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Abstract 14 

Soil degradation by concentrated runoff and soil erosion induces major environmental and 15 

economic damages, notably in agricultural areas under temperate climates. The use of 16 

herbaceous vegetation aims to increase the hydraulic resistance and thus reduce runoff and soil 17 

erosion while retaining sediments on site. However, the identification of the most suitable 18 

species to mitigate runoff is often specific to a phytogeographical territory and hampered by 19 

the intraspecific variability, which reduces the transposition of a solution to other territories 20 

and the ability to quantify the effects of the vegetation. Using a plant trait-based approach 21 

allows understanding and characterising the direct effects of the vegetation on runoff and soil 22 

erosion mitigation as well as on the sediment retention increase. Here, we review the influence 23 

of plant aboveground functional types and traits of herbaceous vegetation on the hydraulic 24 

resistance and sediment retention and the contentious effects of the functional diversity on the 25 
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hydraulic resistance and sediment retention, within agricultural catchments. Using this 26 

knowledge, we propose applications of the trait-based approach to design and manage 27 

herbaceous hedges for sediment retention and soil erosion control. This review synthesises 28 

recent advances regarding the effects of the functional traits on runoff and sediment retention 29 

and defines a trait-based selection method of the plant species for runoff and soil erosion 30 

control. 31 

 32 
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 37 

1. Introduction 38 

Soil erosion by water is a natural hazard frequently observed in tropical, Mediterranean and 39 

temperate areas leading to soil degradation, and is accentuated by anthropogenic factors, 40 

especially by agriculture (Poesen, 2018). The efficiency of herbaceous vegetation to mitigate 41 

soil erosion has been established for the past decades and their different effects on the soil 42 

erosion processes (Figure 1) have been intensively studied (Haan et al., 1994; Liu et al., 2020; 43 

Ludwig et al., 2005; Mekonnen et al., 2015). Herbaceous vegetation reduce soil erosion by 44 

protecting the soil against the raindrops impacts; furthering infiltration; stabilising soil; 45 

increasing surface roughness; reducing runoff velocity; boosting evapo-transpiration; and 46 

inducing sediment retention (Morgan, 2009; Styczen & Morgan, 1995). However, the plants 47 

efficiency towards runoff and soil erosion reduction depends on the species used, which points 48 

to the importance of inter and intraspecific variations in plant traits (Cao et al., 2015; Hayes et 49 

al., 1984). The effects of plant root density, length density, tensile strength, area ratio and 50 
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system morphology on soil and slope stabilisation as well as on soil shear strength have been 51 

thoroughly analysed (De Baets et al., 2006, 2009; Stokes, 2007; Stokes et al., 2014). The 52 

reduction of the splash-driven soil detachment due to the vegetation has also been well 53 

documented, showing the positive effect of the plant canopy on the decrease of the raindrop 54 

kinetic energy (Gyssels et al., 2005; Morgan, 2004; Styczen & Morgan, 1995). The infiltration 55 

rate and the hydraulic resistance are the two main processes inducing sediment retention at the 56 

vegetation patch scale. As long as the hydraulic conductivity of the soil remains unsaturated, 57 

the soil infiltration rate, increased by the presence of the vegetation, slows the runoff generation 58 

(Styczen & Morgan, 1995). However, once the soil reaches the saturated hydraulic 59 

conductivity, the main process inducing sediment retention and the reduction of the runoff flow 60 

velocity is the hydraulic resistance created by the vegetation (Styczen & Morgan, 1995), which 61 

also furthers infiltration (Dabney et al., 1995; Dosskey et al., 2010; Gilley et al., 2000). The 62 

hydraulic resistance is the force that overland flow experiences on the soil surface and which 63 

may be influenced by the frictional drag-over the elements present at the soil surface scale such 64 

as residue cover, clods, gravel and standing vegetation (Gilley & Kottwitz, 1995). Indeed, the 65 

aboveground biomass of the herbaceous vegetation slows the flow velocity down, creating a 66 

backwater area in front of the vegetation where sediments settle as the sediment transport 67 

capacity of the flow is reduced (Akram et al., 2014; Cantalice et al., 2015; Hussein et al., 2007). 68 

This plant effect can be modelled by the use of hydraulic roughness coefficients, such as Darcy-69 

Weisbach f and the Manning's n (Haan et al., 1994). Most of the studies referencing the 70 

reduction of soil erosion by plants focussed on semi-arid and Mediterranean climates, as higher 71 

soil erosion rates are found in these areas (De Baets et al., 2009; Durán Zuazo & Rodríguez 72 

Pleguezuelo, 2008; Liu et al., 2020; Vannoppen et al., 2015; Zhu et al., 2015), giving soil 73 

erosion processes under temperate climates less importance, mainly due to the average slope 74 

gradients lower than 5% (Remy & Le Bissonnais, 1998). 75 
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 76 

Figure 1. Effects of herbaceous vegetation on soil erosion processes 77 

 78 

The reduction of the runoff flow velocity and soil erosion rates is mainly induced by the 79 

hydraulic resistance of the plants at the vegetation patch scale in temperate agricultural 80 

catchments. Distinctive to temperate oceanic climates, these catchments are regularly affected 81 

by intense runoff and soil erosion episodes, due to the intensified tillage and the cultivation of 82 

annual crops on sloping loamy soils (Boardman & Poesen, 2006; Gobin et al., 2003; Styczen 83 

& Morgan, 1995). The improvement of the herbaceous vegetation efficiency for the mitigation 84 

of soil erosion requires a good understanding of the relationship between the plant aboveground 85 

functional traits and the hydraulic resistance. Functional traits are defined as “morpho-physio-86 

phenological traits which indirectly impact fitness via their effects on growth, reproduction and 87 

survival” (Violle et al., 2007). Trait-based ecology and agroecology allow characterising the 88 

plant responses to environmental changes and their effects on ecosystem processes, such as 89 

soil erosion, and allow the transposition of these effects to other biogeographical territories 90 

(Burylo et al., 2012; Kervroëdan et al., 2018; Liu et al., 2018b). Studying the linkages between 91 

the plant functional traits and the soil properties and processes constitutes an essential approach 92 
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to understand hydrological processes allowing to design new ecosystems offering the best 93 

efficiency for the reduction of soil erosion (Faucon et al., 2017). The functional diversity, 94 

defined as “the value, range, and relative abundance of plant functional traits in a given 95 

ecosystem” (Díaz et al., 2007a; Tilman, 2001), influences the ecosystem processes and 96 

functioning, although its effects are contentious (Garnier et al., 2016). The “mass ratio 97 

hypothesis” stipulates that the ecosystem properties are driven by the traits of the dominant 98 

species in the community (Grime, 1998). Accordingly, the ecosystem properties would be 99 

determined by the community-weighted mean trait values of the dominant species (Díaz et al., 100 

2007b). On the other hand, the ecosystem processes can also be driven by non-additive effects 101 

(i.e. complementarity or facilitation) among the coexisting species with diverse trait values, 102 

which can be designated by functional diversity indices (e.g. functional divergence, distance 103 

between high abundant species and the centre of the functional space) (Díaz et al., 2007b; 104 

Garnier & Navas, 2012; Mouillot et al., 2011). Given that functional diversity impacts various 105 

ecological processes and notably soil erosion (Erktan et al., 2013; Garnier et al., 2016; Zhu et 106 

al., 2015), the effects of the plant functional diversity can be analysed to understand the 107 

potential impacts on the hydraulic resistance and the resulting sediment retention. 108 

Even though a number of studies have reviewed the effects of vegetation on the soil erosion 109 

processes, linking plants with the overall soil erosion rates and soil loss, only a limited 110 

specification of the plant traits influencing more targeted processes, such as sediment retention, 111 

have been reported (Gyssels et al., 2005; Liu et al., 2018; Puigdefábregas, 2005). Identifying 112 

the efficient functional traits to reduce concentrated runoff and soil erosion would allow 113 

selecting plant species and designing herbaceous infrastructures to go further into land planning 114 

and soil protection. This review synthesises the recent advances and contemporary 115 

understanding on the effects of the plant functional traits in herbaceous vegetation on runoff 116 

mitigation, sediment retention and soil erosion control in agricultural catchments by reviewing: 117 
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(1) the influence of plant aboveground functional types and traits on the hydraulic resistance 118 

and sediment retention; (2) the contentious effects of the functional diversity on the hydraulic 119 

resistance and sediment retention and (3) the applications of the trait-based approach for the 120 

design and the management of herbaceous hedges for sediment retention and erosion control. 121 

 122 

2. Effects of plant aboveground functional types and traits on the hydraulic 123 

resistance and sediment retention 124 

2.1.Effects of the plant functional types  125 

The characterisation of the functional types influencing the hydraulic resistance is required to 126 

identify the most relevant herbaceous vegetation (Figure 2A). Species favouring vegetative 127 

spreading with rhizomes, tilers or stolon can play a key role in the increase of the hydraulic 128 

resistance and sediment retention. Indeed, rhizomes and stolon guarantee a lateral spreading 129 

growth pattern, with a dense and homogenous ground cover (100%) limiting the presence of 130 

preferential flow paths within the vegetation, and a burying tolerance towards recurring 131 

sedimentation (Maun, 1998). The perennial herbaceous species under the Raunkiaer’s life-form 132 

categories “herbaceous chamaephytes” and “hemicryptophytes” provide an effective soil cover 133 

through all seasons by increasing the hydraulic resistance in comparison to bare soils (Bautista 134 

et al., 2007; Berendse et al., 2015; Martin et al., 2010). Within these life-form categories, the 135 

caespitose and non-caespitose types with fresh or dry biomass in winter allow a constant 136 

ground cover when soil erosion is observed at its highest in cultivated areas under temperate 137 

climates (Boardman & Poesen, 2006; Durán Zuazo & Rodríguez Pleguezuelo, 2008). The 138 

herbaceous vegetation should present a higher vegetative height than the water maximal level 139 

found in the targeted areas of implantation (e.g. 20cm in north-west Europe at a frequency of 140 

5 to 10 years in a catchment of 20ha (Richet et al., 2017)) to be efficient against concentrated 141 

flows (Dillaha et al., 1989; Van Dijk et al., 1996). Water maximal level should be estimated 142 
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using the discharges of the erosional episodes against which the herbaceous vegetation should 143 

be efficient. The functional types involved in the increase of the hydraulic resistance and 144 

sediment retention could constitute a set of criteria to select potential candidate species within 145 

a specific phyto-geographical area for soil erosion control (Figure 2A). Perspective is to define 146 

the selection method and to integrate the effects of functional traits into the selection process 147 

to design efficient herbaceous vegetation to mitigate soil erosion. 148 

 149 

Figure 2. Functional types (a) and traits (b) involved in theincrease of the hydraulic resistance and sediment 150 

retention under temperate climates to select efficient herbaceous vegetation 151 
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2.2.Effects of leaf and stem functional traits  152 

Most of the studies about the effects of vegetation on soil erosion and sediment retention focus 153 

on the impacts of the aboveground functional traits. Both stem and leaf traits have been 154 

identified for the past decades as efficient for triggering sediment retention (Figure 2B). The 155 

leaf density and area are the main leaf traits impacting sediment retention (Burylo et al., 2012; 156 

Graff et al., 2005; Lambrechts et al., 2014) and the hydraulic resistance (Kervroëdan et al., 157 

2018). The stem density and diameter are two of the main stem traits influencing sediment 158 

retention (Bochet et al., 2000; Isselin-Nondedeu & Bédécarrats, 2007; Mekonnen et al., 2016; 159 

Meyer et al., 1995; Morgan & Duzant, 2008). The efficiency of the stem density on runoff 160 

depends on the slope and the type of soil. Indeed, on 20% slopes of silty soils, vegetation with 161 

a stem density of 7500 stems.m-2 would reduce the flow velocity by 90.6%, while on a 10% 162 

slope 2500 stems.m-2 would reduce the velocity by 91.9%, in comparison to bare soil (Morgan, 163 

2004). Focussing on the effects of traits on the hydraulic resistance at the vegetation scale in 164 

north-west Europe,  Kervroëdan et al. (2018) investigated the effects of density-weighted traits 165 

(trait weighted by the density of the trait). This approach identified the most efficient 166 

combinations of density-weighted traits as: (1) the density-weighted leaf area (i.e. leaf area x 167 

leaf density, in mm2.dm-2) with the density-weighted stem diameter (i.e. stem diameter x stem 168 

density, in mm.dm-2) and (2) the density-weighted leaf area with the density-weighted 169 

projected stem area (which represents the projected area towards the flow; stem projected area 170 

x stem density, in mm2.dm-2), also emphasising the indirect effect of the stem density. The stem 171 

stiffness has also been found to induce sediment retention (Meyer et al., 1995), although 172 

contrasting results are found in the literature (Burylo et al., 2012). These contrasting results 173 

could be explained by the differences in the discharges used: with higher discharges (from 11 174 

to 43.7 l.s-1.m-1) an effect of the stem stiffness was found compared to smaller discharges (1.6 175 

l.s-1.m-1); indicating that the effects of traits could change depending on the discharge. Indeed, 176 
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the leaf area was found efficient for small discharges (2 and 4 L.s-1.m-1) while the leaf density 177 

only had an effect at higher discharges (8 and 11 L.s-1.m-1) (Burylo et al., 2012; Kervroëdan et 178 

al., 2018). A changing response of the leaf structure, stem density and diameter on the hydraulic 179 

resistance and sediment retention was also found depending on the discharge used. At low 180 

discharges, the hydraulic resistance was dependent on the vegetation density (Temple et al., 181 

1987; Van Dijk et al., 1996); while at higher discharges, with flow depths higher than the 182 

deflecting vegetation height, the hydraulic resistance was found primarily influenced by the 183 

stem density, diameter and stiffness, and less by the leaf structure (Meyer et al., 1995; Temple 184 

et al., 1987; Vieira & Dabney, 2012). 185 

The knowledge of the effects of plant traits on runoff and sediment retention constitutes an 186 

advancement for the modelling of the vegetation effects on soil erosion and runoff mitigation, 187 

such as in VFSMOD (Vegetative Filter Strip Modelling System). This model evaluates the 188 

effects of vegetation on hydrology and sediment transport processes through vegetative filter 189 

strips. The model is physically based and simulates the sediment retention resulting of the 190 

vegetation hydraulic resistance (e.g. Manning index). Although this model is widely used, the 191 

characterisation of the hydraulic resistance of the vegetation is based on a limited number of 192 

plant traits: stem density and height (Muñoz Carpena & Parsons, 2014). Adding traits identified 193 

as efficient in increasing the hydraulic resistance in herbaceous hedges would extend the 194 

precision of the modelling of the efficiency of vegetative barriers and would broaden the field 195 

of application of the model. Therefore, improvements may apply to: (1) the estimation of the 196 

sediment transport and retention capacities, (2) the application of the model for other vegetative 197 

objects than vegetative filter strips and (3) the design of herbaceous vegetation by creating 198 

efficient vegetation for the hydraulic processes encountered in the implantation landscape. 199 

Perspective is to compare results obtained using the model with ones obtained by 200 
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experimentations and to identify the main traits increasing the hydraulic resistance and 201 

sediment retention. 202 

 203 

 204 

2.3.Contentious effects of the functional diversity in herbaceous vegetation on 205 

the hydraulic resistance and sediment retention 206 

For decades, studies highly focused on the effects of the functional diversity on few main 207 

ecosystem processes, notably related to the carbon cycles (Cadotte, 2017; Garnier et al., 2004; 208 

Zuo et al., 2016), but the effects of the functional diversity for a same process are found 209 

contrasting (Faucon et al., 2017; Garnier et al., 2016; Mariotte et al., 2017). These contentious 210 

results stress the need to widen the range of processes related to plant-soil interactions which 211 

could be affected by the functional diversity.  212 

Regarding runoff and soil erosion processes, most of the studies used a taxonomical 213 

characterisation of the communities to analyse the effects of plant diversity (Bautista et al., 214 

2007; Berendse et al., 2015; Fullen, 1998; Hou et al., 2016; Martin et al., 2010; Meyer et al., 215 

1995; Pohl et al., 2009; Turnbull et al., 2008; Zhang et al., 2015). A number of these studies 216 

focussed on the effects of non-herbaceous plant roots on soil stabilisation and vegetation patch 217 

pattern impact on erosion rates, showing that an increase of diversity led to a better soil 218 

resistance and stabilisation (Balvanera et al., 2006; Gyssels et al., 2005), as well as an increase 219 

of sediment retention in heterogeneous vegetation patterns (Hou et al., 2016). Other studies 220 

focused on the effects of functional groups, marking a first step into the use of a functional 221 

characterisation of the vegetation effects on runoff and soil erosion processes. The results 222 

showed complementarity effects on runoff, soil erosion and soil aggregation capacity (Martin 223 

et al., 2010; Pohl et al., 2009; Zhang et al., 2015). However, using functional diversity – by 224 

taking into account the aspects of diversity that impact the community structure and functions 225 
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– was highlighted to be a better predictor to characterise the effects of plant diversity on 226 

ecosystem processes (Cadotte et al., 2011), such as runoff and soil erosion. 227 

Land restoration using monospecific vegetation may be inefficient in reducing soil erosion 228 

given their simple canopy (Cao, 2011; Cao et al., 2009), however the effects of functional 229 

diversity on runoff and soil erosion processes have not been thoroughly studied. It is 230 

hypothesised that vegetation with high species and functional diversity positively influence the 231 

hydraulic resistance and reduce soil erosion. Plants with wider stem diameters would support 232 

the stems and leaves of species with higher leaf area and density. The biomass productivity of 233 

herbaceous vegetation positively influences the hydraulic resistance and sediment retention 234 

(Burylo et al., 2012; Podwojewski et al., 2011). Positive effects of the functional diversity on 235 

plant productivity would thus lead to an increase of the hydraulic resistance and sediment 236 

retention. These positive effects could notably come from the belowground traits by inducing 237 

a diversification in the nutrients and water sources accessibility and acquisition in the soil 238 

profile (Faucon et al., 2017; Tilman et al., 2014). Only few studies have focussed on the 239 

functional diversity effects on soil erosion at the ecosystem level, with controversial results 240 

(Erktan et al., 2013; Kervroëdan et al., 2019; Zhu et al., 2015). In semi-arid grasslands, the 241 

functional divergence explained up to 40% of the variation of the erosion rates, due to a greater 242 

niche differentiation within the tested communities (Zhu et al. 2015). However, when focusing 243 

on the effects of functional types mixtures in Mediterranean mountainous ecosystems, no effect 244 

of the functional diversity on sediment retention was found, due to areas of least resistance to 245 

flow created by the shrubs and trees individuals (Erktan et al., 2013). These results are 246 

consistent with other observed on the effect of trait divergence on the hydraulic resistance and 247 

sediment retention for herbaceous vegetation in a temperate agricultural catchment 248 

(Kervroëdan et al., 2019). However, the number of studies is limited to fully understand the 249 

effects of functional diversity on the hydraulic resistance and sediment retention. Perspective 250 
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is to study a number of combinations of species and a wide gradient of functional diversity 251 

comprising traits involved in the hydraulic resistance and sediment retention increase. This 252 

would allow analysing the contentious findings and identifying if they could be the result of 253 

idiosyncratic effects of the traits, corresponding to contrasting effects of the functional diversity 254 

influenced by the species-traits and the plant-soil interactions.  255 

 256 

 257 

3. Applications to design and manage herbaceous hedges for sediment retention and 258 

soil erosion control 259 

In agricultural areas, implanting vegetative barriers in the form of herbaceous hedges across 260 

the flow path would reduce sheet and concentrated erosion, as well as retaining sediment 261 

(Dabney et al., 1995). Herbaceous hedges are narrow strips of dense and stiff perennial 262 

vegetation and present a high efficiency in reducing soil erosion caused by concentrated flows 263 

and for sediment retention (Dabney et al., 1995; Yuan et al., 2009). They have been used for 264 

decades in various areas such as in the United States, tropical or semi-arid areas (Dabney et al., 265 

1995; Gilley et al., 2000; Liu et al., 2018; Mekonnen et al., 2016; Meyer et al., 1995; Wu et al., 266 

2010; Xiao et al., 2012). They are differentiated from vegetative filter strips by their width and 267 

functions (Figure 3). While herbaceous hedges are specifically designed to further the hydraulic 268 

resistance and sediment retention in concentrated flow paths, vegetative filter strips further the 269 

water infiltration and sediment retention within a wide area (> 5m width) under superficial and 270 

shallow flows and are useless under concentrated runoff events (Dabney et al., 1995; Dillaha 271 

et al., 1989). 272 
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 273 

Figure 3. Comparison between vegetative filter strips (a) along: 1—the thalweg's bottom line and 2—an 274 

agricultural field; and a multi-specific herbaceous hedge (b) between two fields across a concentrated flow 275 

(1 and 2) 276 

 277 

3.1.Candidates plant species to design herbaceous hedges: the case of north-278 

west Europe  279 

The first challenge is to apply defined criteria to select the species composition of herbaceous 280 

hedges in different phyto-geographical territories. Focussing on north-west Europe, composed 281 

of 3,500 spermatophyte species (Lambinon et al., 2012), with the following criteria based from 282 

the functional types: (1) perennial herbaceous vegetation “herbaceous chamaephytes” and 283 

“hemicryptophytes” which present biomass in winter (fresh or dry biomass) when soil erosion 284 

is observed at its highest in north-west Europe (Boardman & Poesen, 2006); (2) the presence 285 

of rhizomes or stolon; (3) a minimum vegetative height equal or higher than 20 cm, as it is the 286 
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maximal level of the water flows in the north-west European catchments; (4) a broad ecological 287 

niche for an implantation in a wide range of silty agricultural soils; and (5) non-weed species 288 

to avoid the spreading of the vegetation into the agricultural fields; only 76 candidate species 289 

potentially able to mitigate runoff and soil erosion are highlighted (Table 1; Villarroel, 2015). 290 

The characterisation of the effects of leaf and stem traits on the hydraulic resistance and 291 

sediment retention should be integrated into the selection criteria to narrow the list to efficient 292 

species, using the range of efficiency of the trait values. The threshold values of traits from 293 

which plants would efficiently increase the hydraulic resistance and sediment retention were 294 

identified using the unit stream power critical value of 0.004 m.s-1 (Govers, 1990), being the 295 

identified value of unit stream power from which the soil is likely to erode (for bare loess soils 296 

(D50 from 58 µm to 218 µm), with slopes ranging from 1° to 8° for discharges between 2 and 297 

100 cm3.cm-1.s-1 (0.2 to 10 l.s-1.m-1)). These data were extracted from data in Kervroëdan et al. 298 

(2018), as it focussed on the effects of traits on the hydraulic resistance in agricultural 299 

catchments from north-west Europe (Table 2). By using both the efficient combinations and 300 

the identified threshold values, the 76-species list of potential candidate species could be 301 

narrowed down to the most interesting ones to create herbaceous hedges in north-west Europe. 302 

Perspective is to select the candidate species for north-west Europe and other 303 

phytogeographical territories regarding their stem and leaf traits using studies identifying the 304 

minimal threshold values of traits for the processes occurring in different phytogeographical 305 

territories. Trait databases could also be used to select the candidate species and could be 306 

completed, as there are many traits of interest for runoff and soil erosion mitigation that are 307 

lacking for many species. 308 

 309 

3.2.Monospecific or multi-specific herbaceous hedges? 310 



15 

 

Biodiversity usually corresponds to a more ecologically stable system, as a stable and healthy 311 

system would be less vulnerable to abiotic and biotic stress (Tilman, 1999). Therefore, 312 

practitioners may ask if it is better to use only one or a few species that can efficiently increase 313 

sediment retention and mitigate runoff and soil erosion, or if a diverse range of species, 314 

sometimes less efficient, should be used. Most of the studied herbaceous hedges through the 315 

literature were monospecific hedges (Cao et al., 2015; Cullum et al., 2007; Dabney et al., 2004; 316 

Huang et al., 2010; Hussein et al., 2007; Lin et al., 2009; Liu et al., 2018; Mekonnen et al., 317 

2016; Meyer et al., 1995). However, the use of multi-specific vegetation to control runoff and 318 

soil erosion has been studied (Bautista et al., 2007; Berendse et al., 2015; Erktan et al., 2013; 319 

Hou et al., 2016; Kervroëdan et al., 2019; Martin et al., 2010; Pohl et al., 2009; Turnbull et al., 320 

2008; Zhang et al., 2015; Zhu et al., 2015), but some of the studies focussed on the diversity 321 

of different functional types or within vegetation patches. A positive effect of plant diversity 322 

was also found on the soil erosion resistance (Berendse et al., 2015). Trait divergence showed 323 

positive effects on sediment retention and the hydraulic resistance in herbaceous vegetation in 324 

loamy agricultural catchments, although the efficiency of the multi-specific vegetation could 325 

be lowered by the presence of species with large stem (Kervroëdan et al., 2019).  326 

Taking into account these contentious results and that species diversity within herbaceous 327 

hedges did not show negative interactions with the efficiency of the multi-specific hedges, it 328 

can be suggested using only few species with the best traits involved in decreasing runoff, 329 

increasing sediment retention and mitigating soil erosion in a same herbaceous hedge (Rey & 330 

Labonne, 2015). However, species diversity should be favoured as much as possible to: 331 

(1) enable reducing the risks of failure of vegetation systems in the case of the loss of a species 332 

on a site due to abiotic/biotic factors ((Berendse et al., 2015; Doak et al., 1998), and (2) provide 333 

other ecosystem services (e.g. habitat creation, ecological connectivity enhancement, 334 

integrated pest control). 335 
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 336 

3.3.Management of the herbaceous hedges to maintain their efficiency for 337 

sediment retention and erosion control 338 

Once the herbaceous hedges are designed and implanted, definition of their management plan 339 

is essential to maintain or improve their efficiency on the hydraulic resistance, sediment 340 

retention and erosion control. To do so, it is necessary to preserve the initial vegetation 341 

structure, which has the best community-weighted traits involved in the increase of the 342 

hydraulic resistance for processes in north-west Europe (i.e. leaf area and density, density-343 

weighted leaf area, stem projected area and stem diameter), by slowing down the vegetation 344 

succession and, notably, shrub and tree colonisation. The establishment of scattered trees or 345 

shrubs into the herbaceous hedge would enhance its infiltration capacity (Christen and 346 

Dalgaard 2013), as long as they are kept at a low height and present a light foliage to avoid 347 

competition and the reduction of the development of herbaceous species. The presence of too 348 

many ligneous species would limit the development of the herbaceous species by competing 349 

for the light and would then lead to the degradation of the herbaceous vegetation and thus, limit 350 

the effects on the hydraulic resistance and sediment retention. Cutting the vegetation is 351 

recommended in order to limit the dominance of tree and shrub species over herbaceous species 352 

within the hedge. Cutting the hedge should be performed every two/three years at the end of 353 

spring (circa end of June) in order to (1) allow the plants to grow back before the highest erosion 354 

events in winter and (2) limit the damages on the local fauna which use the herbaceous hedges 355 

to nest. The first 10 cm should be left as a cover to ensure a minimum survival of the plant in 356 

case an erosive event happens before the regrowth of the plants. Perspective is to test these 357 

management practices regarding the durability of the herbaceous hedge and its efficiency 358 

towards sediment retention.  359 

 360 
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3.4. From plot to catchment: location design and modelling of herbaceous 361 

hedges using a trait-based approach 362 

Numerous soil and landscape processes can control runoff sources and pathways, which results 363 

in a spatially heterogeneous runoff and erosion distribution (Vandaele & Poesen, 1995). 364 

Sediment control is site specific and thus requires specific studies to target the efficiency of the 365 

herbaceous hedges (Mekonnen et al., 2015; Tomer et al., 2008). The first criteria to take into 366 

account when designing herbaceous hedges is setting the expected levels of impacts, regarding 367 

the rainfall properties and the reduction of suspended sediments. As the effects of the functional 368 

traits can change regarding the flow characteristics (i.e. discharges), it is important to 369 

implement the desired efficiency range of the hedge depending on the flow discharges into its 370 

design (Kervroëdan et al., 2018). For recurrent processes (from twice to once a year), the 371 

vegetation composing the hedge should comprise dense stems with large diameters, as well as 372 

large leaf areas. For more stronger processes occurring less regularly (from once every two to 373 

five years), vegetation with dense leaves and stems, important leaf areas and large stem 374 

diameters should be considered for the design of herbaceous hedges. The following factors 375 

should also be taken into account for design and modelling purposes (Carluer et al., 2017; 376 

Dosskey et al., 2015): (1) the specific catchment area (i.e. upslope area contributing to runoff 377 

generation); (2) the soil characteristics (e.g. texture); (3) the slope gradient and topographical 378 

features (e.g. thalwegs); (4) the crops and (5) the observed runoff pathways. These factors can 379 

be implemented in a scoping tool to help local planners to set-up the herbaceous hedges at the 380 

most efficient location (Carluer et al., 2017; Dosskey et al., 2011, 2015; Tomer et al., 2008). 381 

These tools often rely on modelling soil erosion and runoff pathways using field scale (e.g. 382 

VFSMOD, CREAMS, TRAVA, WEPP) or catchment scale (e.g. LISEM, GeoWEPP, SWAT) 383 

models (Arnold et al., 2012; de Roo et al., 1998; Deletic, 2001; Flanagan et al., 2001; Knisel 384 

& Nicks, 1980; Muñoz Carpena & Parsons, 2014; Renschler et al., 2002). Methods to optimise 385 
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the location of vegetated objects such as filter strips have been developed (Gumiere et al., 386 

2011); however, herbaceous hedges functioning differently than filter strips, characterising a 387 

protocol to locate suitable areas for herbaceous hedges is needed. 388 

Two main approaches can be used to find out relevant location of herbaceous hedges (Dosskey 389 

et al., 2011). The first approach assesses the capability of vegetated areas to reduce runoff and 390 

sediment transport through infiltration and sediment retention processes. This means using soil 391 

and slopes properties to determine the infiltration capacity of the vegetated area which allows 392 

to calculate indexes such as the ‘Sediment Trapping Efficiency’ of the herbaceous hedge 393 

(Dosskey et al., 2011). The second approach performs terrain analysis through GIS use, 394 

especially on elevation dataset (Digital Elevation Model), to predict the runoff spatial patterns. 395 

The elevation dataset is processed to create the flow direction and the flow accumulation. The 396 

resulting data enables to map the hydrological network used by the runoff and to delineate the 397 

watersheds or specific catchment areas of previously selected places, such as field limits or 398 

human infrastructures. Existing models focus on vegetative filter strips, based on their specific 399 

design, to evaluate the vegetation efficiency towards sediment retention. These models can be 400 

used by practitioners to evaluate the vegetation effect on soil erosion processes and runoff, at 401 

the field or the catchment scale. They are based on hydraulic roughness coefficients, such as 402 

the Manning’s number n or the Darcy-Weisbach's coefficient f, and some basic plant 403 

characteristics (Govers et al., 2007). They usually focus on a limited number of plant and 404 

vegetation characteristics. The field scale-based models VFSMOD and TRAVA define the 405 

effects of the vegetative filter strips using the vegetation height and density (Deletic, 2001; 406 

Muñoz Carpena & Parsons, 2014); while WEPP uses plant growth (aboveground and roots), 407 

height, the stem basal area and the leaf area index (Arnold et al., 1995). The catchment scale 408 

model SWAT focus on the plant height, spacing and coverage, the leaf area index and the root 409 

depth (Arnold et al., 2012). Others does not integrate any plant characteristics but the 410 
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Manning’s hydraulic roughness coefficient (e.g. CREAMS), or the width of the vegetative filter 411 

strip (e.g. LISEM) (de Roo et al., 1998; Williams & Nicks, 1988). Results on the effects of 412 

plant traits in herbaceous hedges on the hydraulic resistance and sediment retention have 413 

emphasised the effects of numerous traits not used in models (e.g. stem density, stem diameter, 414 

leaf area and leaf density). Implementing these traits recognised as efficient to increase the 415 

hydraulic resistance and sediment retention into the models would improve the precision of the 416 

model results and help better select the best implantation location. Perspective is to integrate 417 

the effects of these traits into the models at both field and catchment scales, and to validate the 418 

model predictions compared to the empirical approach. 419 

 420 

 421 

Conclusion 422 

This review on the effects of plant functional traits in herbaceous vegetation on the hydraulic 423 

resistance and sediment transfer has allowed the improvement of the understanding of the 424 

vegetation roles on runoff, sediment retention and erosion control, facilitating the design of 425 

herbaceous hedges for these purposes. Leaf and stem traits (i.e. leaf area, leaf density, stem 426 

diameter, stem projected area and stem density) directly increase the hydraulic resistance and 427 

sediment retention in herbaceous vegetation, especially when they are density-weighted, in 428 

temperate agricultural catchments. The knowledge of these highlighted traits to illustrate the 429 

vegetation effects on the hydraulic resistance and sediment retention is transposable to different 430 

pedoclimatic contexts, with the characterisation of the intensity of the concentrated runoff (e.g. 431 

slope and soil texture). The challenge of designing vegetation structures for soil erosion and 432 

runoff mitigation is to include the plant traits involved in the increase of the hydraulic resistance 433 

and sediment retention into the modelling of the vegetation effects by using existing models 434 

for soil erosion control. Herbaceous hedges showing dense perennial herbaceous vegetation on 435 
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a narrow strip constitute a major structure to reduce concentrated flows and soil erosion under 436 

temperate climates in agricultural catchments. Their design should consider (1) the selection 437 

method based on the functional types and traits of the indigenous species located in the 438 

implantation area; (2) the number of species and their traits composing the hedge, as choosing 439 

if the hedge should comprise several species with contrasting traits and (3) the positioning of 440 

the hedges using multi-scale analysis and modelling. Perspective is to unravel the contrasting 441 

effects of the functional diversity on runoff and sediment retention by studying a wide gradient 442 

of functional diversity within plant communities on these ecosystem processes. Comparison of 443 

the functional diversity effects among several processes and services should also be examined 444 

to design multifunctional ecosystems and specifically manage major ecosystem services in 445 

each phytogeographical territory. 446 

 447 
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Table 1. The 76-candidate species list potentially able to mitigate soil erosion in the north-781 

west European loess belt.  782 

The minimum vegetative heights are represented under the median value (Quartile 1; Quartile 783 

4) of the data obtained from Hegi (1906); Jauzein and Nawrot (2011); Lambinon et al. (2012); 784 

Mansion et al. (1989); Rothmaler and Jäger (2009); Bugnon (1995) In Université de Bourgogne 785 

(UFR Science de la vie) (2018)). Hem.: Hemicryptophyte; C. Hem.: Caespitose 786 

hemicryptophyte; Ch.: Chamaephyte; R. Hem: Rosette hemicryptophyte. 787 

Family Species name Life form 

Minimum 

vegetative height 

(cm) 

Adoxaceae Sambucus ebulus L. Hem. 55 (50; 80) 

Apiaceae 

Anthriscus sylvestris (L.) Hoffmann Hem. 45 (40; 80) 

Bupleurum falcatum L. Hem. 30 (20; 50) 

Heracleum sphondylium L. Hem. 50 (30; 50) 

Asteraceae 

Achillea ptarmica L. Hem. 20 (20; 30) 

Artemisia verlotiorum  Hem. 70 (67.5; 150) 

Artemisia vulgaris L. Hem. 60 (52.5; 60) 

Aster laevis L. Hem. 60 (60; 60) 

Aster salignus Willd. Hem. 80 (72.5; 90) 

Eupatorium cannabinum L. Hem. 55 (50; 80) 

Hieracium piloselloides Vill. Hem. 20 (20; 20) 

Senecio jacobaea L. Hem. 30 (30; 40) 

Tanacetum corymbosum L.  Hem. 30 (30; 50) 

Tanacetum parthenium L.  Hem. 30 (30; 30) 

Tanacetum vulgare L. Hem. 55 (42.5; 60) 

Caryophyllaceae Saponaria officinalis L. Hem. 30 (30; 30) 

Clusiaceae Hypericum perforatum L. Hem. 27.5 (21.25; 30) 

Cyperaceae 

Carex acutiformis Ehrh. Hem. 50 (35; 50) 

Carex binervis Smith C. Hem. 30 (30; 30) 

Carex brizoides L. Hem. 25 (25; 30) 

Carex canescens L. Hem. 20 (20; 25) 

Carex otrubae Podp. Hem. 30 (30; 30) 

Carex diandra Schrank Hem. 20 (20; 30) 

Carex distans L. Hem. 22.5 (20; 30) 

Carex divulsa Stokes C. Hem. 20 (20; 30) 

Carex elongata L. C. Hem. 30 (30; 30) 

Carex flacca Schreb. Hem. 20 (10; 20) 
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Carex flava L. Hem. 20 (20; 30) 

Carex paniculata L. C. Hem. 40 (40; 50) 

Carex pendula Huds. C. Hem. 50 (50; 60) 

Carex pilosa Scop. Hem. 20 (20; 30) 

Carex pseudocyperus L. C. Hem. 40 (40; 50) 

Carex remota Jusl. ex L. C. Hem. 30 (22.5; 30) 

Carex spicata Huds. C. Hem. 20 (10; 30) 

Carex strigosa Huds. C. Hem. 35 (22.5; 50) 

Carex sylvatica Huds. C. Hem. 20 (12.5; 30) 

Carex vulpina L. C. Hem. 30 (30; 40) 

Lamiaceae 

Calamintha nepeta (L.) Savi Hem. 30 (27.5; 30) 

Clinopodium vulgare L. Hem. 25 (20; 30) 

Mentha longifolia L. Hem. 40 (30; 50) 

Mentha spicata L. Hem. 35 (27.5; 50) 

Mentha suaveolens Ehrh. Hem. 25 (16.25; 40) 

Origanum vulgare L. Ch.; Hem. 25 (20; 40) 

Linaceae Linum perenne L. Hem. 25 (22.5; 30) 

Papaveraceae Meconopsis cambrica (L.) Vig. Hem. 30 (25; 40) 

Poaceae 

Agrostis gigantea Hem. 30 (30; 40) 

Arrhenatherum elatius L. Hem. 60 (50; 70) 

Brachypodium pinnatum (L.) Beauv. Hem. 40 (32.5; 60) 

Brachypodium sylvaticum (Huds.) Beauv. Hem. 50 (50; 60) 

Bromus erectus Huds. Hem. 30 (30; 30) 

Bromus inermis Leyss. Hem. 30 (30; 50) 

Bromus ramosus Huds. Hem. 70 (45; 100) 

Calamagrostis arundinacea (L.) Roth C. Hem. 60 (60; 60) 

Calamagrostis epigejos (L.) Roth Hem. 60 (45; 60) 

Calamagrostis varia (Schrad.) Host Hem. 40 (40; 50) 

Calamagrostis villosa (Chaix ex Vill.) J.F. Gmel. Hem. 60 (45; 60) 

Cynosurus cristatus L. Hem. 20 (20; 30) 

Dactylis glomerata L. Hem. 20 (20; 50) 

Deschampsia cespitosa (L.) Beauv. Hem. 30 (30; 50) 

Deschampsia flexuosa (L.) Trin. C. Hem. 25 (20; 30) 

Festuca arundinacea Schreb. Hem. 60 (40; 70) 

Festuca gigantea (L.) Vill. Hem. 55 (50; 60) 

Festuca heteropachys (St-Yves) Patzke ex Auquier C. Hem. 27.5 (23.75; 40) 

Festuca heterophylla Lam. C. Hem. 40 (40; 60) 

Festuca longifolia Thuill. C. Hem. 20 (20; 30) 

Festuca marginata (Hack.) K. Richt. C. Hem. 20 (18.75; 20) 

Festuca polesica Zapal. C. Hem. 20 (20; 20) 

Festuca pratensis Huds. Hem. 30 (30; 40) 

Festuca rubra L.  Hem. 30 (20; 40) 
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Koeleria pyramidata (Lam.) Beauv. Hem. 20 (20; 45) 

Melica ciliata L.  Hem. 22.5 (20; 30) 

Melica nutans L. Hem. 30 (22.5; 30) 

Melica uniflora Retz. Hem. 25 (20; 30) 

Milium effusum L. Hem. 55 (50; 80) 

Phalaris arundinacea L. Hem. 50 (50; 80) 

Rosaceae Filipendula ulmaria (L.) Maxim. R. Hem. 50 (50; 100) 
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Table 2. Minimal threshold values of the efficiency range of each trait and density-790 

weighted trait on the hydraulic resistance and sediment retention. 791 

The threshold values were identified using the results from the generalised linear regression 792 

models in Kervroëdan et al. (2018). It represents the intersection between the USP critical value 793 

and the regression curve. As leaf area and density had different responses toward the hydraulic 794 

resistance depending on the discharge, the non-significant effects for the relevant discharges 795 

were darkened. The combination of both leaf area and leaf density was found to explain better 796 

the effects on the hydraulic resistance for all discharges rather than the traits taken separately. 797 

 2 L.s-1.m-1 4 L.s-1.m-1 8 L.s-1.m-1 11 L.s-1.m-1 

Leaf area (mm2) 200 2200 6500 8200 

Leaf density (m-2) 0 7000 25000 31000 

W. leaf area (mm2.m-2) 200000 22750000 82000000 100000000 

W. projected stem area (mm2.m-2) 200000 840000 1875000 2350000 

W. stem diameter (mm.m-2) 2000 8000 19000 23000 
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