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I. INTRODUCTION

The existence of a classical solution of the Einstein field
equations describing a spacetime in which the exterior of a
past black hole and a future white hole are connected [1]
indicates that the end of the evaporation of a black hole can
result in a quantum tunneling from a trapped to an
antitrapped region. The black to white hole transition is
receiving increasing attention in the literature [2–14]. In
[15], following the scenario developed in [16–25], we have
introduced a technique to study this transition. Here we use
this technique to derive an explicit expression for the
corresponding transition amplitude.
This transition amplitude is formally given by a path

integral over four geometries performed on a spacetime
region B bounded by a three-dimensional surface Σ (with
specified intrinsic and extrinsic geometry). The three-
dimensional surface Σ encloses the transition region. Its
specification and its geometry have been computed in [15].
The formal path integral is approximated and concretely
defined by the spin foam amplitude [26] associated to a
discretization of B. While the discretization of Σ was
defined in [15], here we construct the full discretization
of B and compute the corresponding transition amplitude.
The complexity of the calculation is given by the topology

of B, which is the product of a two-sphere and a disk (see
Fig. 1). The disk is the product of a finite time interval and a
finite space (radial) interval and it is delimited by an exterior
two-sphere Sþ that surrounds the horizon and by an interior
two-sphere S− surrounded by the horizon (sitting on the
bounce radius of the transition of the internal geometry of the
black hole). The two two-spheres Sþ and S− split Σ into a
past component Σp and a future component Σf.
While Σwas discretized by means of a three-dimensional

triangulation, herewe discretizeB in terms of a two-complex

C dual to a cellular complex which is not a four-dimensional
triangulation. This choice has the advantage of providing a
relatively simple discretization that respects the symmetries
of the problem.
Section II is devoted to the construction of the two-

complex C. The corresponding transition amplitude is
computed in Sec. III. Section IV offers a simplification of
the expression based on the symmetries of the two-complex.
Section V gives the amplitude in terms of coherent states.
The duals of Γ and C, namely the triangulation of Σ and the
cellular decomposition of B, are discussed in Appendix A.
Appendix B offers a graphical representation of Γ and C.
Appendix C recalls the basic formulas of covariant loop
quantum gravity.

II. DISCRETIZATION OF B

In this section we give the combinatorial definition of the
two-complex C as a set of vertices, edges and faces with
their boundary relations. To help the geometric visualiza-
tion, a graphical representation of the two-complex C and
its boundary Γ is provided in Appendix B: we advise the
reader to consult it.
If N1 and N2 are nodes, we write L ¼ ðN1;N2Þ to denote

the oriented link with source N1 and target N2. We denote
L−1 ≡ ðN2;N1Þ the same link but with opposite orientation.
For the vertices and edges of the two-complex of the spin
foam (which form a graph), we use an analogous notation.
We denote the vertices as v; the internal edges (bounded by
two vertices) as e; the external edges (bounded by one
node) as E. Similarly, we denote the internal faces
(bounded by internal edges only) as f; the external faces
(with one link in the boundary) as F. We write f ¼
ðe1;…; enÞ to denote the oriented face f bounded by these
edges. The orientation of the face is given by the sequence
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of edges. These are written oriented accordingly to the
orientation the face induces on them.
Let a, b, c, d be indices taking values in the set

f1; 2; 3; 4g, t be an index taking values in the set fp; fg
(for past and future) and ϵ be an index taking values in the
set f−;þg (for interior and exterior). In all the expressions
with several indices a; b;… these are assumed to be all
different, that is a ≠ b and so on. Unless two indices are
separated by a comma, the order of the indices is not
relevant and exchanging the indices results in the same
element. If two indices are separated by a comma,
exchanging the indices results in a different element.
The graph Γ dual to the three-dimensional triangulation

of Σ constructed in [15] is defined by
Nodes Ntϵ

a and Nt
ab;

Links Lϵ
a ¼ ðNpϵ

a ;Nfϵ
a Þ,

Ltþ
a;b ¼ ðNt

ab;N
tþ
a Þ,

Lt−
a;b ¼ ðNt

cd;N
t−
a Þ.

(See Fig. 6 of Appendix B.)
The two-complex C, whose boundary ∂C is given by Γ, is

defined by
Vertices vϵa and vab;

Edges Etϵ
a ¼ ðvϵa;Ntϵ

a Þ,
Et
ab ¼ ðvab;Nt

abÞ,
eþa;b ¼ ðvþa ; vabÞ,
e−a;b ¼ ðv−a ; vcdÞ;

Faces Fϵa ¼ ðLϵ
a; ðEfϵ

a Þ−1;Epϵ
a Þ,

Ftþa;b ¼ ðLtþ
a;b; ðEtþ

a Þ−1; eþa;b;Et
abÞ,

Ft−a;b ¼ ðLt−
a;b; ðEt−

a Þ−1; e−a;b;Et
cdÞ,

fa;b ¼c<d ðeþa;c; ðe−b;dÞ−1; e−b;c; ðeþa;dÞ−1Þ.
This construction defines the orientation of every element
of the two-complex.
The geometry of B is invariant under both rotations and

the time reversal transformation that swaps Σp and Σf. The
discretization reduces the rotational symmetry to a discrete
tetrahedral symmetry, realized by an even permutation of
the indices a, b, c, d. The time reversal symmetry is
realized by the swap of the indices p and f.
There is also a combinatorial symmetry defined by the

exchange of the exterior and the interior, namely by the
exchange of Sþ and S−. This is realized in the two-complex
by the invariance under the swap of the indices þ and −.

This is however not a symmetry of the geometry we
want to study, as Sþ and S− have a different geometry:
Sþ is larger.

III. TRANSITION AMPLITUDE

Following Appendix C, we assign group elements to the
edges and the links of the two-complex:

Lϵ
a ⟷ hϵa ∈ SUð2Þ;

Ltϵ
a;b ⟷ htϵa;b ∈ SUð2Þ;

Etϵ
a ⟷ gtϵa ∈ SLð2;CÞ;

Et
ab ⟷ gtab ∈ SLð2;CÞ;

eϵa;b ⟷ gϵa→b; g
ϵ
a←b ∈ SLð2;CÞ.

The group element gϵa→b is assigned to the oriented half
edge of eϵa;b having a source in the source of e

ϵ
a;b and a target

in the middle of eϵa;b. The group element gϵa←b is assigned to
the oriented half edge of eϵa;b having a source in the target of
eϵa;b and a target in the middle of eϵa;b.
It is then straightforward to compute the covariant

loop quantum gravity transition amplitude for the black-
to-white hole transition by using the expressions reported in
Appendix C applied to the two-complex defined above.
The two-complex amplitude WC expressed in terms of face
amplitudes is

WCðhϵa; htϵa;bÞ ¼
Z
SLð2;CÞ

dgpϵa dgpabdg
ϵ
a↔b

×
Y
aϵ

Aϵ
aðhϵa; gtϵa Þ

Y
ab

Aa;bðgþa↔c; g−b↔cÞ

×
Y
tab

Atþ
a;bðhtþa;b; gtþa ; gtab; g

þ
a↔bÞ

×
Y
tab

At−
a;bðht−a;b; gt−a ; gtcd; g

−
a↔bÞ: ð1Þ

To regularize the expression in (1) we have dropped the
integration over one SLð2;CÞ element per vertex. We have
chosen to drop the integrations over the gfϵa and gfab
variables. The integral is independent from these.
To write the face amplitudes we use the following

notation. We introduce the ð2jþ 1Þ × ð2jþ 1Þ matrix

DðjÞ
γ ðgÞ, g ∈ SLð2;CÞ, with matrix elements

ðDðjÞ
γ ðgÞÞmn ≡Dðγj;jÞ

jmjn ðgÞ; ð2Þ

where Dðp;kÞ
jmj0n are the matrix elements of the ðp; kÞ unitary

representation of the principal series of SLð2;CÞ in the
canonical basis that diagonalize the operators L2 and Lz of

the SU(2) subgroup [26]. The matrix DðjÞ
γ ðgÞ should

not be confused with the SU(2) Wigner matrix DðjÞðhÞ
with matrix elements DðjÞ

mnðhÞ, h ∈ SUð2Þ. Using these, we
have

Aϵ
aðhϵa; gtϵa Þ ¼

X
j

dj Tr½DðjÞ
γ ððgfϵa Þ−1gpϵa ÞDðjÞðhϵaÞ�; ð3Þ

FIG. 1. The region B in the time-radius space: each point of the
diagram is a two-sphere.
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Aa;bðgþa⟷c; g−b⟷cÞ
¼c<d

X
j

dj Tr½DðjÞ
γ ððgþa→dÞ−1gþa→cÞ

×DðjÞ
γ ððgþa←cÞ−1g−b←dÞDðjÞ

γ ððg−b→dÞ−1g−b→cÞ
×DðjÞ

γ ððg−b←cÞ−1gþa←dÞ�; ð4Þ

Atþ
a;bðhtþa;b; gtþa ; gtab; g

þ
a↔bÞ ¼

X
j

dj Tr½DðjÞ
γ ððgtþa Þ−1gþa→bÞ

×DðjÞ
γ ððgþa←bÞ−1gtabÞDðjÞðhtþa;bÞ�;

ð5Þ

At−
a;bðht−a;b; gt−a ; gtcd; g

−
a↔bÞ ¼

X
j

dj Tr½DðjÞ
γ ððgt−a Þ−1g−a→bÞ

×DðjÞ
γ ððg−a←bÞ−1gtcdÞDðjÞðht−a;bÞ�:

ð6Þ

The transition amplitude for the black-to-white hole
transition is then given by

hWCjψBWi ¼
Z
SUð2Þ

dhϵadhtϵa;b

×WCðhϵa; htϵa;bÞψBWðhϵa; htϵa;bÞ; ð7Þ

where jψBWi ∈ HΓ is the extrinsic coherent state peaked on
the classical boundary geometry of the black-to-white hole
transition that was constructed in [15].
For numerical calculations [27–30] and to use asymp-

totic techniques [31–33] it is more convenient to use the
amplitude written in terms of vertex amplitudes.
Following the notation in Appendix C, we assign a spin

[an SU(2) irreducible representation] to every face in the
two-complex and an intertwiner, namely a basis element in
the space (each edge of the two-complex belongs to four
faces)

Hj1���j4 ¼ InvSUð2Þ½Hj1 ⊗ � � � ⊗ Hj4 �; ð8Þ

to every edge of the two-complex:
Fϵa ⟷ Jϵa ∈ N=2;
Ftϵa;b ⟷ Jtϵa;b ∈ N=2;
fa;b ⟷ ja;b ∈ N=2;
Etϵ
a ⟷ Itϵa ∈ HJϵaJtϵa;b

;
Et
ab ⟷ Itab ∈ HJtþa;bJ

t−
c;d
;

eþa;b ⟷ iþa;b ∈ Hja;cJ
tþ
a;b
;

e−a;b ⟷ i−a;b ∈ Hjc;aJt−a;b
.

Using this we can write the two-complex transition
amplitude in the following form:

WCðhϵa;htϵa;bÞ¼
X
JϵaJtϵa;b

X
Itϵa Itab

�Y
ϵa

dJϵa
Y
tϵab

dJtϵa;b

�

×
D
⊗
tϵa
Itϵa ⊗

ta;b>a
Itab

���⊗
ϵa
DðJϵaÞðhϵaÞ⊗

tϵab
DðJtϵa;bÞðhtϵa;bÞ

E
Γ

×WCðJϵaJtϵa;b;Itϵa ;ItabÞ; ð9Þ

where the bra-ket notation indicates the index contraction
dictated by Γ [26]. The transition amplitude in the spin-
intertwiner basis reads

WCðJϵaJtϵa;b;Itϵa ;ItabÞ
¼
X
ja;b

X
iϵa;b

Y
ab

dja;b
Y
ϵa

Avϵaðja;b;Jϵa;Jtϵa;b;Itϵa ; iϵa;bÞ

×
Y
a

Y
b>a

Avabðja;c;jb;c;Jtþa;b;Jt−c;d; Itab; iþa;b; i−c;dÞ: ð10Þ

The graphical representation of the product of the vertex
amplitudes [whose analytical expression can be easily read
from Eq. (C16)] written using the graphical representation
of [31,34] can be found in Fig. 2.
Notice the relative simplicity of the expression in

Eq. (10). There are only two kinds of local vertex
amplitudes (see also Fig. 2): the amplitude associated to
the eight five-valent vertices vϵa and the amplitude asso-
ciated to the six six-valent vertices vab.
For example, the amplitude of the five-valent vertex vþ1

depends on the following quantities. Two “vertical”

FIG. 2. Graphical representation of the product of the local
vertex amplitudes entering the two-complex spin-intertwiner
transition amplitude in Eq. (10).
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(see Appendix B) boundary intertwiners, the past one Ipþ1
and the future one Ifþ1 , and three “horizontal” internal
intertwiners iþ1;2; i

þ
1;3; i

þ
1;4. One vertical spin Jþ1 , three

vertical past spins Jp1;2; J
p
1;3; J

p
1;4, three vertical future spins

Jf1;2; J
f
1;3; J

f
1;4 and finally three spins j1;2; j1;3; j1;4 of the

horizontal internal faces.
Similarly, the amplitude of the six-valent vertex v12

depends on the following quantities: two vertical boundary
intertwiners Ip12 and If12 and four horizontal internal
intertwiners iþ1;2; i

þ
2;1; i

−
3;4; i

−
4;3; four vertical past spins

Jpþ1;2 ; J
pþ
2;1 ; J

p−
3;4; J

p−
4;3, four vertical future spins Jfþ1;2 ; J

fþ
2;1 ;

Jf−3;4; J
f−
4;3 and four spins j1;3; j1;4; j2;3; j2;4 of the horizontal

internal faces.

IV. USING THE SYMMETRY

Focusing on the transition amplitude in the spin-inter-
twiner basis in Eq. (10), a simplification of the model can
be obtained by restricting the computation to spin foam
configurations whose coloring respects the geometric
symmetries of the problem at hand. Namely, we can
simplify the amplitude by performing a symmetry reduc-
tion of the model.
In this scenario the boundary spins are fixed to just four

independent ones,

Jϵa ¼ J̃ϵ and Jtϵa;b ¼ Jϵ; ð11Þ

and the boundary intertwiners are fixed to just three
independent ones,

Itϵa ¼ Iϵ and Ita;b ¼ I: ð12Þ

Furthermore, simple geometry shows that the symmetry of
the tetrahedra dual to the exterior and the interior nodes Ntϵ

a
(see Appendix A) implies that their geometry is fully
determined by the area of their faces [15]. Hence, the two
boundary intertwiners Iϵ are actually uniquely determined
by the spins: Iϵ ¼ IϵðJ̃ϵ; JϵÞ. Finally, the symmetric trun-
cation of the model is obtained by restricting to symmetric
spin foam configurations, that is

ja;b ¼ j and iϵa;b ¼ iϵ: ð13Þ

The transition amplitude in the spin-intertwiner basis of the
symmetry reduced model is then given by

WCðJϵ; J̃ϵ; IÞ ¼
X
j;iϵ

d12j A6ðj; Jϵ; I; iϵÞ

×
Y
ϵ

A4
ϵðj; Jϵ; J̃ϵ; iϵÞ; ð14Þ

where Aðj; Jϵ; I; iϵÞ is the local vertex amplitude associated
to every vab vertex and Aϵðj; Jϵ; J̃ϵ; iϵÞ is the local vertex
amplitude associated to every vϵa vertex. This is a huge
simplification with respect to the transition amplitude
in Eq. (10).
The explicit dependence of the vertex amplitudes on the

spins and the intertwiners can be read from Fig. 3 or
from Fig. 2.

V. COHERENT STATE BASIS

Finally, we give also the expression of the transition
amplitude in the overcomplete basis on the intertwiner
spaces formed by the coherent intertwiners. This form of
the amplitude is useful to study the intrinsic quantum
geometry of the cellular complex dual to the two-complex.
Following again the notation in Appendix C, we

assign a normal to every couple (edge, face) in the
two-complex:

ðEtϵ
a ; FϵaÞ ⟷ N⃗tϵ

a ∈ S2;
ðEtϵ

a ; Ftϵa;bÞ ⟷ N⃗tϵ
a;b ∈ S2;

ðEt
ab; F

tþ
a;bÞ ⟷ N⃗tþ

ab;a ∈ S2;
ðEt

ab; F
t−
c;dÞ ⟷ N⃗t−

ab;c ∈ S2;
ðeϵa;b; Ftϵa;bÞ ⟷ n⃗tϵa;b ∈ S2;
ðeþa;b; fa;cÞ ⟷ n⃗þa;b;c ∈ S2;
ðe−a;b; fc;aÞ ⟷ n⃗−a;b;c ∈ S2.

FIG. 3. The boundary graph [26] of the interior five-valent
vertices (left) and of the six-valent vertices (right) in the
symmetry reduced model.
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The change of basis gives

WCðhϵa; htϵa;bÞ ¼
X
JϵaJtϵa;b

�Y
ϵa

dJϵa
Y
tϵab

dJtϵa;b

� Z
S2

�
d2N⃗tϵ

a
dJϵa
4π

��
d2N⃗tþ

ab;a

dJtþa;b
4π

��
d2N⃗t−

ab;c

dJt−c;d
4π

��
d2N⃗tϵ

a;b

dJtϵa;b
4π

�

×
Y
ϵa

hJϵa; N⃗pϵ
a DðJϵaÞðhϵaÞjJϵa; N⃗fϵ

a i
Y
tab

hJtþa;b; N⃗tþ
ab;ajDðJtþa;bÞðhtþa;bÞjJtþa;b; N⃗tþ

a;bi

×
Y
tab

hJt−a;b; N⃗t−
cd;ajDðJt−a;bÞðht−a;bÞjJt−a;b; N⃗t−

a;biWCðJϵaJtϵa;b; N⃗tϵ
a ; N⃗

tþ
ab;a; N⃗

t−
ab;c; N⃗

tϵ
a;bÞ; ð15Þ

where the transition amplitude in the coherent basis reads

WCðJϵa; Jtϵa;b; N⃗tϵ
a ; N⃗

tþ
ab;a; N⃗

t−
ab;c; N⃗

tϵ
a;bÞ ¼

X
ja;b

Y
ab

dja;b

Z
S2

�
d2n⃗tϵa;b

dJtϵa;b
4π

��
d2n⃗þa;b;c

dja;c
4π

��
d2n⃗−a;b;c

djc;a
4π

�

×
Y
ϵa

Avϵaðja;b; Jϵa; Jtϵa;b; n⃗tϵa;b; n⃗ϵa;b;c; N⃗tϵ
a ; N⃗

tϵ
a;bÞ

×
Y
a

Y
b>a

Avabðjvab ; Jvab ; n⃗vab ; N⃗vabÞ ð16Þ

and the labels jvab ; Jvab ; n⃗vab ; N⃗vab stand for the following
sets of variables:

jvab ¼ fja;c; jb;cg; ð17aÞ

Jvab ¼ fJtþa;b; Jt−c;dg; ð17bÞ

n⃗vab ¼ fn⃗tþa;b; n⃗t−c;d; n⃗þa;b;c; n⃗−c;d;ag; ð17cÞ

N⃗vab ¼ fN⃗tþ
ab;a; N⃗

t−
ab;cg: ð17dÞ

The analytical expression of the coherent vertex amplitudes
in Eq. (16) is given in Eq. (C10). The contraction pattern

between the coherent states and the DðjÞ
γ matrices in the

coherent vertex amplitudes exactly matches the contraction

pattern between the intertwiners and theDðjÞ
γ matrices in the

spin-intertwiner vertex amplitudes (it is just a change of
basis) and it can therefore be read directly from Fig. 2.

VI. CONCLUDING REMARKS

Starting from the results obtained in [15], we have
constructed a two-complex that discretizes the quantum
region in which the black hole horizon tunnels from a
trapping to an antitrapping horizon and we have explicitly
computed the transition amplitude associated to the phe-
nomenon using covariant loop quantum gravity.
The two-complex defined in Sec. II is complicated and

the corresponding transition amplitude computed in Sec. III
may be difficult to studied analytically. However, the high
degree of symmetry of the two-complex should help in
the numerical exploration of the transition amplitude.

A numerical analysis of the transition amplitude is in
progress and it will be reported elsewhere.
Notably, the set of internal faces of the two-complex

forms a bubble, that is they form together a surface without
boundary with the topology of a two-sphere. The presence
of a bubble in a two-complex may in principle lead to a
divergence in the corresponding transition amplitude [26].
A preliminary counting of integration variables and con-
straints among those appearing in the large spin limit of
(16) appears to suggest that the amplitude is exponentially
suppressed for large spins, and therefore convergent.
A detailed analysis will be reported elsewhere.
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APPENDIX A: THE CELLULAR
DECOMPOSITION OF B

The triangulation of the boundary Σ of B was con-
structed in [15] and it can be summarized as follows.
The surface Σ is formed by a past component Σp and a

future component Σf, joined inside the black hole at the
two-sphere S− and outside the black hole at the two-sphere
Sþ (see Fig. 1). A simple triangulation of it is obtained by
placing four (equidistant) points p−

a on S− and four
(equidistant) points pþ

a on Sþ.
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The triangulation is then defined by the points pϵ
a, the

segments sϵab and sta;b, the triangles Lϵ
a and Ltϵ

a;b, the
tetrahedra Ntϵ

a and Nt
ab, and their boundary relations:

∂sϵab ¼ ðpϵ
a; pϵ

bÞ; ðA1aÞ

∂sta;b ¼ ðp−
a ; p

þ
b Þt; ðA1bÞ

∂Lϵ
a ¼ ðsϵbc; sϵcd; sϵdbÞ; ðA1cÞ

∂Ltþ
a;b ¼ ðsþcd; sta;c; sta;dÞ; ðA1dÞ

∂Lt−
a;b ¼ ðs−cd; stc;a; std;aÞ; ðA1eÞ

∂Ntϵ
a ¼ ðLtϵ

a;b; L
tϵ
a;c; Ltϵ

a;d; L
ϵ
aÞ; ðA1fÞ

∂Nt
ab ¼ ðLtþ

a;b; L
tþ
b;a; L

t−
c;d; L

t−
d;cÞ: ðA1gÞ

The indices a, b, c, d, t and ϵ follow the rules discussed in
Sec. II. Partial graphical representations of this triangula-
tion can be found in Figs. 4 and 5.
The graph Γ dual to the triangulation of Σ, which is

formed by nodes (dual to the tetrahedra of the triangulation)
connected by links (dual to the triangles of the triangula-
tion), is represented in Fig. 8. Using the same label to
denote dual objects, it is straightforward to check that the
notation in Eq. (A1) is consistent with the notation given in
Sec. II for Γ.
The cellular decomposition of B can then be obtained

defining internal two-dimensional surfaces fa;b, internal
three-dimensional cells eϵa;b, internal four-dimensional cells
vϵa and vab, and their boundary relations:

∂fa;b ¼ ðspa;b; sfa;bÞ; ðA2aÞ

∂eϵa;b ¼ ðLpϵ
a;b; L

fϵ
a;b; fa;c; fa;dÞ; ðA2bÞ

∂vϵa ¼ ðNpϵ
a ; Nfϵ

a ; eϵa;b; e
ϵ
a;c; eϵa;dÞ; ðA2cÞ

∂vab ¼ ðNp
ab; N

f
ab; e

þ
a;b; e

þ
b;a; e

−
c;d; e

−
d;cÞ: ðA2dÞ

Notice that the internal two-dimensional surfaces are not
triangles, that the internal three-dimensional cells are not
tetrahedra and that the internal four-dimensional cells are
not four-simplices. The cellular decomposition of B is thus
not a four-dimensional triangulation.
The two-complex C, whose combinatorial definition is

given in Sec. II, can be equivalently defined (apart from its
orientation) as the dual to the cellular decomposition of B
specified by Eqs. (A2) and (A1).

APPENDIX B: GRAPHICAL REPRESENTATION
OF Γ AND C

The combinatorial characterization of the two-complex
given above is complete and compact, but it is difficult to
visualize. We give here some graphical representations to
help the geometrical intuition.
The graph Γ dual to the triangulation of Σ is depicted in

Fig. 6. The lower part of the graph is on Σp, the upper is on
Σf. The left part of the graph, with the four brown nodes
Nt−

a , is the interior of the black hole; the right part of the
graph, with the four red nodes Ntþ

a , is the exterior of the
black hole. The six blue nodes Nt

ab are intermediate (they
represent tetrahedra cut by the horizon).

FIG. 4. Elements of the triangulation of Σ seen as embedded
objects in the four-dimensional spacetime.

FIG. 5. The triangulation of Σt (not Σ) seen as a topological
three-dimensional object. Each subfigure has different elements
highlighted: in (a) the triangles L−

a are highlighted; in (b) the four
tetrahedra Nt−

a are highlighted; in (c) three tetrahedra Ntþ
a out of

four are highlighted; in (d) three tetrahedra Nt
ab out of six are

highlighted; in (e) the remaining three tetrahedra Nt
ab are high-

lighted; in (f) two tetrahedra Nt−
a , two tetrahedra Ntþ

a and two
tetrahedra Nt

ab are highlighted.
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The structure of the vertices and internal edges of the
two-complex reproduces the structure of the past (or future)
part of the graph Γ. This is depicted in Fig. 7, using for the
vertices the same color codes used for the nodes. The
boundary edges are all vertical: they connect the vertices in
Fig. 7 with the corresponding past and future nodes in
Fig. 6. All the internal faces are horizontal: one of them is
depicted in Fig. 7. All the boundary faces are vertical and
they are of course in one-to-one correspondence with the
links of the graph Γ.
To visualize the faces, it is more convenient to shift to a

three-dimensional representation and give up the radial
ordering from interior to exterior. The graph Γ can be then
represented as in Fig. 8. The upper part of the picture still
contains the future objects and the lower part the past
objects. The blue dots represent the nodes Nt

ab, the brown
dots represent the nodes Nt−

a and the red dots represent the
nodes Ntþ

a , as in Fig. 6, but the interior-middle-exterior
order is not respected. The links Lϵ

a vertically connect the
nodes Npϵ

a in the past to the nodes Nfϵ
a in the future. The

pattern of the links Ltϵ
a;b, which is the same on both the past

and the future components of the graph, can be better
appreciated restricting only to the past (or future) compo-
nent depicted in Fig. 9.

The one-skeleton of the two-complex is represented in
Fig. 10. Be careful: in Fig. 10 the dots of the upper and
lower layers are nodes, while those of the intermediate layer
are vertices. The past (lower) and the future (upper) layers
are in fact the past and the future components of the
boundary graph Γ in Fig. 8. The intermediate layer
represents the vertices and the internal edges of the two-
complex.
The boundary edges Etϵ

a and Et
ab can be recognized in

Fig. 10 as the edges connecting the internal component of
the two-complex to both the past and the future components

FIG. 6. Two-dimensional representation of the graph Γ dual to
the triangulation of Σ.

FIG. 7. Two-dimensional representation of the internal com-
ponent of the two-complex.

FIG. 8. Three-dimensional representation of the graph Γ dual to
the triangulation of Σ; each node is represented as a sphere
colored consistently with its dual tetrahedron in Fig. 5.

FIG. 9. Two-dimensional representation of the past component
of the graph Γ dual to the triangulation of Σ.

FIG. 10. Three-dimensional representation of the one-skeleton
of the two-complex C; notice that although the internal vertices
and the boundary nodes are graphically depicted in the same way,
they are two very distinct objects (the same applies also to edges
and links).
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of the boundary. This construction completely specifies the
one-skeleton of the two-complex C.
The graphical representation of the boundary faces Fϵa

and Ftϵa;b is easily obtained using their definition given in
Sec. II. Some of them are depicted in Fig. 11.
The internal faces, although slightly more difficult to

represent, can be found in the same way. Some of them are
reported in Fig. 12. The strange nature of their graphical
representation (some of them intersect each other and some
of them have strange shapes) is just a consequence of the
fact that we are representing a four-dimensional object in
three dimensions and it has no physical meaning.

APPENDIX C: TRANSITION AMPLITUDES IN
COVARIANT LOOP QUANTUM GRAVITY

We briefly review how transition amplitudes are
expressed in covariant loop quantum gravity focusing on
the EPRL-KKL transition amplitudes. For more details, we
refer the reader to [26,34,36,37].
Given a compact region of spacetime B with boundary

Σ ¼ ∂B and an arbitrary oriented graph Γ ∈ Σ, the boun-
dary Hilbert space of a truncation of the complete quantum
theory that considers only the degrees of freedom coming
from Γ is HΓ ¼ L2½SUð2ÞL=SUð2ÞN �Γ, where L and N are
respectively the total number of links and nodes in Γ. A
boundary state, i.e., an element of the boundary space, is a
square integrable function ψðhlÞ that is gauge invariant at
every node n ∈ Γ. Each hl ∈ SUð2Þ can be seen as the

holonomy of the Ashtekar-Barbero connection between
two nodes of Γ.
A transition amplitude associated to each state in the

boundary Hilbert space can then be given in terms of an
arbitrary oriented two-complex C whose boundary graph is
Γ. Let f, e, v ∈ C denote respectively a face, an edge and a
vertex of C. To each internal edge e linking two vertices v
and v0 are assigned two SLð2;CÞ elements gve ¼ g−1ev and
gev0 ¼ g−1v0e. To each boundary edge E, edges that link an
internal vertex v and a node n is assigned one SLð2;CÞ
element gvn ¼ g−1nv .
An internal face is denoted as f ∈ B and a boundary face,

a face that contains a link, is denoted as F ∈ Γ. Given an
arbitrary boundary state jψi ∈ HΓ, the theory associate to it
the amplitude

hWCjψi ¼
Z
SUð2Þ

dhlWCðhlÞψðhlÞ; ðC1Þ

where the two-complex amplitude WCðhlÞ is defined as
(neglecting the normalization constant)

WCðhlÞ ¼
Z
SUð2Þ

dhfv
Y
f∈C

δ

�Y
v∈f

hfv

�Y
v∈C

AvðhfvÞ: ðC2Þ

The vertex amplitude AvðhfvÞ is given by

AvðhfvÞ ¼
X
jf

Z
SLð2;CÞ

dg0ve

×
Y
f∋v

½djf TrðDðjf Þ
γ ðge0fvgvef ÞDðjf ÞðhfvÞÞ�: ðC3Þ

The prime on dg0ve means that, fixing v, the integration is
over all possible gev except one. The edges ef and e0f are the
two edges in f that have the vertex v as, respectively, target
and source. The matrix DðjÞ is the Wigner matrix of the
dj-dimensional (dj ¼ 2jþ 1) representation of SU(2) act-

ing on Hj. The matrix DðjÞ
γ is the dj × dj matrix

ðDðjÞ
γ ðgÞÞmn ≡Dðγj;jÞ

jmjn ðgÞ; g ∈ SLð2;CÞ; ðC4Þ

where Dðp;kÞ
jmj0n are the matrix elements of the ðp; kÞ unitary

representation of the principal series of SLð2;CÞ in the
canonical basis that diagonalize the operators L2 and Lz of
the SU(2) subgroup. Finally, γ is the Barbero-Immirzi
parameter.
This is the two-complex amplitude expressed in terms

of elementary vertex amplitudes. Inserting Eq. (C3) in
Eq. (C2) and performing the integrations over hfv, it is
possible to express the two-complex amplitude in terms of
elementary face amplitudes. The result is

FIG. 11. Graphical representation of the boundary faces (in red)
Fpþ4;1 , F

pþ
4;2 , F

pþ
4;3 , F

þ
4 and (in brown) Fp−4;1, F

p−
4;2, F

p−
4;3, F

−
4 .

FIG. 12. Graphical representation of the internal faces f1;4, f4;1
[in (a)] and f1;2, f3;1 [in (b)].
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WCðhlÞ ¼
Z
SLð2;CÞ

Y
v∈C

dg0ve
Y
f∈B

AfðgveÞ

×
Y
F∈Γ

AFðhlF ; gveÞ; ðC5Þ

where the amplitude of an internal face is

AfðgveÞ ¼
X
jf

djf Tr½DðjfÞ
γ ðgevgve0 Þ

×DðjfÞ
γ ðge0v0gv0e00 Þ � � �DðjfÞ

γ ðgeðnÞvðnÞgvðnÞeÞ�; ðC6Þ

and the amplitude of a face with one link in the boundary is

AFðhlF ; gveÞ ¼
X
jF

djFTr½DðjFÞ
γ ðgntvgve0 Þ

×DðjFÞ
γ ðge0v0gv0e00 Þ � � �DðjFÞ

γ ðgeðnÞvðnÞgvðnÞnsÞ
×DðjFÞðhlFÞ�: ðC7Þ

The quantities ns and nt represent the nodes that are,
respectively, source and target of the link l. The value of
the label (n) in eðnÞ and vðnÞ is fixed for each face by the
topology of C and Γ.
A third way to express the two-complex transition

amplitude is the coherent representation in terms of
SU(2) coherent states jj; n⃗i ∈ Hj. Starting from either
Eq. (C2) or Eq. (C5), the two-complex transition amplitude
can be expressed in its coherent representation by explicitly
performing the traces in terms of coherent states and
inserting coherent resolutions of the identity on Hj,

1j ¼
dj
4π

Z
S2
d2n⃗jj; n⃗ihj; n⃗j; ðC8Þ

between all the matrices. Rearranging the result in terms of
elementary vertex amplitudes the coherent two-complex
transition amplitude can be written as

WCðhlÞ ¼
X
jf

Y
f∈C

djf
Y
e∈C

Y
f∋e

�Z
S2
d2n⃗ef

djf
4π

�

×
Y
l∈Γ

hjfl ; n⃗Ens fl
jDðjfl ÞðhlÞjjfl ; n⃗Ent fl

i

×
Y
v∈C

Avðjf ; n⃗efÞ; ðC9Þ

where the coherent vertex amplitude is

Avðjf ; n⃗efÞ ¼
Z
SLð2;CÞ

dg0ve

×
Y
f∋v

hjf ; n⃗ef f jDðjf Þ
γ ðgefvgve0f Þjjf ; n⃗e0f fi: ðC10Þ

The label En is used to denote the boundary edge that has
the node n in its boundary.
A priori, this construction assigns to each half-edge ev

(assuming the same orientation for each face f having e in
its boundary) the state

⨂
f∋e

jjfi; n⃗ef ∈ ⨂
f∋e

Hjf : ðC11Þ

However, due to SU(2) invariance induced on the half-edge
ev by the integration over gev ∈ SLð2;CÞ, the state assigned
to ev can be seen as a coherent intertwiner [38],

Z
SUð2Þ

dh⨂
f∋e

h⊳jjfi; n⃗ef ∈ InvSUð2Þ

�
⨂
f∋e

Hjf

�
: ðC12Þ

This suggests a fourth way to express the transition
amplitude: instead of using the overcomplete basis of
the coherent intertwiners we could use a basis of inter-
twiners,

jiei ∈ InvSUð2Þ

�
⨂
f∋e

Hjf

�
; ðC13Þ

giving the following resolution of the identity:

1 ¼
X
ie

jieihiej: ðC14Þ

The two-complex transition amplitude can be then sche-
matically rewritten as

WCðhlÞ ¼
X
jf ;ie

Y
f∈C

djf

�Y
E∈C

iEj
Y
l∈Γ

Dðjfl ÞðhlÞ
�

×
Y
v∈C

Avðjf ; ieÞ; ðC15Þ

where the spin-intertwiner vertex amplitude is

Avðjf ; ieÞ ¼
Z
SLð2;CÞ

dg0ve

×

�Y
e∋v

iej
Y
f∋v

DðjfÞ
γ ðgefvgve0f Þ

�
ðC16Þ

and the bra-ket notation indicates the index contraction
(between the intertwiners and the matrix elements) dictated
by the topology of the two-complex.
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[29] P. Donà, F. Gozzini, and G. Sarno, Searching for classical
geometries in spin foam amplitudes: A numerical method,
Classical Quantum Gravity 37, 094002 (2020).

[30] F. Gozzini, A high-performance code for EPRL spin foam
amplitudes, arXiv:2107.13952.

[31] S. Speziale, Boosting Wigner’s nj-symbols, J. Math. Phys.
(N.Y.) 58, 032501 (2017).

[32] P. Dona and S. Speziale, Asymptotics of lowest unitary SL
(2,C) invariants on graphs, Phys. Rev. D 102, 086016
(2020).

[33] P. Dona, M. Fanizza, P. Martin-Dussaud, and S. Speziale,
Asymptotics of SLð2;CÞ coherent invariant tensors,
arXiv:2011.13909.

[34] A. Perez, The spin foam approach to quantum gravity,
Living Rev. Relativity 16, 3 (2013).

[35] https://www.qiss.fr/.
[36] W. Kaminski, M. Kisielowski, and J. Lewandowski, Spin-

foams for all loop quantum gravity, Classical Quantum
Gravity 27, 095006 (2010).

[37] Y. Ding, M. Han, and C. Rovelli, Generalized spinfoams,
Phys. Rev. D 83, 124020 (2011).

[38] E. R. Livine and S. Speziale, New spinfoam vertex for
quantum gravity, Phys. Rev. D 76, 084028 (2007).

SOLTANI, ROVELLI, and MARTIN-DUSSAUD PHYS. REV. D 104, 066015 (2021)

066015-10

https://doi.org/10.1142/S0217751X15450153
https://doi.org/10.1142/S0217751X15450153
https://doi.org/10.1103/PhysRevD.70.124009
https://doi.org/10.1103/PhysRevD.81.064009
https://doi.org/10.1103/PhysRevD.81.064009
https://arXiv.org/abs/1408.3050
https://doi.org/10.1088/1361-6382/aa8da8
https://doi.org/10.3390/universe3020048
https://doi.org/10.1103/PhysRevD.98.126003
https://doi.org/10.1103/PhysRevLett.121.241301
https://doi.org/10.1103/PhysRevLett.121.241301
http://oatd.org/oatd/record?record=handle%5C%3A10012%5C%2F14950
http://oatd.org/oatd/record?record=handle%5C%3A10012%5C%2F14950
http://oatd.org/oatd/record?record=handle%5C%3A10012%5C%2F14950
https://doi.org/10.1088/1361-6382/ab3f16
https://doi.org/10.1142/S0217732321501170
https://doi.org/10.1142/S0217732321501170
https://doi.org/10.1088/1475-7516/2020/09/020
https://arXiv.org/abs/gr-qc/2010.13480
https://doi.org/10.1088/1361-6382/abd3e2
https://doi.org/10.1103/PhysRevD.103.106014
https://doi.org/10.1142/S0218271814420267
https://doi.org/10.1142/S0218271814420267
https://doi.org/10.1103/PhysRevD.92.104020
https://doi.org/10.1142/S0218271816440211
https://doi.org/10.1142/S0218271816440211
https://doi.org/10.1103/PhysRevD.93.124018
https://doi.org/10.1103/PhysRevD.94.084035
https://doi.org/10.1103/PhysRevD.94.084035
https://doi.org/10.1088/1361-6382/aacb74
https://doi.org/10.1088/1361-6382/aae499
https://doi.org/10.1088/1361-6382/aae499
https://arXiv.org/abs/1801.03027
https://doi.org/10.1088/1361-6382/aae550
https://doi.org/10.1088/1361-6382/aae550
https://doi.org/10.1088/1361-6382/ab5097
https://doi.org/10.1088/1361-6382/ab5097
https://doi.org/10.1007/s10714-018-2452-7
https://doi.org/10.1103/PhysRevD.100.106003
https://doi.org/10.1088/1361-6382/ab7ee1
https://arXiv.org/abs/2107.13952
https://doi.org/10.1063/1.4977752
https://doi.org/10.1063/1.4977752
https://doi.org/10.1103/PhysRevD.102.086016
https://doi.org/10.1103/PhysRevD.102.086016
https://arXiv.org/abs/2011.13909
https://doi.org/10.12942/lrr-2013-3
https://www.qiss.fr/
https://www.qiss.fr/
https://www.qiss.fr/
https://doi.org/10.1088/0264-9381/27/9/095006
https://doi.org/10.1088/0264-9381/27/9/095006
https://doi.org/10.1103/PhysRevD.83.124020
https://doi.org/10.1103/PhysRevD.76.084028

