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Abstract
Collaborative filtering relies on a sparse rating matrix, where each

user rates a few products, to propose recommendations. The approach
consists to approximate the sparse rating matrix with a simple model
whose regularities allow to fill in the missing entries. The latent block
model is a generative co-clustering model that can provide such an
approximation. In this paper, we show that exogenous sensitive at-
tributes can be incorporated in this model to ensure fair recommen-
dations. Since users are only characterized by their ratings and their
sensitive attribute, fairness is measured here by a parity criterion. In-
troducing the sensitive attribute in the latent block model leads to a
classification of users that is independent from the sensitive attribute.
We propose a definition of fairness for the recommender system that
expresses that the ranking of items should be independent of the sensi-
tive attribute. We show that our model ensures approximately fair rec-
ommendations provided that the classification of users approximately
respects statistical parity.

1 Introduction

In simple terms, fairness is often loosely defined as the quality of treat-
ing people equally, with impartiality and rightfulness. Although imprecise,
this definition stipulates that equal treatment refers to certain sensitive at-
tributes shared by groups of people, such as gender, age, ethnicity, socio-
economic group, etc. In recent years, intensive research has highlighted the
lack of fairness in decisions made by machine learning algorithms (6).

There are several stakeholders in a recommendation scenario. In the
terminology of Burke et al. (8), we target consumer-fairness, where the
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objective is to provide the same treatment to users of the recommender sys-
tem, regardless of their sensitive attribute. We target recommender systems
relying on collaborative filtering, which aims at building recommendations
from the history of user ratings. These observed ratings are the basis for
making automatic predictions about non-rated items, under the assumption
that users can be clustered according to their past opinion behavior. Sensi-
tive attributes are not used to fit the models, but some disparate treatments
may nevertheless exist, possibly due to some societal or cultural effects that
bias the sampling of data (11). In situations where the sensitive attribute
can be collected, it therefore seems preferable to design algorithms that pro-
cess sensitive attributes to remove their influence, rather than simply ignore
them.

Many proposals have already been made on how fairness should be for-
mally defined in collaborative filtering (12; 32). One common approach is
the recommendation independence (22) or statistical parity, that requires
the unconditional statistical independence between recommendations and a
specified sensitive attribute. This equal treatment does not ensure equal
impact (also called “equal opportunity”), which argues for equal recommen-
dation quality between sensitive groups. Although some works (35) have
argued that statistical parity may be overly restrictive, resulting in a poor
quality of recommendations, we use here this definition to propose a fair
collaborative filtering algorithm.

In this paper, we aim at producing fair recommendations using a co-
clustering of users and items that respects statistical parity of users with
respect to some sensitive attributes. For this purpose, we introduce a co-
clustering model based on the Latent Block Model (LBM) that relies on an
ordinal regression model that takes as inputs the sensitive attributes. We
demonstrate that our model ensures approximately fair recommendations
provided that the clustering of users approximately respects statistical par-
ity. Finally, we conduct experiments on a real-world dataset to show that
the proposed approach can help alleviate unfairness.

Related works

Several recent works have raised the issue of fairness in recommender sys-
tems. Kamishima et al. (22) have proposed methods for improving fairness,
formalized as the independence of the predicted ratings with the sensitive
attribute. Their methods are based on matrix factorization regularized by
criteria that favor independence by controlling the moments of the distribu-
tions of rating among sensitive groups. Using the same definition of fairness,
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Zhu et al. (36) proposed a tensor method that isolates sensitive attributes in
sub-dimensions of the latent factor matrix. Unlike many other methods, this
solution is capable of handling multiple and non-binary sensitive attributes.
Yao and Huang (35) proposed four new metrics that deal with different types
of unfairness and used them as penalty functions in augmented matrix fac-
torization objectives.

All of the above methods are based on the fairness of predicted ratings,
but an approximate fairness of ratings may not entail an approximate fair-
ness of the recommender system that provides users with a short list of
relevant items. With this in mind, Beutel et al. (4) provided new metrics
based on pairwise comparisons and proposed a novel pairwise regulariza-
tion approach to improve the fairness of the recommender system during
training. Finally, further from recommender systems but still related to the
model we use, the notion of statistical parity is often considered for fairness
in clustering methods (1; 14; 3).

2 Model

The data used to build recommender systems can be aggregated in a
matrix where rows are users, columns are items and entries the feedbacks.
The model we propose is based on the Latent Block Model that considers a
data matrix to group users and items based on their opinions.

2.1 The Latent block models

The Latent block models (LBM), also known as bipartite stochastic block
models and introduced in (15), are generative probabilistic models enabling
to cluster jointly the rows and the columns of a data matrix denoted R.
These co-clustering models assume a homogeneous block structure of the
whole data matrix. This structure is unveiled by the reordering of rows and
columns according to their respective cluster index; for k1 row clusters and
k2 column clusters, the reordering reveals k1 × k2 homogeneous blocks in
the data matrix being possibly binary (15) categorical (23), or quantitative
(26; 16).

The partitions of rows and columns are governed by the latent variables
U and V , U being the n1×k1 indicator matrix of row classes, and V being
the n2 × k2 indicator matrix of the column classes. The class indicator of
row i is denoted Ui, and similarly, the class indicator of column j is denoted
V j . The LBM makes several assumptions on the dependency and on the
form of the distributions:
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U i V j

Rij

Figure 1: Graphical view of the Latent Block Model. Entries Rij of the data
matrix are independently generated according to the group membership U i

of row i and the group membership V j of column j.

• The latent group memberships of rows and columns are assumed to
be mutually independent and identically distributed, with respectively
multinomial distributionsM(1;α) andM(1;β), whereα = (α1, . . . , αk1)
and β = (β1, . . . , βk2) are the mixing proportions of rows and columns:

p(U ,V ) = p(U) p(V ) =
∏
i

p(U i;α)
∏
j

p(V j ;β) .

• Conditionally to rows and columns assignments (U ,V ), the entries of
the data matrix R are independent and identically distributed:

p(R|U ,V ;θ ) =
∏
ij

p(Rij |U i,V j ) ,

p(Rij |UiqVjl = 1) = φql(Rij) , (1)

with φql(Rij) the density of the conditional distribution of Rij depend-
ing on the group memberships of row i and column j.

2.2 Model proposed

The user feedback used for collaborative filtering can be implicit (history,
browsing history, clicks...) or explicit. In the case of explicit evaluation data,
users most often express their interest in items using a discrete rating scale.
This rating scale suppose an order between levels, for example from 1 to 5
expressing the worst opinion to the best one. Models handling this type of
data can assume that these scales are a discretization of the opinion of a
user that may be better handled by a continuous variable. The method we
propose to model ratings is based on a statistical co-clustering using ordered
probit regression to model ordinal responses. Covariates encoding a sensitive
user attribute can easily be included in the probit regression framework.
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ζ1 ζ2 µql ζ3 ζ4 R∗ij

Rij = 1 Rij = 2 Rij = 3 Rij = 4 Rij = 5

Figure 2: The conditional density function of R∗ij and its relationship to Rij .
Fixed thresholds ζk, defines the discretization of R∗ij .

2.2.1 Ordered probit in Latent Block Model

The ordered probit model (10) assumes the existence of a continuous,
Gaussian distributed latent random variable, denoted R∗. In a collabora-
tive filtering context, this latent variable represents the underlying value,
assumed to be continuous, assigned to an item by the user. The assumption
of a single underlying continuous variable leading to ordinal ratings may be
appropriate when ratings are not the result of a sequential process (9). The
discrete observed ratings R are the result of the partition of the continuous
space of R∗ by a set of thresholds ζ such that: Rij = 1 if −∞ < R∗ij < ζ1,
Rij = 2 if ζ1 < R∗ij < ζ2, . . . , Rij = K if ζK−1 < R∗ij < +∞ (see Figure 2).

We use the ordered probit model within a Latent Block Model (see Sec-
tion 2.1), assuming that conditionally to row and column group assignments,
the entries of R∗ are independent and identically distributed with Gaussian
distribution:

p(R∗ij
∣∣∣UiqVjl = 1;µql, σ ) = φ

(
R∗ij ;µql, σ2

)
, µql ∈ R and σ ∈ R∗+ (2)

with φ
(
·;µql, σ2) the probability density function of the Gaussian distribu-

tion with mean µql and variance σ2. The conditional probability that a user
i gives to the item j the rating with value k is then:

p(Rij = k|UiqVjl = 1;µql ) = p(ζk−1 < R∗ij < ζk
∣∣∣UiqVjl = 1;µql )

= Φ
(
ζk;µql, σ2

)
− Φ

(
ζk−1;µql, σ2

)
,

with Φ
(
·;µql, σ2) being the normal cumulative distribution function. To en-

sure model identifiability, the thresholds ζ are fixed to equidistant predefined
values.
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2.2.2 Individual row and column effects

The Latent Block Model is well suited to collaborative filtering, in that it
searches for users and items that share the same opinion patterns. However,
a model that assumes that users in a given cluster share exactly the same
opinion patterns is very restrictive. Instead, we assume here that opinions
may be slightly different within a cluster, using a richer model than Equa-
tion (2) for the conditional distribution of R∗ij . In addition to the cluster
effect µql derived solely from the group memberships of users and items, one
deviation is induced by the user i and another by the item j :

p(R∗ij
∣∣∣UiqVjl = 1, Ai, Bj ;µql ) = φ

(
R∗ij ;µql +Ai +Bj , σ

2
)
, (3)

with latent variables A and B independently and identically distributed
with:

Ai
iid∼ N

(
0, σ2

A

)
, σ2

A ∈ R∗+

Bi
iid∼ N

(
0, σ2

B

)
, σ2

B ∈ R∗+
These two variables encode different rating patterns for users and items such
as systematic over- or under-rating relative to the user or item populations.

2.2.3 Sensitive attribute

We assume that, in addition to the matrix of ratings, we have access
to a sensitive attribute si, describing here a binary feature of user i that
should not intervene in the recommendation of items (more general sensitive
attributes are considered in Appendix D). We introduce a latent variable
Cj for each object j assuming that they interact with different strengths
with the sensitive attribute. This interaction between the object j and
the sensitive attribute si is added to the conditional distribution of R∗ij
(Equation 3):

p(R∗ij
∣∣∣UiqVjl = 1, Ai, Bj , si, Cj ;µql ) = φ

(
R∗ij ;µql +Ai +Bj + siCj , σ

2
)
,

with
Cj

iid∼ N
(
0, σ2

C

)
, σ2

G ∈ R∗+ .

This model explains the ratings by µql + Ai + Bj + siCj and σ2; the co-
clustering is driven by µql, and provided the effects of the sensitive attribute
are well captured by siCj , we expect the co-clustering to be independent
of the sensitive attribute, which ensures fair recommendations as shown in
Section 3.2. A summary of the model we propose is presented in Figure 3.
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2.2.4 Modelling missingness

The datasets extracted from recommender systems are usually extremely
sparse, with a high proportion of missing ratings, that is, ratings that were
not provided by the users. The model we proposed so far does not accom-
modate missing observations, and suppose a fully observed data matrix R.

The study of missing data identifies three main type of missingness (34):
Missing Completely At Random (MCAR) and Missing At Random (MAR)
referring to the mechanisms in which the probability of being missing does
not depend on the variable of interest (here R∗); and finally Missing Not At
Random (NMAR) referring to the mechanisms in which the probability of
being missing depends on the actual value of the missing data. A common
implicit assumption in collaborative filtering is that ratings are MAR or
CMAR: the presence/absence of ratings is assumed to convey no information
whatsoever about the value of these ratings. For simplicity of statistical
modelling we take the same assumption, although previous studies (27; 28)
have shown a potential dependence between the presence of ratings and
the underlying opinion. We introduce a simple Bernoulli missingness model
generating M ∈ {0, 1}n1×n2 , a mask matrix where each entry Mij is one
with probability p and indicates whether the rating is observed: Mij = 1 if
Rij is observed and 0 otherwise. Given the complete data matrix R∗ and
the mask matrix M , the elements of the observed ratings R are generated
as follows:(

Rij
∣∣∣R∗ij ,Mij

)
=
{ ∑K

k=1 k 1]ζk−1;ζk](R∗ij) if Mij = 1
NA if Mij = 0

Any generative model under a MCAR or MAR process can be fitted sepa-
rately from the missingness model as the overall likelihood can be factorized
between the observed and non observed data. Under such assumptions, we
show in AppendixA that ignoring non-observed ratings results in a proper
fitting.

3 Inference and fair recommendations

3.1 A stochastic batch gradient descent of the variational
criterion

The log-likelihood of the model is not tractable as it involves a sum that is
combinatorially too large (7). We resort to a variational inference procedure
(19) that introduces qγ , a restricted parametric inference distribution defined
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U i V jCj

R∗ij

Rij

BjAi

Mij

(
R∗ij

∣∣∣Uiq = 1, Vjl = 1, Ai, Bj
) ind∼ N

(
µql +Ai +Bj + siCj , σ

2
)

U i
iid∼ M(1;α), α ∈ Sk1−1

V j
iid∼ M(1;β), β ∈ Sk2−1

Ai
iid∼ N

(
0, σ2

A

)
, σ2

A ∈ R∗+

Bj
iid∼ N

(
0, σ2

B

)
, σ2

B ∈ R∗+

Cj
iid∼ N

(
0, σ2

C

)
, σ2

C ∈ R∗+

(
Rij
∣∣∣R∗ij ,Mij

)
=
{ ∑K

k=1 k 1]ζk−1;ζk](R∗ij) if Mij = 1
NA if Mij = 0

with Mij
iid∼ B(p), p ∈ [0, 1]

and ζ0 = −∞ < ζ1 < ... < ζK−1 < ζK =∞, fixed thresholds

Figure 3: Graphical view and summary of the ordered probit Latent Block
Model with protected attribute s. The discrete observed data Rij is gener-
ated by the underlying continuous data R∗ij and the mask entry Mij .
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on the latent variables of the model, to optimize the following lower bound
on the log-likelihood:

J (γ, θ) = log p(R; θ)−KL (qγ ‖p(L|R))

where KL stands for the Kullback-Leibler divergence, H for the differential
entropy, θ = (α,β,µ, σ2, σ2

A, σ
2
B, σ

2
C , p) is the concatenation of the model

parameters, and L = (U ,V ,A,B,C) is the concatenation of the latent
variables.

The variational distribution qγ is chosen so that the computation of the
criterion becomes easier:

∀i, U i|R ∼
qγ
M
(
1; τ (U)

i

)
∀j, V j |R ∼

qγ
M
(
1; τ (V )

j

)
∀i, Ai|R ∼

qγ
N
(
ν

(A)
i , ρ

(A)
i

)
∀j, Bj |R ∼

qγ
N
(
ν

(B)
j , ρ

(B)
j

)
∀j, Cj |R ∼

qγ
N
(
ν

(C)
j , ρ

(C)
j

)
.

We also enforce the conditional independence of the latent variables, leading
to the following fully factorized form:

qγ =
∏n1
i=1M

(
1; τ (U)

i

)
×

∏n2
j=1M

(
1; τ (V )

j

)
(4)

×
∏n1
i=1N

(
ν

(A)
i , ρ

(A)
i

)
×
∏n2
j=1N

(
ν

(B)
j , ρ

(B)
j

)
×
∏n2
j=1N

(
ν

(C)
j , ρ

(C)
j

)
,

where γ denotes the concatenation of all parameters of the variational dis-
tribution1. This conditional independence of the latent variables to R sim-
plifies the criterion J (γ, θ) to:

J (γ, θ) = Eqγ [log p(R|L)]−KL (qγ ‖p(L; θ)) . (5)

As explained in Section 2.2.4, the optimization criterion relies only on the
non-missing entries of R because the data is assumed to be missing at ran-
dom. The full expansion of the criterion is given in Appendix A.

We resort to a batch stochastic optimization to maximize the variational
criterion using noisy estimates of its gradient (31). Samples are drawn from
the variational distribution (Equation 4) to estimate a noisy but unbiased
gradient of the expectation of the conditional log-distribution of R (first
term of Equation 5), which we then use to update our parameters as follows:

(γ, θ)(t+1) = (γ, θ)(t) + η · ∇(γ,θ)J
(
R(i:i+n),(j:j+n); γ, θ

)
,

1γ = (τ (U), τ (V ),ν(A),ρ(A),ν(B),ρ(B),ν(C),ρ(C))
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where n is the batch size and η is the adaptive learning rate based on the
past gradients that were computed (Adam optimizer (24)).

Using a stochastic gradient algorithm instead of the usual EM algorithm
alleviates the well-known initialization problems of the Latent Block Model,
which result in unsatisfactory local maxima (5; 2). However, it requires
the use of differentiable functions to back-propagate gradients through the
automatic differentiation graph (30). For this purpose, the multinomial
distributions are replaced by a differentiable Gumbel-Softmax distribution
(20).

3.2 Fair recommendations

This section describes a theoretical result establishing a guarantee on the
fairness of recommendations. This guarantee is subject to an assumption
about the parity of the clustering of users that can be tested in practice,
and that holds true for the experiments reported in Section 4 and Appendix
D. We develop here the case of a binary sensitive attribute to simplify the
exposition. The result is more general and applies to any discrete sensitive
attribute. It is proven in this general sense in Appendix C.

Recommendations are partial orders between items. In collaborative fil-
tering, the usual approach to producing recommendations is to estimate a
relevance score for each item, which is then used to define a total order
through numerical comparisons. With the parameters obtained by varia-
tional inference, we define the relevance score of item j for user i as:

R̂ij = τ
(U)
i µ̂τ

(V )
j

T
+ ν

(A)
i + ν

(B)
j . (6)

This relevance score is computed from the maxima a posteriori of the latent
variables encoding the user and item group memberships (τ (U)

i , τ
(V )
j ), that

is, the trend related to the co-cluster to which (i, j) belongs, and the global
effects related to user i and item j. It does not use the user’s sensitive
attribute si which is considered here as a nuisance parameter, properly taken
into account during inference and then ignored when predicting a relevance
score. It then becomes possible to compare items fairly with respect to the
sensitive attribute.

Definition 3.1 (Fair comparison of items). Given user i and any two items
j and j′, the comparison of items j and j′ is said to be fair if it is freed
from the evaluation bias regarding the sensitive attribute s: item j is fairly
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preferred to item j′ if R̂ij > R̂ij′ , that is:

τ
(U)
i µ̂τ

(V )
j

T
+ ν

(A)
i + ν

(B)
j > τ

(U)
i µ̂τ

(V )
j′

T
+ ν

(A)
i + ν

(B)
j′ .

The modelling of the observed data R incorporates the term ν
(C)
j si,

interpreted here as a spurious opinion bias related to the sensitive attribute.
While it is important to ignore this term for a fair comparison of items, its
inclusion into the model is important to allow the construction of clusters
that are not affected by this spurious effect. These clusters can then be
expected to be representative of all subpopulations defined by their sensitive
attribute value, and thus to respect the statistical parity of users.

Definition 3.2 (Clustering ε-parity, binary sensitive attribute). The clus-
tering of users is said to respect ε-parity with respect to attribute s iff:

∀q,
∣∣∣∣# {i|si = 1 ∧ uiq = 1}

# {i|si = 1} − # {i|si = −1 ∧ uiq = 1}
# {i|si = −1}

∣∣∣∣ ≤ ε , (7)

where ε ∈ R+ measures the gap to exact parity, uiq is the (hard) membership
of user i to cluster q,and # {i|Ω} is the number of users defined by the
cardinality of the set Ω.

In essence, clustering ε-parity requires that subpopulations of users de-
fined by identical sensitive attributes be represented approximately equally
in each user group. For the Latent Block Model, the hard membership uiq
of Definition 3.2 is given by the maximum a posteriori of the latent variable
τ

(U)
iq .

Our theoretical guarantee ensures that this approximate statistical parity
in clusters is sufficient to get approximately fair recommendations from our
model:

Definition 3.3 (ε-fair recommendation, binary sensitive attribute). A rec-
ommender system is said to be ε-fair with respect to attribute s if for any
two items j and j′:∣∣∣∣∣∣

#
{
i|si = 1 ∧ (R̂ij > R̂ij′)

}
# {i|si = 1} −

#
{
i|si = −1 ∧ (R̂ij > R̂ij′)

}
# {i|si = −1}

∣∣∣∣∣∣ ≤ ε , (8)

where ε ∈ R+ measures the gap to exact fairness

In essence, an ε-fair recommender system ensures that, for any two items,
the proportion of users with the same preference is approximately identical
in all the subpopulations of users defined by identical sensitive attributes.
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Theorem 3.1 (Fair recommendation from clustering parity). If the cluster-
ing of users in k1 groups respects ε-parity (Definition 3.2 or Definition S1)
then the recommender system relying on the relevance score defined in Equa-
tion (6) is (k1ε)-fair (Definition 3.3 or Definition S2).
Proof: see Appendix C.

4 Experiment on MovieLens dataset

The final goal of a recommender system is to provide users with a short-
list of items that they might most enjoy. We choose here to directly assess
the quality of the ranking rather than using proxy measures, such as root
mean square error on ratings, that ignore relative rankings.

To measure the ranking performance of algorithms, we use the Nor-
malized Discounted Cumulative Gain (21) (NDCG) that measures ranking
quality by a penalized sum of the relevance scores of the ranking results:

NDCG@k = DCG@k
IDCG@k with DCG@k =

k∑
i=1

reli
log(i+ 1) ,

reli, the relevance of the results at each rank i before k and IDCG@k being
the DCG@k computed with a perfect ranking.

We use the MovieLens 1M dataset (29) that contains one million ratings
given by 6,040 users to 3,900 movies scaling from 1 to 5 (from least liked to
most liked). The dataset also contains additional information about users:
gender (binary), age category (seven levels) or occupation. We give here
some experimental results where gender is the sensitive attribute, and ad-
ditional results, in particular with age considered as the sensitive attribute,
can be found in Appendix D.

4.1 Experimental Protocol

We estimate the average performances by predicting preferences on rat-
ings that are concealed during training. These concealed ratings form our
test set, with 20 ratings per user, which is about 10% of the available data.
This process is repeated 5 times, with independent random draws, to pro-
duce stable average performances.

We compare our model (referred to as Parity LBM) with the baseline
LBM that does not use the sensitive variable in the modelling (referred to as
Standard LBM). We expect the latter model to create groups of users that
do not respect clustering parity and to generate unfair recommendations.
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We also compare to another co-clustering algorithm, weighted Bregman co-
clustering (13) (referred to as Bregman co-clust) to compare the statistical
parity of user groups inferred from another baseline. Finally, we compare
with Singular Value Decomposition (SVD), a method popularized during
the Netflix challenge (25) that still remains state of the art in collaborative
filtering (33). All these baselines are implemented in the Python module
Surprise (18).

The number of clusters in co-clustering and the number of factors in
matrix factorization are both arbitrarily set to fifteen. Another comparison
with more clusters, provided in Appendix D, produces qualitatively similar
results.

We repeat the learning process 25 times from different random initializa-
tions to mitigate the initialization dependence that affects all optimization
procedures. We select the best solution based on the optimization criteria,
that is, the one with the highest likelihood for the LBM models and the
lowest training reconstruction error for the other baselines.

4.2 Results and Discussion

4.2.1 Gender as sensitive attribute

User gender (binary in this dataset) is used as the sensitive attribute si.
In the dataset, 27% of users self-identified as females, this proportion must be
met in each group to respect clustering parity. To measure the dependence
between gender and user group memberships, we compute the χ2 statistic
constructed from the contingency table of males and females counts in each
group. Table 1 reports the p-value for testing the independence between
groups and genders, with an asymptotical test. We recall that, under the
null hypothesis of independence, the test statistic with k degrees of freedom
has mean k and variance 2k.

The fairness of recommendations resulting from this clustering parity
is ascertained by computing the gap ε from exactly fair recommendations,
as defined in Definition 3.3. Figure 4 displays these gaps, with lower values
indicating a fairer recommendation; our model provides a significantly fairer
recommendation compared to the standard Latent Block Model, which is
itself much fairer than the two other baselines. The order observed in Table 1
is followed.

Figure 5 depicts the ranking performance of algorithms with the NDCG,
averaged over all users, for a recommendation list of 10 items. SVD gets
the best overall result, followed by the Latent Block Models that outper-
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Table 1: Measures of statistical gender parity among user clusters. The
number of user groups is k1 = 15. The χ2 statistic (with 14 degrees of
freedom) is averaged over the five replicates of the experiment. A high value
of the χ2 statistic (or a low p-value) leads to the rejection of the clustering
parity hypothesis.

Model Parity LBM Standard LBM Bregman co-clust
χ2 statistic 18.0 44.4 187

p-value 0.20 5.1 · 10−5 < 10−15.

The results show that the methods that do not consider the sensitive variable
in the modelling create groups that are dependent on gender. In contrast,
our Parity-LBM model is consistent with the clustering parity hypothesis:
the gender representation in groups is representative of the gender distribu-
tion in the overall dataset.

Parity LBM Standard LBM Bregman Coclust SVD
0.00

0.05

0.10

0.15

0.20

0.25

0.30

ε-
fa

irn
es

s

Figure 4: Gaps ε for the ε-fair recommendations (see Definition 3.3) provided
by each model: a smaller ε-fairness indicates fairer recommendations.
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Parity-LBM Standard-LBM Bregman Coclust SVD

0.895

0.900

0.905

0.910

0.915

N
D

CG
@1

0

All Females Males

Figure 5: Normalized Discounted Cumulative Gain estimated on MovieLens-
1M (the higher the better)

form Bregman co-clustering. The overall performances of our model and
the standard LBM are not significantly different. Figure 5 also reports
the average NDCG within each sensitive group. This performance measure
shows that female users receive significantly less relevant recommendations
than males with all algorithms. This disparate treatment can be related
to equalized odds (17) in the classification framework, in that it focuses on
truly relevant recommendations. The performance gap between the sensi-
tive groups is reduced by our parity LBM compared to the standard LBM.
Although the difference is the smallest among all comparisons, our model
does not eliminate disparate treatment. As a cautionary note, although it is
likely that the recommendations are less relevant to female users, under the
assumption that the observed ratings are somewhat influenced by gender
stereotypes, it is not possible to satisfactorily measure the performance of
fair recommendations from the original rating matrix.

Finally, we present some insights provided by our model on movies. We
recall that the latent variable Cj , which is not used for fair prediction,
captures the difference in opinion trends between female and male users on
movie j. A high absolute value of Cj indicates a strongly gendered opinion
for movie j. With our encoding of genres, negative Cj indicate a relative
overrating by females and positive Cj indicate a relative overrating by males.
We display the empirical cumulative distribution function (CDF) of Cj for
movies conditionally on their genre (for some handpicked archetypal genres).
The dominance of the CDF for a given genre expresses that, according to
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Figure 6: Top: cumulative distribution function of latent variable Cj condi-
tionally on the genre of the movie. A dominating CDF indicates a genre for
which females’ opinions are more positive than males’. Bottom: scatter plot
of the movie latent variable Bj versus popularity (ratio of ratings). High
positive values of Bj (resp. popularity) correspond to movies that are the
most liked (resp. popular).

our model, female users have a higher opinion than male users for the movies
belonging to that genre. Figure 6 shows the results, which reflect stereotypes
that women are more likely than men to positively evaluate musical films and
dramas, while men are similarly inclined toward westerns and action films.
These stereotypes are incorporated into our model to fit actual ratings, but
ignored to deliver fair recommendations. The lists of extreme movies based
on extreme (positive and negative) values of Cj is given in Appendix D.1.

The latent variable Bj encodes the overall opinion trend about movie
j. Two interesting observations can be made from the scatter plot of Bj
versus movie popularity (see bottom of Figure 6). First, unpopular movies
are also the least appreciated according to our model; this supports the
hypothesis that ratings are generated by a MNAR (Missing Not At Random)
process, where a missing rating can be considered as weak negative feedback,
assuming that users primarily rate items they like. This missingness process
must still be taken into account in our model. Second, it shows that the
most liked movies (according to our model) are not necessarily the most
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popular (and will be recommended); the recommendations are not affected
by popularity bias.

5 Conclusion

We proposed a new co-clustering method for fair recommendation. Our
model combines the Gaussian Latent Block Model with an ordinal regression
model. The sensitive attribute is adequately accounted for in the model, al-
lowing the clustering of users to be unaffected by the effects of this attribute
on ratings. This results in user clusters that approximately respect statisti-
cal parity. We base recommendation on a relevance score that ignores the
sensitive attribute in order to compare items fairly. We provide theoretical
guarantees ensuring approximately fair recommendations, for any known
discrete sensitive attribute, provided that the clustering of users respects an
approximate statistical parity that can be assessed in practice. Our analysis
focuses on the fairness of preferences, as defined by the ranking of ratings,
rather than on the predicted values themselves, which are less relevant for
recommendation. Through experiments on real-world data, we show that
our method significantly mitigates the unfairness of recommendations. Fur-
thermore, the latent variables inferred by the model are also amenable to
analyses that can help identify recommendation bias.

Our study supports that the absence of rating conveys some information
that should be exploited. Previous works (27; 28) have already shown that
the data used for collaborative filtering datasets can be strongly influenced
by observational bias, which motivates dealing with missingness by a Miss-
ing Not At Random (MNAR) process. Societal biases may have a significant
contribution to missingness, leading to an additional source of unfairness if
missingness is not properly modeled. Studying fairness with MNAR pro-
cesses is a highly relevant but extremely challenging direction for future
research, as assessing the relevance of MNAR models in real situations re-
quires data that are typically produced by online randomized experiments.
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(eds.) Advances in Neural Information Processing Systems 32, pp. 8024–
8035. Curran Associates, Inc. (2019), http://papers.neurips.cc/paper/
9015-pytorch-an-imperative-style-high-performance-deep-learning-library.
pdf

[31] Ranganath, R., Gerrish, S., Blei, D.: Black Box Variational Infer-
ence. In: Kaski, S., Corander, J. (eds.) Proceedings of the Seven-
teenth International Conference on Artificial Intelligence and Statis-
tics. Proceedings of Machine Learning Research, vol. 33, pp. 814–822.
PMLR, Reykjavik, Iceland (22–25 Apr 2014), http://proceedings.mlr.
press/v33/ranganath14.html
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A Computation of the variational log-likelihood
criterion

The criterion we want to optimize is:

J (qγ , θ) = H(qγ) + Eqγ [L(R,U ,V ,A,B,C; θ)] . (S9)

We chose to restrict the space of the variational distribution qγ in order to
get a fully factorized form:

qγ =
∏n1
i=1M

(
1; τ (U)

i

)
×

∏n2
j=1M

(
1; τ (V )

j

)
(S10)

×
∏n1
i=1N

(
ν

(A)
i , ρ

(A)
i

)
×
∏n2
j=1N

(
ν

(B)
j , ρ

(B)
j

)
×
∏n2
j=1N

(
ν

(C)
j , ρ

(C)
j

)
where γ denotes the parameters concatenation of the variational distribu-
tion2 qγ . The entropy is additive across independant variables so we get:

H(qγ) = H(qγ(U)) +H(qγ(V )) +H(qγ(A)) +H(qγ(B)) +H(qγ(C)) ,

with the following terms:

H(qγ(U)) = −
∑
iq

τ
(U)
iq log τ (U)

iq

H(qγ(V )) = −
∑
jl

τ
(U)
jl log τ (V )

jl

H(qγ(A)) = 1
2
∑
i

log ρ(A)
i + n1

2 (log 2π + 1)

H(qγ(B)) = 1
2
∑
j

log ρ(B)
j + n2

2 (log 2π + 1)

H(qγ(C)) = 1
2
∑
j

log ρ(C)
j + n2

2 (log 2π + 1)

The independence of the latent variables allows to rewrite the expectation
of the complete log-likelihood as:

Eqγ [L(R,U ,V ,A,B,C)] = Eqγ [L(U)] + Eqγ [L(V )]
+ Eqγ [L(A)] + Eqγ [L(B)] + Eqγ [L(C)]
+ Eqγ [L(R|U ,V ,A,B,C )] ,

2γ = (τ (U), τ (V ),ν(A),ρ(A),ν(B),ρ(B),ν(C),ρ(C))
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with the following terms:

EqγL(U) = Eqγ

∑
iq

Uiq logαq
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iq logαq
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and as the entries of the data matrix R are independent and identically
distributed:

EqγL(R|A,B,C,U ,V ) = EqγL
(
R(o)

∣∣∣A,B,C,U ,V )+ L
(
R(¬o)

)
(S11)

where R(o) denotes the set of observed ratings and R(¬o), the set of non-
observed ratings, where Rij = NA. From Equation S11, it becomes clear
that maximizing EqγL(R(¬o)) is not necessary to infer the model parameters
used for prediction and therefore ignoring the non-observed data is correct.
The expectation of the conditional log-likelihood (first term of right side of
Equation S11) is numerically estimated by sampling from qγ .

Stochastic gradient optimization To optimize the criterion with stochas-
tic gradient descent, we express the variational log-likelihood criterion on a
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single rating:

J (Rij ; qγ , θ) = Eqγ
[
L
(
R

(o)
ij

∣∣∣U i,V j , Ai, Bj , Cj
)]

+ 1
n2

(
H(qγ(U i)) +H(qγ(Ai)) + Eqγ [L(U i)] + Eqγ [L(Ai)]

)
+ 1
n2

(
H(qγ(V j)) +H(qγ(Bj)) + Eqγ [L(V j)] + Eqγ [L(Bj)]

)
+ 1
n2

(
H(qγ(Cj)) + Eqγ [L(Cj)]

)
A batch of data, R(i:i+n),(j:j+n), consists of a (n× n) sub-matrix randomly
sampled from the original matrix R.

B Clustering ε-parity and ε-fair recommendation
for arbitrary discrete sensitive attribute

Definition S1 (Clustering ε-parity, arbitrary discrete sensitive attribute).
The clustering of users is said to respect ε-parity with respect to the discrete
attribute s ∈ S iff:

∀(t, t′) ∈ S2, ∀q,
∣∣∣∣# {i|si = t ∧ uiq = 1}

# {i|si = t}
− # {i|si = t′ ∧ uiq = 1}

# {i|si = t′}

∣∣∣∣ ≤ ε ,
(S12)

where ε ∈ R+ measures the gap to exact parity, uiq is the (hard) membership
of user i to cluster q,and # {i|Ω} is the number of users defined by the
cardinality of the set Ω.

Definition S2 (ε-fair recommendation, arbitrary discrete sensitive attribute).
A recommender system is said to be ε-fair with respect to the dicrete at-
tribute s ∈ S if for any two items j and j′:

∀(t, t′) ∈ S2,

∣∣∣∣∣∣
#
{
i|si = t ∧ (R̂ij > R̂ij′)

}
# {i|si = t}

−
#
{
i|si = t′ ∧ (R̂ij > R̂ij′)

}
# {i|si = t′}

∣∣∣∣∣∣ ≤ ε ,
(S13)

where ε ∈ R+ measures the gap to exact fairness

C Proof of Theorem 3.1

Theorem C.1 (Fair recommendation from clustering parity). If the clus-
tering of users in k1 groups respects ε-parity (Definition 3.2 or Definition S1)
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then the recommender system relying on the relevance score defined in Equa-
tion (6) is (k1ε)-fair (Definition 3.3 or Definition S2).

Proof. Suppose that τ (U), the maximum a posteriori of U , is a binary
matrix; τ (U) is thus a n1 × k1 indicator matrix of row classes membership.
Then, given user i, item j is said to be preferred to item j′ if R̂ij > R̂ij′ ,
that is:

R̂ij > R̂ij′ ⇐⇒ τ
(U)
i µ̂τ

(V )
j

T
+ ν

(A)
i + ν

(B)
j > τ

(U)
i µ̂τ

(V )
j′

T
+ ν

(A)
i + ν

(B)
j′

⇐⇒ τ
(U)
i µ̂

(
τ

(V )
j − τ (V )

j′

)T
> ν

(B)
j′ − ν

(B)
j

⇐⇒ τ
(U)
i a > b

⇐⇒ adi > b , (S14)

with a ∈ Rk1 defined by a = µ̂
(
τ

(V )
j − τ (V )

j′

)T
, b ∈ R defined by b =

ν
(B)
j′ −ν

(B)
j and di ∈ {1, · · · , k1} being the group indicator of user i: τ (U)

i,di
= 1.

Suppose ε-parity, from Definition S1 (Definition 3.2 is a particular case
of Definition S1), we have

∀(t, t′), ∀q,
∣∣∣∣# {i|si = t ∧ di = q}

# {i|si = t}
− # {i|si = t′ ∧ di = q}

# {i|si = t′}

∣∣∣∣ ≤ ε
therefore,

∀(t, t′), ∀q,
∣∣∣∣1adi

>b
# {i|si = t ∧ di = q}

# {i|si = t}
− 1adi

>b
# {i|si = t′ ∧ di = q}

# {i|si = t′}

∣∣∣∣ ≤ ε1adi
>b

By summing over all groups, we get:

∀(t, t′),
∑

q

∣∣∣∣1adi
>b# {i|si = t ∧ di = q}

# {i|si = t}
−
1adi

>b# {i|si = t′ ∧ di = q}
# {i|si = t′}

∣∣∣∣ ≤ ε∑
q

1adi
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and from the triangular inequality,
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∑
q 1adi>b
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# {i|si = t}

−
∑
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q
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∣∣∣∣ ≤ εk1
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And, applying (S14), the result is obtained:

∀(t, t′),

∣∣∣∣∣∣
#
{
i|si = t ∧ (R̂ij > R̂ij′)

}
# {i|si = t}

−
#
{
i|si = t′ ∧ (R̂ij > R̂ij′)

}
# {i|si = t′}

∣∣∣∣∣∣ ≤ εk1

D Supplemental results for MovieLens 1M

D.1 Gender as sensitive attribute

Supplemental analysis of the model

We list in Tables S2 and S3 the most extreme movies according to the
inferred value of their latent variable Cj . Variable Cj encodes the differ-
ence in opinion between the sensitive groups, not the overall opinion. For
example, a movie may well be liked by most people but liked even more by
males. Table S2 lists movies for which females have a better opinion than
males and Table S3 lists movies for which males have a better opinion than
females.

Higher number of groups

We did not optimize the hyper-parameters of the compared models. We
present here additional experiments to illustrate that the conclusions of Sec-
tion 4 apply to different hyper-parameter settings. Using a substantially
larger number of groups (k1 = 50 user groups and k2 = 50 item groups) or
a larger dimension of latent factors for SVD (also 50), the statistical gender
parity measures given in Table S4 and the recommendation performance
given in Figure S7 are qualitatively similar to the ones given in Table 1 and
Figure 5.

D.2 Age as sensitive attribute

The age range of the users is indicated within the following intervals:
‘Under 18’,‘18-24’, ‘25-34’, ‘35-44’, ‘45-49’, ‘50-55’ and ‘56+’. The counts of
users in each age category is displayed in Figure S8.

User age is treated as sensitive: we introduce seven binary sensitive
attributes si encoding for the seven categories of user age. We use a one-hot
encoding of the seven categories of user age and introduce for the purpose
seven binary sensitive attributes s1

i , · · · , s7
i and their item associated latent
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Table S2: List of movies with the largest gap in opinion between females
and males for which females have a better opinion than males

Title Year Genders Cj

Dirty Dancing 1987 Musical—Romance 0.31
Rocky Horror Picture Show, The 1975 Comedy—Horror—Musical—Sci-Fi 0.26
Sound of Music, The 1965 Musical 0.24
Grease 1978 Comedy—Musical—Romance 0.23
Jumpin’ Jack Flash 1986 Action—Comedy—Romance—Thriller 0.23
Gone with the Wind 1939 Drama—Romance—War 0.22
Newsies 1992 Children’s—Musical 0.21
Strictly Ballroom 1992 Comedy—Romance 0.21
Steel Magnolias 1989 Drama 0.20
Sense and Sensibility 1995 Drama—Romance 0.20
Full Monty, The 1997 Comedy 0.19
Much Ado About Nothing 1993 Comedy—Romance 0.18
Thelma & Louise 1991 Action—Drama 0.18
Swing Kids 1993 Drama—War 0.17
Fried Green Tomatoes 1991 Drama 0.17
Ever After: A Cinderella Story 1998 Drama—Romance 0.17
Anastasia 1997 Animation—Children’s—Musical 0.17
Little Women 1994 Drama 0.17
Color Purple, The 1985 Drama 0.17
To Wong Foo, Thanks for Everything! 1995 Comedy 0.17
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Table S3: List of movies with the largest gap in opinion between females
and males for which males have a better opinion than females

Title Year Genders Cj

Good, The Bad and The Ugly, The 1966 Action—Western -0.32
Animal House 1978 Comedy -0.30
Caddyshack 1980 Comedy -0.27
Dumb & Dumber 1994 Comedy -0.27
Exorcist, The 1973 Horror -0.24
Clockwork Orange, A 1971 Sci-Fi -0.24
Patton 1970 Drama—War -0.23
Godfather: Part II, The 1974 Action—Crime—Drama -0.22
Reservoir Dogs 1992 Crime—Thriller -0.22
Saving Private Ryan 1998 Action—Drama—War -0.22
Airplane! 1980 Comedy -0.21
Eyes Wide Shut 1999 Drama -0.21
Aliens 1986 Action—Sci-Fi—Thriller—War -0.21
Predator 1987 Action—Sci-Fi—Thriller -0.20
Apocalypse Now 1979 Drama—War -0.20
Unforgiven 1992 Western -0.20
Evil Dead II (Dead By Dawn) 1987 Action—Adventure—Comedy—Horror -0.20
Big Trouble in Little China 1986 Action—Comedy -0.20
Godfather, The 1972 Action—Crime—Drama -0.20
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Figure S7: Normalized Discounted Cumulative Gain estimated on
MovieLens-1M with k1 = k2 = 50 groups for clustering methods and 50
factors for the SVD.

28



Table S4: Measures of gender statistical parity. The number of user groups
is k1 = 50. The χ2 statistic (with 49 degrees of freedom) is averaged over
the five replicates of the experiment. A high value of the χ2 statistic (or a
low p-value) leads to the rejection of the statistical parity hypothesis.

Model Parity LBM Standard LBM Bregman co-clust
χ2 statistic 20 94 105

p-value 0.999 1.1 · 10−4 5.8 · 10−6
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Figure S8: Count of users in each age category.
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Table S5: Measures of statistical parity with respect to age category. The
number of group of users is k1 = 15. A high value of the χ2 statistic (or a
low p-value) leads to the rejection of the statistical parity hypothesis. The
χ2 statistic is averaged on the five folds of the cross-validation. Degrees of
freedom is 14.

Model Parity LBM Standard LBM Bregman co-clust
χ2 statistic 99 144 577

p-value 0.12 5.1 · 10−5 < 10−15

variables C1
j , · · · , C7

j . We use the protocol described in Section 4 with the
exception that our Parity-LBM is initialized from estimates obtained with
the Standard-LBM. Table S5 presents results of the χ2 statistics constructed
from the contingency table of user age counts in each group. The methods
that do not consider the sensitive variable in the modelling create groups
that are dependent on the age and assuming the statistical parity with our
Parity-LBM model is reasonable.

Finally, we illustrate the interpretability of the estimates of the latent
variables C1

j , · · · , C7
j related to movies. For each age category k, we select

the thirty movies with the largest value of the latent variables Ckj . These
movies have the largest positive opinion bias for users in the given age cat-
egory. Figure S9 displays a boxplot of the release years of these films for all
user age categories. The greater variability in the distribution for older users
means that they have a comparatively higher opinion of older movies than
younger users. If user age were the sensitive attribute, the recommendations
would not account for these differences.
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Figure S9: Release years of the thirty most extreme movies according to
the inferred positive value of the latent variables C1

j , · · · , C7
j . Each latent

variable Ckj is matched with its corresponding user age category.
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