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Abstract 33 

As fixed and long living organisms subjected to repeated environmental stresses, trees 34 

have developed mechanisms such as phenotypic plasticity that help them to cope with 35 

fluctuating environmental conditions. Here, we tested the role DNA methylation as a hub 36 

of integration, linking plasticity and physiological response to water deficit in the shoot 37 

apical meristem of the model tree poplar (Populus). Using a reverse genetic approach, 38 

we compared hypomethylated RNAi-ddm1 lines to wild-type trees for drought tolerance. 39 

An integrative analysis was realized with phytohormone balance, methylomes, 40 

transcriptomes and mobilomes.  41 

Hypomethylated lines were more tolerant when subjected to moderate water 42 

deficit and were intrinsically more tolerant to drought-induced cavitation. The alteration 43 

of the DDM1 machinery induced variation in DNA methylation in a cytosine context 44 

dependent manner, both in genes and transposable elements. Hypomethylated lines 45 

subjected to water deficit showed altered expression of genes involved in phytohormone 46 

pathways, such as salicylic acid and modified hormonal balance. Several transposable 47 

elements showed stress- and/or line-specific patterns of reactivation, and we could 48 

detect copy number variations for two of them in stressed ddm1 lines.  49 

Overall, our data highlight two major roles for DNA methylation in the shoot apical 50 

meristem: control of stress response and plasticity through transduction of hormone 51 

signaling and maintenance of genome integrity through the control of transposable 52 

elements.  53 

 54 
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INTRODUCTION 59 

As long living organisms, trees are subjected to repeated environmental challenges over 60 

their lifetime. In recent decades, forest stresses have grown; forest decline has been 61 

reported around the world due to heat and drought stress episodes (Allen et al., 2010; 62 

Anderegg et al., 2016). In order to survive, they can adjust rapidly using epigenetic as 63 

well as physiological levels of regulation (Nicotra et al., 2015). Epigenetics is defined as 64 

the study of heritable changes that affect gene expression without changing the DNA 65 

sequence (Russo et al., 1996). Efforts have been made, primarily in annuals, to unravel 66 

the role of epigenetic mechanisms (in particular DNA methylation) in plant 67 

developmental processes, stress response, plasticity, and adaptation (Slotkin and 68 

Martienssen, 2007; Colomé-Tatché et al., 2012; Cortijo et al., 2014; Kooke et al., 2015; 69 

Raju et al., 2018; Schmid et al., 2018).  70 

Although epigenetic processes are commonly regarded as a source of flexibility in 71 

perennials like trees (Bräutigam et al., 2013; Zhu et al., 2013; Yakovlev et al., 2012, 72 

2016; Carneros et al., 2017; Plomion et al., 2016; Lafon-Placette et al., 2018; Sow et al., 73 

2018b), the functional role of DNA methylation in forest trees under environmental 74 

changes is still unclear. As a model tree with important genomic resources (Tuskan et 75 

al., 2006; Jansson and Douglas, 2007), poplar (Populus spp.) has been a prime system 76 

for the study of the ecophysiological and molecular basis of drought response (Monclus 77 

et al., 2006; Street et al., 2006; Bogeat Triboulot et al., 2007; Cohen et al., 2010; 78 

Hamanishi et al., 2012; Fichot et al., 2015). For example, differences in global DNA 79 

methylation levels among poplar hybrid genotypes have been shown to correlate with 80 

biomass production under water deficit (Gourcilleau et al., 2010; Raj et al., 2011; Le Gac 81 

et al., 2019). Recently, DNA methylation-based models have been proposed as a 82 

strategy to validate the identity, provenance or quality of agro-forestry products 83 

(Champigny et al., 2019). Lafon-Placette et al. (2018) established that drought 84 

preferentially induced changes in the DNA methylation of phytohormone-related genes, 85 

apparently elevating phenotypic plasticity (Lafon-Placette et al., 2018). This has raised 86 

the question of a possible link between epigenetics and phytohormone signaling / 87 

synthesis in order to explain plasticity in plants, in particular in meristematic tissues 88 

where development takes place (Maury et al., 2019). Phytohormones are key regulatory 89 
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elements in plant development and stress response, and their action is often fast and 90 

transient. Epigenetic regulations could play a role by modifying the expression of genes 91 

in the phytohormone pathways, notably by maintaining them after a hormonal peak, or 92 

priming their expression through time to remember the stress episode (i.e., epigenetic 93 

memory). In line with this, it has been shown that winter-dormant shoot apical meristems 94 

of poplar genotypes grown in field conditions can keep an epigenetic memory of a 95 

summer drought episode experienced during the growing season through modifications 96 

in DNA methylation (Le Gac et al., 2018; Sow et al., 2018a). The role of epigenetic 97 

memory in trees besides poplar, in response to biotic and abiotic stresses, is becoming 98 

increasingly documented (Yakovlev et al., 2014; Carneros et al., 2017; Gömöry et al., 99 

2017; Yakovlev and Fosdal, 2017). 100 

In plants, DNA methylation occurs in three different contexts (CHH, CHG and 101 

CpG, with H=A, C or T), and the methylation or demethylation of cytosines (de novo or 102 

maintenance during replication) is ensured by different DNA methyltransferases or DNA 103 

glycosylases/lyases, respectively (Zemach et al., 2010; Zhang et al., 2018). DNA 104 

methylation affects gene expression (Niederhuth and Schmitz, 2017; Bewick and 105 

Schmitz, 2017). While methylation in promoters is usually associated with gene 106 

silencing, gene-body methylation is more complex, and is often linked to tissue-specific 107 

expression or alternative splicing (Vining et al., 2012; Lafon-Placette et al., 2013; Maor 108 

et al., 2015; Zhu et al., 2016; Zhu et al., 2018).  109 

So far, most of the studies conducted on trees and focusing on DNA methylation 110 

and gene expression have used a correlative approach. In poplar, extensive gene-body 111 

methylation is found in the open chromatin state, and is linked to structural gene 112 

characteristics, and correlated with tissue-specific gene expression or stress (Vining et 113 

al., 2012; Bräutigam et al., 2013; Lafon-Placette et al., 2013; Liang et al., 2014; Lafon-114 

Placette et al., 2018). In addition to controlling gene expression, it is clear that 115 

methylation also helps to maintain genome integrity by silencing the relics of viral 116 

genomes (i.e., transposable elements, TEs), stopping them from spreading within the 117 

host genome (Ikeda and Nishimura, 2015; Fultz et al., 2015). For a long time considered 118 

as ‘junk DNA,’ the evolutionary impact of TEs is now well established, and TEs 119 
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contribute strongly to genome plasticity in eukaryotes (Lisch, 2012; Ayarpadikannan and 120 

Kim, 2014; Hirsch and Springer, 2017). In plants, most TEs can be activated, and their 121 

contribution to genome size is not negligible, especially for trees with large genomes 122 

(Kejnovsky et al., 2012; Lee and Kim, 2014). DNA methylation is required to silence 123 

these TEs located in the heterochromatin, and a decrease in DNA methylation level 124 

could result in their reactivation (Lippman et al., 2004; Mirouze et al., 2009; Mirouze and 125 

Paszkowski, 2011). The overall functional role of DNA methylation, both for control of 126 

gene expression and TE dynamics in a developmental and ecological context, is poorly 127 

understood. 128 

DDM1 belongs to the SWI/SNF chromatin remodeling complex, and encodes a 129 

chromatin remodeling factor required for the maintenance of DNA methylation. Its 130 

depletion affects the distribution of methylation in all sequence contexts (Vongs et al., 131 

1993; Jeddeloh et al., 1998; Gendrel et al., 2002; Zhu et al., 2013; Zemach et al., 2013). 132 

DDM1 was first identified in Arabidopsis through EMS (ethyl methane sulfonate) 133 

treatment, which caused a “decrease in DNA methylation” (Vongs et al., 1993). Vongs et 134 

al., showed that Arabidopsis ddm1 mutants displayed a 70 to 75% reduction in cytosine 135 

methylation compared to the wild-type (WT). Nonetheless phenotypic variations only 136 

appeared several generations after the initial loss of DDM1 activity, notably through 137 

reactivation of TEs (Miura et al., 2001). Several studies further characterized ddm1 138 

mutants in Arabidopsis (Saze and Kakutani, 2007; Yao et al., 2012; Zemach et al., 2013; 139 

Cortijo et al., 2014; Ito et al., 2015; Kawanabe et al., 2016), turnip (Fujimoto et al., 2008; 140 

Sassaki et al., 2011), maize (Li et al., 2014), and rice (Higo et al., 2012; Tan et al., 141 

2016). In poplar, RNAi ddm1 lines have been obtained by targeting the transcripts of the 142 

two orthologous DDM1 paralogs in Populus tremula × Populus alba cv. INRA 717-1B4 143 

(Zhu et al., 2013). Under standard greenhouse conditions, the regenerated lines did not 144 

show developmental defects, but newly formed leaves displayed a mottled phenotype 145 

after a cycle of dormancy (Zhu et al., 2013). These RNAi ddm1 lines have never been 146 

studied under stressed conditions. 147 

To investigate whether variation in DNA methylation has the potential to facilitate 148 

tree plasticity under stress, we studied these ddm1 RNAi lines during a water stress 149 
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experiment. Here, plasticity is defined as modifications in phenotype (growth, 150 

morphology, anatomy, or gene expression) under a drought – re-watering regime for a 151 

given genotype (Bradshaw, 2006; Nicotra et al., 2010, 2015). To address this question in 152 

a developmental context, we focused our analysis on the shoot apical meristem (SAM, 153 

center of plant morphogenesis) one week after re-watering in order to focus on ‘stable’ 154 

post-stress epigenetic events (Lafon-Placette et al., 2018). Previous studies have shown 155 

that SAM is a critical organ where epigenetic modifications can affect plant development 156 

(Gourcilleau et al., 2010; Lafon-Placette et al., 2013; Conde et al., 2017; Lafon-Placette 157 

et al., 2018; Le Gac et al., 2018, Sow et al., 2018; Maury et al., 2019). To examine 158 

whether plasticity was associated with epigenetic variation within wild type or RNAi lines, 159 

we combined a fine scale ecophysiological characterization of growth dynamics and 160 

water relations with genomics (identification of differentially methylated regions (DMR) 161 

using whole genome bisulfite sequencing, differentially expressed genes (DEG) using 162 

RNA-seq, and active transposable elements using mobilome-seq). We report a 163 

comprehensive analysis of the functional role of DNA methylation in the poplar SAM in 164 

terms of gene expression, reactivation of TEs, and hormonal balance in response to 165 

variations in water availability. 166 

 167 

RESULTS 168 

Phenotypic and physiological differences among lines under well-watered 169 

conditions 170 

Plants from the WW treatment remained close to field capacity during the whole 171 

experiment, with relative extractable water (REW) never dropping below 70% (Fig. 1) 172 

and Ψpd values remaining above -0.5 MPa (Sup. Fig. 2A). There was no significant 173 

difference in either REW or Ψpd among lines (Fig. 1 and Sup. Fig. 2A). The WT and 174 

ddm1 lines all showed linear growth, and exhibited a similar height growth rate during 175 

the experiment (1.27 ± 0.07 cm.day-1, P = 0.67; Fig. 2A). However, the WT had a slightly 176 

higher diameter growth rate than the ddm1 lines (0.11 ± 0.02 vs. 0.08 ± 0.01 mm.day-1, 177 

P = 0.036; Fig. 2A). Differences among lines were much stronger for total leaf area, with 178 
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ddm1 lines exhibiting significantly lower values (28 % reduction on average, P = 0.021) 179 

compared to the WT (Sup. Fig. 3). This was explained by a particular vertical profile of 180 

individual leaf area in the middle canopy (Sup. Fig. 3). 181 

 All lines showed comparable leaf Ψmin, leaf δ13C and stomatal density (Sup. Fig. 182 

2B), but significant differences were observed for xylem vulnerability to cavitation (P < 183 

0.001, Fig. 2B). The WT was the most vulnerable (P50 = -2.16 ± 0.05 MPa), while ddm1-184 

23 was the most resistant (P50 = -2.45 ± 0.04 MPa), and ddm1-15 was intermediate (P50 185 

= -2.28 ± 0.04 MPa) (Table 1). Differences among lines were not found in other xylem 186 

structural or biochemical traits (Table 1). 187 

 The proportion of “mottled leaves” reached 40% for ddm1-23, and more than 60% 188 

for ddm1-15 at the end of the experiment, while it remained close to zero for the WT 189 

(Sup. Fig. 4). Symptom occurrence was not linear but tended to increase at a specific 190 

physiological stage (Sup. Fig. 4). In addition, the line ddm1-23 exhibited several leaves 191 

that tended to fold around the midvein, a physical defect that was not found in the WT, 192 

and only rarely in ddm1-15 (Sup. Fig. 4). 193 

Table 1: Xylem structural, functional and biochemical traits measured for the wild type 194 

and the two RNAi-ddm1 (ddm1-15, ddm1-23) poplar lines in control (well-watered, WW) 195 

and stress (moderate water deficit followed by rewatering, WD-RW) treatments. Values 196 

are genotypic means ± SE (n = 6 per line per treatment). The P50 is the xylem tension 197 

inducing 50% loss of hydraulic conductance estimated from vulnerability curves (see 198 

Materials and Methods for additional information). S/G corresponds to the ratio between 199 

syringyl-like (S) and guaiacyl-like lignin monomeric units (G). Treatment effects were 200 

evaluated within each line by using a t-test. Different letters indicate significant 201 

differences between genotypes within treatments following Tukey’s post hoc test. Levels 202 

of significance are *, 0.01 < P < 0.05; **, 0.001 < P < 0.01; ***, P < 0.001; ns, non-203 

significant; na, not available. 204 

 205 

 206 
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Phenotypic traits WT ddm1_15 ddm1_23 

Wood density (g.cm-3) - WW 0.31 ± 0.01  0.31 ± 0.004 0.32 ± 0.007 

Wood density (g.cm-3) - WD-RW 0.40 ± 0.02*** 0.42 ± 0.01*** 0.43 ± 0.02*** 

Xylem vessel diameter (µm) - WW 44.28 ± 1.37 44.01 ± 0.97 41.08 ± 2.39  

Xylem vessel diameter (µm) - WD-RW 42.00 ± 1,48 43.18 ± 0.56 40.36 ± 0.89 

Xylem vessel density (nb.mm²) - WW 100.61 ± 10.85 100.09 ± 5.10 112.13 ± 16.67  

Xylem vessel density (nb.mm²) - WD-RW 111.24 ± 9.61 105.23 ± 5.06 123.66 ± 4.37 

Theoretical specific hydraulic conductivity 

(kg.m.s-1.Mp-1) - WW 11.81 ± 0.90 11.31 ± 0.67 9.82 ± 1.08  

Theoretical specific hydraulic conductivity 

(kg.m.s-1.Mp-1) - WD-RW 10.15 ± 0.67 11.24 ± 0.52 10.69 ± 0.86  

|P50| values (Mpa) - WW 2.12 ± 0.06a 2.25 ± 0.05ab 2.39 ± 0.05b 

Lignin klason prediction by MIRS (%) -WW 21.24 ± 0.42 20.90 ± 0.34 20.26 ± 0.44 

Lignin klason prediction by MIRS (%) - WD-

RW 20.56 ± 0.26 20.73 ± 0.46 19.99 ± 0.27 

Tension wood prediction by MIRS (%) - 

WW 11.05 ± 3.22 13.58 ± 2.89 14.59 ± 3.68 

Tension wood prediction by MIRS (%) - 

WD-RW 18.24 ± 1.87* 16.39 ± 2.20ns 22.39 ± 2.42ns 

S/G prediction by MIRS (%) - WW 1.15 ± 0.03 1.18 ± 0.03 1.22 ± 0.30 

S/G prediction by MIRS (%) - WD-RW  1.20 ± 0.02 1.20 ± 0.03 1.16 ± 0.01 

 207 

Differences in drought response 208 

Soil water content of plants in drought conditions started to be significantly lower four 209 

days after the initiation of water deficit. Values of REW were maintained around 35% 210 

until t1; re-watering at t1 increased REW back to control values (Fig. 1). Predawn leaf 211 
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water potential (Ψpd) at t1 was significantly lower than in well-watered plants (P < 0.001), 212 

and reached approximately -0.8 MPa, with no difference among lines (Sup. Fig. 2A); in 213 

contrast, Ψmin values were not significantly affected by drought (Sup. Fig. 2A). Height 214 

and diameter growth rates during drought were significantly lower in the WT only (Fig. 215 

2A, P < 0.001 and P = 0.026, respectively). The effect persisted after re-watering until t2 216 

for diameter (P < 0.001) while height growth recovered to control values.  217 

 In response to water deficit, gs started to decrease significantly 10 days after 218 

drought initiation, i.e. once REW had dropped below 40% (P = 0.027 for WT, P = 0,171 219 

for ddm1_15 and P = 0.021 for ddm1_23 Fig. 1, 2C). The WT and ddm1-23 showed 220 

relatively comparable dynamics, and reached almost an 80% decrease relative to 221 

controls, while stomatal closure was less pronounced in ddm1-15 (Fig. 2C). Anet was 222 

less impacted than gs, especially in ddm1-15, in agreement with the moderate intensity 223 

of water deficit (Fig. 2C). Therefore, the increase in intrinsic water-use efficiency (i.e. the 224 

ratio Anet/gs) was more pronounced in the WT and ddm1-23 (Fig. 2C), which was 225 

confirmed by a greater δ13C increase in these same lines (Sup. Fig. 2B). Total stomatal 226 

density was not impacted by water deficit in ddm1 lines, while it was significantly 227 

increased in the WT (P = 0.030, Sup. Fig. 2C). Xylem traits were only seldom affected 228 

by water deficit (Table 1). Xylem density was significantly increased in all lines (P < 229 

0.001), while the proportion of tension wood increased in the WT only (Table 1). Water 230 

deficit had no significant effect on the occurrence of mottled or folded leaves (Sup. Fig. 231 

4). 232 

Phytohormone concentration in SAMs 233 

There was no significant change among lines in terms of salicylic acid (SA) or the 234 

different types of cytokinin in the WW treatment (Fig. 3). In response to water deficit-235 

rewatering, SA increased while zeatin riboside and zeatin -O- glucoside riboside 236 

decreased in RNAi lines compared to the WT (Fig. 3). The other type of cytokinin, the 237 

isopentenyladenosine, showed a more complex pattern in RNAi lines. In addition, the 238 

ddm1-23 line showed a significant response for SA and for two cytokinins, with a similar 239 

trend to WT (Fig. 3). The ddm1-15 line showed a significant response for one cytokinin 240 

only (Fig. 3). ABA and free auxin remained unaffected in all treatments. 241 
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Methylome analysis and identification of line- and stress-specific DMRs 242 

Global DNA methylation content (HPLC analysis) ranged from 17.5 to 21.3 % between 243 

lines and treatments (Sup. Fig. 5A). There was no significant line × treatment interaction 244 

effect. Global DNA methylation was significantly lower in RNAi lines than in the WT 245 

under water deficit only, although there was no significant effect of water deficit (Sup. 246 

Fig. 5A). Cytosine methylation percentages (WGBS analysis) for the three contexts 247 

ranged from 18.6 to 19.6% in CpG, 4.4 to 6.0 in CHG and 1.6 to 2.0 in CHH contexts, 248 

with the ddm1-15 lines displaying the lowest values in all contexts (Sup. Table 1, Sup. 249 

Fig. 1D).  250 

Only a few stress-specific DMRs were identified. In contrast, thousands of line-251 

specific DMRs were identified, especially for ddm1-15 (Sup. Fig. 5B). The two RNAi 252 

lines displayed a different number of DMRs (29785 vs. 30925 for ddm1-15 in WW and 253 

WD-RW treatments, respectively, and 11409 vs. 11104 for ddm1-23 in WW and WD-RW 254 

treatments, respectively). Most of these DMRs were hypomethylated and context-255 

dependent with higher values found in CHG context, especially in ddm1-15 (20310 vs. 256 

20847 DMRs in WW and WD-RW treatments, respectively) (Sup. Fig. 5C & 5D). Line-257 

specific DMRs were unequally distributed in the three different contexts. In the CpG 258 

context, DMRs presented a bimodal distribution with both hypo and hypermethylated 259 

DMRs (Sup. Fig. 5E). In the CHG context, most DMRs were hypomethylated, while in 260 

the CHH context DMRs were mostly slightly hypomethylated (Sup. Fig. 5E). The number 261 

of stress-specific DMRs was similar between the WT and ddm1 lines, and between the 262 

hypo and hypermethylated states (Fig. 4A). These DMRs were mainly found in CG and 263 

CHG contexts (Fig. 4A). 264 

In order to focus on DMRs systematically associated with DDM1 defects, we 265 

identified DMRs commonly shared between ddm1-23 and ddm1-15 RNAi lines in either 266 

WW or WD-RW treatments (Fig. 4B). Regardless of the treatment, common DMRs were 267 

systematically over-represented in the CHG context (3463 vs. 3378 DMRs in WW and 268 

WD-RW treatments, respectively) and were mostly hypomethylated (Fig. 4B). Among 269 

common DMRs, 19 and 21% were localized in genes, 7 and 8% in promoters (+/-2kb 270 

from the TSS) and 1% in transposable elements (TEs), for WW and WD-RW treatments, 271 
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respectively (Sup. Fig. 6A). The majority of DMRs (73 and 71% in WW and WD-RW 272 

treatments, respectively) were therefore localized in intergenic regions (Sup. Fig. 6A). In 273 

the WW treatment, 879 genes were found to be strictly included within the common 274 

DMRs (hereafter called DMGs for Differentially Methylated Genes), while 910 DMGs 275 

were found in the WD-RW treatment. These numbers increased considerably (up to 276 

more than 13,000 genes) when enlarging the windows for DMR identification from 2 kb 277 

to 25 kb (Sup. Fig. 6B). In both treatments, a similar number of hypo and 278 

hypermethylated DMGs was found in the CG context, while in the CHG and CHH 279 

contexts, DMGs were mostly hypomethylated (Fig. 4C). In the CHH context, DMGs were 280 

slightly methylated (between 25 to 50% of difference), compared to the CG and CHG 281 

contexts (Fig. 4C). Gene Ontology annotation of DMGs revealed significant enrichment 282 

in biological functions such as multicellular organism development (including shoot 283 

system development), negative regulation of biological processes, and response to 284 

abiotic stress (including response to hormones) (Sup. Fig. 6C).  285 

Transcriptome analysis for the water deficit – rewatering condition 286 

The identification of DEGs focused on the WD-RW treatment, but revealed clear 287 

differences between the WT and the ddm1-23 lines. An average of 96 % mapping 288 

efficiency was found for the P. tremula × alba reference genome (v1). A total of 32 048 289 

genes were analyzed, but only 136 genes were significantly differentially expressed (P < 290 

0.05). Gene ontology annotation revealed significant enrichment in functions such as 291 

defense response, including immune response, response to hormones (SA, Ethylene), 292 

response to chitin, and regulation of RNA metabolism (Fig. 5A). The 136 DEGs (76 up-293 

regulated and 60 down-regulated) were grouped according to Arabidopsis thaliana gene 294 

annotation homology into seven main classes: cell death, defense response and cell 295 

wall, immune response, metabolism, signalization, transcription factors, and unknown 296 

function (Fig. 5B). Genes related to immune response were systematically up-regulated 297 

(RBOHD, CYP94B1, RLP1, RLP56, RPM1, PLDGAMMA1, PDF1). Most genes related 298 

to transcription factors (15/17) were also up-regulated (WRKY, MYB106, ERF, SZF2, 299 

PDF2, SVP/AGL22), with only two genes down-regulated (MYB48 and DTA2). Defense 300 

and cell wall related genes were both up- (18, including CHITIV, KTI1, PR4, etc. 301 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 20, 2020. . https://doi.org/10.1101/2020.04.16.045328doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.16.045328


 

12 

involved in plant pathogen-interaction) and down-regulated (13). Phytohormone 302 

pathways were also over-represented in distinct classes with 13 DEGs (8 up- and 5 303 

down-regulated) directly involved in defense responsive hormone biosynthetic pathways, 304 

such as SA pathways (SAMTs), the jasmonic acid (JA) pathway (OPR2, CYP94B1), the 305 

ethylene (ET) pathway (ERF1, ERF12), or auxin responsive genes (SAUR29, GH3.1, 306 

IBR3, BG1, ABCG36), gibberellic acid (GA) synthesis (GA3OX1) and cytokines (CK) 307 

pathways (AHP1) (Fig. 5B). 308 

In order to test the link between gene expression and DNA methylation, DEGs 309 

were co-localized with common DMRs among ddm1 lines. Although only seven DEGs 310 

(Potri.001G048700, Potri.001G065300, Potri.002G192400, Potri.009G051300, 311 

Potri.016G130900, Potri.T041700, Potri.T085000) overlapped with the DMR genomic 312 

locations, 53 were located in the direct vicinity of a DMR (+/- 10 kb) and 98 at +/- 25 kb 313 

(Sup. Fig. 7A). A significant and negative rank correlation (Spearman’s rho = -0.32, P < 314 

0.001) was observed between methylation in the three contexts and expression values 315 

when considering at least a +/- 10 kb window for DMRs to reach statistical significance 316 

(Sup. Fig. 7B).  317 

Mobilome analysis and identification of line- and/or stress-specific active TEs 318 

We identified between 44 (ddm1-23 in WW) and 169 (ddm1-15 in WD-RW) TE families 319 

producing extrachromosomal circular DNAs (eccDNAs), depending on lines and 320 

treatments (Sup. Fig. 8A). In each line, the number of identified TE families was always 321 

higher in the WD-RW treatment (Sup. Fig. 8A). Overall, the two different classes of TEs 322 

(DNA transposons and retrotransposons) were detected in our mobilome-seq data (Fig. 323 

6A). Most of the eccDNAs identified belonged to the annotated Gypsy, Copia, ENSPM, 324 

L1, Ogre, POPGY and SAT superfamilies of TEs and repeats. TEs Depth depth oOf 325 

cCoverage (DOC) ranged from 4X to 51000X for the most active TEs, whereas Split 326 

Reads (SRs) coverage ranged from 3X to 4600X (Fig. 6A). Reads spanning the two TE 327 

extremities constitute an evidence of a circular TE and were detected using a split reads 328 

(SRs) mapping strategy.  We detected a high number of SRs with a coverage ranged 329 

from 3X to 4600X confirming the presence of eccDNAs from TEs (Fig. 6A). The 330 

detection of SRs suggested the presence of reads spanning the junction of eccDNAs. 331 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 20, 2020. . https://doi.org/10.1101/2020.04.16.045328doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.16.045328


 

13 

Given the range of variation of the DOC coverage, we assigned TE families to four 332 

groups following Lanciano et al., (2017). TEs identified in the WT and RNAi lines 333 

belonged to the four groups in both WW and WD-RW treatments (Fig. 6A). The 334 

“TE+++’’group was exclusively represented by the Gypsy superfamily, while the 335 

‘‘TE++’’group was represented by DNA transposons. In contrast, ‘‘TE+’’ and ‘‘TE’’ groups 336 

were represented by different superfamilies (Fig. 6A).  337 

The most active TE (Gypsy23, with a DOC ranging from 36000X to 52000X) was 338 

present in all lines, but only in the WD-RW treatment (Fig. 6A). The second most active 339 

TE also belonged to the Gypsy superfamily (Gypsy27, DOC ranging from 14000X to 340 

25000X), and was detected in the three lines in the WW treatment but only in the WT 341 

line in the WD-RW treatment. We also identified eccDNAs that were line- and/or stress-342 

specific, such as those originating from the satellite SAT-1 specifically activated in 343 

ddm1-15, in both WW and WD-RW treatments (9000X and 5200X, respectively), and in 344 

the WT line only in the WD-RW condition. Two DNA-3-3 TEs with the same name, but 345 

different in terms of sequence were also detected in the WW treatment only. The first 346 

one (named DNA-3-3_1) was activated in the two RNAi lines (6000X in ddm1-15 and 347 

1500X in ddm1-23), while the second one (named DNA-3-3_2) was specific to ddm1-15 348 

(5200X) (Fig. 6A). We were also able to detect TEs that belonged to the ‘‘TE+’’ group 349 

that were line- or stress-specific (Fig. 6A). GO annotation of the genes co-localizing with 350 

TEs (+/- 10 kb of genes) revealed enrichment in functions such as response to stress, 351 

including hormone response, multicellular organism development, and negative 352 

regulation of cellular processes (Sup. Fig. 8B). The number of genes identified in the 353 

vicinity of TEs varied between 45 (TEs inside genes) and 1788 (when considering TEs 354 

at +/-25kb of genes) (Sup. Fig. 8C). However, only a few of these genes showed 355 

changes in their expression level (seven DEGs when considering the vicinity of +/- 25kb; 356 

Potri.005G223200, Potri.006G062100, Potri.013G100800, Potri.013G101000, 357 

Potri.013G103000, Potri.013G120800, Potri.016G070100). 358 

Methylation of active TEs and estimation of copy number variations for highly 359 

active TEs 360 
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About 21% of the mobilome-seq TE families strictly co-localized within common DMRs. 361 

This percentage raised to more than 50% when considering the presence of +/- 25 kb of 362 

a DMR in the vicinity (Sup. Fig. 8C). These methylated active TE families were in 363 

majority hypomethylated (ca. 92% of the TE families) in ddm1 lines (Fig. 6B). In the WW 364 

treatment, active TEs were hypomethylated mostly in CG and CHG contexts, while in 365 

the WD-RW treatment, active TEs were hypomethylated in CG and CHG contexts but 366 

mostly hypermethylated in the CHH context (Fig. 6B). The most active TEs were 367 

methylated in CHG context. 368 

To investigate whether TE activity (as detected by eccDNA presence) had led to 369 

new integrations in the genome, copy number variation was assessed for three active 370 

TEs (DNA-3-3_1, Gypsy23 and SAT-1) localized in or near DMRs by qPCR analysis 371 

(Fig. 6C). For DNA-3-3_1, there was no significant variation in the copy number 372 

regardless of the lines and treatments (Fig. 6C). In contrast, an increase in copy number 373 

was detected in the WD-RW treatment for Gypsy23 in ddm1-23 (15 copies), and for 374 

SAT-1 in ddm1-15 (18 copies) (Fig. 6C). Gypsy23 was hypomethylated in the CHG 375 

context, while SAT-1 was found in +/- 2kb of DMRs that were CG and CHG 376 

hypomethylated. 377 

 378 

DISCUSSION  379 

DDM1-dependent DNA methylation plays a role in tree phenotypic plasticity in 380 

response to water deficit 381 

Hypomethylated poplar RNAi-ddm1 lines are more tolerant to water deficit 382 

Tolerance to water deficit is a complex trait encompassing multiple physiological 383 

determinants that can relate to processes as diverse as growth maintenance, survival, or 384 

recovery, depending on the context {intensity × duration} considered (McDowell et al., 385 

2008; Volaire et al., 2018). Poplars are among the most sensitive temperate trees to 386 

water deficit although significant variation naturally occurs between and within species 387 

(Monclus et al., 2006; Street et al., 2006; Fichot et al., 2015). The water deficit imposed 388 

in our experiment was deliberately controlled and moderate, as attested by the relatively 389 
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high Ψpd (ca. -0.8 MPa) and the small effects on net CO2 assimilation rates. This avoided 390 

rapid growth cessation and instead promoted steady-state acclimation. However, this 391 

was sufficient to reveal clear differences in drought responses between the wild type and 392 

hypomethylated RNAi-ddm1 lines. While growth was progressively slowed down in the 393 

wild type as REW dropped below 40% (Bogeat-Triboulot et al., 2007), both RNAi-ddm1 394 

lines remained unaffected, suggesting improved tolerance to moderate water deficit. 395 

RNA-ddm1 lines showed a limited increase in time-integrated WUE in response to water 396 

deficit as compared to the wild type, which was partly attributable to a less important 397 

stomatal closure, at least in ddm1-15. The slightly more negative leaf Ψmin observed in 398 

RNAi-ddm1 lines tended to confirm the idea that improved tolerance might have been 399 

linked partly to a better ability for leaf gas exchange maintenance. In addition, while 400 

stomatal density was comparable between the wild type and RNAi-ddm1 lines under 401 

standard conditions, stomatal density increased in response to water deficit in the wild 402 

type only. ddm1 mutants in Arabidopsis were reported to have more stomata with 403 

modified organization (grouped clusters of two or more stomata) (Vassileva et al., 2016), 404 

suggesting that DDM1 modifications have the potential to modify stomatal patterning 405 

and therefore leaf physiology. Our findings go further and suggest that these effects may 406 

also depend on the environmental context. Interestingly, stomatal density seems to be 407 

tightly linked to the dynamics of VPD- and irradiance-induced stomatal closure/opening 408 

under water deficit in poplar, with higher densities being correlated with faster stomatal 409 

dynamics (Durand et al., 2019). It is therefore possible that the increased stomatal 410 

density observed in the wild type under water deficit contributed to a higher stomatal 411 

sensitivity, providing one possible explanation for constrained leaf gas exchange and 412 

growth reduction as compared to RNAi-ddm1 lines. 413 

 Besides differences in dynamic drought responses, our results also suggest that 414 

RNAi-ddm1 lines were intrinsically more tolerant to severe water deficit because of 415 

higher xylem resistance to drought-induced cavitation. Xylem resistance to drought-416 

induced cavitation is a key trait for plant water relations in a context of survival, as it 417 

partly sets operational limits for water transport under tension (Brodribb & Cochard, 418 

2009; Barigah et al., 2013). How modifications of the DDM1 machinery can affect xylem 419 

resistance to cavitation remains unknown at this stage. Interestingly, basic xylem 420 
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properties such as vessel diameter and density, xylem density, or even xylem 421 

biochemical composition were not significantly different from the wild type. However, 422 

given the mechanistic understanding of drought-induced cavitation in angiosperms 423 

(Choat et al., 2018), it is likely that the increased resistance observed in the RNAi-ddm1 424 

lines was primarily linked to modifications of the ultrastructure of vessel-vessel bordered 425 

pits (Plavcová Hacke, 2011; Awad et al., 2012; Dusotoit-Coucaud et al., 2014; Herbette 426 

et al., 2014). Whether the slight gain in intrinsic cavitation resistance (i.e. a few tenth of 427 

an MPa) does promote increased survival rates under severe water deficit, and whether 428 

epigenetics might be exploited as such for increasing drought tolerance, remains to be 429 

purposely tested.  430 

 Several DEGs identified in the SAM of RNAi-ddm1 lines could explain at least in 431 

part the improved tolerance to moderate water deficit. Indeed, genes involved in the 432 

cuticle and waxes (CER8, FLA12) that provide protection from abiotic and biotic stresses 433 

were upregulated in RNAi-ddm1 lines. Increased levels of cuticular waxes have been 434 

associated with enhanced drought tolerance by preventing uncontrolled water loss 435 

(Chen et al., 2011; Wettstein-Knowles, 2016). Similarly, the MYB106 TF, a major 436 

regulator of cuticle formation was upregulated in the ddm1 line (Oshima and Misuda, 437 

2013, 2016). Other transcription factors (TFs) (SVP, MYB48, MYB106, WRKY36, 438 

WRKY33, WRKY53) associated with drought tolerance in plants were also upregulated 439 

in the ddm1 lines (Bechtold et al., 2016; Sun & Yu, 2015; He et al., 2016; Guo et al., 440 

2019). Finally, previous studies in Arabidopsis ddm1 mutants and derived epiRILs 441 

subjected to drought, or more broadly to increased nutrients or salt stress, have 442 

provided evidence that variation in DDM1-derived DNA methylation can cause 443 

substantial heritable variation in ecologically important plant traits and their plasticity 444 

(Reinders et al., 2009; Johannes et al., 2009; Latzel et al., 2013; Cortijo et al., 2014; 445 

Zhang et al., 2013, Kooke et al., 2015; Cho et al., 2016; Zhang et al., 2018; Furci et al., 446 

2019).  447 

Hypomethylated poplar RNAi-ddm1 lines show leaf symptoms commonly 448 

observed in response to pathogen infection 449 
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First characterized by Zhu et al., 2013, poplar RNAi-ddm1 lines did not show any growth 450 

or developmental defects when grown under standard greenhouse conditions, but some 451 

newly formed leaves displayed a mottled phenotype after a dormancy cycle. This is 452 

similar to other reports in Arabidopsis and other species, where developmental 453 

abnormalities usually appear in later generations (Kakutani, 1997; Tan et al., 2016; 454 

Corem et al., 2018; Long et al., 2019). In our RNAi-ddm1 lines we found two distinct leaf 455 

phenotypes: “mottled leaves” and “folded leaves.” However, the two RNAi lines differed 456 

in terms of the quantities of symptomatic leaves, with higher values in ddm1-15 for 457 

mottled leaves. This was observed even though our stress treatments had no effect on 458 

leaf symptom numbers for either line. The alteration of leaf phenotype has already been 459 

attributed to DDM1 mutation in Arabidopsis, where mutants showed altered leaf shape 460 

(Kakutani et al., 1995; Qüesta et al., 2013; Kooke et al., 2015), and curled or folded 461 

leaves were also observed in hypomethylated ddc (drm1 drm2 cmt3) mutants (Forgione 462 

et al., 2019). However, here we report that stressed conditions do not have an effect on 463 

this phenotype.  464 

The presence of mottled leaves could be suggestive of a hypersensitive response 465 

(HR) which could result in the hyperactivation of disease resistance genes (Zhu et al., 466 

2013) due to the constitutive hypomethylation in RNAi-ddm1 lines. This is in agreement 467 

with the recent report of Furci et al., (2019) showing that hypomethylation in Arabidopsis 468 

ddm1-epiRILs at selected pericentromeric regions controls quantitative disease 469 

resistance against Hyaloperonospora arabidopsidis, which is associated with genome-470 

wide priming of defense-related genes. Lesion mimic mutants, characterized by the 471 

formation of necrotic leaves (hereafter called mottled leaves) in the absence of 472 

pathogens have been identified, and most importantly, these mutants show enhanced 473 

resistance to pathogen infection. This is probably due to mis-regulation of defense 474 

responsive genes (Lorrain et al., 2003; Wu et al., 2008). In poplar RNAi-ddm1 lines, we 475 

found an important set of genes involved in defense and immune response that were 476 

significantly and differentially expressed in RNAi lines compared to the WT. Immune 477 

responsive genes were upregulated in RNAi-ddm1 lines, while defense related genes 478 

were in majority downregulated. Consequently, genes involved in cell death and leaf 479 

senescence (MLO12 and NHL10) were upregulated. The activation of immune response 480 
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genes in RNAi-ddm1 lines suggests that trees react as if they were attacked by 481 

pathogens. This could be particularly important as it could prime ddm1 lines against 482 

future pathogen infections (Lopez Sanchez et al., 2016; Furci et al., 2019). Indeed, 483 

different TFs (WRKY18, WRKY33, WRKY70, WRKY53 and ERF1) known to be 484 

activated during pathogen attack were overexpressed in ddm1 lines. The WRKY TFs are 485 

known to play important roles in plant defense responses that are related to attacks by 486 

several pathogens. Accordingly, overexpression of one of these WRKY TFs in A. 487 

thaliana, Brassica napus or Oryza sativa resulted in enhanced disease resistance (Li et 488 

al., 2004; Wang et al., 2014; Wang et al., 2017; Chujo et al., 2007; Marcel et al., 2010; 489 

Chen and Chen, 2002; Abeysinghe et al., 2018). In poplar, overexpression of WRKY18 490 

(with WRKY35) also activates pathogenesis-related genes, and increases resistance to 491 

the biotrophic pathogen Melampsora (Jiang et al., 2017).  492 

The RNAi-ddm1 lines also had altered expression of a cluster of disease 493 

resistance genes, as was already reported in A. thaliana (Saze and Kakutani, 2007; 494 

Stokes et al., 2002; Lopez Sanchez et al., 2016; Furci et al., 2019). There are multiple 495 

mechanisms by which DNA hypomethylation could regulate defense gene induction in 496 

cis (promoter or nearby TEs) or trans contexts. A few cis-regulated genes can control 497 

the induction of several groups of defense genes by DNA (de)methylation, and 498 

hypomethylation can influence chromatin structure at distant genome loci such as TEs 499 

activating the RdDM pathway (Grandbastien, 1998; Makarevitch et al., 2015; Quadrana 500 

et al., 2019). This recent data in Arabidopsis have shown that methylation controls 501 

global defense gene responsiveness via trans-acting mechanisms (Lopez Sanchez et 502 

al., 2016; Cambiagno et al., 2018; Furci et al., 2019). Accordingly, we found, by 503 

overlapping DMRs and DEGs, that only seven DEGs co-localized with DMRs. 504 

Expression and methylation values (DEGs at +/-10 kb of DMRs) showed a  significant 505 

correlation. This suggests that these genes may not be the primary target of DDM1.  506 

Active extrachromosomal forms of TEs from several families were identified in 507 

water deficit conditions or in DDM1 lines (mostly hypomethylated). Some of these 508 

endogenous TE insertions are located in the vicinity of stress responsive genes (45) and 509 

of DEGs (3, at +/-10 kb of TEs). Furci et al., (2019) reported that DNA hypomethylation 510 

at TE-rich epiQTLs in Arabidopsis thaliana could mediate the induction of defense-511 
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related genes across the genome via a trans-acting mechanism. Quadrana et al., (2019) 512 

further showed that in Arabidopsis epiRILs, the insertion of Copia elements preferentially 513 

targets environmentally responsive genes such as cell death, defense response and 514 

immune response, potentially facilitating rapid adaptation. Here, we could detect 515 

increased copy numbers for two TE families in the hypomethylated ddm1 stressed lines. 516 

The potential impact of these new insertions on adaptation is unclear. Finally the fact 517 

that only two TE families showed increased copy number suggests that additional 518 

mechanisms prevent genomic insertions of reactivated TEs.  519 

 520 

Hypomethylated poplar lines exhibit an altered phytohormonal balance in the 521 

shoot apical meristem  522 

Phytohormones are key regulators of plant development and response to stress 523 

(Gaillochet & Lohmann, 2015), and have been linked to epigenetic control (Latzel et al., 524 

2012; Yamamuro et al., 2016; Ojolo et al., 2018; Raju et al., 2018), where this interplay 525 

could have a major role in meristems for developmental plasticity (Maury et al., 2019). 526 

Here, we report that ddm1 lines exhibited modified shoot apex hormonal balance 527 

immediately post-rewatering. Although abscisic acid (ABA) (Zhang et al., 2006; 528 

Fernando & Schroeder, 2015) and free auxins (Shi et al., 2014; Basu et al., 2016) are 529 

known to mediate physiological responses to water deficit, we found no treatment-530 

induced difference in the SAMs of ddm1-lines. In contrast, salicylic acid (SA) and 531 

cytokinins (CK) showed significant variations among our ddm1 lines compared to the 532 

WT after drought treatment. Increased SA level was accompanied by a decrease in CK 533 

content (especially for zeatine riboside and zeatine-O-glucoside riboside) in post-stress 534 

ddm1 lines. This is in agreement with several reports, which found that drought-stressed 535 

plants tend to increase the endogenous level of SA promoting tolerance to several 536 

stresses including drought (Munne-Bosch and Penuelas, 2003; Bandurska & Stroi ski, 537 

2005; Azooz & Youssef 2010; Pandey & Chakraborty, 2015; Sedaghat et al., 2017), and 538 

decreasing CK levels (Havlovà et al., 2008; Nishiyama et al., 2011; Ha et al., 2012). 539 

Altogether our data show that the shoot apex of hypomethylated, stressed lines 540 

displayed specific hormonal changes for SA and CK. Shoot apices were collected after 541 

three weeks of stress (the day of rewatering) to measure the hormonal balance at the 542 
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end of the treatment. This timing of sampling could explain why drought-related 543 

modifications in ABA or auxin contents were not observed. Correia et al., (2014) have 544 

shown in Eucalyptus globulus that while drought causes an increase in ABA levels in 545 

leaves, rewatering was accompanied by a gradual decrease and stressed and non-546 

stressed plants reached the same amount of ABA seven days post-drought. This also in 547 

agreement with Cotrozzi et al., (2017) who showed a very transient peak of ABA 548 

following drought conditions in Quercus ilex. However, this timing of sampling for 549 

hormonal content enabled us to compare it with the presumably (meta)stable epigenetic 550 

condition (memory) one week post-rewatering. 551 

DMGs and DEGs nearby active TEs identified in the SAM of ddm1 stressed lines 552 

were mainly involved in development, stress response and phytohormone pathways 553 

(such as JA, SA and ethylene). When comparing the genome-wide distribution of DMRs 554 

to DEGs in poplar, Lafon-Placette et al., (2018) showed that variations in soil water 555 

availability induced changes in DNA methylation preferentially in genes involved in 556 

phytohormone metabolism and signaling, potentially promoting phenotypic plasticity. 557 

Accordingly, poplar SAMs may also retain an environmental epigenetic memory by 558 

targeting hormone-responsive genes (Le Gac et al., 2019). SAMT1, a salicylic acid 559 

methyltransferase gene was still up-regulated one week post-stress in RNAi-ddm1 lines 560 

compared to the WT, supporting the increase in SA content at the end of the stress. 561 

When screening for candidate genes for drought tolerance in Coffea arabica cultivars, 562 

Mofatto et al., (2016) found that SAMT1 was upregulated under drought conditions. 563 

Zhang et al., (2016) have also shown that DDM1 affects early seedling growth heterosis 564 

in Col/C24 hybrids. Indeed, ddm1 mutants showed impaired heterosis (Kawanabe et al., 565 

2016) and increased expression of non-additively expressed genes related to salicylic 566 

acid metabolism. They proposed that DDM1 acts as an epigenetic link between salicylic 567 

acid metabolism and heterosis, also protecting plants from pathogens and abiotic stress. 568 

SA accumulation has also been widely used as a reliable marker of elevated defense 569 

responses under pathogen infection, and has been associated with HR cell death or 570 

systemic acquired resistance, as well as with DDM1 mutation (Dong, 2004; Song et al., 571 

2004; Liu et al., 2010; Zhang et al., 2016; Badmi et al., 2019).  572 
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The elevated amount of SA levels in RNAi-ddm1 lines could be suggestive of 573 

acquired disease resistance in ddm1 mutants. Similarly, two genes (CYP94B1 and 574 

OPR2) involved in JA metabolism were upregulated in the RNAi-ddm1 lines. CYP94B1 575 

and OPR2 have been shown to contribute to the attenuation of the JA-dependent wound 576 

responses in response to pathogen attack (Koo et al., 2014; Pandey et al., 2017; 577 

Wasternack & Hausse, 2018). Moreover, Latzel et al., (2012) have established a positive 578 

correlation between DNA methylation variations (epiRILs) and JA and SA responses, 579 

and proposed that part of the variation of plant defenses observed in natural populations 580 

may be due to underlying epigenetic, rather than entirely genetic, variation. Several TFs 581 

involved in abiotic (drought) or biotic stress, and acting in phytohormone pathways, were 582 

upregulated in stressed ddm1 lines in comparison to WT; this includes genes such as 583 

SVP (SHORT VEGETATIVE PHASE) that can confer drought resistance by regulating 584 

ABA catabolism (Wang et al., 2018), MYB48 that can improve tolerance to drought when 585 

overexpressed (Wang et al., 2017) and ERF1, which can activate a subset of ethylene-586 

inducible genes as the immune responsive gene PDF1 (Solano et al., 1998; Fujimoto et 587 

al., 2000; Heyman et al., 2018).  588 

Altogether our data suggest a direct connection between epigenetic regulation 589 

and phytohormones in the meristem for the control of plasticity as previously proposed 590 

(Maury et al., 2019). This interplay could control the expression of cell identity genes, the 591 

stable activation of hormone-responsive genes post-stress, or act as an integrative hub 592 

for the sensing of hormonal balance to ensure plasticity, and potentially environmental 593 

memory (Maury et al., 2019).  594 

DDM1-dependent DNA methylation in poplar shoot apical meristem is context 595 

dependent and affects both genes and TE activity 596 

DDM1-dependent DNA methylation is cytosine context dependent 597 

Poplar ddm1 RNAi knock down lines were hypomethylated in SAMs according to global 598 

DNA methylation levels (7 to 17% reduction compared to WT). This is in agreement with 599 

both the WGBS analysis, which showed DMRs mostly hypomethylated, and with the 600 

report of Zhu et al., (2013), who found comparable reductions in leaves. While poplar 601 

DDM1-dependent DNA methylation was affected in the three contexts (CpG, CHG & 602 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 20, 2020. . https://doi.org/10.1101/2020.04.16.045328doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.16.045328


 

22 

CHH), strong differences were observed among the contexts. The methylation level in 603 

CHG was drastically reduced compared to CpG or CHH contexts, suggesting that in 604 

poplar, DDM1 preferentially targets methylation in the CHG context. This is in 605 

accordance with rice (Tan et al., 2016), and maize (Li et al., 2014; Long et al., 2019), but 606 

contrasts with Arabidopsis and tomato, where the disruption of DDM1 led to a drastic 607 

hypomethylation of the genome, mainly in CpG and CHG contexts (Vongs et al., 1993; 608 

Kakutani et al., 1995, 1997; Lippman et al., 2004; Zemach et al., 2013; Corem et al., 609 

2018). These observations suggest that DDM1 has differential effect on DNA 610 

methylation patterns in diverse species (Tan et al., 2016; Long et al., 2019).  611 

We also found that DDM1 reduction caused extensive CpG, and to a lower extent 612 

CHG, hypermethylation of intergenic regions and genes, and that CHH hypermethylation 613 

of TEs only occurred in stressed conditions. The loss of DDM1 has already been 614 

associated with hypermethylation in CHG contexts in genes of Arabidopsis and rice, as 615 

well as more limited hypermethylation in both CpG and CHG contexts for euchromatic 616 

regions in tomato and maize (Lippman et al., 2004; Mathieu et al., 2006; Saze & 617 

Kakutani, 2007; Zemach et al., 2013; Tan et al., 2016; Corem et al., 2018; Long et al., 618 

2019). CHH hypermethylation has also been reported for heterochromatic TEs in rice 619 

and tomato (Tan et al., 2016; Corem et al., 2018). Here, we found that extensive CpG 620 

hypermethylation, notably in genes, was not associated with differential expression level, 621 

and overlapped with only a few active TEs, while hypermethylated CHH TEs showed 622 

reduced activity in comparison to hypomethylated CG and CHG TEs. It has been 623 

proposed that these hypermethylation events are likely to be mediated by different, 624 

potentially overlapping mechanisms that act as an internal balancing mechanism to 625 

compensate for the extensive loss of methylation in other contexts (Zemach et al., 2013; 626 

Tan et al., 2016; Corem et al., 2018).  627 

Altogether, we propose that hypermethylation events, being species-dependent, 628 

may participate in pleiotropic effects. This could be related to variations in the functional 629 

role of DDM1 in the different species, and/or in relation to their epigenetic machinery and 630 

genome complexity. We provide evidence that this phenomenon is also stress-631 
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dependent, and occurs in the shoot apical meristem with possible implications for mitotic 632 

and meiotic transmission. 633 

DDM1 impairment of gene methylation has limited effects on gene expression 634 

DDM1 decrease in poplar affected the methylation of 879 and 910 genes in WW and 635 

WD-RW treatments, respectively. In poplar, gene methylation typically occurs in CpG 636 

and CHG contexts, and to a lower extent in the CHH context (Feng et al., 2010; Vining 637 

et al., 2012; Lafon-Placette et al., 2013). Despite a strong reduction in genome-wide 638 

CHG methylation, the numbers of DMGs found in CpG and CHG were of similar order. 639 

However, in CHG and CHH contexts genes found were in majority hypomethylated 640 

(>90%), whereas in the CpG context an equal number of genes were hypo- or 641 

hypermethylated. 642 

Transcriptomic analysis in SAMs only revealed a limited number of DEGs (136) 643 

between the WT and ddm1-23 in response to water deficit, with 76 upregulated and 60 644 

downregulated genes. Previous data on Arabidopsis and tomato ddm1 mutants were of 645 

similar magnitude (Zemach et al., 2013; Corem et al., 2018), while more DEGs were 646 

reported in rice (Tan et al., 2016) or in infected Arabidopsis EpiRILs (Furci et al., 2019). 647 

Among DEGs, only seven strictly overlapped with DMRs (up to 39% for genes at ~ +/-10 648 

kb of DMRs); in agreement with tomato ddm1 mutants (Corem et al., 2018).  This 649 

suggests that not all of these DEGs are primary targets of DDM1. A significant negative 650 

rank correlation was detected, however, between gene expression and methylation for 651 

the 53 DEGs located at less than +/-10 kb of DMRs. Although changes in 5’ DNA 652 

methylation may influence gene expression (Seymour & Becker, 2017), the role of gene-653 

body methylation still remains disputed (Bewick & Schmitz, 2017), and to date it has 654 

been difficult to differentiate between direct changes mediated by DNA methylation and 655 

secondary effects (Meyer, 2015). In most available studies, no correlation could be 656 

detected between DNA methylation and expression changes at the genomic level. 657 

However, in agreement with other studies, our data show that the transcriptional activity 658 

of a subset of genes might be regulated by DNA methylation in response to abiotic 659 

stress (Karan et al., 2012; Garg et al., 2015; Chwialkowska et al., 2016, Lafon-Placette 660 

et al., 2018). These genes, including TFs and hormones-related pathways, are likely to 661 
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explain, at least in part, the developmental plasticity of poplar ddm1 lines (Maury et al., 662 

2019).  663 

DDM1-dependent DNA methylation favors TEs reactivation and insertion during 664 

stress 665 

The role of DNA methylation and DDM1 on TE proliferation is well-established in plants 666 

(Miura et al., 2001; Mirouze et al., 2009; Tsukahara et al., 2009). TE proliferation has 667 

also been investigated in DDM1-epiRILs in Arabidopsis and tomato (Reinders et al., 668 

2009; Johannes et al., 2009; Corem et al., 2018; Quadrana et al., 2019). Here, we 669 

reported TE activity in the SAM of WT and RNAi-ddm1 lines using the mobilome-seq 670 

workflow (Lanciano et al., 2017). TEs, which represent ~42 % of the genome of poplar 671 

(Kejnovski et al., 2012), were evaluated both under control and post water deficit 672 

conditions. The pattern of TE methylation varied widely between the different contexts. 673 

While most TEs were hypomethylated in CG and CHG contexts, we could not detect any 674 

TEs overlapping with the common DMRs, suggesting a limited effect in the CHH context 675 

(Corem et al., 2018). This could be related also to the threshold that we applied during 676 

DMR identification, which considered only DMRs with at least 10% of difference and 10X 677 

of coverage. This is very stringent since CHH methylation level in poplar is very low 678 

compared to CG and CHH contexts (~3,25%; Feng et al., 2010). This result also 679 

supports a redundant function of CG and non-CG methylation in the transcriptional 680 

silencing of the TEs (Ikeda & Nishimura, 2015). The burst of TEs in ddm1 lines were 681 

recorded for the two different classes (DNA transposons and retrotransposons), with a 682 

notable enrichment for the retrotransposons of the Gypsy family. Interestingly, when 683 

assessing the copy number variation of the most active TEs, we could detect only 684 

increased copy number for Gypsy retrotransposons (Gypsy-23 and SAT-1/Gypsy-685 

78_Ptr-I-int) during the post stress episode, suggesting specific control of Gypsy activity 686 

by DDM1 during the stress. Gypsy elements are long terminal repeat (LTR)-flanked 687 

retrotransposons that are concentrated in pericentromeric heterochromatin, in 688 

comparison to other repeats that are more dispersed e,g,m (Copia, LINE, SINE). Wang 689 

et al., (2018) recently reported a constant conflict between Gypsy retrotransposons and 690 

CHH methylation within a stress-adapted mangrove genome, and found differential 691 
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accumulation among classes of LTR TEs mainly due to siRNA-mediated CHH 692 

methylation preferentially targeting Gypsy elements. This is consistent with our data as 693 

we observed extensive CHH methylation of TEs (such as Gypsy elements) during 694 

drought in the ddm1 lines associated with enrichment in non-coding RNA (ncRNA) GO 695 

labels. This may suggest that ddm1 lines tend to methylate TEs in CHH contexts in 696 

order to repress their activity. Wang et al., (2018) subsequently proposed that the 697 

apparent conflict between TEs activity and repression of integration may enable the 698 

maintenance of genetic diversity and thus evolutionary potential during stress 699 

adaptation. This is particularly interesting as genes found with nearby active TEs in 700 

ddm1 lines are mainly involved in stress response and development. Quadrana et al., 701 

(2019) recently proposed that TEs are potent and episodic (epi)mutagens that increase 702 

the potential for rapid adaptation. They proposed that this is in large part due to 703 

epigenetic mechanisms of suppression that limit their activity which might result in 704 

purifying selection against them, and also limits their mutation rate due to their presence 705 

in highly compact chromatin. Here our data suggest that DDM1 could play a role in 706 

these repressive but diversity maintaining mechanisms during drought stress in poplar.  707 

 708 

Shoot apical meristem is a central place for epigenetic control of developmental 709 

plasticity  710 

Our study focused on meristems, previously described as “organs with specific 711 

epigenetic machinery” (Baubec et al., 2014; Lafon-Placette et al., 2018; Le Gac et al., 712 

2018, 2019) and as controlling centers of development and acclimation. They are also 713 

the loci of mitotic and meiotic transmission. Here, we report the detailed characterization 714 

from physiological to omics levels of two independent ddm1 poplar RNAi lines. Both 715 

lines exhibited higher tolerance to drought, mottled leaves, and modification of hormonal 716 

balance. Our study shows that DDM1-dependent DNA methylation in the shoot apical 717 

meristem of poplar trees plays two roles: controlling developmental plasticity and 718 

enabling stress response through a direct interplay with hormonal pathways (Maury et 719 

al., 2019). DDM1-dependent DNA methylation also controls the activation, and probably 720 

the integration, of TEs whose movements can induce heritable mutations and affect the 721 
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potential for rapid adaptation (Kawakatsu & Ecker, 2019; Quadrana et al., 2019). These 722 

results are in agreement with previous studies in poplars (Gourcilleau et al., 2010; Zhu 723 

et al., 2013; Conde et al., 2017; Lafon-Placette et al., 2018; Le Gac et al., 2018, 2019; 724 

Sow et al., 2018) and recent findings in annuals (Raju et al., 2018; Schmid et al., 2018; 725 

Zhang et al., 2018; Furci et al., 2019; Quadrana et al., 2019), both showing that 726 

epigenetic variation and TEs have the potential to create phenotypic variation that is 727 

substantial, persistent, and stable, thus of adaptive and evolutionary significance.  728 

Our data are consistent with recent models about role of epigenetic variation in 729 

plants (Yona et al., 2015; Richards et al., 2017; Kawakatsu & Ecker, 2019; Maury et al., 730 

2019) that view meristems as an interface between physiological response and genetic 731 

adaptation. Further studies are needed to examine the role of stress-induced epigenetic 732 

variation and associated mutation that examine a far greater range of stresses, species, 733 

and genotypes. This will enable its importance relative to more traditional sources of 734 

adaptive and evolutionary variation to be interpreted. Such studies are of particular 735 

interest for long-lived organisms in the age of rapid, anthropogenic climate change.  736 

 737 

METHODS 738 

Plant material, experimental design, and control of water deficit 739 

Experiments were conducted on two PtDDM1 RNAi lines (ddm1-15 and ddm1-23), and 740 

a wild type (WT) line of Populus tremula × Populus alba (clone INRA 717-1B4). These 741 

two RNAi lines were chosen among those previously described by Zhu et al., (2013) for 742 

consistently lower levels of both cytosine methylation (17.0 and 16.7% reduction 743 

compared to WT, respectively) and PtDDM1 residual expression (ca. 62% reduction). 744 

Six week-old in vitro propagated plantlets were first transferred into small sealed 745 

chambers for progressive acclimation. Acclimated plantlets were then transferred to 4L 746 

pots filled with a potting substrate (Klasmann RHP 25-564, pH = 5.8) complemented 747 

with Osmocote PG Mix (1 kg/m3 of N-P-K 80/35/60). The experiment was conducted in a 748 

greenhouse located at the research station of INRAE Orléans Centre Val-de-Loire 749 

(47°46’N, 1°52’E), with a photoperiod of 16:8, an average temperature of 21°C, and a 750 
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relative humidity of 32%. Right before the water deficit experiment started (2 month-old 751 

plants), three plants per line were randomly sampled (t0). The remaining 81 plants were 752 

then randomly distributed into nine blocks (n = 3 trees per line per block) and assigned 753 

to either a well-watered control treatment (WW, n = 1 per line per block) or a water 754 

deficit treatment followed by re-watering (WD-RW, n = 2 per line per block). 755 

 Water deficit was initiated at t0 and lasted three weeks until t1. Watering was 756 

performed every two days and was adjusted for each plant based on volumetric soil 757 

water content (SWC) estimated via pot weighing. Values of SWC at time i (SWCi) were 758 

converted to soil relative extractable water (REWi, %) using the following equation: 759 

REWi = (SWCi – SWCwp) / (SWCfc – SWCwp) × 100 where SWCfc and SWCwp 760 

correspond to the SWC at field capacity and at the wilting point, respectively. Plants 761 

from the WW treatment were always watered to field capacity, while plants from the WD-762 

RW treatment were re-watered to a target value of approx. 40% of REW. At t1, plants 763 

from the WD-RW treatment were re-watered to field capacity, three blocks were 764 

sampled, and the remaining six blocks were maintained watered for one week until t2, 765 

after which all remaining plants were sampled. The water deficit intensity was evaluated 766 

at t1 by measuring the predawn leaf water potential (Ψpd, MPa) during the night 767 

preceding the re-watering. Measurements were performed on a subset of five randomly 768 

selected blocks using a pressure chamber (PMS instruments, Albany, OR, USA). 769 

Minimum leaf water potential (Ψmin) was estimated for the same plants at midday on the 770 

day preceding re-watering. 771 

Physiological and phenotypic characterization 772 

Growth and leaf symptoms 773 

Stem height was measured every two days using a telescopic ruler, while stem diameter 774 

was measured every four days using a digital caliper. Due to Zhu et al. (2013) reporting 775 

the occurrence of spontaneous necrotic spots on the leaves of ddm1 RNAi lines (mottled 776 

phenotype), we repeatedly measured the number of leaves showing necrotic symptoms 777 

(mottled leaves) during the whole duration of the experiment. We also counted the 778 
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number of leaves showing a ‘folded’ morphology (see results section). These 779 

measurements were performed on three randomly selected blocks. 780 

Leaf gas exchange, bulk leaf carbon isotope composition (δ13C), and stomatal 781 

density 782 

Leaf gas exchange were measured using a LI-6400 open path photosynthesis system 783 

(Li-Cor, Lincoln, NE, USA) equipped with an LED light source (LI-6400-02B). 784 

Measurements were systematically performed on fully mature leaves in the top third of 785 

the plant in the same five blocks as those used for Ψpd and Ψmin. From the time of 786 

drought initiation onwards, net CO2 assimilation rate (Anet, µmol m-2 s-1), and stomatal 787 

conductance to water vapor (gs, mol m-2 s-1) were measured every day between 9 am 788 

and 3 pm in order to characterize the dynamic response of the genotypes to water 789 

deficit. Measurements were performed at a saturating photosynthetic photon flux density 790 

(PPFD) of 2000 µmol m-2 s-1, an ambient CO2 concentration of 400 ppm, a constant 791 

block temperature of 25°C, and a reference vapor pressure deficit (VPD) maintained 792 

close to 1kPa. 793 

Bulk leaf carbon isotope composition (δ13C) was used as a time-integrated surrogate 794 

of leaf intrinsic water-use efficiency (Farquhar et al., 1982). Six calibrated discs (3.14 795 

cm2) of leaf lamina were punched from a mature leaf at t2 on all plants. Leaf disks were 796 

oven-dried at 60°C for 48hrs before being ground to a fine powder. One milligram 797 

subsamples were then enclosed in tin capsules and combusted at 1200°C. The CO2 798 

produced by combustion was purified, and its 13CO2/
12CO2 ratio was analyzed using 799 

isotope ratio mass spectrometry (IRMS, Finnigan MAT Delta S, Bremen, Germany). The 800 

δ
13C (‰) was expressed relative to the Vienna Pee Dee Belemnite standard and 801 

calculated as δ13C = (Rsa-Rsd)/Rsd × 1000 where Rsa and Rsd are the 13CO2/
12CO2 ratios 802 

of the sample and the standard, respectively (Farquhar et al., 1989). The accuracy of the 803 

δ
13C measurements done by IRMS during the time samples was assessed using 804 

referenced standards of ± 0.05 ‰ (SE). All measurements were performed at the 805 

INRAE-Nancy technical platform of functional ecology in France. 806 
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 Stomatal counts were measured on a subset of three blocks, following the 807 

method described by Xu & Zhou (2008). Stomatal imprints were taken between the 808 

central leaf vein and the leaf edge on both adaxial and abaxial sides, and then fixed on 809 

microscopic slides using scotch tape. Slides were observed under a light microscope 810 

coupled to a Moticam 580 5.0MP digital camera, and three pictures were taken on each 811 

filmstrip side.  812 

Xylem structure, function and biochemical composition 813 

Xylem vulnerability to drought-induced cavitation was assessed at t2 on the well-watered 814 

plants of all blocks (INRAE Phenobois Platform, Clermont-Ferrand, France). 815 

Vulnerability to cavitation sets the operational limit of xylem under drought, and is a key 816 

trait involved in drought tolerance (Brodribb & Cochard, 2009). We used the Cavitron 817 

technique which is well suited to poplars (Cochard et al., 2005, Fichot et al., 2015). In 818 

short, the technique uses the centrifugal force to increase xylem tension (Ψx, MPa) in 819 

stem segments, while at the same time measuring the percent loss of hydraulic 820 

conductance (PLC, %). The dependence of PLC upon Ψx was used to generate 821 

vulnerability curves for each stem segment. The following sigmoid function was fitted to 822 

data (Cochard et al., 2007): PLC = 100 / (1 + exp((s/25)×(P-P50)), where P50 is the xylem 823 

tension causing 50% loss of hydraulic conductance (MPa) and s is the slope of the curve 824 

at the inflexion point (%. MPa-1). Values of P50 were used as proxies for vulnerability to 825 

xylem drought-induced cavitation. 826 

 Xylem histology was performed on stem segments of all plants at t2. Stem cross-827 

sections 30 µm-thick were obtained using a hand microtome (RM 2155, Leica 828 

Microsystems, Vienna, Austria), and stained with safranin (1% in 50% ethanol), and 829 

followed by Astra blue (1% in 100% ethanol), before being permanently mounted in 830 

Canada Balsam. Stained sections were examined under a light microscope coupled to a 831 

Moticam 580 5.0MP digital camera. Pictures covering pith to cambium were taken at a 832 

10x magnification on three opposite radial sectors in order to estimate vessel diameter 833 

(µm), vessel density (mm-2), vessel lumen fraction (%), and theoretical xylem specific 834 

hydraulic conductivity (Fichot et al., 2010). Image analyses were all performed using the 835 

ImageJ software (Schneider et al., 2012). Xylem density was assessed on the same 836 
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stem segments using 4 cm-long samples. Measurements were realized using the 837 

Archimedes principle. Bark-free stems were split longitudinally in order to remove wood 838 

pith, submerged to estimate the volume of displaced water, and weighed after being 839 

oven-dried at 105°C. Xylem density (g.cm-3) was computed as the ratio between dry 840 

mass and the volume of displaced water (Fichot et al., 2010).  841 

Xylem biochemical composition was evaluated indirectly on stem powders of all 842 

plants by using Fourier-Transform mid-Infrared Spectroscopy (FTIR, Spectrum 400, 843 

Perkin Elmer, Massachusetts, USA), and home-made calibration models previously 844 

developed at the INRAE Genobois phenotyping platform for Klason lignin content, S/G 845 

ratio and tension wood content (unpublished data). For each sample, a few milligrams 846 

were placed three times on the attenuated total reflectance (ATR) diamond for the scan. 847 

Spectra ranged from 650 to 4000 cm-1 wave numbers with a step of 2 cm-1. Spectrum 848 

analyses were realized using the R software (R Core Team, 2015). Spectra were first 849 

cut and smoothed by using the ‘prospectr’ package before applying normalization and 850 

first derivative processing (Bertrand & Dufour, 2006). 851 

Phytohormone quantification 852 

Shoot apices were immediately frozen in liquid nitrogen upon sampling, and later ground 853 

to a fine powder in an automatic ball mill (MM 200 Retsch, Germany). Phytohormone 854 

assays for abscisic acid (ABA), free auxin, salicylic acid (SA), jasmonic acid (JA) and 855 

cytokinins were performed on the SAMs collected at t1, using LC-MS according to a 856 

published procedure (OVCM platform, IJPB, INRAE Versailles, France; Li-Marchetti et 857 

al., 2015; Trapet et al., 2016). For each sample, 10 mg of dry powder was extracted with 858 

0.8 mL of acetone/water/acetic acid (80/19/1 v:v:v). Phytohormone stable labelled 859 

isotopes used as internal standards were prepared as described in Roux et al., (2014). 860 

Two ng of each and 0,5 ng of cytokinines standard was added to the sample. The 861 

extract was vigorously shaken for 1 min, sonicated for 1 min at 25 Hz, shaken for 10 862 

minutes at 10°C in a Thermomixer (Eppendorf®), and then centrifuged (8000 g, 10 °C, 863 

10 min.). The supernatants were collected, and the pellets were re-extracted twice with 864 

0.4 mL of the same extraction solution, then vigorously shaken (1 min), and sonicated (1 865 

min; 25 Hz). After the centrifugations, the three supernatants were pooled and dried 866 
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(Final Volume 1.6 mL). Each dry extract was dissolved in 100 µL of acetonitrile/water 867 

(50/50 v/v), filtered, and analyzed using a Waters Acquity ultra performance liquid 868 

chromatograph coupled to a Waters Xevo Triple quadrupole mass spectrometer TQS 869 

(UPLC-ESI-MS/MS). The compounds were separated on a reverse-phase column 870 

(Uptisphere C18 UP3HDO, 100*2.1 mm*3µm particle size; Interchim, France) using a 871 

flow rate of 0.4 ml min-1, and a binary gradient: (A) acetic acid 0.1% in water (v/v) and 872 

(B) acetonitrile with 0.1% acetic acid, and a column temperature of 40°C. Mass 873 

spectrometry was conducted using electrospray, and Multiple Reaction Monitoring 874 

scanning mode (MRM mode), in either positive ion mode (for the indole-3-acetic acid 875 

and cytokinins) or negative ion mode (for the other hormones). Relevant instrumental 876 

parameters were set as follows: capillary 1.5 kV (negative mode), with source block and 877 

desolvation gas temperatures at 130 °C and 500 °C, respectively. Nitrogen was used to 878 

assist the cone and desolvation (150 L.h-1 and 800 L.h-1, respectively), argon was used 879 

as the collision gas at a flow of 0.18 ml.min-1. 880 

DNA extraction and determination of global DNA methylation levels by HPLC 881 

Genomic DNA was extracted from all SAMs with a CTAB protocol (Doyle & Doyle, 882 

1987), and stored at -80°C. Quantity and quality were approximated using a NanoDrop 883 

spectrometer (NanoDrop Instrument, France).  884 

For the determination of global DNA methylation, genomic DNA was 885 

enzymatically hydrolyzed into nucleosides, and analyzed by high-performance liquid 886 

chromatography (HPLC), as described by Zhu et al., (2013). Controls for this procedure 887 

included co-migration with commercial standards (Sigma-Aldrich), confirmation by 888 

enzyme restriction analysis, and tests for RNA contamination based on the HPLC 889 

detection of ribonucleosides. Global DNA methyl cytosine percentages (% mC) were 890 

estimated as follows: %mC = (mC/(C + mC)) × 100, where ‘C’ is 2’-déoxycytidine 891 

content, and ‘mC’ is 5-methyl-2’-déoxycytidine content. For each line in each treatment, 892 

three biological replicates were randomly chosen out of the six for analyses, with two 893 

independent genomic DNA extractions per replicate, three hydrolysis replicates and two 894 

HPLC runs. 895 
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Whole Genome Bisulfite Sequencing (WGBS) and bioinformatic pipeline for 896 

methylome characterization 897 

An equimolar pool of 2 µg DNA at approximately 100 ng/µl, and extracted from four 898 

SAMs was made for each line in each treatment. Whole-genome bisulfite sequencing 899 

was performed by the CNRGH laboratory (J. Tost, Evry, France) in accordance with the 900 

published procedure (http://www.nugen.com/products/ovation-ultralow-methyl-seq-901 

library-systems) adapted from Daviaud et al., (2018). The workflow of the library 902 

preparation protocol follows the classical library preparation protocol in which methylated 903 

adaptors are ligated to the fragmented DNA prior to bisulfite conversion. A total of 200 904 

ng of genomic DNA was fragmented to a size of approximately 200 base pairs (bp), and 905 

then purified and methylated adaptors compatible with sequencing on an Illumina HiSeq 906 

instrument were ligated. The resulting DNA library was purified and bisulfite converted. A 907 

qPCR assay was used to determine the optimal number of PCR amplification cycles 908 

(between 10 and 15 cycles) required to obtain a high diversity library with minimal 909 

duplicated reads prior to final library amplification. The sequencing was performed with 910 

paired ends (2×150bp) on an Illumina HiSeq4000 platform. Raw data were stored in 911 

FASTQ files with a minimal theoretical coverage of 30X (SRA record is under the 912 

reference PRJNA611484; https://www.ncbi.nlm.nih.gov/sra/PRJNA611484). 913 

The bioinformatics pipeline used in this study is adapted from the ENCODE pipeline 914 

(https://www.encodeproject.org/wgbs/) and installed on the Galaxy instance, accessible 915 

of IHPE (http://galaxy.univ-perp.fr/, Perpignan, France). First, quality control and 916 

cleaning of the raw data were carried out by only considering nucleotides with a quality 917 

score over 26, and reads which had more than 95% of their nucleotides over this quality 918 

threshold. The second step was the alignment of the WGBS reads on the reference 919 

genome Populus tremula × alba (http://aspendb.uga.edu/index.php/databases/spta-717-920 

genome), by using BISMARK (version 0.16.3, Krueger & Andrews, 2011) and bowtie 2 921 

tools (version 2.1.0; Langmead et al., 2009) or a bisulfite sequence mapping program 922 

(BSMAP version 2.74) (Xi & Li, 2009). The parameters were modified for ‘paired-end’ 923 

alignment, read lengths were between 70 and 500 bp, and others were kept by default 924 

(See sup. Figure 1A, B and C). The methylkit R package allowed the identification of 925 
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DMRs among lines and treatments. A DMR was defined as a 500 bp region with a 926 

minimum coverage of 10X, which highlighted the differential methylation between two 927 

samples of at least 10% for CHH, and 25% for CHG and CG (q-value=0.01). Different 928 

types of DMRs were identified and are referred to as follows: stress-specific DMRs refer 929 

to DMRs between WW and WD-RW treatments, line-specific DMRs refer to DMRs 930 

between ddm1 lines and the WT, and common DMRs refer to line-specific DMRs 931 

common to both lines ddm1-15 and ddm1-23. 932 

DMR annotation was realized by using reference data available for the Populus 933 

tremula × alba genome from the aspendb database. Gene Ontology (GO) term 934 

enrichment was assessed for the methylated genes with Revigo 935 

(http://revigo.irb.hr/http://revigo.irb.hr/) software, using default parameters. ‘TreeMap’ 936 

view was performed with rectangle size adjusted to reflect the absolute log10 P-value of 937 

the GO term, through use of the corresponding poplar model genes from the best v3.0 938 

blast hits with Arabidopsis TAIR10 annotations.  939 

Transcriptomics and bioinformatic pipeline 940 

Total RNA (three biological replicates) was extracted from the wild type and one RNAi 941 

line in WD-RW condition by using a modified protocol of Chang et al., 1993). Ddm1-23 942 

was chosen as the most representative of the two lines as it exhibited a lower decrease 943 

in methylation compared to ddm15-7, but nonetheless most of its DMRs were in 944 

common among the two lines. In brief, SAMs were ground into fine powder in liquid 945 

nitrogen and total RNAs were extracted using a CTAB buffer (Changet al., 1993). RNA 946 

was precipitated using lithium chloride (10M) and purified using the Macherey Nagel 947 

Nucleospin RNA kit (740955). Sequencing was done using the Illumina NexSeq500 948 

(IPS2 POPS platform, Saclay, France). RNA-seq libraries were performed by following 949 

the TruSeq_Stranded_mRNA_SamplePrep_Guide_15031047_D protocol (Illumina®, 950 

California, USA). The RNA-seq samples have been sequenced in paired-end (PE) with a 951 

sizing of 260 bp and a read length of 75 bases. 6 samples by lane of NextSeq500 using 952 

individual bar-coded adapters and giving approximately 15 millions of PE reads by 953 

sample are generated. To facilitate comparisons, each sample followed the same steps 954 

from trimming to counts. RNA-Seq preprocessing included trimming library adapters and 955 
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performing quality controls. The raw data (fastq) were trimmed with the Trimmomatic 956 

(Bolger et al., 2014) tool for Phred Quality Score Qscore >20, read length >30 bases, 957 

and ribosome sequences were removed with the sortMeRNA tool (Kopylova et al., 958 

2012). The genomic mapper STAR (version 2.6, Dobin A. et al 2013) was used to align 959 

reads against the Populus tremula × alba hybrid genome (genotype INRA 717-1B4), 960 

with the options outSAMprimaryFlag AllBestScore--outFilterMultimapScoreRange 0, to 961 

keep only the best results. The abundance of each gene was calculated with STAR, with 962 

paired-end reads only being counted where the reads unambiguously mapped one 963 

gene, and multi-hits were removed. Following this pipeline, around 92% of PE reads 964 

were associated to a gene, 3 to 4% PE reads were unmapped and 3 to 4% of PE reads 965 

with multi-hits were removed. 966 

Differential analyses followed the procedure described in Rigaill et al., (2016). In 967 

brief, genes with less than one read, after a count per million normalization in at least 968 

one half of the samples, were discarded. Library size was normalized using the trimmed 969 

mean of M-value (TMM) method, and count distribution was modeled with a negative 970 

binomial generalized linear model. Dispersion was estimated by the edgeR method 971 

(Version 1.12.0, McCarthy et al., 2012) in the statistical software ‘R’ (Version 3.2.5 R 972 

Development Core Team (2005)). Expression differences compared two samples using 973 

the likelihood ratio test, and p-values were adjusted by the Benjamini-Hochberg 974 

procedure to control False Discovery Rate (FDR). A gene was declared differentially 975 

expressed if its adjusted p-value was lower than to 0.05. 976 

All steps of the experiment, from growth conditions to bioinformatic analyses, 977 

were managed in CATdb database (Gagnot et al., 2008; http://tools.ips2.u-978 

psud.fr/CATdb/) with ProjectID NGS2017-01-DDM1 This project is submitted from 979 

CATdb into the international repository GEO (Gene Expression Omnibus, Edgard R. et 980 

al. 2002, http://www.ncbi.nlm.nih.gov/geo) with ProjetID GSE135313. 981 

Mobilome-seq and copy number variation of TEs 982 

According to their mode of transposition, TEs generate extrachromosomal circular DNAs 983 

(eccDNAs) when active. The sequencing of these eccDNAs by the mobilome 984 

sequencing was a successfully method to identify active TEs (Lanciano et al., 2017). In 985 
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order to identify the effect of DDM1 knock down and a hydric stress on the release of TE 986 

activity we used approximately 6 µg of genomic DNA to perform mobilome-seq libraries. 987 

eccDNAs were isolated and libraries were prepared and sequenced following Lanciano 988 

et al., (2017). Bioinformatics was carried out on the Populus tremula × alba genome 989 

(SPta717 v1.1) by using the same pipelines as described in Lanciano et al., (2017). In 990 

order to obtain TE database for Populus tremula × alba genome, we used the TE 991 

database based on Populus trichocarpa genome (version 3.0). In brief, the sequencing 992 

reads were first filtered against the mitochondria and chloroplast genomes before being 993 

i) mapped against the P. tremula × alba reference genome using Bowtie2, ii) mapped for 994 

split reads (SR) using segemehl software (Hoffmann et al., 2014) and iii) de novo 995 

assembled using a5-miseq (Coil et al., 2015). Given the range of variation of the DOC 996 

coverage, we assigned TE families to four groups following Lanciano et al., (2017): The 997 

first group was named “moderate or not active TEs (group “TE”)”, and comprised TEs 998 

with a DOC ranging from 4 to 199X. The second group was named “active TEs” (group 999 

“TE+”) and comprised TEs with a DOC ranging from 200-1999X. The third group was 1000 

named “very active TEs” (“TE++”) and comprised TEs with a DOC ranging from 2000 to 1001 

9999X. The fourth group was named “highly active group” (“TE+++”), and comprised TEs 1002 

with a DOC ranging from 10000 to 51000X. Raw and processed data are available with 1003 

the GEO accession number GSE147934 1004 

(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE147934).  1005 

Copy number variation of TEs was assessed for all studied lines in both 1006 

treatments by qPCR using genomic DNA extracted from SAMs. In summary, primers of 1007 

TEs were first designed using corresponding FASTA sequences with Eprimer3 and 1008 

Netprimer for quality control checking (http://www.bioinformatics.nl/cgi-1009 

bin/emboss/eprimer3, http://www.premierbiosoft.com/NetPrimer). Primers that passed 1010 

quality control (Gypsy: F=AAC-AAG-CTG-AAG-CCC-AAG-AA, R=TCG-ACC-TCG-AGT-1011 

TAG-GTT-CC; DNA-3-3: F=TAG-TGT-GCA-GTG-GAG-CAT-GG, R=AAA-AGC-AGG-1012 

GTG-TTT-TGC-TG; SAT-1: F=TCA-CCG-GAA-CCC-ACT-TCT-AC, R=GCA-ACG-ACT-1013 

GAG-TTT-CGT-CA) were used with 10 ng/µl of genomic DNA for qPCR analyses 1014 

(Platinum™ SYBR™ Green qPCR SuperMix-UDG, Invitrogen™ kit). A standard cycling 1015 

program was applied (50 °C for 2 min, 95 °C for 2 min, and 40 cycles of 95 °C for 15 sec 1016 
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and 60 °C for 30 sec). Melting curves were obtained using recommended qPCR 1017 

instrument settings. Copy number variation was assessed by using absolute 1018 

quantification of cycle threshold values (Schmittgen & Livak, 2008). 1019 

Statistical analyses 1020 

Statistical analyses were performed with R statistical software under R Studio integrated 1021 

development environment (R Core Team, 2015, RStudio: Integrated Development for R. 1022 

RStudio, Inc., Boston, MA URL http://www.rstudio.com/). Means are expressed with their 1023 

standard errors (SE). Differences between lines and treatments for phenotypic traits 1024 

were evaluated by analysis of variance (ANOVA) on individual values adjusted for block 1025 

effects. Tukey’s post-hoc test was used to identify differences between groups when 1026 

ANOVAs indicated significant effects. Statistical tests were considered significant at P < 1027 

0.05.  1028 
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Figure & Table legends 1694 

Figure 1: Time course of soil relative extractable water (REW) during the experiment for the wild type and 1695 

the two RNAi-ddm1 (ddm1-15, ddm1-23) poplar lines in control (well-watered, WW) and stress (moderate 1696 

water deficit followed by rewatering, WD-RW) treatments. Open symbols and dashed lines for WW 1697 

treatment; closed symbols and solid lines for WD-RW treatment. Circles for the wild type; triangles for the 1698 

RNAi-ddm1-15 line; squares for the RNAi-ddm1-23 line. The arrows represent the end of the water deficit 1699 

and the onset of rewatering. Values are genotypic means ± SE (n = 6 per line for WW, n = 12 per line for 1700 

WD-RW).  1701 

Figure 2: Phenotypic and physiological characterization of the wild type and the two RNAi-ddm1 (ddm1-1702 

15, ddm1-23) poplar lines in control (well-watered, WW) and stress (moderate water deficit followed by 1703 

rewatering, WD-RW) treatments. Open symbols and open bars for WW; closed symbols and closed bars 1704 

for WD-RW. Values are genotypic means ± SE. A. Time course of stem height and diameter (n = 6 per 1705 

line in WW, n = 12 per line in WD-RW). The arrows represent the end of the water deficit and the onset of 1706 

rewatering. B. Xylem vulnerability to drought-induced cavitation measured at the end of the experiment (n 1707 

= 6 per line). C. Time course of leaf gas exchange (Anet, net CO2 assimilation rate, gs, stomatal 1708 

conductance to water vapour, WUEi, intrinsic water-use efficiency computed as Anet/gs). Values presented 1709 

are those of WD-RW plants relative to WW controls (n = 5 per line per treatment). Treatment effects were 1710 

evaluated within each line using a t-test. Levels of significance are *, 0.01 < P < 0.05; **, 0.001 < P < 0.01; 1711 

***, P < 0.001; ns, non-significant. 1712 

Figure 3: Phytohormone contents (cytokinins, abscisic acid, salicylic acid and free auxin) measured in 1713 

shoot apex just after rewatering (t1). Values are genotypic means ± SE (n = 3 per line in WW and in WD-1714 

RW). Treatment effects were evaluated within each line by using t-test. Levels of significance are *: p< 1715 

0.05, **: p< 0.01, ***: p< 0.001 and ns: non-significant. The different letters indicate the differences 1716 

between lines within a water regime following a Tukey’s post hoc test (lower case letters for WW, capital 1717 

letters for WD-RW).  1718 

Figure 4: Variations in DNA methylation among RNAi and WT lines in shoot apical meristem one week 1719 

after rewatering (t2). A. Common DMRs between WW and WD-RW conditions. Black bars for 1720 

hypomethylated DMRs and grey bars for hypermethylated DMRs. B. Common DMRs between the two 1721 

RNAi lines (ddm1_15 & ddm1_23) vs. the WT lines in all contexts (CG, CHG & CHH) and in WW and WD-1722 

RW conditions. Black bars for hypomethylated DMRs and grey bars for hypermethylated DMRs. C. DNA 1723 

methylation variation of the common DMRs in the RNAi lines vs. the WT line in WW and WD-RW per 1724 

context of methylation. Only DMRs with at least a 25 % difference were kept except for CHH where a 1725 

threshold of 10% was applied due to the low proportion of DMRs in that context. 1726 

Figure 5: Gene expression variations in ddm1-23 vs. the WT line in non-irrigated condition (WD-RW) in 1727 

shoot apical meristem collected one week after rewatering (t2). A. GO annotation of the differentially 1728 
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expressed genes (genes with an adjusted p-value by FDR, false discovery rate < 0.05 = 136 DEGs 1729 

identified) between ddm1-23 and the WT line. GO labels were retrieved from popgenie and treemap 1730 

realized with REVIGO. B. Annotation of DEGs with expression variation values (log2FoldChange) using 1731 

GO labels retrieved from popgenie. Blue for downregulated genes and red for upregulated genes. The * 1732 

indicates hormone related genes found in DEGs. The numbers (1), (31), (8), (25), (19), (17), (35) 1733 

represent respectively the number of DEGs found in Cell death, Defense & Cell wall, Immune response, 1734 

Metabolism, Signalization, Transcription factors and Unknown processes respectively. Log2FoldChange = 1735 

log-ratio of normalized mean read counts in RNAi vs. WT lines. 1736 

Figure 6: Transposable elements activity among RNAi and WT lines in shoot apical meristem collected 1737 

one week after rewatering (t2).  A. Depth of coverage (read per million, rpm) of different TE families in the 1738 

three different lines and in both WW (white) and WD-RW (black) regimes. TE, TE+, TE++, TE+++ 1739 

represent different groups of TE families according to their coverage. TE ranges from 0 to 200X; TE+ = 1740 

200X – 2000X; TE++ = 2000X - 10000X; TE+++ = 10000X – 55000X. B. DNA methylation variations in 1741 

TEs for each context of methylation in WW (white) and WD-RW (black) conditions. C. Copy number 1742 

variations of three different TEs (DNA-3-3, Gypsy23 and SAT-1) in the three different lines in both WW 1743 

and WD-RW regimes. White cicles for WW and black circles for WD-RW. 1744 

Table 1: Xylem structural, functional and biochemical traits measured for the wild type and the two RNAi-1745 

ddm1 (ddm1-15, ddm1-23) poplar lines in control (well-watered, WW) and stress (moderate water deficit 1746 

followed by rewatering, WD-RW) treatments. Values are genotypic means ± SE (n = 6 per line per 1747 

treatment). The P50 is the xylem tension inducing 50% loss of hydraulic conductance estimated from 1748 

vulnerability curves (see Materials and Methods for additional information). S/G corresponds to the ratio 1749 

between syringyl-like (S) and guaiacyl-like lignin monomeric units (G). Treatment effects were evaluated 1750 

within each line by using a t-test. Different letters indicate significant differences between genotypes within 1751 

treatments following Tukey’s post hoc test. Levels of significance are *, 0.01 < P < 0.05; **, 0.001 < P < 1752 

0.01; ***, P < 0.001; ns, non-significant; na, not available. 1753 

Supplemental materials: 1754 

Supplemental Figure 1: Strategies for methylome bioinformatic analysis A. Impact of different types of 1755 

quality controls on the percentage of mapped reads on two distinct genomes: P. trichocarpa and P. 1756 

tremula × P. alba. Dots shapes are quality control specific. 1. Circles for quality control with trimming, 2. 1757 

Triangular for sample with only trimming control and 3. Squared for sample without any quality control. 1758 

Colors are distinct between the two genomes (black for P. trichocarpa and white for P. tremula × P.alba). 1759 

On the left, the results for Well-Watered (WW) conditions and on the other side Water Deficit and 1760 

ReWatering (WD-RW). B. Impact of two different tools for mapping reads, BISMARK and BSMAP on the 1761 

percentage of mapped reads on two distinct genomes: P. trichocarpa and P. tremula × P. alba. Dark bars 1762 

are for BISMARK and light bars for BSMAP software. On the left, the results for Well-Watered (WW) 1763 
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conditions and on the other side Water Deficit and ReWatering (WD-RW). Values are ‘QC’ means quality 1764 

control with trimming and filtering. C. Percentages of cytosine considered by BISMARK after quality 1765 

control and 10X minimal coverage filtering on the two genomes: P. trichocarpa and P. tremula × P. alba. 1766 

Bars are for methylation percentage and dots are for coverage values. Black color is for Well-Watered 1767 

(WW) conditions and white for Water Deficit and Re-Watering one (WD-RW). D. Percentages of cytosine 1768 

considered by BISMARK after quality control and 10X minimal coverage filtering for the three methylation 1769 

contexts (CG, CHG and CHH) for P. tremula × P. alba.  1770 

Supplemental Figure 2: Phenotypic and physiological characterization of the wild type and the two RNAi-1771 

ddm1 (ddm1-15, ddm1-23) poplar lines in control (well-watered, WW) and stress (moderate water deficit 1772 

followed by rewatering, WD-RW) treatments. Open symbols and open bars for WW; closed symbols and 1773 

closed bars for WD-RW. Values are genotypic means ± SE. A. Predawn and minimum leaf water potential 1774 

measured before rewatering (n = 5 per line per treatment). B. Bulk leaf carbon isotope composition (δ13
C) 1775 

measured on leaves sampled at the end of the experiment (n = 6 per line in WW, n = 12 per line in WD-1776 

RW). C. Total stomatal density measured at the end of the experiment (n = 3 per line per treatment). 1777 

Treatment effects were evaluated within each line using a t-test. Levels of significance are *, 0.01 < P < 1778 

0.05; **, 0.001 < P < 0.01; ***, P < 0.001; ns, non-significant. 1779 

Supplemental Figure 3: A. Variation among Populus RNAi ddm1 lines concerning the effect of leaf 1780 

position on the stem on leaf area. White dots for control line and black dots for RNAi lines. Values are line 1781 

means (± SE, n=3 by lines WW). For each line the rank effect was evaluated using a T-test (IF: leaf 1782 

index). B. Total leaf area variations among Populus RNAi ddm1 lines. White bars represent well-watered 1783 

conditions. Values are line mean (± SE, n=3 by lines WW). Global line effect was evaluated using a T-test 1784 

(L: line). Levels of significance are *: p< 0.05, **: p< 0.01, ***: p< 0.001 and ns: non-significant  1785 

Supplemental Figure 4: Particular leaf phenotypes among Populus RNAi ddm1 lines. Open symbols for 1786 

control (well-watered, WW) condition; closed symbols for stress (moderate water deficit followed by 1787 

rewatering, WD-RW) condition. Values are genotypic means ± SE (n = 6 per line for WW and WD-RW). 1788 

Treatment effects were evaluated within each line by using a t-test. The different letters indicate the 1789 

differences between lines within a water regime following a Tukey’s post hoc test (small letter, well-1790 

watered condition and capital letter water deficit follow by rewatering condition). Levels of significance are 1791 

*: p< 0.05, **: p< 0.01, ***: p< 0.001 and ns: non-significant. 1792 

Supplemental Figure 5: Variations in DNA methylation among RNAi and WT lines in shoot apical 1793 

meristem one week after rewatering (t2). A. Global DNA methylation percentage calculated by HPLC in 1794 

WT and RNAi lines in both Well-Watered (WW, white bars) and water-deficit followed by ReWatering 1795 

conditions (WD-RW, black bars). Values are genotypic mean (± SE, n=3 by lines in WW and n=3 by lines 1796 

in WD-RW). Global genetic variations and the effect of water deficit re-watering were evaluated using 1797 

ANOVA. Different letters indicate the differences between genotypes within WW and WD-RW conditions 1798 
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following a Tukey’s post hoc test. Levels of significance are *: p< 0.05, **: p< 0.01, ***: p< 0.001 and ns: 1799 

non-significant. B. Differentially methylated regions (DMRs) between treatment and lines. Black bars for 1800 

hypomethylated DMRs and white bars for hypermethylated DMRs. DMRs represented are mapped 1801 

against Populus tremula x alba reference genome and have passed 10X of coverage and show a cut-off 1802 

of methylation of 25 % with qvalue 0.01. C. DMRs count between ddm1_15 and WT line. D. DMRs count 1803 

between ddm1_23 the WT line. E. Distributions of the DMRs between the RNAi and the WT lines in the 1804 

different contexts of methylation. 1805 

Supplemental figure 6: Identification of differentially methylated genes. A. Annotation of the common 1806 

DMRs between the RNAi and the WT lines in WW and WD-RW regimes. Gene annotation was retrieved 1807 

from P. tremula x P. alba v1.1 annotation. Promoters correspond to +/- 2kb from TSS (transcription start 1808 

site). TE (Transposable element) annotations were retrieved from P. trichocarpa annotation and blasted 1809 

against P. tremula x P.  reference genome. B. Identification of common differentially methylated genes 1810 

(DMGs) between the two RNAi lines vs. the WT line in both WW and WD-RW regimes. In DMRs = Genes 1811 

that overlapped with the common DMRs, 2 kb = Genes in +/- 2 kb of DMR, 5 kb = Genes in +/- 5 kb of 1812 

DMR, 10 kb = Genes in +/- 10 kb of DMR and 25 kb = Genes that are found in +/- 25 kb of DMR. C. 1813 

Genes Ontology (GO) annotation of the common DMRs in WD-RW regimes for all contexts. GO labels 1814 

were retrieved from A. thaliana annotation and a treemap was realized using REVIGO software. 1815 

Supplemental figure 7: Relationship between variation in DNA methylation and gene expression. A. 1816 

Overlap between DEGs and DMRs. DEGs that are localized in DMRs or in the proximity of DMRs are 1817 

represented: In DMRs = DEGs that overlapped with the DMRs, 2 kb = DEGs in +/- 2 kb of DMR, 5 kb = 1818 

DEGs in +/- 5 kb of DMR, 10 kb = DEGs in +/- 10 kb of DMR and 25 kb = DEGs that are found in +/- 25 kb 1819 

of DMR. B. Covariation between DNA methylation and gene expression. DEGs found in or near +/- 10 kb 1820 

of DMRs were used for correlation (spearman t test correlation, pvalue = 0.0004). 1821 

Supplemental figure 8: Transposable elements activity among RNAi and WT lines in shoot apical 1822 

meristem collected one week after rewatering (t2). A. Counts of transposable element families found in the 1823 

mobilome-seq analysis in the three different lines and in WW and WD-RW regimes. White bars for WW 1824 

and black bars for WD-RW. B. GO annotation of biological process of genes found in or near +/- 25 kb of 1825 

mobilome-seq TE families. The treemap was realized using REVIGO. C. Overlap between TE families vs. 1826 

DMRs and Genes.  In = TEs that overlapped with the DMRs, 2 kb = TEs in +/- 2 kb of DMR, 5 kb = TEs in 1827 

+/- 5 kb of DMR, 10 kb = TEs in +/- 10 kb of DMR and 25 kb = TEs that are found in +/- 25 kb of DMR. 1828 

Supplemental Table 1: Mean methylation level in ddm1 and WT lines in both WW and WD-RW 1829 

conditions, Values are the average of methylation (in %) for each lines in the three different contexts (CG, 1830 

CHG and CHH). 1831 
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