fig. 6. For energy constraint [0; 5], the
energy relation can be written as:

UE
P (w0, a, b) ⇐⇒ ∃d0, d1. d0 ∈ [0.25; 1] ∧ d1 ∈ [0; 1] ∧ d0 + d1 = 1 ∧ w0 ∈ [0; 5] ∧

w0 + [1.9; 2.1] · d0 ⊆ [0; 5] ∧
w0 + [1.9; 2.1] · d0 + [−3.1;−2.9] ⊆ [0; 5] ∧
w0 + [1.9; 2.1] · d0 + [−3.1;−2.9] + [3.9; 4.1] · d1 ⊆ [0; 5] ∧
w0 + [1.9; 2.1] · d0 + [−3.1;−2.9] + [3.9; 4.1] · d1 + [−0.1; 0.1] ⊆ [a; b] ⊆ [0; 5]]

Applying quantifier elimination, we end up with:

UE
P (w0, a, b) ⇐⇒ 0 ≤ a ≤ b ≤ 5 ∧ b ≥ a+ 0.6 ∧ a− 0.2 ≤ w0 ≤ b+ 0.7 ∧

(4.87 + 1.9 · a)/3.9 ≤ w0 ≤ (7.27 + 2.1 · b)/4.1
We can use this relation in order to compute the set of initial energy levels from which there is a strategy
to end up in [2.5; 3.1] (which was the set of possible final energy levels in the example of Fig. 6). We get
w0 ∈ [7.4/3; 13.78/4.1], which is (under-)approximately w0 ∈ [2.467; 3.360].

3.3. Algorithm for SETAu

Let A = (S, T, P ) be a SETAu and let E ∈ I(Q) be an energy constraint. Let W ⊆ S × E be the maximal
set of configurations satisfying the following:

(s, w) ∈ W =⇒ ∃t = (s, s′) ∈ T. ∃a, b ∈ E. UE
P (t)(w, a, b) ∧ ∀w

′ ∈ [a; b]. (s′, w′) ∈ W (3)

This expresses that from any (s,0, w) with (s, w) ∈ W, there is a macro-transition (s, s′) that can be taken,
ending up in configurations (s′,0, w′) with (s′, w′) ∈ W. Thus W characterizes the set of configurations
(s, w) that satisfy the energy-constained infinite-run problem. Unfortunately this characterization does not
readily provide an algorithm. We thus make the following restriction and show that it leads to decidability
of the energy-constrained infinite-run problem:

(R) in any of the ETPu P (t) of A, on at least one of its transitions, some clock x is compared with a positive
lower bound. Thus, there is an (overall minimal) positive time-duration D to complete any P (t) of A.

Theorem 3.1. Let A be an SETAu satisfying (R), E ∈ I(Q) an energy constraint, and (s0, w0) an initial
macro-configuration. Then it is decidable whether the energy-constrained infinite-run problem is satisfied.

Proof. Under hypothesis (R), there is a minimum level of imprecision for any transition t = (s, s′): whenever
UE
P (t)(w, a, b) then |b − a| ≥ D · ∆min, where ∆min is the minimal imprecision within all ETPu P (t) of A.

Thus if (s, w) ∈ W “due to” some transition t = (s, s′), then for some interval [a, b] with |b−a| ≥ D ·∆min all

configurations (s′, w′) with w′ ∈ [a, b] must be in W. Now let N =
⌈
|E|

D·∆min

⌉
. It follows that the subset of E

given by Ws = {w | (s, w) ∈ W} may be divided into at most N disjoint intervals [as,j , bs,j ] (1 ≤ j ≤ N),
each of size at least D ·∆min. We may therefore characterize the set of configurations (s0, w0) satisfying the
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energy-constained infinite-run problem as being those for which there exist values (as,j , bs,j)s∈S,1≤j≤N such
that

w0 ∈
⋃

1≤j≤N

[as0,j ; bs0,j ] ∧
∧
s∈S

∧
1≤j≤N

(
[as,j ; bs,j ] ⊆ E ∧

∀w ∈ [as,j ; bs,j ].
∨

(s,s′)∈T

(
∃a, b ∈ E. UE

P (s,s′)(w, a, b) ∧
∨

1≤k≤N

([a; b] ⊆ [as′,k; bs′,k])
))

(4)

By quantifier elimination, the above may be rewritten as a boolean combination of linear constraints over
the variables as,j , bs,j , and determining the satisfiability of the formula is decidable. �

It is worth noticing that we do not assume flatness of the model for proving the above theorem. Instead,
the minimal-delay assumption (R) has to be made.

Example 3.3. We pursue on Example 3.2. If ETPu P is iterated (as on the loop on state m2 of Fig. 3,
but now with uncertainty), the set W (there is a single macro-state) can be captured with a single interval
[a, b]. We characterize the set of energy levels from which the path P can be iterated infinitely often while
satisfying the energy constraint E = [0, 5] using equation (4), as follows:

0 ≤ a ≤ b ≤ 5 ∧ ∀w0 ∈ [a; b]. UE
P (w0, a, b).

We end up with

2.435 ≤ a ∧ b ≤ 3.635 ∧ b ≥ a+ 0.6.

so that the largest interval is [2.435; 3.635] (which can be compared to the maximal fixpoint [2; 4] that we
obtained in Example 2.4 for the same cycle without uncertainty).

3.4. Synthesis of Optimal Upper Bound

As in the setting without uncertainties, we can also synthesize an (optimal) upper-bound for the energy
constraint:

Theorem 3.2. Let A = (S, T, P ) be a depth-1 flat SETAu. Let L ∈ Q be an energy lower bound, and let
(s0, w0) be an initial macro-configuration. Then the existence of an upper energy bound U , such that the
energy-constrained infinite-run problem is satisfied for the energy constraint [L;U ] is decidable.

Furthermore, one can compute the least upper bound, if one exists.

Proof. First, for a cycle ETPu C and a lower energy bound L, we may define a quaternary relation XL
C on E

such that XL
C (w, a, b, U) holds if, and only if, U [L;U ]

C (w, a, b). Clearly XL
C can be described as a first-order

formula over linear arithmetic, and, by quantifier elimination, as a boolean combination of linear constraints
over w, a, b and U .

Now, since A is a depth-1 flat SETAu, we can assume w.l.o.g. that A consists in a path followed by a
cycle that one tries to iterate. This is no loss of generality since a depth-1 flat SETAu can be seen as a
finite union of such simple automata. Hence we assume A = (S, T, P ) has two macro states s and s′, and
two macro-transitions (s, s′) and (s′, s′). We let P be the path P (s, s′) and C be P (s′, s′). Since we consider
only one cycle, we can capture Ws′ with a single interval [as′ ; bs′ ]. For any given U , following the idea of
Equation (4), the set of configurations (s0, w0) satisfying the energy-constrained infinite-run problem is the
set for which there exist as′ and bs′ such that

w0 ∈ [L;U ] ∧ ∃a, b. XL
P (w0, a, b, U) ∧ [a; b] ⊆ [as′ ; bs′ ] ⊆ [L;U ] ∧

∀w ∈ [as′ ; bs′ ]. ∃a′, b′ ≥ L′. XL
C (w, a′, b′, U) ∧ [a′; b′] ⊆ [as′ ; bs′ ]

By quantifier elimination, the above may be rewritten as a boolean combination of linear constraints
over the variables as′ , bs′ and U , denoted by ϕ(as′ , bs′ , U). Determining the satisfiability of the formula
ϕ(as′ , bs′ , U) is decidable. In addition, eliminating the quantifiers in the formula ∃as′ , bs′ . ϕ(as′ , bs′ , U) yields
a boolean combination of linear constraints over the single variable U . For the fact that such a formula
has only one variable, it needs to represent the interval of values for U which admit an energy-constrained
infinite run. Clearly, the lower bound of such interval is the minimal value of U . �
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4. Case Study

In this section we present an industrial case study that was provided by the HYDAC company in the context
of a European research project Quasimodo [Qua]. The case study consists in an on-off control system where
the system to be controlled, depicted in Fig 1a, is composed of (i) a machine that consumes oil, (ii) an
accumulator containing oil and a fixed amount of gas in order to put the oil under pressure, and (iii) a
controllable pump which can pump oil in the accumulator. When the system is operating, the machine
consumes oil under pressure out of the accumulator. The level of the oil, and so the pressure within the
accumulator, can be controlled by pumping additional oil in the accumulator (thereby increasing the gas
pressure). The control objective is twofold: first the level of oil into the accumulator (and so the gas pressure)
shall be maintained within a safe interval; second, at the end of each operating cycle, the accumulator
shall be in a state that ensures the controllability of the following cycle. Besides these safety requirements,
the controller should also try to minimize the oil level in the tank, so as to not damage the system.

4.1. Modelling the oil pump system

In this section we describe the characteristics of each component of the HYDAC case. Then we model the
system as a SETA.

The Machine. The oil consumption of the machine is cyclic. One cycle of consumptions, as given by HYDAC,
consists of 10 periods of consumption, each having a duration of two seconds, as depicted in Figure 1b. Each
period is described by a rate of consumption mr (expressed in litres per second). The consumption rate
is subject to noise: if the mean consumption for a period is c l/s (with c ≥ 0) its actual value lies within
[max(0, c− ε); c+ ε], where ε is fixed to 0.1 l/s.

The Pump. The pump is either On or Off, and we assume it is initially Off at the beginning of a cycle.
While it is On, it pumps oil into the accumulator with a rate pr = 2.2 l/s. The pump is also subject to timing
constraints, which prevent switching it on and off too often.

The Accumulator. The volume of oil within the accumulator will be modelled by means of an energy vari-
able v. Its evolution is given by the differential inclusion dv/dt− u · pr ∈ −[mr + ε;mr − ε] (or −[mr + ε; 0]
if mr − ε < 0), where u ∈ {0, 1} is the state of the pump.

The controller must operate the pump (switch it on and off) to ensure the following requirements: (R1) the
level of oil in the accumulator must always stay within the safety bounds E = [Vmin;Vmax]4 (R2) at the end
of each machine cycle, the level of oil in the accumulator must ensure the controllability of the following
cycle.

By modelling the oil pump system as a SETA H, the above control problem can be reduced to finding
a deterministic schedule that results in a safe infinite run in H. Furthermore, we are also interested in
determining the minimal safety interval E, i.e., finding interval bounds that minimise Vmax − Vmin, while
ensuring the existence of a valid controller for H.

As a first step in the definition of H, we build an ETP representing the behaviour of the machine,
depicted in Fig. 7. In order to fully model the behaviour of our oil-pump system, one would require the
parallel composition of this ETP with another ETP representing the pump. The resulting ETA would not
be a flat SETA, and is too large to be handled by our algorithm with uncertainty. Since it still provides
interesting results, we develop this (incomplete) approach in Section 5.

Instead, we consider a simplified model of the pump, which only allows to switch it on and off once
during each 2-second slot. This is modelled by inserting, between any two states of the model of Fig. 7,
a copy of the ETP depicted on Fig. 8. In that ETP, the state with rate p−m models the situation when the
pump is on. Keeping the pump off for the whole slot can be achieved by spending delay zero in that state.
We name H1 = (M,T, P1) the SETA made of a single macro-state equiped with a self-loop labelled with the
ETP above.

In order to take into account the timing constraints of the pump switches, we also consider a second SETA
model H2 = (M,T, P2) where the pump can be operated only during every other time slot. This amounts to
inserting the ETP of Fig. 8 only after the first, third, fifth, seventh and ninth states of the ETP of Fig. 7.

4 The HYDAC company has fixed Vmin = 4.9 l and Vmax = 25.1 l.
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Fig. 7. The ETP representing the oil consumption of the machine.
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Fig. 8. An ETP for modelling the pump

Controller [L;U ] [a; b] Mean vol. (l)

H1 [4.9; 5.84] [4.9; 5.84] 5.43

H1(ε) [4.9; 7.16] [5.1; 7.16] 6.15

H2 [4.9; 7.9] [4.9; 7.9] 6.12

H2(ε) [4.9; 9.1] [5.1; 9.1] 7.24

G1M1 [CJL+09] [4.9; 25.1](∗) [5.1; 9.4] 8.2

G2M1 [CJL+09] [4.9; 25.1](∗) [5.1; 8.3] 7.95

[ZZKL12] [4.9; 25.1](∗) [5.2; 8.1] 7.35

Table 1. Characteristics of the synthesised strategies, compared with the strategies proposed in [CJL+09,
ZZKL12]. (∗) Safety interval as specified by the HYDAC company.

We also consider extensions of both models with uncertainty ε = 0.1 l/s (changing any negative rate −m
into rate interval [−m − ε;−m + ε], but changing rate 0 into [−ε; 0]). We write H1(ε) and H2(ε) for the
corresponding models.

4.2. Synthesizing Controllers

For each model, we synthesise minimal upper bounds U (within the interval [Vmin;Vmax]) that admit a solu-
tion to the energy-constrained infinite-run problem for energy constraint E = [Vmin;U ]. Then, we compute
the greatest stable interval [a; b] ⊆ [L;U ] of the cycle witnessing the existence of an E-constrained infinite-
run. This is done by following the methods described in Sections 2 and 3 where quantifier elimination is
performed using Mjollnir [Mon10].

Finally for each model we synthesise optimal strategies that, given an initial volume w0 ∈ [a, b] of the
accumulator, return a sequence of pump activation times ton

i and toff
i to be performed during the cycle. This is

performed in two steps: first we encode the set of safe permissive strategies as a quantifier-free first-order
linear formula having as free variables w0, and the times ton

i and toff
i . The formula is obtained by relating

w0, and the times ton
i and toff

i with the intervals [L;U ] and [a; b] and delays di as prescribed by the energy
relations presented in Sections 2 and 3. We use Mjollnir [Mon10] to eliminate the existential quantifiers on
the delays di. Then, given an energy value w0 we determine an optimal safe strategy for it (i.e., some timing
values when the pump is turned on and off) as the solution of the optimization problem that minimizes the
average oil volume in the tank during one consumption cycle subject to the permissive strategies constraints.
To this end, we use the function FindMinimum of Mathematica [Wol] to minimize the non-linear cost function
expressing the average oil volume subject to the linear constraints obtained above. Fig. 9 shows the resulting
strategies: there, each horizontal section of the graph represents a strategy for an entire pump cycle when
the system enters the cycle at a given initial oil level (measured in decilitres). The green intervals indicate
where the pump, according to the strategy, will be running.

The first part of Table 1 summarises the results obtained for our models. It gives the optimal volume
constraints, the greatest stable intervals, and the values of the worst-case (over all initial oil levels in [a; b])
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Fig. 9. Local strategies for a single cycle of the HYDAC system. (top-left) H1; (top-right) H2; (bottom-left)
H1(ε); (bottom-right) H2(ε) (ε = 0.1 l/s).

mean volume. It is worth noting that the models without uncertainty outperform the respective version
with uncertainty. Moreover, the worst-case mean volume obtained both for H1(ε) and H2(ε) are significantly
better than the optimal strategies synthesised both in [CJL+09] and [ZZKL12].

The reason for this may be that (i) our models relax the latency requirement for the pump, (ii) the
strategies of [CJL+09] are obtained using a discretisation of the dynamics within the system, and (iii) the
strategies of [CJL+09] and [ZZKL12] were allowed to activate the pump respectively two and three times
during each cycle.

We proceed by comparing the performances of our strategies in terms of accumulated oil volume. Fig-
ure 10 shows the result of simulating our strategies for a duration of 200 s, i.e., 10 consecutive machine
cycles. The plots illustrate in blue (resp. red) the dynamics of the mean (resp. min/max) oil level in the
accumulator as well as the state of the pump—a green interval indicates that in that period the pump is on.
The initial volume used for evaluating the strategies is 8.3 l, as done in [CJL+09] for evaluating respectively
the Bang-Bang controller, the Smart Controller developed by HYDAC, and the controllers G1M1 and G2M1
synthesised with uppaal-tiga5.

Table 2 presents, for each of the strategies, the resulting accumulated volume of oil, and the corresponding
mean volume. There is a clear evidence that the strategies for H1 and H2 outperform all the other strategies.
Clearly, this is due to the fact that they assume full precision in the rates, and allow for more switches of the
pump. However, these results shall be read as what one could achieve by investing in more precise equipment.
The results also confirm that both our strategies outperform those presented in [CJL+09]. In particular the
strategy for H1(ε) provides an improvement of 55%, 46%, 20%, and 19% respectively for the Bang-Bang
controller, the Smart Controller of HYDAC, and the two strategies synthesised with uppaal-tiga.

One can see in the plots in Fig. 10 all the strategies start by keeping the pump off until the oil volume
reaches a level within a stable interval (cf. Table 1). From there on, by following the strategies described in
Fig. 9, the oil level varies following a repetitive pattern.

5 We refer the reader to [CJL+09] for a more detailed description of the controllers.
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Fig. 10. Simulations of 10 consecutive machine cycles, started at initial oil level 83 decilitres, performed resp.
with the strategies for (top-left) H1; (top-right) H2; (bottom-left) H1(ε); and (bottom-right) H2(ε).

Controller Acc. vol. (l) Mean vol. (l)

H1 1081.77 5.41

H2 1158.9 5.79

H1(ε) 1200.21 6.00

H2(ε) 1323.42 6.62

Bang-Bang 2689 13.45

hydac 2232 11.6

G1M1 1518 7.59

G2M1 1489 7.44

Table 2. Performance based on simulations of 200 s starting with 8.3 l.

4.3. Tool Chain

Our results have been obtained using Mathematica [Wol] and Mjollnir [Mon10]. Specifically, Mathematica
was used to construct the formulas modelling the post-fixpoints of the energy functions, calling Mjollnir
for performing quantifier elimination on them. The computation of the optimal upper bounds, and greatest
stable intervals were then handled with Mathematica, as well as the computation of the optimal schedules
and the respective simulations. It is worth mentioning that Mathematica provides the built-in function
Resolve for preforming quantifier elimination, but Mjollnir was preferred to it both for its performances and
its concise output. The combination of both tools allowed us to solve one of our formulas with 27 variables
in a compositional manner in ca. 20 ms, while Mjollnir alone would take more than 20 minutes.

The Mathematica source code as well as the set up of our experiments are available at http://people.
cs.aau.dk/giovbacci/tools.html.

http://people.cs.aau.dk/giovbacci/tools.html
http://people.cs.aau.dk/giovbacci/tools.html
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Fig. 11. An ETP modelling the pump
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Fig. 12. Strategies for the m-stable interval [5.1; 8.9] l
(for U = 11.5 l)
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Fig. 13. Simulation of 10 cycles

5. Non-flat Model of the HYDAC Case

We briefly present a more precise model of the HYDAC example, closer to what appeared in [CJL+09], using
a non-flat SETA. The model is built by considering two flat ETPs running in parallel: one ETP models the
consumption cycle of the machine (with fixed delays; see Fig. 7), and the second one models the state of
the pump over a complete cycle of the machine, allowing for instance at most 4 switches during one cycle
(see Fig. 11). This almost exactly corresponds to the model considered in [CJL+09].

The resulting model is an ETA, which can actually be turned into a non-flat SETA. Hence it only fits
in our framework with uncertainty. However, for fixed L and U , it is still possible to write down the energy
relation, with or without uncertainty: it results in a (large) list of cases, because of interleaving.

Following [CJL+09], we then compute m-stable intervals, i.e., intervals [a; b] of oil levels for which there
is a schedule to end up with final oil level in [a+m; b−m]. In the absence of uncertainties, fixing L = 4.9 l
and m = 0.4 l, we could then prove that there are m-stable intervals as soon as U ≥ 8.1 l.

With uncertainties, we obtain an m-stable interval [5.1; 8.9] l as soon as U ≥ 11.5 l. This again significantly
improves on [CJL+09] (which considered discrete time). Notice we did not apply our algorithm based on
Formula (4) here (hence we may have missed better solutions): the formula would be very large, and would
involve (U − L)/0.2 intervals [as,j ; bs,j ] for each state of the automaton; this is much more than what our
approach can currently handle.

For the m-stable interval [5.1; 8.9] l, we computed the constraints characterising all safe strategies. Fig-
ure 12 displays our strategies (notice the similarities with Fig. 5 of [CJL+09]). We were not able to select the
optimal strategy for the mean volume because expressing the mean volume results in a piecewise-quadratic
function. Instead we selected the strategy that fills in the tank as late as possible (which intuitively tends
to reduce the mean volume over one cycle). Figure 13 shows a simulation performed over 10 cycles (which
correspond to 200 s) starting from initial volume 8.3 l. As before, the plot illustrates in blue (resp. red) the
dynamics of the mean (resp. min/max) oil level in the accumulator as well as the state of the pump—time
intervals where the pump is on are indicated in green. For this experiment we obtain a total accumulated
volume of 1728.85 l, having mean accumulated volume 8.64 l within the uncertainty interval [8.14, 9.14] l.
In contrast with Fig. 10, in the simulation depicted in Fig. 13 the oil level never touched the lower bound of
the m-stable interval. This may indicate that the proposed strategy may not be optimal.

Remark 5.1. We recall that energy-constrained infinite-run problem is in general undecidable. Hence the
strategies proposed in [CJL+09] and [ZZKL12] for the HYDAC case are based on heuristics or models which
used permissive energy intervals where the scheduling could be (semi-automatically) proven to be found.

In this paper we showed that for the subclass of flat SETA, the energy-constrained infinite-run problem
is, in fact, decidable (Theorem 2.1) and that optimal energy bounds can be computed (Theorem 2.2). The
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class of flat SETA is quite expressive, though it has some limitations. These limitations emerged also in our
case study.

6. Conclusion

We developed a novel framework allowing for the synthesis of safe and optimal controllers, based on energy
timed automata. Our approach consists in a translation to first-order linear arithmetic expressions represent-
ing our control problem, and solving these using quantifier elimination and simplification. We demonstrated
the applicability and performance of our approach by revisiting the HYDAC case study and improving its
best-known solutions.

Future work includes extending our results to non-flat and non-segmented energy timed automata. Ex-
isting results [Mar11] indicate that we are close to the boundary of decidability, but we believe that by
extending the work on energy relations (Section 2.1) along the lines of [CFL19], it should be possible to
further expand the horizon of our decidability results towards the boundary set in [Mar11].

Another interesting continuation of this work would be to add Uppaal Stratego [DJL+14, DJL+15]
to our tool chain. This would allow to optimize the permissive strategies that we compute with quantifier
elimination in the setting of probabilistic uncertainty, thus obtaining controllers that are optimal with respect
to expected accumulated oil volume.
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