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Majed A. Majeed, Ayech Benjeddou, Mohammed Al-Ajmi

Distributed transfer function-based unified static
solutions for piezoelectric short/open-circuit sensing and
voltage/charge actuation of beam cantilevers

Abstract Closed-form unified solutions using the distributed transfer functions (DTFs) method are presented
for the first time for the static short/open-circuit sensing and voltage/charge actuation of moderately thick
beam cantilevers with co-localized surface-bonded piezoelectric patches. For this purpose, the smart beam
is divided into three segments, of which the clamp and free sides parts are elastic, while the middle one is
made of an elastic core sandwiched between two electroded piezoelectric patches. The latter can be different
in material properties and thickness but should have the same length, and their widths can be different from the
host elastic beam. The theoretical formulation is based on Timoshenko’s first-order shear deformation theory
for the kinematics and piezoelectric constitutive equations and the principle of virtual works for the variational
equations. The latter integrate explicitly the physical equipotential constraints on the patches electrodes. The
balance equations and boundary conditions are derived for the three segments independently and then connected
at their interfaces by the equilibrium equations and continuity conditions. The unified static solutions for the
resulting four problems are derived analytically in closed form using the DTF approach. These are validated
against only open literature benchmarks having tabulated results or analytical formulas in order to avoid curves
induced inherent additional deviations. Very good correlations were obtained in comparison with the found
reference two-dimensional (2D) plane strain/stress analytical and 2D plane strain/stress and three-dimensional
finite element results.

1 Introduction

Piezoelectric unimorph and trimorph (bimorph with elastic core) cantilevers find wide use in smart structures
applications. This is the case in vibration energy harvesting [1] and shunted damping [2], while beam can-
tilevers with surface-mounted piezoelectric patches are common for structural active vibration control [3]. One-
dimensional (1D) or two-dimensional (2D) models of such smart beams are reduced from three-dimensional
(3D) ones after various first- or higher-order electromechanical assumptions [4]. They differ by the retained
distributions of the mechanical displacements and transverse shear stress or strain and the electric potential and
the reduced constitutive equations. Various methods can be used for solving the corresponding electromechan-
ical partial derivative equations (PDE). This includes analytical closed-form solutions (CFS), semi-analytical
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state space methods (SSM), among which is the distributed transfer function (DTF) approach, and finite
element methods (FEM) [3]. The latter are usually validated using either of the former. These can be also
used for parametric analysis in the aim of understanding coupling effects or optimization for performance
maximization.

The DTF approach used in modeling elastic beam cantilevers dates back to the early nineties [5] but
only to the last decade for piezoelectric ones, as reviewed in [6]. It was often used for solving dynamic
problems, particularly for vibration analysis [7]. In the latter two works [6,7], the smart beam cantilever, with
different piezoelectric surface-bonded patches and having different thickness than the host was divided into
three segments, representing the cantilevered (segment 1), smart (segment 2), and free (segment 3) parts. For
each of the latter, the PDE was derived using Timoshenko’s first-order shear deformation theory (FSDT), along
with the plane-stress reduced constitutive equations as given in [8], from the principle of Hamilton extended to
piezoelectricity [9], then connected by the inter-segments continuity conditions (CCs) and balance equations
or boundary conditions (BCs). The DTF was then used for deriving the eigenvalue problems under short-circuit
(SC) and open-circuit (OC) electrodes fulfilling automatically the equipotential (EP) physical constraints.

It is worth noticing that, from the above literature reviews, the different patches and beam widths and EP
constraints were not considered simultaneously. Besides, the DTF approach was not used for the static sensing
and actuation of elastic beam cantilevers with surface-bonded piezoelectric patches or layers. It is then the
objective of the present work to extend the authors’ earlier works on vibration analysis of asymmetric [6] and
symmetric [7] beam cantilevers to their static voltage or charge actuation and SC or OC sensing. Also, only
two references [10,11] were found about charge actuation [10] and sensing [11] of piezoelectric trimorphs;
they will be then used for the validation of the corresponding DTF CFS. Similarly, for OC sensing with a
single piezoelectric patch, fulfilling the EP physical constraints, only one reference [12] was found in the open
literature; it is also used as a validation benchmark for the corresponding DTF CFS. However, no reference
was found in the open literature about realistic (practical) configurations of beam cantilevers with different
widths of patches and host. Thus, only benchmarks with same widths [10–14] will be used for validating the
DTF CFS.

Therefore, in the following, the DTF-based static unified solutions for piezoelectric SC/OC sensing and
voltage/charge actuation of beam cantilevers are presented. For this purpose, the three segments equilibrium
local PDE, BC and inter-segments CC of a cantilever elastic beam, having two different piezoelectric patches
on its top and bottom and with different width from that of the host, are first derived from their corresponding
variational equations based on Timoshenko’s FSDT of beams, but using the principle of virtual work (PVW),
extended to piezoelectricity [9], and various FSDT-compatible 1D reductions of the 3D constitutive equations,
including that proposed in [8] and used earlier in [6,7] and [12]. Then, the static sensing and actuation problems
are derived using the DTF approach for voltage and charge inputs (actuation) and outputs (sensing). Next, in
order to avoid inherent additional errors from comparisons to graphical results, the presented CFS are validated
only against available tabulated results [10–12,14] or analytical formulas [13] in the open literature. Finally,
some conclusions and perspectives of the present work are provided as a closure.

2 Piezoelectric beam cantilevers problem formulation

The considered piezoelectric smart beam cantilever and its decomposition into three segments, where the
extreme ones (1,3) are for the bare parts and the middle one (2) is for the sandwich part made of an elastic
core and piezoelectric skins, are shown in Fig. 1. The beam lies in the x-z plane, where the x-axis is along the
length and the z-axis is in the thickness direction (upward). The coordinates originate at the intersection of the
beam’s clamped edge and reference mid-plane. The beam is of length L = x3 − x0, where x0 and x3 are the
abscissa of the clamp and free edge. It is of width Bb, thickness tb and elastic orthotropic behavior with material
axes (1, 2, 3) coinciding with the Cartesian coordinate system ones (x , y, z). The surface-bonded patches have
outward opposite polarizations along the thickness and a 2-mm crystal class piezoelectric behavior. They
can be different in material properties, thickness tp and width Bp, where u and l superscripts will be used
for specifying the characteristics of the upper and lower patches. However, the latter have the same length
L p = x2 − x1, where x1 and x2 are the positions (from the clamp) of their left and right edges. They can
be actuated by applied voltage V or charge Q, and both can be sensed when the beam’s tip is subjected to a
downward concentrated force, Fz . Note that when grounding the patches interfaces with the beam, the upper
V u and lower V l voltages are, respectively, positive and negative, see Fig. 1a.
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Fig. 1 Cantilever beam with two co-localized surface-mounted piezoelectric patches

2.1 Kinematics and constitutive equations

The cantilever smart piezoelectric beam is supposed moderately thick and can be modeled using Timoshenko’s
FSDT. Thus, the axial u and transverse w global displacements can be written in terms of the mid-plane axial
uo, transverse wo and bending rotation ψ generalized displacements

u(x, z) = uo(x) + z ψ(x), w(x, z) = wo(x). (1)

Consequently, the linearized strain–displacement relations reduce to these axial and transverse shear (TS)
strain–generalized displacement relations,

εx = uo
′ + zψ ′, γxz = ψ + wo

′, (2)

where the prime (.)′ denotes the derivative with respect to the spatial coordinate x .
As the piezoelectric patches are electroded and thin, it can be reasonably assumed that the transverse

electric field component, Ez , dominates the in-plane ones and can be written in terms of the voltage and patch
thickness so that Ez = −V/tp. In this case, the axial and TS stresses, dual to the above strains, are functions
of the latter and the dominant electric field so that the 3D converse piezoelectric constitutive equations for a
thickness polarization reduce to

{

σx

τxz

}

=

[

Q̃E
11 0

0 ks Q̃E
55

]{

εx

γxz

}

−

{

ẽ31

0

}

Ez (3)

where ks is the classical shear correction factor taken here equal to 5/6 [8], and Q̃E
11, Q̃E

55 and ẽ31 are,
respectively, the axial and TS stiffness (under constant electric field) and stress piezoelectric coefficients,
modified or not depending on the considered 3D to 1D constitutive equations reduction.

Notice that Eq. (3) is a general form compatible with the FSDT so that any expressions for its stiffness and
stress piezoelectric coefficients can be used in the hereafter proposed theoretical formulation and DTF CFS.
These coefficients are usually taken as those derived in [8] and used in [6,7,12], i.e.,

Q̃E
11 = C E

11 − C E
13

C E
13

C E
33

, Q̃E
55 = C E

55, ẽ31 = e31 − e33

C E
13

C E
33

(4)
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where C E
11, C E

13, C E
33, and C E

55 are the 3D elastic stiffness coefficients at constant electric field and e31 and e33

are the 3D stress piezoelectric coefficients.
The constitutive Eq. (3) is useful for actuation, while for sensing the 3D direct piezoelectric constitutive

equation is reduced to this expression of the dielectric transverse displacement component, Dz , dual to the
dominant electric field one, Ez ,

Dz = ẽ31εx + ∈̃
S
33 Ez, (5)

where ∈̃
S
33 is the modified or not dielectric coefficient (at constant strain), which expression depends also on

the retained 3D-to-1D constitutive equations reduction.
It is worth noticing that Eq. (5) is a general form compatible with the FSDT so that any expression for its

dielectric coefficient at constant strain can be used in the hereafter proposed theoretical formulation and DTF
CFS. This coefficient is usually taken as that derived in [8] and used already in [6,7,12], i.e.,

∈̃
S
33 =∈S

33 +e33
e33

C E
33

(6)

where ∈S
33 is the 3D transverse dielectric coefficient at constant strain.

2.2 Variational equations

For kinematically admissible independent virtual variables (mechanical generalized displacements and electric
potential), the PVW extended to piezoelectricity can be reduced to [9]

−δH + δW = 0 (7)

where δH and δW are, respectively, the virtual electromechanical enthalpy and virtual works done by external
electrical and mechanical loads.

For an FSDT-based piezoelectric beam, the virtual electromechanical enthalpy is written as [8]

δH =

∫

�

(δεx σx + δγxz τxz − δEz Dz) d� (8)

where the integral on the volume � is separated into thickness, width and length single integrals in order to
handle separately the smart beam cantilever’s three segments. Thus, considering the latter, the integral along
the beam length can be decomposed as

L
∫

0

(.) dx =

x
1

∫

0

(.) dx +

x
2

∫

x
1

(.) dx +

L
∫

x
2

(.) dx . (9)

Substituting the axial and shear strains and stresses, Eqs. (2) and (3), along with the electric displace-
ment, Eq. (5), in Eqs. (8) and (9) and carrying out the width and through-the-thickness integrals, taking into
consideration different beam and piezoelectric patches widths and thicknesses, results in the following

δH = Bu
p

x2
∫

x1

⎧

⎪

⎪

⎨

⎪

⎪

⎩

tb
2 +tu

p
∫

tb
2

[

(

δu′
o + z δψ ′

) (

Q̃
pu
11 u′

o + z Q̃
pu
11 ψ ′ − ẽu

31 Eu
z

)

+
(

δψ + δw′
o

)

ks Q̃
pu
55

(

ψ + w′
o

)

−δEu
z

(

ẽu
31 u′

o + z ẽu
31 ψ ′ + ∈̃Su

33 Eu
z

)

]

dz

⎫

⎪

⎪

⎬

⎪

⎪

⎭

dx + Bl
p

x2
∫

x1

⎧

⎪

⎪

⎨

⎪

⎪

⎩

−
tb
2

∫

−tb
2 −t l

p

[

(

δu′
o + z δψ ′

) (

Q̃
pl
11 u′

o + z Q̃
pl
11 ψ ′ − ẽl

31 E l
z

)
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+
(

δψ + δw′
o

)

ks Q̃
pl
55

(

ψ + w′
o

)

− δE l
z

(

ẽl
31 u′

o + z ẽl
31 ψ ′ + ∈̃Sl

33 E l
z

)

]

dz

⎫

⎪

⎪

⎬

⎪

⎪

⎭

dx,

+ Bb

L
∫

0

⎧

⎪

⎪

⎨

⎪

⎪

⎩

tb
2
∫

−
tb
2

[

(

δu′
o + z δψ ′

) (

Q̃b
11 u′

o + z Q̃b
11 ψ ′

)

+
(

δψ + δw′
o

)

ks Q̃b
55

(

ψ + w′
o

)

]

dz

⎫

⎪

⎪

⎬

⎪

⎪

⎭

dx . (10)

Note that since the reference plane is taken as the beam’s mid-plane, the membrane-bending strains coupling
terms in the first product of the third integral of Eq. (10) vanish automatically. It should also be noted that
the first two thickness integrals in the above expression are only present in segment 2. Carrying out these
through-the-thickness integrations results in the following expression for the virtual enthalpy:

δH =

x2
∫

x1

[

Au
pδu′

o

(

Q̃
pu
11 u′

o + Hu
2 Q̃

pu
11 ψ ′ − ẽu

31 Eu
z

)

+ δψ ′
(

Au
p Hu

2 Q̃
pu
11 u′

o + I u
p Q̃

pu
11 ψ ′ − Au

p Hu
2 ẽu

31 Eu
z

)

+
(

δψ + δw′
o

)

ks Au
p Q̃

pu

55

(

ψ + w′
o

)

− δEu
z

(

Au
p ẽu

31 u′
o + Au

p Hu
2 ẽu

31 ψ ′ + Au
p ∈̃

Su
33 Eu

z

)

]

+

[

Al
pδu′

o

(

Q̃
pl
11 u′

o − H l
2 Q̃

pl
11 ψ ′ − ẽl

31 E l
z

)

− δψ ′
(

Al
p H l

2 Q̃
pl
11 u′

o − I l
p Q̃

pl
11 ψ ′ − Al

p H l
2 ẽl

31 E l
z

)

+
(

δψ + δw′
o

)

ks Al
p Q̃

pl

55

(

ψ + w′
o

)

− δE l
z

(

Al
p ẽl

31 u′
o − Al

p H l
2 ẽl

31 ψ ′ + Al
p ∈̃

Sl
33 E l

z

)

]

dx

+

L
∫

0

[

δu′
o Ab Q̃b

11 u′
o + δψ ′ Ib Q̃b

11 ψ ′ +
(

δψ + δw′
o

)

ks Ab Q̃b
55

(

ψ + w′
o

)

]

dx (11)

with Ab = Bb tb, Au
p = Bu

p tu
p and Al

p = Bl
p t l

p being the cross-sectional areas of the beam and the upper and

lower piezoelectric patches, respectively. Ib is the cross-section quadratic moment of the beam, and I u
p and I l

p
are the cross-section quadratic moments of the upper and lower piezoelectric patches. These are defined as

Ib =
Bb t3

b

12
, I u

p =
tu
p Bu

p

12

[

(tu
p)2 + 3

(

tb + tu
p

)2
]

, I l
p =

t l
p Bl

p

12

[

(t l
p)

2 + 3
(

tb + t l
p

)2
]

. (12)

Note that the quantities Hu
2 and H l

2 in Eq. (11) are defined as

Hu
2 =

1

2
(tb + tu

p), H l
2 =

1

2
(tb + t l

p). (13)

Expanding the integration over the beam length and collecting terms with common integration limits yields

δH =

x1
∫

0

[

δu′
o Ab Q̃b

11 u′
o + δψ ′ Ib Q̃b

11 ψ ′ +
(

δψ + δw′
o

)

ks Ab Q̃b
55

(

ψ + w′
o

)

]

dx

+

x2
∫

x1

{

δu′
o

[

(

Ab Q̃b
11 + Au

p Q̃
pu
11 + Al

p Q̃
pl
11

)

u′
o +

(

Hu
2 Q̃

pu
11 Au

p − H l
2 Q̃

pl
11 Al

p

)

ψ ′ −

(

ẽu
31 Au

p Eu
z + ẽl

31 Al
p E l

z

)

]

+ δψ ′

[

(

Au
p Hu

2 Q̃
pu
11 − Al

p H l
2 Q̃

pl
11

)

u′
o +

(

Ib Q̃b
11 + I u

p Q̃
pu
11 + I l

p Q̃
pl
11

)

ψ ′ −

(

Au
p Hu

2 ẽu
31 Eu

z − Al
p H l

2ẽl
31 E l

z

)

]

+
(

δψ + δw′
o

)

ks

(

Ab Q̃b
55 + Au

p Q̃
pu
55

+ Al
p Q̃

pl
55

)

(

ψ + w′
o

)

− δEu
z

(

Au
p ẽu

31u′
o + Au

p Hu
2 ẽu

31ψ ′ + Au
p∈̃Su

33 Eu
z

)

− δE l
z

(

Al
p ẽl

31u′
o − Al

p H l
2ẽl

31ψ ′ + Al
p∈̃Sl

33 E l
z

)

}

dx +

L
∫

x2

[

δu′
o Ab Q̃b

11 u′
o + δψ ′ Ib Q̃b

11 ψ ′ +
(

δψ + δw′
o

)

ks Ab Q̃b
55

(

ψ + w′
o

)

]

dx . (14)
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The virtual works done by the surface electrical charges of the upper and lower surfaces of the upper and
lower piezoelectric patches, δW u

Q and δW l
Q , are given by

δW u
Q = −

∫

S

qu δϕ dS = −Bu
p

∫ x2

x1

qu δV u dx = −QuδV u, (15)

δW l
Q = −

∫

S

ql δϕ dS = Bl
p

∫ x2

x1

ql δV l dx = QlδV l (16)

where q , ϕ, and S are the electric surface charge, electric potential, and electrode surface, respectively. The
patches interfaces with the beam are considered grounded.

The virtual work done by the applied external mechanical load at the tip of the structure is given by

δWF = −Fzδwo(L). (17)

The virtual work δW of external electrical and mechanical loads is then the sum of those given in Eqs. (15)
to (17) so that

δW = δW u
Q + δW l

Q + δWF . (18)

2.3 Segments equations

The above variational Eqs. (14) and (18) are used to derive the balance equations and corresponding elec-
tromechanical boundary and continuity conditions that will later be used to describe the DTF approach.

The balance equations are obtained by back-substituting Eqs. (14) and (18), into Eq. (7) and integrating
by parts and then collecting terms with common virtual generalized displacements, resulting in three balance
equations for each segment.

The balance equations for segment 1 are given by

δuo : Ab Q̃b
11u′′

o = 0, (19)

δψ : Ib Q̃b
11 ψ ′′ − ks Ab Q̃b

55

(

ψ + w′
o

)

= 0, (20)

δwo : ks Ab Q̃b
55 (ψ ′ + w′′

o) = 0. (21)

For segment 2, the balance equations are given by

δuo :

(

Ab Q̃b
11 + Au

p Q̃
pu
11 + Al

p Q̃
pl
11

)

u′′
o +

(

Au
p Hu

2 Q̃
pu
11 − Al

p H l
2 Q̃

pl
11

)

ψ ′′ = 0, (22)

δψ :

(

Au
p Hu

2 Q̃
pu
11 − Al

p H l
2 Q̃

pl
11

)

u′′
o +

(

Ib Q̃b
11 + I u

p Q̃
pu
11 + I l

p Q̃
pl
11

)

ψ ′′

−ks

(

Ab Q̃b
55 + Au

p Q̃
pu

55 + Al
p Q̃

pl

55

)

(

ψ + w′
o

)

= 0, (23)

δwo : ks

(

Ab Q̃b
55 + Au

p Q̃
pu

55 + Al
p Q̃

pl

55

)

(ψ ′ + w′′
o) = 0. (24)

The following electrical equations hold also for segment 2:

δV u :

∫ x2

x1

(

Au
p ∈̃

Su
33

V u

tu
p

− Au
p ẽu

31u′
o − Au

p Hu
2 ẽu

31 ψ ′

)

dx = Qu tu
p, (25)

δV l :

∫ x2

x1

(

Al
p ∈̃

Sl
33

V l

t l
p

− Al
p ẽl

31u′
o + Al

p H l
2 ẽl

31 ψ ′

)

dx = −Ql t l
p. (26)

Finally, for segment 3, the balance equations are given by

δuo : Ab Q̃b
11u′′

o = 0, (27)

δψ : Ib Q̃b
11 ψ ′′ − ks Ab Q̃b

55

(

ψ + w′
o

)

= 0, (28)

δwo : ks Ab Q̃b
55 (ψ ′ + w′′

o) = 0. (29)
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To simplify the previous balance equations, the following Ci quantities are introduced:

C0 = Cb
0 + C

pu
0 + C

pl
0 , C

p
1 = C

pu
1 − C

pl
1 , C2 = Cb

2 + C
pu
2 + C

pl
2 , C3 = Cb

3 + C
pu
3 + C

pl
3 (30)

where Cb
j and C

pk
j are defined as

C
(b,pk)

0 = Ak
b,p Q̃

(b,pk)

11 , C
pk
1 = Ak

p H k
2 Q̃

pk
11 , C

(b,pk)

2 = I k
(b,p) Q̃

(b,pk)

11 ,

C
(b,pk)

3 = ks Ak
(b,p) Q̃

(b,pk)

55 , C
pk
4 = Bk

p ẽk
31, C

pk

5 = Bk
p H k

2 ẽk
31 (31)

with j running from 0 to 5 and k taking the values u and l according to the considered patch.
If considered independent, the mechanical BCs associated with segments 1 and 3, i.e., those associated

with Eqs. (19) to (21) and Eqs. (27) to (29), are given by

Cb
0 u′

o

∣

∣

∣

∣

x1

0

= 0 Or δuo

∣

∣

∣

∣

x1

0

= 0, (32)

Cb
2 ψ ′

∣

∣

∣

∣

x1

0

= 0 Or δψ

∣

∣

∣

∣

x1

0

= 0, (33)

[

Cb
3

(

ψ + w′
o

)

]

∣

∣

∣

∣

x1

0

= 0 Or δwo

∣

∣

∣

∣

x1

0

= 0 (34)

and

Cb
0 u′

o

∣

∣

∣

∣

L

x2

= 0 Or δuo

∣

∣

∣

∣

L

x2

= 0, (35)

Cb
2 ψ ′

∣

∣

∣

∣

L

x2

= 0 Or δψ

∣

∣

∣

∣

L

x2

= 0, (36)

[

Cb
3

(

ψ + w′
o

)

− Fz

]

∣

∣

∣

∣

L

−

[

Cb
3

(

ψ + w′
o

)

]

∣

∣

∣

∣

x2

= 0 Or δwo

∣

∣

∣

∣

L

x2

= 0 (37)

while those of the smart beam part (segment 2), if considered independent, are

(

C0 u′
o + C

p
1 ψ ′ + C

pu
4 V u + C

pl
4 V l

)

∣

∣

∣

∣

x2

x1

= 0 Or δuo

∣

∣

∣

∣

x2

x1

= 0, (38)

(

C
p
1 u′

o + C2 ψ ′ + C
pu

5 V u − C
pl

5 V l
)

∣

∣

∣

∣

x2

x1

= 0 Or δψ

∣

∣

∣

∣

x2

x1

= 0, (39)

[

C3

(

ψ + w′
o

)

]

∣

∣

∣

∣

x2

x1

= 0 Or δwo

∣

∣

∣

∣

x2

x1

= 0. (40)

The CC at sections between segments 1 and 2, at x1, and that between segments 2 and 3, at x2, (with
i = 1, 2) are

(uo)i = (uo)i+1 , (41)

(ψ)i = (ψ)i+1 , (42)

(wo)i = (wo)i+1 . (43)

Besides, the equilibrium conditions at the section connecting segments 1 and 2, i.e., x1, are

Cb
0 u′

o

∣

∣

∣

∣

x1

=

(

C0 u′
o + C

p
1 ψ ′ + C

pu
4 V u + C

pl
4 V l

)

∣

∣

∣

∣

x1

, (44)

Cb
2 ψ ′

∣

∣

∣

∣

x1

=

(

C
p
1 u′

o + C2 ψ ′ + C
pu

5 V u − C
pl

5 V l
)

∣

∣

∣

∣

x1

, (45)

[

Cb
3

(

ψ + w′
o

)

]

∣

∣

∣

∣

x1

=

[

C3

(

ψ + w′
o

)

]

∣

∣

∣

∣

x1

, (46)
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and those at the section connecting segments 2 and 3 are

(

C0 u′
o + C

p
1 ψ ′ + C

pu
4 V u + C

pl
4 V l

)

∣

∣

∣

∣

x2

= Cb
0 u′

o

∣

∣

∣

∣

x2

, (47)

(

C
p
1 u′

o + C2 ψ ′ + C
pu

5 V u − C
pl

5 V l
)

∣

∣

∣

∣

x2

= Cb
2 ψ ′

∣

∣

∣

∣

x2

, (48)

[

C3

(

ψ + w′
o

)

]

∣

∣

∣

∣

x2

=

[

Cb
3

(

ψ + w′
o

)

]

∣

∣

∣

∣

x2

. (49)

It is worth noting that the C
p
1 stiffness parameter couples the membrane-bending adaptive beam responses. It

should also be noticed that this coupling parameter is present only in segment 2, which contains the piezoelectric
patches, because of the asymmetric (different thickness) configuration of the adaptive beam (see Fig. 1).

The balance equations and associated BC, Eqs. (19) to (40), are now transformed into first-order state
space form using the DTF approach in order to derive the two piezoelectric adaptive beam static sensing and
actuation problems, which depend on the electric BC.

It can be seen that, for segment 2, the first two balance Eqs. (22) and (23) are coupled and need to be solved
for u′′

o and ψ ′′. Hence, for simplicity, they are first rewritten as

δuo : C0u′′
o + C

p
1 ψ ′′ = 0, (50)

δψ : C
p
1 u′′

o + C2 ψ ′′ − C3

(

ψ + w′
o

)

= 0, (51)

δwo : C3 (ψ ′ + w′′
o) = 0. (52)

The corresponding mechanical BC and CC are those of Eqs. (38) to (40).
From Eq. (50), u′′

o can be written as

u′′
o = −

C
p
1

C0
ψ ′′. (53)

Back-substituting this result in Eq. (51) and collecting common terms yields the following expression for ψ ′′:

ψ ′′ = C3

(

C0

C2 C0 −
(

C
p
1

)2
ψ +

C0

C2 C0 −
(

C
p
1

)2
w′

o

)

. (54)

Now, back-substituting ψ ′′ from Eq. (54) into Eq. (53) and collecting common terms results in the following
expression of u′′

o:

u′′
o = C3

(

−C
p
1

C2 C0 −
(

C
p
1

)2
ψ +

−C
p
1

C2 C0 −
(

C
p
1

)2
w′

o

)

. (55)

As similar expression for w′′
o can be obtained by solving Eq. (52), namely

w′′
o = −ψ ′ (56)

Using the result of ψ ′′ from Eq. (54), u′′
o from Eq. (55) and w′′

o from Eq. (56), the balance Eqs. (50)–(52) are
rewritten as follows:

u′′
o = C̄

p
1

(

ψ + w′
o

)

,

ψ ′′ = C̄2

(

ψ + w′
o

)

,

w′′
o = −ψ ′ (57)

where C̄i are given by

C̄
p
1 = −

C
p
1 C3

C2 C0 −
(

C
p
1

)2
, C̄2 =

C0 C3

C2 C0 −
(

C
p
1

)2
. (58)

8



Note that C̄
p
1 ensures the membrane-bending coupling, inherited by the presence of C

p
1 , that is present only

in segment 2, which contains the piezoelectric patches. Hence, it vanishes for segments 1 and 3, for vanishing
C

p
1 , and the bare beam local Eqs. (19) to (21) and Eqs. (27) to (29) are automatically recovered, as

u′′
o = 0,

ψ ′′ = C̄b
2

(

ψ + w′
o

)

,

w′′
o = −ψ ′ (59)

where C̄b
2 is given by

C̄b
2 =

Cb
3

Cb
2

. (60)

3 DTF-based unified static solutions

Applying the appropriate changes to accommodate the new assumptions, the DTF solution [5] is obtained
by having the balance equations, and corresponding boundary/equilibrium conditions of the three segments
satisfy the following first-order state space equations:

Y′
i (x) = Fi Yi (x), i = 1, 2, 3 (61)

where Yi (x) = {D(x), D′
i (x)}T with D(x) = {uo, ψ, wo}

T is the generalized displacements vector and

D′
i (x) = {u′

o, ψ
′, w′

o}
T its x-derivative.

Following the same procedure as in [6,7] and from Eqs. (57) and (59), the expressions for Fi , i = 1, 2, 3,
modify to

F2 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

0 C̄
p
1 0 0 0 C̄

p
1

0 C̄2 0 0 0 C̄2

0 0 0 0 −1 0

⎤

⎥

⎥

⎥

⎥

⎥

⎦

, F1,3 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0

0 C̄b
2 0 0 0 C̄b

2
0 0 0 0 −1 0

⎤

⎥

⎥

⎥

⎥

⎥

⎦

. (62)

The solution of Eq. (61) is obtained by having Yi (x) expressed as

Yi (x) = Hi (x) γ i (63)

with Hi (x) being a 6 × 6 matrix given by

Hi (x) = eFi x
[

Mi eFi xi−1 + Ni eFi xi

]−1
i = 1, 2, 3, (64)

and Mi , Ni are linked to γ i by the following matrix boundary/continuity equation:

γ i = Mi Yi (xi−1) + Ni Yi (xi ), (65)

Hence, for i = 1, Eq. (65) reduces to

γ 1 = M1 Y1(x0) + N1 Y1(x1) (66)

which represents the boundary/continuity conditions at the edges of segment 1, x0 and x1 .
Since the beam is clamped at x0 = 0, the product M1 Y1(0) must have the following form:

M1 Y1(0) =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎦

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

uo(0)

ψ(0)

wo(0)

u′
o(0)

ψ ′(0)

w′
o(0)

⎫

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎭

=

[

I 0

0 0

]{

D(x0)

D′
1(x0)

}

. (67)
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From the displacements continuity at x1, Eqs. (41)–(43), the following N1 Y1(x1) must be satisfied:

N1 Y1(x1) =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎦

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

uo(x1)

ψ(x1)

wo(x1)

u′
o(x1)

ψ ′(x1)

w′
o(x1)

⎫

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎭

=

[

0 0

I 0

]{

D(x1)

D′
1(x1)

}

(68)

where I is a 3 × 3 identity matrix.
The resulting expression of γ 1 is therefore

γ 1 =

[

I 0

0 0

]{

D(x0)

D′
1(x0)

}

+

[

0 0

I 0

]{

D(x1)

D′
1(x1)

}

, (69)

which, when expanded, results in

γ 1 =

{

D(x0)

D(x1)

}

. (70)

Note that the upper part of Eq. (70) satisfies the BC at x = 0, the right hand side of Eqs. (32) to (34), and
hence the expression D(x0) is identically equal to zero. Therefore, γ 1 reduces to

γ 1 =

{

0

D(x1)

}

. (71)

It should be noted that γ 1 vector represents the displacement BC and CC at the edges of segment 1 with
the upper vector representing the generalized displacement BC at x0 and the lower vector representing the
generalized displacement CC at x1 .

Similarly, for i = 2, Eq. (65) reduces to

γ 2 = M2 Y2(x1) + N2 Y2(x2). (72)

Since the displacements are continuous at both edges of segment 2, namely at x1 and x2 , the following
expression of γ 2 vector must be satisfied:

γ 2 =

[

I 0

0 0

]{

D(x1)

D′
2(x1)

}

+

[

0 0

I 0

]{

D(x2)

D′
2(x2)

}

(73)

which when expanded reduces to

γ 2 =

{

D(x1)

D(x2)

}

. (74)

Here, the upper vector of Eq. (74) represents the generalized displacement CC at x1 and the lower vector
represents the generalized displacement CC at x2 .

Finally, for i = 3, Eq. (65) reduces to

γ 3 = M3 Y3(x2) + N3 Y3(x3 = L) (75)

where the expression for γ 3 is obtained by satisfying the generalized displacements continuity at x2 and the
vertical force end conditions at x3 = L , Eqs. (41) to (43), and left of Eqs. (35) to (37).

Thus, from the generalized displacements CC, the product M3 Y3(x2) must have the following form:

M3 Y3(x2) =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎦

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

uo(x2)

ψ(x2)

wo(x2)

u′
o(x2)

ψ ′(x2)

w′
o(x2)

⎫

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎭

=

[

I 0

0 0

]{

D(x2)

D′
3(x2)

}

. (76)

10



Since the generalized displacements at x3 = L are unknown, the left hand side of Eqs. (35) to (37) must
be equal to the natural BC; thus, the product N3 Y3(x3 = L) changes to

N3 Y3(L) =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 Cb
0 0 0

0 0 0 0 Cb
2 0

0 Cb
3 0 0 0 Cb

3

⎤

⎥

⎥

⎥

⎥

⎥

⎦

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

uo(L)

ψ(L)

wo(L)

u′
o(L)

ψ ′(L)

w′
o(L)

⎫

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎭

=

[

0 0

B3
D

B3
D′

]{

D(L)

D′
3(L)

}

. (77)

Using the results from Eqs. (76) and (77), γ 3 reduces to

γ 3 =

[

I 0

0 0

]{

D(x2)

D′
3(x2)

}

+

[

0 0

B3
D

B3
D′

]{

D(L)

D′
3(L)

}

(78)

which simplifies to

γ 3 =

{

D(x2)

B3
D

D(L) + B3
D′

D′
3(L)

}

. (79)

Note that the lower part of Eq. (79) should satisfy the natural BC at x3 = L , Eq. (35) to (37); hence, the
expression B3

D
D(L) + B3

D′
D′

3(L) is identically equal to F, with F = {0, 0, Fz}
T .

Therefore, γ 3 reduces to

γ 3 =

{

D(x2)

F

}

. (80)

From Eqs. (44) to (49), the equilibrium conditions at the boundaries of segments 1, 2, and 3 can generally
be expressed (after considering the CC (41)-(43)) as

Bi
D

D(xi ) + Bi

D′
D′

i (xi ) + Ṽi = Bi+1
D

D(xi ) + Bi+1

D′
D′

i+1(xi ) + Ṽi+1 i = 1, 2. (81)

Note that Ṽ exists only for segment 2, and from Eqs. (44) to (46), it is given by

Ṽ =

⎧

⎨

⎩

C
pu
4

C
pu

5
0

⎫

⎬

⎭

V u +

⎧

⎨

⎩

C
pl
4

−C
pl

5
0

⎫

⎬

⎭

V l . (82)

For i = 1, the equilibrium conditions at x1 between segments 1 and 2 expand to

B1
D

D(x1) + B1

D′
D′

1(x1) = B2
D

D(x1) + B2

D′
D′

2(x1) + Ṽ (83)

with B1
D

, B1
D′

, B2
D

, and B2
D′

obtained from Eqs. (44) to (46) as

B1
D

=

⎡

⎣

0 0 0
0 0 0

0 Cb
3 0

⎤

⎦ , B1

D′
=

⎡

⎣

Cb
0 0 0

0 Cb
2 0

0 0 Cb
3

⎤

⎦ , B2
D

=

⎡

⎣

0 0 0
0 0 0
0 C3 0

⎤

⎦ , B2

D′
=

⎡

⎣

C0 C
p
1 0

C
p
1 C2 0

0 0 C3

⎤

⎦ .

(84)
Similarly, the equilibrium conditions at x2 between segments 2 and 3, i.e., i = 2, expand to

B2
D

D(x2) + B2

D′
D′

2(x2) + Ṽ = B3
D

D(x2) + B3

D′
D′

3(x2) (85)

with B3
D

, and B3
D′

obtained from Eq. (77); it can be noticed that they are equal to those of segment 1 which is

normal since both segments represent the bare beam parts.
The vectors D′

1(x1), D′
2(x1), D′

2(x2), and D′
3(x2) of Eqs. (83) and (85) can be written in terms of vectors

D(x1) and D(x2) by expanding Eq. (63) in the following form:

{

D(x)

D′
i (x)

}

=

[

Hi
aa(x) Hi

ab(x)

Hi
ba(x) Hi

bb(x)

]

{

γ i

}

. (86)

11



Thus, for segment 1 Eq. (86), written at the segment’s right end, is (after Eq. (71))

{

D(x1)

D′
1(x1)

}

=

[

H1
aa(x1) H1

ab(x1)

H1
ba(x1) H1

bb(x1)

]{

0
D(x1)

}

(87)

from which D′
1(x1) is found to be

D′
1(x1) = H1

bb(x1) D(x1). (88)

Similarly, for segment 2 and using Eqs. (74), (86) written at this segment’s ends, x1 and x2 , provides,
respectively

{

D(x1)

D′
2
(x1)

}

=

[

H2
aa(x1) H2

ab(x1)

H2
ba(x1) H2

bb(x1)

]{

D(x1)

D(x2)

}

, (89)

{

D(x2)

D′
2
(x2)

}

=

[

H2
aa(x2) H2

ab(x2)

H2
ba(x2) H2

bb(x2)

]{

D(x1)

D(x2)

}

(90)

from which D′
2(x1) and D′

2(x2) are deduced, respectively, as

D′
2
(x1) = H2

ba(x1) D(x1) + H2
bb(x1) D(x2), (91)

D′
2
(x2) = H2

ba(x2) D(x1) + H2
bb(x2) D(x2). (92)

Finally, for segment 3, Eq. (86), written at the segment’s left end, is now (using Eq. (80))

{

D(x2)

D′
3
(x2)

}

=

[

H3
aa(x2) H3

ab(x2)

H3
ba(x2) H3

bb(x2)

]{

D(x2)

F

}

(93)

from which D′
3(x2) is

D′
3(x2) = H3

ba(x2) D(x2) + H3
bb(x2) F. (94)

Substituting Eqs. (88), (91),(92), and (94) back into Eqs. (83) and (85) and collecting terms yields

[

KSC
11 KSC

12

KSC
21 KSC

22

]{

D(x1)

D(x2)

}

=

{

0

B3
D′

H3
bb(x2) F

}

+

{

Ṽ

−Ṽ

}

(95)

where the SC, for Ṽ = 0, stiffness matrix is given by

[

KSC
11 KSC

12

KSC
21 KSC

22

]

=

[

B1
D

+ B1
D′

H1
bb(x1) − B2

D
− B2

D′
H2

ba(x1) −B2
D′

H2
bb(x1)

B2
D′

H2
ba(x2) B2

D
+ B2

D′
H2

bb(x2) − B3
D

− B3
D′

H3
ba(x2)

]

. (96)

Carrying out the integration at the left hand sides of Eqs. (25) and (26), using Definitions (31) and solving
for V u and V l , yields

V u =
tu
p

Bu
p∈̃

Su
33 L p

{

[

C
pu
4 uo(x2) + C

pu

5 ψ(x2)
]

−
[

C
pu
4 uo(x1) + C

pu

5 ψ(x1)
]

+ Qu

}

, (97)

and

V l =
t l
p

Bl
p∈̃

Sl
33 L p

{

[

C
pl
4 uo(x2) − C

pl

5 ψ(x2)
]

−

[

C
pl
4 uo(x1) − C

pl

5 ψ(x1)
]

− Ql

}

. (98)

Equations (97) and (98) can be rewritten as

V u =
tu
p

Bu
p∈̃

Su
33 L p

(

[

C
pu
4 C

pu

5 0
]

⎧

⎨

⎩

uo(x2)

ψ(x2)

wo(x2)

⎫

⎬

⎭

−
[

C
pu
4 C

pu

5 0
]

⎧

⎨

⎩

uo(x1)

ψ(x1)

wo(x1)

⎫

⎬

⎭

+ Qu

)

(99)
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and

V l =
t l
p

Bl
p∈̃

Sl
33 L p

(

[

C
pl
4 −C

pl

5 0

]

⎧

⎨

⎩

uo(x2)

ψ(x2)

wo(x2)

⎫

⎬

⎭

−

[

C
pl
4 −C

pl

5 0

]

⎧

⎨

⎩

uo(x1)

ψ(x1)

wo(x1)

⎫

⎬

⎭

− Ql

)

. (100)

Back-substituting the voltages (99) and (100) into Ṽ, Eq. (82), yields

Ṽ = Cu
6
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⎜
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⎧
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⎪
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⎫

⎪

⎬

⎪

⎭

⎞

⎟

⎟
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+ Cu
6

⎧

⎪

⎨

⎪

⎩

C
pu
4

C
pu

5

0

⎫

⎪

⎬

⎪

⎭

Qu − C l
6

⎧

⎪

⎪

⎨

⎪

⎪

⎩

C
pl
4

−C
pl

5

0

⎫

⎪

⎪

⎬

⎪

⎪

⎭

Ql (101)

with Cu
6 and C l

6 defined as

Cu
6 =

tu
p

Bu
p∈̃

Su
33 L p

, C l
6 =

t l
p

Bl
p∈̃

Sl
33 L p

. (102)

Equation (101) can be simplified to

Ṽ = [Boc] {D(x2)} − [Boc] {D(x1)} + Q̃ (103)

with Boc given by

Boc = Cu
6
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⎢

⎣
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⎥
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(104)

and Q̃ given by

Q̃ = Cu
6

⎧

⎪

⎨

⎪

⎩

C
pu
4

C
pu

5

0

⎫

⎪

⎬

⎪

⎭

Qu − C l
6

⎧

⎪

⎪

⎨

⎪

⎪

⎩

C
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4

−C
pl

5

0

⎫

⎪

⎪

⎬

⎪

⎪

⎭

Ql . (105)

Using Eq. (103), the electric contribution of the right hand side of Eq. (95) can be written as
{

Ṽ

−Ṽ

}

= −

[

Boc −Boc

−Boc Boc

]{

D(x1)

D(x2)

}

+

{

Q̃

−Q̃

}

. (106)

Back-substituting Eq. (106) into Eq. (95) and collecting terms yields
[

KOC
11 KOC

12

KOC
21 KOC

22

]{

D(x1)

D(x2)

}

=

{

0

B3
D′

H3
bb(x2) F

}

+

{

Q̃

−Q̃

}

(107)

where, the OC for Q̃ = 0, stiffness matrix is given by

[

KOC
11 KOC

12

KOC
21 KOC

22

]

=

[

KSC
11 KSC

12

KSC
21 KSC

22

]

+

⎡

⎣

Boc −Boc

−Boc Boc

⎤

⎦ . (108)
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3.1 Short-/open-circuit sensing

For both SC and OC static sensing problems, the applied tip force vector F has to be nonzero; thus, for SC

case (Ṽ = 0), Eq. (95) reduces to

[

KSC
11 KSC

12

KSC
21 KSC

22

]{

D(x1)

D(x2)

}

=

{

0

B3
D′

H3
bb(x2) F

}

. (109)

As a result, the induced charges can be calculated using Eq. (106) by setting (Ṽ = 0), namely

{

Q̃

−Q̃

}

=

[

Boc −Boc

−Boc Boc

]{

D(x1)

D(x2)

}

(110)

with the displacements D(x1) and D(x2) obtained from Eq. (109), namely

{

D(x1)

D(x2)

}

=

[

KSC
11 KSC

12

KSC
21 KSC

22

]−1 {
0

B3
D′

H3
bb(x2) F

}

. (111)

The developed SC sensing electric charges on the patches electrodes are obtained by back-substituting
Eq. (111) into Eq. (110), namely

{

Q̃

−Q̃

}

=

[

Boc −Boc

−Boc Boc

][

KSC
11 KSC

12

KSC
21 KSC

22

]−1 {
0

B3
D′

H3
bb(x2) F

}

, (112)

To determine the induced charge on the surface of any of the piezoelectric patches, an additional step is
required. This can be done by using Eq. (105) and assuming that the developed charges on the surfaces of both
piezoelectric patches are equal and opposite, namely Qu = Q and Ql = −Q. As a result, the charge vector
of Eq. (105) reduces to

Q̃ =

⎧

⎨

⎩

Cu
6 C

pu
4 − C l

6C
pl
4

Cu
6 C

pu

5 + C l
6C

pl

5
0

⎫

⎬

⎭

Q, (113)

and the corresponding induced charge on the surfaces of any of the patches is

Q =
Q̃(1)

Cu
6 C

pu
4 − C l

6C
pl
4

, or Q =
Q̃(2)

Cu
6 C

pu

5 + C l
6C

pl

5

, (114)

where Q̃(1) and Q̃(2) are the first and second elements of the sensed electric charges Q̃ of Eq. (112).

In the case of OC static sensing (Q̃ = 0), Eq. (107) reduces to

[

KOC
11 KOC

12

KOC
21 KOC

22

]{

D(x1)

D(x2)

}

=

{

0

B3
D′

H3
bb(x2) F

}

. (115)

The sensed electric voltages in this case are given by (see Eq. (106) with Q̃ = 0)

{

Ṽ

−Ṽ

}

= −

[

Boc −Boc

−Boc Boc

]{

D(x1)

D(x2)

}

(116)

where the corresponding displacements D(x1) and D(x2) are obtained by solving Eq. (115), namely

{

D(x1)

D(x2)

}

=

[

KOC
11 KOC

12

KOC
21 KOC

22

]−1 {
0

B3
D′

H3
bb(x2) F

}

. (117)
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Back-substituting these displacements into Eq. (116) results in the following expression for the electric
voltages vectors:

{

Ṽ

−Ṽ

}

= −

[

Boc −Boc

−Boc Boc

][

KOC
11 KOC

12

KOC
21 KOC

22

]−1 {
0

B3
D′

H3
bb(x2) F

}

. (118)

To determine the induced voltages by any of the piezoelectric patches, an additional step is required. This
can be done by using Eq. (82) and assuming that the induced voltages across both patches are equal and
opposite, namely V u = V and V l = −V . As a result, the voltage vector of Eq. (82) reduces to

Ṽ =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

C
pu
4 − C

pl
4

C
pu

5 + C
pl

5

0

⎫

⎪

⎪

⎬

⎪

⎪

⎭

V, (119)

and the corresponding induced voltage across any of the patches is

V =
Ṽ(1)

C
pu
4 − C

pl
4

, or V =
Ṽ(2)

C
pu

5 + C
pl

5

(120)

where Ṽ(1) and Ṽ(2) are the first and second elements of the voltage vector Ṽ of Eq. (118).
For both SC and OC sensing problems, the generalized displacements at the tip of the beam (x3 = L) can

be obtained using Eq. (63) for i = 3, namely

Y3(x3) = H3(x3) γ 3 (121)

where H3(x3) is given by Eq. (64) and γ3 is given by Eq. (80), namely

H3(x3) = eF3 x3

[

M3 eF3 x2 + N3 eF3 x3

]−1
, γ3 =

{

D(x2)

F

}

. (122)

Expanding Eq. (121) yields

{

D(x3)

D′
3(x3)

}

=

[

H3
aa(x3) H3

ab(x3)

H3
ba(x3) H3

bb(x3)

]{

D(x2)

F

}

(123)

leading to the following generalized displacements at the tip of the beam:

D(L) = H3
aa(x3) D(x2) + H3

ab(x3) F (124)

where D(x2) is obtained from Eq. (111) for SC sensing and Eq. (117) for OC sensing.

3.2 Voltage/charge actuation

Here, a non-mechanically loaded (F = 0) adaptive cantilever is considered for its voltage or charge actuation.
For the former, Eq. (95) reduces to

[

KSC
11 KSC

12

KSC
21 KSC

22

]

{

D(x1)

D(x2)

}

=

{

Ṽ

−Ṽ

}

(125)

where the voltage vector Ṽ is given by Eq. (82).
Following an identical procedure as in Eqs. (121) to (124), the generalized tip displacement vector of the

beam is given by

D(L) = H3
aa(x3) D(x2) (126)

with D(x2) being obtained by solving Eq. (125).
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(a)

(b)

Fig. 2 A cantilever beam with a top surface-mounted piezoelectric patch

For the case of charge actuation, the corresponding generalized displacements D(x1) and D(x2) are obtained
directly from Eq. (107) by setting F = 0, so that

{

D(x1)

D(x2)

}

=

[

KOC
11 KOC

12

KOC
21 KOC

22

]−1 {
Q̃

−Q̃

}

. (127)

Here, the generalized displacements at the tip of the beam, D(L), can be obtained using Eq. (126) with
D(x2) given by Eq. (127).

4 Numerical validation and benchmarking

The DTF CFS for static sensing/actuation of piezoelectric beam cantilevers have been implemented in
MATLAB®. The latter’s results are the induced potential/charge due to the static tip force, as solutions of the
SC and OC sensing problems, and the tip generalized displacements as the solutions of the static voltage/charge
actuation problems. In all benchmarks, the piezoelectric layers/patches are grounded at the interfaces with the
host beam. The DTF solutions are validated by benchmarks that reported tabulated results [10–12,14] or ana-
lytical formulas [13], as comparison to graphical results may lead to unwanted deviations. Therefore, limited
benchmarks, namely patched asymmetric smart-beam [12], as in Fig. 2, unimorph [10,11], as in Fig. 3, and
trimorph [13,14] as in Fig. 4, were found and used for validating and benchmarking the present DTF CFS.

4.1 Static sensing problems validation

One SC sensing (Fig. 3) and two OC sensing (Figs. 2 and 3) benchmarks are here analyzed. The piezoelectric
layer/patch and host beam in these benchmarks have equal width as the host structure, and the corresponding
material properties are recalled hereafter from [11,12]. The static charge (SC) and voltage (OC) sensing results
are obtained for an applied tip force, Fz , of 1 μN.
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(a)

(b)

Fig. 3 Schematic diagram of a cantilever beam with a top surface-mounted piezoelectric layer (unimorph)

(a)

(b)

Fig. 4 Schematic diagram of a cantilever beam with surface-mounted piezoelectric layers (trimorph)

4.1.1 Short-circuit sensing

The proposed DTF CFS is compared to results from [11] obtained for the unimorph in Fig. 3. The latter has
a length L of 1000 μm and a total thickness ht of 6 μm. The host beam, of thickness tb = ηht , is fully
covered with an equal width, Bp = Bb = 100 μm, PZT-5A piezoceramic layer of thickness tu

p = (1 − η)ht .
It is made from poly-silicon with a Young’s modulus of 160 GPa and a Poisson’s ratio of 0.2. The used
PZT-5A elastic stiffness coefficients at constant electric field are C E

11 = 120.32 GPa, C E
13 = 75.06 GPa,

C E
33 = 110.84 GPa, and C E

55 = 21.05 GPa, the stress piezoelectric coupling coefficients are e31 = −5.35 C/m2

and e33 = 15.78 C/m2, and the transverse permittivity at constant strain is ∈S
33= 7.31 nF/m [11]. Using

the reduction provided in [11], which is based on plate kinematics and accounts for thickness strain, the

piezoelectric layer modified axial and shear stiffness coefficients are calculated as Q̃E
11 = 69.49 GPa and

Q̃E
55 = 21.05 GPa, respectively, while the modified stress piezoelectric and blocked dielectric coefficients are
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ẽ31 = −16.04 C/m2 and ∈̃
S
33 = 9.56 nF/m, respectively. The reduced axial and shear coefficients for the host

beam are Qb
11 = 166.67 GPa and Qb

55 = 66.67 GPa, respectively. Reference [11] provides tabulated results
for a thickness ratio η = 2/3. Using Eqs. (112) and (114), the calculated induced charge is found as -10.105
×10−12 C. This value is 1.08% of relative deviation with regard to the 9.997 ×10−12 C value obtained by [11]
using the 2D plane strain ANSYS® 4-node PLANE13 element. The difference in sign is due to the difference
of the polarization direction. Furthermore, the corresponding SC sensed tip displacement wo(L), calculated
using Eqs. (111) and (124), is computed as 1.692 μm. This value is of 0.12% deviation from the 1.69 μm
value, which was also obtained in [11] using the ANSYS® 2D plane strain PLANE13 element.

4.1.2 Open-circuit sensing

A patched asymmetric smart beam [12] as in Fig. 2 is here considered as a first OC sensing benchmark. The
base aluminum beam is 79 mm long and has a thickness of tb = 3.9 mm, Young’s modulus of E = 69 GPa,
and Poisson’s ratio of ν = 0.3. The PZT PIC255 piezoceramic patch has a thickness of tp = 0.3 mm, a
length of 50 mm, and is placed 18 mm from the fixed end. The host and piezoceramic patch are of equal width
Bp = Bb = 25 mm. The piezoelectric patch plane-stress reduced electromechanical properties were given

in [12] as Q̃E
11 = 69.18 GPa, Q̃E

55 = 21 GPa, ẽ31 = −16.57 C/m2, and ∈̃
S
33 = 9.52 nF/m. The reduced elastic

coefficients of the host beam are Qb
11 = 75.82 GPa and Qb

55 = 26.54 GPa. An OC sensed voltage of 3 V was
mentioned in [12] that was obtained using a plate discrete-layer finite element fulfilling the EP constraints on
the patch electrodes. Using Eqs. (118) and (120), an OC sensed voltage of 3.1 V is obtained. This represents
a relative deviation of 3.33% from the above reference value of 3 V.

The second benchmark considered here is the same unimorph as in the SC sensing case. The OC sensed
voltage, calculated using Eqs. (118) and (120), is equal to 0.0171 V. This value is 1.18% of relative deviation
from the -0.0169 V reported in [11] using the 2D plane strain ANSYS® 4-node PLANE13 element. The
difference in sign is due to the difference of the polarization direction. On the other hand, the corresponding
tip displacement is obtained, using Eqs. (117) and (124), as 1.705 μm. This value is identical to that (1.705
μm) given in [11] using the 3D ANSYS® 8-node SOLID5 element.

4.2 Static actuation problems validation

The voltage and charge actuation problems are validated here by four benchmarks, a unimorph [10] similar in
given dimensions and properties, including the calculated modified ones, as that used in the SC sensing case
of Fig. 3, and trimorphs [13,14] similar to that shown in Fig. 4. The DTF CFS voltage actuation problem is
validated using three benchmarks [10,13,14], while the DTF CFS charge actuation one is validated against
the unimorph benchmark results in [10].

4.2.1 Voltage actuation

The transverse tip displacement caused by an applied electric voltage is obtained here using Eqs. (125) and
(126). The first voltage actuation benchmark is the unimorph [10] used earlier for validating the SC sensing
problem. It is actuated by a voltage of 1 V applied on the top surface of the piezoelectric layer, while the actuator–
beam interface remains grounded. The corresponding calculated tip displacement value is −10.0194 μm, which
is of 0.85% relative deviation from the 10.105 μm 2D plane strain analytical value, reported in [10]. Again,
the difference in sign is due to the difference of the polarization direction.

The second voltage actuation benchmark is a trimorph [13] as that shown in Fig. 4. It is 100 mm long
and made of 16-mm-thick aluminum host with two, 1-mm-thick, surface-mounted piezoceramic layers, all
having a unit width. The beam elastic properties are E = 70.3 GPa and ν = 0.345, while the elastic properties
used for the PZT-5H at constant electric field are C E

11 = 126 GPa, C E
13 = 84.1 GPa, C E

33 = 117 GPa, and

C E
55 = 23 GPa, the stress piezoelectric coupling coefficients are e31 = −6.5 C/m 2 and e33 = 23.3 C/m 2 [13],

and the transverse permittivity at constant strain is ∈S
33= 13 nF/m [15]. Using the electromechanical coefficients

reduction in [13], which is similar to that presented here in Eqs. (4) and (6), the modified elastic axial and

shear stiffness coefficients are calculated as Q̃E
11 = 65.55 GPa and Q̃E

55 = 23 GPa, respectively, while the

modified stress piezoelectric and blocked dielectric coefficients are ẽ31 = −23.25 C/m2 and ∈̃
S
33 = 17.64

nF/m. The reduced elastic coefficients of the aluminum host are Qb
11 = 79.46 GPa and Qb

55 = 26.02 GPa.
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Using the analytical equations provided by [13], the tip deflection for an applied voltage of 10 V is equal to
−0.5382 µm, which is identical (−0.5382 µm) to DTF CFS calculated using Eqs. (125) and (126).

The third voltage actuation benchmark [14] is a trimorph similar to that of the previous voltage actuation
case (Fig. 4), but with different material properties and dimensions. It is 0.3 m long, with host beam thickness of
0.02 m and two 0.005-m-thick piezoelectric layers. The width for this benchmark was not given; however, since
all layers have equal width, it is factored out. The host beam is made of steel with E = 210 GPa and ν = 0.3,
while the piezoelectric layers are made of PZT-4 which used elastic stiffness coefficients at constant electric field
being C E

11 = 139 GPa, C E
13 = 74.3 GPa, C E

33 = 113 GPa, and C E
55 = 25.6 GPa, stress piezoelectric coupling

coefficients are e31 = −6.98 C/m 2 and e33 = 13.84 C/m 2, and transverse permittivity at constant strain
is ∈S

33= 5.47 nF/m [14]. The corresponding modified elastic axial and shear stiffness coefficients calculated

using Eq. (4) are Q̃E
11 = 90.15 GPa and Q̃E

55 = 25.6 GPa, respectively. The modified stress piezoelectric

and blocked dielectric coefficients using (6) are ẽ31 = −16.08 C/m2 and ∈̃
S
33 = 7.165 nF/m. The reduced

elastic coefficients of the steel host are Qb
11 = 230.77 GPa and Qb

55 = 80.77 GPa. For an applied voltage of
10 V, the reported tip displacement in [14] is equal to 566.9 nm, while the tip displacement calculated using
Eqs. (125) and (126) is equal to 609.95 nm with a relative deviation of 7.6%. When using the PZT-4 data from
eFunda [16] (C E

11 = 139 GPa, C E
13 = 74.28 GPa, C E

33 = 115.41 GPa, C E
55 = 25.6 GPa, e31 = −5.203 C/m 2,

e33 = 15.08 C/m 2, and ∈S
33= 5.872 nF/m), the reduced electromechanical coefficients, according to Eqs. (4)

and (6), are Q̃E
11 = 91.19 GPa, Q̃E

55 = 25.64 GPa, ẽ31 = −14.91 C/m2 and ∈̃
S
33 = 7.84 nF/m, and the

corresponding calculated tip displacement is 562.4 nm (compared to above 566.9 nm [14]) with a relative error
of 0.75%.

4.2.2 Charge actuation

The charge-induced transverse tip displacement is obtained here using Eqs. (126) and (127). In the case of the
unimorph (Fig. 3) used above in the validation of the voltage actuation problem [10] and for the thickness ratio
η = 2/3, an electric charge of 6.5 × 10−10 Coulomb is applied to the top surface of the piezoelectric layer,
while keeping the latter’s interface with the beam grounded. Using the above equations, the current DTF CFS
predicts a tip displacement of 11.04 μm, which is of 0.01% deviation from the 2D plane strain, considering
the so-called induced potential higher-order effect [8] analytical value (11.039 μm) reported in [10].

5 Conclusions and perspectives

Unified DTF CFS were presented for the static SC/OC sensing and voltage/charge actuation of beam can-
tilevers using top/bottom surface-mounted piezoelectric patches. These solutions can handle different material
properties, thickness and width, but same length, for the patches. Besides, the latter’s widths can be different
from the host elastic beam as is usually the case in practice, but not in most literature theoretical (numerical
or analytical) models. Therefore, the presented DTF CFS can handle unimorph and asymmetric or symmetric
patched or layered smart cantilevers, but not bimorphs (two bonded piezoelectric layers only) and laminated
hosts (the core layer of the trimorph). Another feature of the given solutions is that they can support various
reduced piezoelectric constitutive equations and satisfy automatically the physical equipotential constraints
on the piezoelectric patches/layers electrodes. The validation and benchmarking results showed very good
correlations with the 2D plane-strain analytical [10] and 2D plane-strain [11,14] /plane-stress [12,13] /3D [11]
finite element reference ones.

As a short-term perspective, the present work and earlier ones [6,7] can be extended to laminated and piezo-
electric hosts so that the above-mentioned layered composite host and bimorph limitations can be alleviated.
Also, considering higher-order electric potential distributions through the thicknesses of the patches/layers will
help gain higher accuracy. Next, as a mid-term perspective, a worthy extension could be directed to considering
the case of embedded shear (d15) piezoceramic sensors and actuators; corresponding SC and OC free-vibration
solutions can be also investigated in order to assess the resulting dynamic electromechanical coupling. Finally,
the extensions to multi-segments can be sought as a long-term perspective. This can alleviate, in particular,
the above-mentioned patches same length limitation.
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Appendix: List of abbreviations

The following list of abbreviations has been introduced at their first appearance in the text and then used
through this document:

1D One-dimensional
2D Two-dimensional
3D Three-dimensional
BC Boundary condition
CC Continuity conditions
CFS Closed-form solutions
DTF Distributed transfer functions
EP Equipotential
FEM Finite element methods
FSDT First-order shear deformation theory
OC Open circuit
PDE Partial differential equation
PVW Principle of virtual work
SC Short circuit
SSM State space methods
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