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Macromolecular complexes of proteins and RNAs are essential building blocks of cells.
These stable supramolecular particles can be viewed as minimal biochemical units
whose structural organization, i.e., the way the RNA and the protein interact with
each other, is directly linked to their biological function. Whether those are dynamic
regulatory ribonucleoproteins (RNPs) or integrated molecular machines involved in
gene expression, the comprehensive knowledge of these units is critical to our
understanding of key molecular mechanisms and cell physiology phenomena. Such is
the goal of diverse complexomic approaches and in particular of the recently developed
gradient profiling by sequencing (Grad-seq). By separating cellular protein and RNA
complexes on a density gradient and quantifying their distributions genome-wide by
mass spectrometry and deep sequencing, Grad-seq charts global landscapes of native
macromolecular assemblies. In this review, we propose a function-based ontology
of stable RNPs and discuss how Grad-seq and related approaches transformed our
perspective of bacterial and eukaryotic ribonucleoproteins by guiding the discovery of
new RNA-binding proteins and unusual classes of noncoding RNAs. We highlight some
methodological aspects and developments that permit to further boost the power of
this technique and to look for exciting new biology in understudied and challenging
biological models.

Keywords: ribonucleoprotein, complexomics, Grad-seq, RNA-binding protein, noncoding RNA, sRNA, ProQ, FinO
domain

INTRODUCTION

When about two decades ago high-throughput approaches in molecular biology became a reality, it
all began with parts lists. Genomics shed light on the ensemble of an organism’s genes and provided
the first idea about what proteins and noncoding RNAs can in principle be there (Land et al., 2015;
Encode Project Consortium et al., 2020). Transcriptomics identified and quantified various kinds
of RNAs present in the cell under specific conditions (Wang et al., 2009; Lowe et al., 2017; Hör
et al., 2018), and proteomics and metabolomics did the same for proteins and small molecules
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(Baran et al., 2009; Larance and Lamond, 2015; Omenn et al.,
2016). But knowing the pieces does not yet mean playing chess.
However essential such catalogs are, understanding what exactly
every part does in the cell for a long time required one-by-one
characterization, painstaking analysis of interactions with other
parts, and rationalization of the ensuing biological effects.

Expectedly, next-generation high-throughput approaches,
doing the same in a massively parallel way, soon emerged.
Genome-wide functional screens were greatly facilitated by
modern mutagenesis tools based on random transposon insertion
and CRISPR-mediated gene disruption, silencing, or activation
(Ford et al., 2019; Cain et al., 2020; Jiang et al., 2020). They
now permit to simultaneously assess the importance of thousands
of individual genes, including essential ones, under desired
conditions (Langridge et al., 2009; Gilbert et al., 2014; Wang et al.,
2014, 2015; Shalem et al., 2015; Peters et al., 2016). Orthogonally,
high-throughput phenotyping enables the analysis of genotypes
of interest against a wide palette of different conditions, providing
insights into the cellular pathways the corresponding genes
contribute to Nichols et al. (2011); Kritikos et al. (2017). The
molecular mechanisms behind these phenotypes can be attained
with interactomic approaches.

Over the last decade, many techniques have been developed
to identify partners of specific RNAs and RNA-binding proteins
(RBPs) with mass spectrometry-based proteomics and RNA-
seq, respectively (Saliba et al., 2017; Giambruno et al., 2018;
Lin and Miles, 2019). Among the latter, crosslinking approaches
based on the covalent fixation of direct and often transitory
RNA–protein associations, such as CLIP-seq, enjoy the widest
popularity (Andresen and Holmqvist, 2018; Lee and Ule, 2018;
Tree et al., 2018). The wealth of data obtained with these methods
connected once-isolated proteins and RNAs into an intricate
genome-wide web of interactions, delivering key information for
understanding complex phenotypes (Quattrone and Dassi, 2019;
Van Nostrand et al., 2020). At the same time, many questions
regarding the biological meaning of these associations arose.
Which of them take place simultaneously (e.g., on the same
transcript) and which are mutually exclusive? Which binding
events are just casual handshakes and which represent stable,
persistent associations of macromolecules? Do these interactions
occur in a simple, one-to-one manner or do they involve more
elaborate, multi-subunit complexes? What is the actual diversity
of such assemblies? Over the last years, the awareness increased
that the virtual edges in RNA-protein interaction networks need
to be converted into something more tangible and solid, endowed
with clearly defined physical meaning. The time has come
to compile the next-level parts list—that of ribonucleoprotein
complexes (RNPs).

WHAT IS A STABLE RNP?

RNA–protein associations are commonly subdivided in transient
and stable. They differ not only in physicochemical properties
but also in biologically relevant modes of action. Transiently
interacting macromolecules, epitomized by enzyme–substrate
complexes, do the best in fugitive encounters: this keeps

the enzyme available for further rounds of reaction while
leaving the product to go its way (consider RNases or RNA
modification factors as examples). In contrast, as we will
see below, stable RNPs can only carry their functions out
if the partnership between the RNA and the protein persists
for a relatively long time. This long-lasting association is a
foundation for quite a peculiar kind of molecular behavior
which is more characteristic of biological, as opposed to
purely chemical, systems. It creates prerequisites for such
biologically important properties as structuration, information
flow, state maintenance, and switching. Stable complexes are
also naturally more amenable to study, and consequently, we
know much more about this group of RNPs. The present
review will essentially focus on stable RNPs and the methods
to characterize them on a global scale. Transient RNA–
protein associations, e.g., most enzyme–substrate complexes,
temporary low-affinity interactions between RNA chaperones
and their clients, and other weak binding events, fall beyond
its scope.

What does it take for an RNP to be called stable? Any
would-be stable complex must meet at least one of the following
requirements: (i) it must have a relatively low dissociation
constant, at least in the sub-micromolar range (thermodynamic
stability) and/or (ii) its off-rate must be fairly slow, typically
<10−4 s−1 (kinetic stability). We refer the reader to the following
publications for examples of these parameters among some well-
studied RNPs (Yang et al., 2013; Nithin et al., 2019; Licatalosi
et al., 2020). It is also instrumental to consider two operational
definitions of stability: (i) the “in vivo stability,” when the
complex is long-lived within the dynamic cell milieu teeming
with thousands of other molecules (which may in various
ways influence its integrity), and (ii) the “in vitro stability,”
when the complex only needs to be intrinsically robust in
(effective) isolation from other cellular components (Helder
et al., 2016; Gehring et al., 2017). This distinction is practically
very important because it means that we can analyze not only
genuinely strong complexes, such as housekeeping RNPs, but
also many other, normally dynamic ones which happen to
be kinetically trapped, e.g., by dilution into cold buffer upon
cell lysis, preventing them from remodeling, disassembly, or
degradation (Licatalosi et al., 2020).

Before discussing how this basic physicochemical principle
can be converted into working methodology, we will provide an
overview of diverse kinds of stable RNPs and explain why they
deserve most thorough investigation. Without aspiring to a catch-
all classification, we can sort the majority of known stable RNPs
in four major classes, based on their biological properties and/or
activities and the nature of the interaction between the RNA
and the protein components (Figure 1). In fact, the distinction
between these classes is sometimes blurred, and some complexes
can be well assigned to more than one category. Therefore,
it is more appropriate to speak about a continuum of stable
RNPs, with four poles typified by relatively “pure” examples and
many intermediate cases in between. The main purpose of this
classification is to show what kind of stable RNPs fall in the
scope of the existing global biochemical approaches, in particular,
the complexomic methods described in the second part of this
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review. We will primarily use examples from bacterial RNA
biology, but some particularly interesting cases from eukaryotes
will be invoked as well to highlight the general bearing of the
proposed ontology.

ONTOLOGY OF STABLE RNPS

Class I: Constitutive RNPs
Constitutive RNPs are highly organized, permanent RNA-protein
associations where one or both partners provide structural
and functional support to each other. Much of our current
knowledge on the molecular interplay between the RNA and
the protein components of ribonucleoproteins comes from the
research on constitutive RNPs (Martin and Reiter, 2017). This
interplay is remarkably variable. In ribonucleoprotein RNases
P, the RNA subunit performs pre-tRNA cleavage, whereas the
associated protein(s) assist in its folding and substrate recognition
(Guerrier-Takada et al., 1983; Reiter et al., 2010; Wan et al.,
2019a; Lan et al., 2020). On the contrary, in the signal recognition
particle, the RNA bears the burden of scaffolding and promotes
the interaction with the SRP receptor, while a protein subunit
works as the enzymatic moiety performing GTP hydrolysis
(Peluso et al., 2000). In the ribosome, rRNA usually excels in
both duties, serving as the skeleton and the catalytic heart of
this giant complex, whereas proteins are relegated to secondary
roles (Ban et al., 2000; Muth et al., 2000; Nissen et al., 2000;
Routh and Sankaranarayanan, 2017). However, mitochondrial
ribosomes often deviate from this rule: in the extreme case
of trypanosomatids, the mitochondrial rRNA has suffered such
profound structural erosion that the scaffolding task almost
entirely falls to the hypertrophied protein shell (Ramrath et al.,
2018; Soufari et al., 2020).

Behind all these variations, there is a common architectural
theme followed by all constitutive RNPs: both RNA and protein
make up a unique and inseparable whole and thereby contribute
to the same, shared molecular function. The components of
constitutive RNPs are normally bound in an obligate association
with each other and only occasionally work outside this context
(Pelava et al., 2016; Meyer, 2018; Nakagawa et al., 2018). They
are fully hardwired pieces of the cell circuitry. The extreme
degree of structural and functional integration earned the most
sophisticated of them the qualification of “molecular machines,”
and the current physical description of their workings supports
this metaphor (Valle et al., 2003; Korostelev et al., 2008;
Wilkinson et al., 2020).

As the above-cited examples show, most known constitutive
RNPs are housekeeping. The molecular functions of others, like
the imposing 13-MDa vault, remain elusive (Tanaka et al., 2009).
But can constitutive ribonucleoproteins play regulatory roles?
A potential step in this direction is Ro60-Y RNA complexes
(Boccitto and Wolin, 2019). In Deinococcus radiodurans, the
Ro60-like protein Rsr is tethered via Y RNA to the major bacterial
exoribonuclease PNPase and seems to change its substrate
specificity by promoting the degradation of structured RNAs
(Chen et al., 2013; Sim and Wolin, 2018). This so-called RYPER
complex is assembled in response to certain stresses, such as
UV irradiation or prolonged stationary phase, and in Salmonella

enterica, expression of Y-like RNAs, engaged in a similar kind of
RNPs, appears to be confined to certain infection stages (Chen
et al., 2013; Westermann et al., 2016), suggesting that they play
condition-specific roles in RNA metabolism.

Even more striking cases of regulatory constitutive RNPs are
found in the group of scaffolding lncRNAs (Chujo et al., 2016;
Smith et al., 2020a). To cite just one telling example, eukaryotic
paraspeckles are organized around an architectural lncRNA,
NEAT1, stably associated with several RBPs, such as NONO,
SFPQ, and FUS (Yamazaki et al., 2019). This core RNP is thought
to represent a structurally heterogeneous latticework of RNA-
RNA and RNA-protein interactions that nucleate the coalescence
of the outer shell components, giving rise to a phase-separated
condensate (Fox et al., 2018; Yamazaki et al., 2018). Paraspeckles
have been linked with gene expression regulation at various
levels, not least by localizing or sequestering specific proteins
and transcripts (Chujo et al., 2016; Nakagawa et al., 2018).
Interestingly, several families of large and ornately structured
noncoding RNAs have been detected in bacteria (Weinberg et al.,
2009, 2017; Harris and Breaker, 2018). One of them, OLE, is an
abundant, stable transcript, forming membrane-associated RNPs
in many Firmicutes to protect bacteria from cold and envelop
stress (Puerta-Fernandez et al., 2006; Block et al., 2011; Wallace
et al., 2012; Harris et al., 2019; Widner et al., 2020). However, the
molecular mechanisms and the biological functions of this and
other bacterial lncRNAs still need to be established.

Class II: Pseudo-Stable Intermediates
Subclass IIa: Processive Enzyme–Substrate
Complexes
As already said, enzyme–substrate complexes are usually not
stable. There are, however, a couple of interesting exceptions.
Processive enzymes perform multiple rounds of catalysis without
releasing the substrate into solution, like it happens with the
elongating RNA polymerase (RNAP), the scanning eukaryotic
translation initiation complex, the elongating ribosome, or the
translocating transcription termination factor Rho (Hinnebusch,
2011; Gocheva et al., 2015; Kriner et al., 2016; Brito Querido
et al., 2020). Of course, such complexes are “stable” only by
first approximation, at the compositional level. In reality, they
represent an ensemble of discrete short-lived elongation states.
Below we will see how this ambivalence can be exploited to glean
insight into the mechanics of key gene expression processes.

Translation of an average bacterial ORF, specifying a protein
of ∼50 kDa, takes ∼25 s; and during this time, the mRNA and
the ribosome are bound to stay together (Johnson et al., 2020).
This does not seem particularly long, meaning that processive
RNPs are not stable by “in vivo” standards. But this offers a
time window generous enough for the experimenter to intervene
and leverage their hidden “in vitro stability”. Indeed, many
processive RNPs have evolved to firmly hold their template
and/or the elongated substrate until a termination signal occurs
and enables their dissociation. Yet, elongation depends on
physiological temperatures and the regular supply of building
blocks (nucleoside triphosphates for RNAP, aminoacyl-tRNAs
for the ribosome). If one rapidly cools down the system and
dilutes out the building blocks, the bereft processive RNP will
stall dead-still and become analyzable. This principle underlies
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FIGURE 1 | The world of stable RNPs. The wide diversity of stable RNPs existing in the cell can be presented as a continuum of assemblies with various biochemical
and biological properties, roughly partitioned in four distinct classes. Constitutive RNPs (class I) are stable, permanent RNA–protein complexes, mostly with
housekeeping roles. Class II comprises dynamic “on-pathway” intermediates, which can be artificially stabilized if deprived of the necessary building blocks. They are
subdivided in the active complexes formed by translocating processive enzymes (subclass IIa) and the large RNP assembly intermediates (subclass IIb). Stable-state
RNPs (class III) rely on strong facultative RNA–protein interactions where one of the partners influences the stability, the activity, or the localization of the other. In the
subclass IIIa, RBPs regulate their RNA ligands by simple binding (often accompanied by the recruitment of other trans-acting factors) or by occlusion of other binding
sites. In the subclass IIIb, on the contrary, RNAs regulate their protein partners, often by affecting their activity or localization. Unusually long-lived enzyme–substrate
complexes, where the RNA substrate inhibits and traps the protein or RNP enzyme, are separated in the distinct subclass IIIc. Finally, the versatile RNPs, in which
the RNA moiety anneals, with the help of its protein partner, to target nucleic acids, form the class IV. This group mainly includes regulatory RNPs but also several
types of specialized housekeeping complexes. All classes are illustrated with examples whose structures have been solved (PDB codes: class I—1HQ1, 3Q1Q,
7C79, 3IYQ, 4V60, 7K00, 6D6V, 6G90, 6V4X, 6LQV, and 5GAN; class II—6RH3, 6YAM, 6WD0, 6TQO, 6TNN, 6ZTN, and 6DUQ; class III—6H58, 3ICQ, 5VT0,
4RMO, 2XDD, 2MF1, 2HW8, 1GTF, 1KOG, 2JPP, and 6O1M; class IV—2HVY, 4BY9, 5H9F, 4OO8, 6VRC, 5GUH, 6IFU, 4W5Q, and 4V2S). Proteins are shown in
cyan, RNAs in gray, and their base-paired substrates or templates in red (except for RYPER and the 35–40S editosome, for which only low-resolution density maps
are available: EMD-5389, EMD-1594; they do not permit to confidently distinguish the RNA and protein components).

Frontiers in Molecular Biosciences | www.frontiersin.org 4 April 2021 | Volume 8 | Article 661448

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org/
https://www.frontiersin.org/journals/molecular-biosciences#articles


fmolb-08-661448 March 30, 2021 Time: 13:31 # 5

Gerovac et al. Grad-Seq Profiles Stable RNPs

the ribosome profiling, which permits to follow the translational
dynamics of all mRNAs in the cell simultaneously (Ingolia,
2016). The same physicochemical basis underlies the sequencing
of nascent transcripts (NET-Seq and RNET-seq) and various
versions of the transcription run-on assay to create a global
snapshot of RNAP activity across the genome (Imashimizu et al.,
2015; Jordán-Pla et al., 2019). In either case, the positions of
RNA/DNA footprints or toeprints report on the location of the
elongating processive RNP on the template.

As seen from these examples, pseudo-stable processive
RNPs are deeply involved with core gene expression processes.
A singular example of such complexes is the bacterial expressome
that physically couples transcription and translation by joining an
elongating RNAP and a ribosome via NusG and NusA proteins
(O’Reilly et al., 2020; Wang et al., 2020a; Webster et al., 2020).
Formation of the expressome and the associated effects on
transcription elongation (e.g., antitermination and “pushing” of
backtracked RNAP) depend on the relative speed of RNAP and
the pioneering ribosome and take place only in those bacteria
where the velocities of both molecular machines are properly
matched (Burmann et al., 2010; Proshkin et al., 2010; Johnson
et al., 2020; Stevenson-Jones et al., 2020).

The inherently variable elongation speed, open to modulation
by sequence features and trans-acting factors, creates a fertile
ground for regulation. Indeed, genome-wide studies revealed that
both RNAP and ribosomes frequently pause, this pausing is often
contingent on a specific molecular context or environmental
conditions and may profoundly affect the cellular state (Chan
et al., 2012; Shalgi et al., 2013; Subramaniam et al., 2014; Richter
and Coller, 2015; Choi et al., 2018; Neugebauer, 2019; Yakhnin
et al., 2020). The differential speed of RNA polymerase II can
influence the pattern of cotranscriptional alternative splicing
and thereby effect isoform switching (Muñoz et al., 2009; Ip
et al., 2011). In mammalian mitochondria, regulation of RNAP
processivity by the transcription elongation factor TEFM is of
paramount importance, as it ultimately decides between the
whole-genome transcription and the RNA-primed replication
of the organellar DNA (Agaronyan et al., 2015; Hillen et al.,
2017). Furthermore, the elongation of mitochondria-synthesized
polypeptides is moderated to accurately match the incorporation
of incoming nuclear-encoded subunits as respiratory complexes
are being assembled (Couvillion et al., 2016; Richter-Dennerlein
et al., 2016; Wang et al., 2020b).

Bacteria evolved elaborate regulatory strategies operating at
the level of transcription elongation, including riboswitches,
protein-dependent attenuators, Rho-mediated termination,
and a variety of processive antitermination and pausing
mechanisms that often involve NusG family proteins (Yakhnin
et al., 2006, 2020; Said et al., 2017; Goodson and Winkler,
2018; Kang et al., 2018; Turnbough, 2019; Huang et al.,
2020). Additionally, some Hfq-dependent sRNAs, traditionally
perceived as posttranscriptional regulators, have been implicated
in E. coli RNAP elongation by countering the Rho-dependent
termination of the target mRNA (Sedlyarova et al., 2016).
One of the most intricate examples of using processive RNPs
in regulatory decision-making is leader peptide attenuators.
These widespread switch elements elegantly subordinate the

transcription of downstream genes to translation elongation on
a short upstream ORF (Turnbough, 2019). The two processes
are conditionally coupled, depending on the availability of the
“sensed” nucleoside triphosphates (Turnbough et al., 1983;
Bonekamp et al., 1984; Roland et al., 1988), aminoacyl-tRNAs
(Artz and Broach, 1975; Lee and Yanofsky, 1977; Oxender
et al., 1979; Johnston et al., 1980), or, in one described case,
elongation factor P (Nam et al., 2016). The relative speed
and eventual pausing of either machinery determine whether
RNAP transcribes all the way down the operon or terminates
prematurely (Turnbough, 2019).

Bacteria and eukaryotes also use purely translational
regulatory mechanisms relying on the conditional slowdown—
up to a complete arrest—of the elongating ribosome (Wilson
et al., 2016; Choi et al., 2018). These include the prototypic secMA
system, controlling the expression of the protein translocase
SecA (Nakatogawa and Ito, 2001; Mitra et al., 2006), and some
regulated antibiotic resistance cassettes (Arenz et al., 2014).

Subclass IIb: Assembly Intermediates
A behavior conceptually reminiscent of that of processive RNPs is
found in the assembly pathways of complex molecular machines.
The ribosome biogenesis proceeds via a series of defined
intermediates and is pulled forward by the sequential recruitment
of ribosomal proteins and assembly factors, which serve as
building blocks (Shajani et al., 2011; Klinge and Woolford,
2019). Assembly intermediates are naturally short-lived in vivo,
representing lowly populated states of nascent RNPs. However,
some of them exist long enough or become sufficiently abundant
(e.g., in exponentially growing bacteria) to enable their capture in
the same way as described above, i.e., by snap cooling, dilution,
and separation from other cellular components (Chen and
Williamson, 2013). This is often achieved by pulling down the
intermediate of interest via a unique marker protein or an RNA
region (Gupta and Culver, 2014; Wu et al., 2016; Zhang et al.,
2016; Barandun et al., 2017; Chaker-Margot et al., 2017; Chen
et al., 2017b; Cheng et al., 2017, 2019, 2020; Heuer et al., 2017;
Hunziker et al., 2019). But the most decisive—and impressive—
implementation of this “in vitro stabilization” workaround has
been attained in cryo-EM studies relying on advanced particle
classification from heterogeneous samples. These works brought
about unique data on the architecture of assembly intermediates
and biogenesis factors for ribosomes and spliceosomes—and this
without perturbing the natural assembly pathways (Sashital et al.,
2014; Brown et al., 2017; Ameismeier et al., 2018; Wan et al.,
2019b; Itoh et al., 2020; Jaskolowski et al., 2020; Soufari et al.,
2020). Alternatively, intermediates can be enriched by “starving”
the assembly for one of the building blocks. This approach
is widely adopted as it permits to generate higher amounts
of analyzable complexes, which is particularly instrumental in
studying very short-lived ribosome and spliceosome assembly
stages (Li et al., 2013; Jomaa et al., 2014; Davis et al., 2016;
Ni et al., 2016; Sun et al., 2017; Zeng et al., 2018; Razi et al.,
2019; Seffouh et al., 2019; Du et al., 2020; Rabuck-Gibbons et al.,
2020; Rai et al., 2021). However, this comes at a risk of altering
the native assembly route and accumulating off-pathway, dead-
end particles.

Frontiers in Molecular Biosciences | www.frontiersin.org 5 April 2021 | Volume 8 | Article 661448

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org/
https://www.frontiersin.org/journals/molecular-biosciences#articles


fmolb-08-661448 March 30, 2021 Time: 13:31 # 6

Gerovac et al. Grad-Seq Profiles Stable RNPs

Class III: Stable-State RNPs
Stable-state RNPs form the most numerous and actively studied
RNP class. Like class I RNPs, they rely on strong RNA-protein
interactions. Contrary to the former group, however, these
interactions are not obligate and rather represent one of two
(or sometimes more) distinct alternative states, each associated
with a (dramatically) different outcome for the partners. Usually
very long-lived in vitro, such complexes may be dynamic in vivo
as other, competing molecules eventually drive one of the
partners out and thereby switch the state of the system. Such
properties open endless possibilities for gene expression control.
Depending on which partner suffers (or enjoys) the consequences
of such an interaction and whether it involves simple RNA
binding or an enzymatic event, class III can be subdivided in
“protein–controls–RNA” or “RNA–controls–protein”-type RNPs
and inhibitory enzyme–substrate complexes.

Subclass IIIa: “Protein–Controls–RNA”-Type RNPs
This is likely the most widespread kind of stable-state RNPs: a
protein binds a transcript and influences its stability, localization
or, in the case of mRNAs, translation. In eukaryotes, most
of such regulation converges at the level of the extensive 3′-
UTR harboring recognition sites for multiple RBPs and miRNAs
(Mayya and Duchaine, 2019). This enables combinatorial control
of prodigious complexity where diverse trans-acting factors
boost, mitigate, or override the effects of each other, thereby
achieving highly nuanced outcomes (Iadevaia and Gerber,
2015; Dassi, 2017). Bacteria also set great store by regulating
their mRNAs but do this usually via the 5′-UTR, near the
translation start site, where most bacterial RBPs and sRNAs bind
(Meyer, 2017; Holmqvist and Vogel, 2018b). The paradigm of
such mechanisms is the broadly conserved protein CsrA that
strongly binds to ANGGA motifs so frequent in Shine-Dalgarno
sequences (Schubert et al., 2007; Holmqvist et al., 2016; Potts
et al., 2017; Romeo and Babitzke, 2018). This preference makes
CsrA family proteins potent translational repressors whose high-
affinity binding can only be overcome by a dedicated protein
antagonist, such as FliW or CesT, or a special group of “sponge”
RNAs, which will be described in the next section (Mukherjee
et al., 2011, 2016; Altegoer et al., 2016; Dugar et al., 2016;
Katsowich et al., 2017; Sowa et al., 2017; Ye et al., 2018; Oshiro
et al., 2019). In rare cases, CsrA upregulates the expression of
its target through mRNA stabilization or translational activation
(Yakhnin et al., 2013; Renda et al., 2020).

A beautiful example of translational feedback control is the
Bacillus subtilis undecameric RBP TRAP that, under tryptophan-
replete conditions, binds to the 5′-UTR of tryptophan-related
mRNAs and prevents their translation (Merino et al., 1995; Du
et al., 1997; Du and Babitzke, 1998; Babitzke, 2004; Yakhnin
et al., 2004). Another widespread mechanism of translational
repression is the autoregulation of ribosomal protein operons:
some r-proteins interact with a specific region in the 5′-UTR of
their own mRNA that mimics their native binding site within the
ribosome, thereby inhibiting their own translation as well as the
production of other r-proteins encoded on the same polycistronic
message (Meyer, 2018). A similar molecular mimicry case is the
autoregulation of the E. coli threonyl-tRNA synthetase, which
recognizes a tRNAThr-like element in its own 5′-UTR (Romby

et al., 1996; Torres-Larios et al., 2002). Interestingly, the RNA
chaperone Hfq, more known as an sRNA cofactor (see Class IV),
can itself serve as a translational inhibitor of certain mRNAs,
including its own (Večerek et al., 2005; Desnoyers and Massé,
2012; Chen and Gottesman, 2017; Azam and Vanderpool, 2018;
Morita and Aiba, 2019). In Pseudomonas, Hfq joins forces with
another global regulator, Crc, to shut down the translation of
numerous mRNAs (Moreno et al., 2015; Sonnleitner et al., 2018;
Pei et al., 2019). Recent data indicate that RBP association with
target mRNAs in bacteria may occur cotranscriptionally and,
similar to eukaryotes, support combinatorial regulatory modes
(Kambara et al., 2018; Gebhardt et al., 2020; Melamed et al., 2020).

The examples just quoted give class IIIa RNPs a uniquely
regulatory flair. However, their housekeeping roles are not to
be underestimated: in eukaryotes, such complexes punctuate
the ages of the normal life cycle of many cellular transcripts
(Müller-McNicoll and Neugebauer, 2013). Numerous RBPs
govern the intracellular localization of transcripts—a feature
present not only in morphologically complex eukaryotic but
also in simpler bacterial cells (Nevo-Dinur et al., 2011; Moffitt
et al., 2016; Eliscovich and Singer, 2017; Béthune et al., 2019;
Mahbub et al., 2020). The cap-binding complex, poly(A)-
binding protein, and the associated factors serve as tokens
of stability and translatability of eukaryotic mRNAs (Müller-
McNicoll and Neugebauer, 2013; Rissland, 2017). It is likely
that a somewhat analogous role is played in bacteria by
Hfq, which stably associates with the intrinsic terminators
of both coding and noncoding RNAs, protecting them from
3′-to-5′ exoribonucleases (Sauer and Weichenrieder, 2011;
Holmqvist et al., 2016).

In a few special cases, regulatory proteins form stable-
state complexes with entire class I RNPs, like it happens with
the ribosome-associated inhibitor RaiA, that stabilizes bacterial
ribosomes in an inactive 70S form, or the dormancy factors
HPF and RMF, which induce ribosome dimerization into inert
100S particles under stress, stationary phase, and sometimes
even normal growth conditions (Kato et al., 2010; Polikanov
et al., 2012; Matzov et al., 2017). Similar mechanisms have
been described in eukaryotes (Ben-Shem et al., 2011; Brown
et al., 2018; Barandun et al., 2019). There exist also examples
of regulatory RBPs that inhibit ribosomes translating specific
mRNAs (Darnell et al., 2011; Chen et al., 2014).

Subclass IIIb: “RNA–Controls–Protein”-Type RNPs
In this scenario, opposite to the previous one, the RNA rules over
its protein partner. This rule is not necessarily a repressive one:
for example, many lncRNAs simply recruit specific proteins to the
sites where their activity is required (Kopp and Mendell, 2018).
Nevertheless, it is more common to showcase “RNA–controls–
protein” complexes with so-called sequestration mechanisms. In
classical regulation by sequestration, the decoy RNA lures the
cognate RBP into a tight but unproductive association, effectively
debarring the protein from acting on its bona fide RNA targets.
Although protein sequestration by RNA is found in eukaryotes
too (Kino et al., 2010; Lee et al., 2016; Egloff et al., 2018), the finest
examples thereof arguably come from bacterial RNA biology.

The E. coli small RNA decoy GlmY mimics its mate sRNA
GlmZ in all respects but the presence of the base-pairing region

Frontiers in Molecular Biosciences | www.frontiersin.org 6 April 2021 | Volume 8 | Article 661448

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org/
https://www.frontiersin.org/journals/molecular-biosciences#articles


fmolb-08-661448 March 30, 2021 Time: 13:31 # 7

Gerovac et al. Grad-Seq Profiles Stable RNPs

employed by GlmZ to activate the translation of the glmS mRNA
(Reichenbach et al., 2008; Urban and Vogel, 2008). GlmS makes
glucosamine-6-phosphate (GlcN6P) required for the bacterial
cell wall synthesis (Milewski, 2002). When GlcN6P is abundant, a
regulatory RBP, RapZ, captures GlmZ and delivers it to RNase E
for cleavage; this prevents unnecessary GlmS production (Göpel
et al., 2013, 2016; Durica-Mitic et al., 2020). But when GlcN6P
is scarce, GlmY jumps in and titers RapZ out by chaining it in
stable—and completely inert—class IIIb RNPs (Gonzalez et al.,
2017a; Khan et al., 2020). GlmZ thereby escapes degradation and
activates glmS translation (Göpel et al., 2013).

RapZ is a very specific protein and its sequestration has only
local regulatory consequences. How much more far-reaching
could be the effect of detaining a globally acting RBP! This is
exactly what happens to the Pseudomonas Hfq protein sponged
by the abundant CrcZ sRNA (Sonnleitner and Bläsi, 2014;
Pusic et al., 2016; Sonnleitner et al., 2017). The currently best-
understood case of such control, from both functional and
structural perspectives, is provided by the widespread noncoding
RNAs that sequester members of the already mentioned
CsrA/Rsm protein family (Babitzke and Romeo, 2007). These
decoy sRNAs are basically a concatenation of numerous GGA
motifs specifically recognized by CsrA-like proteins. Most of
these potential binding sites are low (micromolar) affinity,
when considered in isolation. But together they show high
cooperativity, so that the initial fleeting and seemingly innocuous
encounter with the target protein turns the decoy RNA into a
molecular “black hole” avidly absorbing multiple CsrA dimers
(Duss et al., 2014). As a result, CsrA is no longer available for
repressing its mRNA targets, and an entire large regulon gets
activated (Romeo and Babitzke, 2018).

Subclass IIIc: Inhibitory Enzyme–Substrate RNPs
We have seen above that enzyme–substrate complexes sometimes
conceal remarkable in vitro stability, which can be accessed by
relatively simple experimental means. In contrast to those class
IIa RNPs, inhibitory enzyme–substrate complexes are long-lived
in vivo. They arise as a special kind of stable-state RNPs formed
in an unusual, indeed conspicuous, manner. An enzyme, which is
fully active on its regular RNA substrates, eventually encounters
an unusual one, which it cannot process normally, and both
partners freeze in a stable complex. The simplest realization of
this scenario is found in type III toxin–antitoxin systems used to
abort phage infection or stabilize plasmids (Goeders et al., 2016).
Here an endoribonuclease toxin is physiologically inactivated by
the cognate pseudoknotted RNA antitoxin, with which it forms a
highly stable, closed RNP (Blower et al., 2011; Samson et al., 2013;
Short et al., 2013; Rao et al., 2015). This inhibitory complex forms
via a processing reaction performed by the toxin on the antitoxin
precursor: the enzyme inadvertently snares itself as it cleaves the
“poisoned” substrate. This prevents other RNAs from accessing
the toxin, rendering the latter perfectly harmless for the host, at
least under normal circumstances (Short et al., 2013, 2018).

In another mechanism broadly conserved among bacteria, the
housekeeping form of RNAP is fooled into binding to 6S RNA
that structurally imitates a molten DNA duplex (Wassarman,
2018). The resulting complex is extremely stable and effectively
sequesters RNAP from σ70-dependent promoters, tilting the

balance in favor of alternative σ-factors, such as σS, insensitive
to 6S RNA (Wassarman and Storz, 2000; Gildehaus et al., 2007;
Chen et al., 2017a). In this stable state (typically observed when
bacteria enter the stationary phase), transcription undergoes
global remodeling (Cavanagh et al., 2008). However, when new
resources permit to resume growth, the system must be reset.
RNAP cannot simply “spit out” the 6S RNA and is forced to
disentangle itself from the problematic substrate by using it as a
template to synthesize a short product RNA (pRNA) (Wassarman
and Saecker, 2006; Gildehaus et al., 2007). The conformational
change operating during this weird transcriptional act forces the
6S RNA-pRNA duplex out (Wurm et al., 2010; Beckmann et al.,
2012; Chen et al., 2017a). An analogous system has been reported
in mammalian cells: the SINE-encoded B2 RNA competitively
inhibits RNA polymerase II and, just like 6S RNA, exploits self-
templated transcription as a release mechanism (Espinoza et al.,
2004; Yakovchuk et al., 2009; Wagner et al., 2013).

Inhibitory enzyme–substrate complexes may form
accidentally, e.g., when RNAP encounters a DNA damage
site or a ribosome translates an aberrant mRNA. Their
resolution is ensured by dedicated cellular mechanisms,
including the Mfd-mediated disassembly of the transcription
elongation complex (Selby and Sancar, 1993; Shi et al.,
2020; Kang et al., 2021) and the ribosome rescue by trans-
translation and no-stop/no-go-mediated pathways (Keiler, 2015;
Simms et al., 2017).

Class IV: Matchmaking RNPs
Matchmaking RNPs can be counted among the most advanced
evolutionary inventions in the domain of nucleic acid
recognition. Their tremendous success in all three branches
of life is largely due to their unique labor division scheme,
radically different from what RBPs typically do (Liu et al.,
2020). The latter recognize and act upon their targets with
the help of elaborate binding sites that are intrinsically
predisposed to accept more-or-less well-defined short RNA
sequences embedded in a particular kind of 3D structure
(Jankowsky and Harris, 2015). With some exceptions (Hall,
2016), the RNA recognition code used by RBPs is notoriously
complex and not in the least universal. By contrast, within
matchmaking RNPs, the task of target discrimination is
entrusted to an RNA moiety that relies on a simple and
universal set of base-pairing rules and can operate on longer
sequences and not always in the best structural context.
The protein subunit of such RNPs assumes the role of
protector and presenter, ensuring that the RNA is displayed
in a conformation optimal for rapid querying of potential targets;
it also facilitates formation of a stable duplex, if the match is
deemed satisfactory, and sometimes performs further molecular
acts (Gorski et al., 2017).

Beside protein-based regulators, the class IV RNPs
stand out as truly versatile RNA binders – and not only
because of a more flexible target recognition strategy.
Their key advantage is that they work as programmable
devices where an RNA-“instruction” is plugged into the
universal protein-“player” to chase and manipulate one
specific kind of targets. The same “player,” however, can be
reprogrammed with another RNA, which imparts a new
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specificity to hunt down different molecular preys. As a
corollary, matchmaking RNPs, aptly dubbed “search engines”
in a recent review (Dendooven and Luisi, 2017), can –
via a huge number of possible guides – target practically
any gene in the cell. Because such guiding RNA moieties
are much easier to evolve than the equivalent number
of target-specific RBPs, entire suites of new regulatory
RNAs emerge around the same “player” protein, forming
new functional classes within the noncoding transcriptome
(Dutcher and Raghavan, 2018; Jose et al., 2019). The protein
in its turn accedes to the status of “hub” and tremendously
increases its regulatory reach and physiological importance
(Vidal et al., 2011).

Because of the “target/programming” lingo, matchmaking
RNPs are naturally associated with regulation. Indeed, in
bacteria and eukaryotes special small RNA subtypes have been
implicated in gene expression control. The widely conserved
bacterial homohexameric Sm-like RNA chaperone Hfq interacts
with over a hundred sRNAs, primarily engaging their intrinsic
terminators (Holmqvist et al., 2016; Updegrove et al., 2016). This
interaction is required for their stability and target recognition
(Moll et al., 2003; Otaka et al., 2011; Ishikawa et al., 2012;
Dimastrogiovanni et al., 2014). The latter is achieved with
the help of the single-stranded base-pairing module, or seed
sequence, typically situated on the 5′-end of sRNAs (Balbontin
et al., 2010; Papenfort et al., 2010; Sauer et al., 2012; Fröhlich
et al., 2013; Dimastrogiovanni et al., 2014). When the Hfq-sRNA
complex encounters a true mRNA target, the protein catalyzes
the duplex formation between the two transcripts (Santiago-
Frangos and Woodson, 2018). Depending on the position of the
duplex with respect to the translation initiation site, this RNA-
RNA interaction may lead to translational inhibition, activation,
or a change in the mRNA stability (Wagner and Romby, 2015).
Although the sRNA-Hfq complexes are thermodynamically
stable in vitro (with typical Kds in the low-nanomolar range),
they show rapid exchange dynamics in vivo, where many different
RNAs incessantly chase each other from the limited number Hfq
hexamers (Wagner, 2013). At the systems level, this means that
the population of Hfq-sRNPs is never the same and changes in
function of the transcriptional profile which, in its turn, adapts
to environmental conditions (Chao et al., 2012; Chihara et al.,
2019). By this means, the Hfq-dependent regulon is constantly
remodeled and stays flexible to provide rapid and adequate
regulatory responses (Wagner and Romby, 2015). Very similar
targeting mechanisms are employed in eukaryotes by Argonaute-
associated small RNAs (Salomon et al., 2015; Sheu-Gruttadauria
and MacRae, 2017).

Other types of matchmaking RNPs are involved in
housekeeping processes. Probably the most ancient realization
of the RNA-guided recognition principle can be found in the
ribosome: bacterial 30S subunits typically find ORFs within
“target” mRNAs with the help of the anti-Shine-Dalgarno
sequence at the 3′-end of 16S rRNA (Shine and Dalgarno, 1974;
Steitz and Jakes, 1975). Furthermore, the U1, U2, and U6 snRNPs
(built around Sm-family protein oligomers akin to Hfq) exploit
RNA-RNA base-pairing rules to locate the 5′-splice site and the
branch point in pre-mRNAs (Papasaikas and Valcárcel, 2016).

Other similar cases include U3 snoRNP, that chaperones critical
pre-18S rRNA regions during SSU assembly (Barandun et al.,
2018), and U7 snRNP (another Sm-ring complex), that guides
the 3′-processing of histone mRNAs (Sun et al., 2020). However,
in all these examples, guiding RNA moieties are stably integrated
and cannot be exchanged to target different suites of transcripts.
Much closer to the bespoke matchmakers described in the
previous paragraph are snoRNPs and scaRNPs, that employ
invariant protein scaffolds and different RNA guides to direct
2′-O-methylation or pseudouridylation at specific sites of archeal
and eukaryotic rRNAs and snRNAs (Dupuis-Sandoval et al.,
2015; Bohnsack and Sloan, 2018). Similarly, the RNA editosome
edits several kinetoplast messengers in trypanosomatids using
an ∼40-protein scaffold and ∼1,200 distinct guide RNAs
(Göringer, 2012).

Special classes of matchmaking RNPs are employed as genome
defense agents. For instance, siRNA-programmed AGO2 is used
to combat viral infection in fungi, plants and invertebrates
(Ding, 2010). PIWI-interacting RNAs repress transposons via
a “ping-pong” cycle of base-pairing events in the germ line of
most animals (Ozata et al., 2019). Finally, the large universe of
CRISPR systems provides a number of fascinating mechanisms
by which crRNA-guided endonucleases, either embedded in
exuberantly complex RNPs or, on the contrary, stunningly
simplistic, seek and destroy parasitic nucleic acids in prokaryotes
(Mohanraju et al., 2016).

WHY A HIGH-THROUGHPUT
APPROACH TO STABLE RNPS?

Our knowledge of this mesmerizing diversity and mechanisms of
stable RNPs is the fruit of decades of research relying on diverse
biochemical, structural, and molecular biology techniques.
While many of these methods continue to play a critical
role by laying a solid ground for our understanding of these
tiniest biological units, the next-generation, high-throughput
approaches are knocking ever louder on the door. The impetus
for their development is not only down-to-earth pragmatic
(i.e., massively parallel RNP characterization). A comprehensive,
genome-wide approach actually becomes a necessity when
big, transversal questions are raised. One such question is
ontological: what stable RNPs exist in the studied biological
system under given conditions? Here the profiling nature of a
high-throughput technique by far outperforms the serendipity
of the traditional “by-chance” discovery. Another advantage of
a “bird’s-eye” view on the cellular RNP ensemble is the access
to systems-level information: what is the functional state of the
cell? How are resources allocated among various RNP-based
processes, such as transcription, RNA processing, translation,
or degradation? How are the ongoing regulatory programs
implemented on the level of persistent RNA-protein associations?
Regarding the interactions themselves, genome-wide techniques
provide unique biochemical data on the “in vitro” (affinity
distribution, specificity) and “in vivo” (occupancy, competition,
interconversion) parameters of RNPs (Campbell and Wickens,
2015; Jankowsky and Harris, 2015). And if one wishes to recast all
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this in a form of defined, tangible physical entities, as advocated
here, a complexomic approach will be an obvious option.

PROFILING CELLULAR COMPLEXES
WITH COMPLEXOMIC TECHNIQUES

The logic of the complexomic approach is radically different from
that of the traditional bait-prey interactomics (Smirnov et al.,
2017a). In complexomics, there are no baits nor preys, no need
to tag or catch molecules. In fact, this group of methods does not
directly profile interactions; what it looks at is macromolecular
complexes, their composition, and physical properties. In a
typical complexomic experiment (Figure 2A), biological material
(cultured cells or a tissue) is lysed and resolved by one
or several biochemical techniques that partition complexes
according to a certain physicochemical parameter (size, shape,
charge, hydrophobicity etc.). Upon fractionation, the content
of each fraction is analyzed quantitatively, and the profiles
of individual macromolecules across the whole separation
range are reconstructed computationally. Comparison of their
distributions (“correlation profiling”), often in conjunction with
the physical information gleaned from the separation principle
applied, permits to assign macromolecules to distinct complexes,
evaluate the composition of known assemblies, and even
propose new ones.

Each step of this standard pipeline can be played differently:
the last two decades witnessed a flurry of studies employing a
wide diversity of complexomic approaches tailored to various
biological systems and research questions. For example, Blue-
Native (BN) PAGE is traditionally used in microbial and
mitochondrial complexomics as it permits to analyze large (up
to 30 MDa), soluble or membrane-embedded protein complexes,
which cannot be satisfactorily resolved by other techniques
(Schägger and Von Jagow, 1991; Strecker et al., 2010). In
earlier 2D implementations, BN-PAGE gels were stained, and
individual protein spots were identified by western blotting or
mass spectrometry (Camacho-Carvajal et al., 2004; Farhoud et al.,
2005; Pyndiah et al., 2007; Klodmann et al., 2011). Such an
approach was naturally limited in scope as it was restricted to
abundant proteins (or those for which specific antibodies were
available). Therefore, it has been supplanted by 1D BN-PAGE
with regular gel slicing and systematic LC-MS/MS analysis of
each slice (Wessels et al., 2009). This extremely successful method
enabled unbiased profiling of hundreds of proteins across one gel,
assignment of molecular weights to the complexes they form, and
the possibility to compare such profiles proteome-wide to infer
protein complex memberships in many species (Helbig et al.,
2009; Heide et al., 2012; Schwenk et al., 2012; Wessels et al.,
2013; de Almeida et al., 2016; Müller et al., 2016; Schimo et al.,
2017; Senkler et al., 2017; Vidoni et al., 2017; Rugen et al., 2019;
Páleníková et al., 2021b).

Other separation techniques, such as clear native
PAGE, sucrose gradient centrifugation, and size exclusion
chromatography, have been successfully used to partition
complexes by size and shape (Andersen et al., 2003; Peltier
et al., 2006; Hartman et al., 2007; Chen and Williamson, 2013;

Kirkwood et al., 2013; Larance et al., 2016; Páleníková et al.,
2021a). However, the majority of complexomic studies now rely
on a combination of orthogonal fractionation methods, thus
decreasing the probability of chance co-elution for proteins
involved in closely migrating but otherwise unrelated assemblies.
Such fractionation schemes can be quite complex, include both
parallel and sequential steps, and yield hundreds-to-thousands
of fractions (Dong et al., 2008; Menon et al., 2009; Havugimana
et al., 2012; Gordon et al., 2013; Wan et al., 2015; Gazestani
et al., 2016; Shatsky et al., 2016). As a result, researchers have
access to a wider variety of physical information about each
complex and, based on richer complexome profiling datasets, can
predict with higher confidence the involvement of each protein
in macromolecular assemblies.

In one stunning methodological development, the sucrose
gradient fractionation of the cell lysate is coupled to both
mass spectrometry and cryo-electron microscopy—to directly
classify and visualize complexes present in select fractions, solve
their structures, and thereby identify the constituent proteins
(Figure 2B). Pioneered by studies of bacterial ribosome assembly
(Sashital et al., 2014; Davis et al., 2016), the technique has been
recently extended to cover virtually any macromolecular complex
in the cell (Ho et al., 2020). With this bottom-up endogenous
structural proteomics approach, complexomics achieves its most
visual expression and promises a wealth of exciting data in
the years to come.

Because complexomic techniques do not require genetic
manipulation of the biological system and provide a large
amount of data on the physical organization of the proteome,
they have been used to map complexomes not only of model
but also of some traditionally “difficult” organisms, including
numerous bacteria, archaea, protists, algae, plants, animals,
and human subjects (Peltier et al., 2006; Kristensen et al.,
2012; Chatzispyrou et al., 2017; Moutaoufik et al., 2019; Van
Strien et al., 2019 and the references above). The biological
insights brought about by these studies are impressive: from the
organization of giant respiratory supercomplexes, through the
fine structural coupling of metabolic pathways, to unexpected
properties and compositions of gene expression machines, to
new hints at possible functions of “orphan” proteins and
molecular mechanisms of human diseases. From this “protein-
only” complexomic perspective only few steps were remaining to
the vast RNP world (Figure 3).

INCORPORATING RNA IN THE
COMPLEXOME LANDSCAPE

Though largely focused on proteins, some complexomic studies
had already reserved a place of honor to major RNPs, most
often ribosomes (Wessels et al., 2013; Gazestani et al., 2016;
Larance et al., 2016; Chatzispyrou et al., 2017; Van Strien
et al., 2019; Páleníková et al., 2021a). These works resulted in
several interesting findings, including details of bacterial and
mitochondrial ribosome assembly (Chen and Williamson, 2013;
Sashital et al., 2014; Davis et al., 2016; Rugen et al., 2019) and
some of the first observations of CRISPR ribonucleoproteins
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FIGURE 2 | Major complexomic approaches. (A) In protein complex profiling (PCP), biological material is lysed under native conditions and resolved by one or
several biochemical techniques (here velocity sedimentation in a density gradient). Each fraction is then analyzed by quantitative mass spectrometry, and protein
profiles are cross-correlated to infer their involvement in the same or different complexes. (B) In endogenous bottom-up structural proteomics, the cell lysate is
resolved on a sucrose gradient and profiled by mass spectrometry, like in PCP. In addition, individual fractions are subjected to cryoEM, followed by unsupervised,
model-free 3D particle classification to determine structures of individual complexes and directly identify their protein constituents. (C) In the ribosome profiling family
of approaches, represented here by TCP-seq, the lysate is chemically crosslinked, treated with an RNase to digest unprotected mRNA, and subjected to sucrose
gradient centrifugation. Only the 40S and the 80S fractions are collected for subsequent analysis by RNA-seq to visualize the footprints of scanning 40S subunits or
translating 80S ribosomes. (D) In Grad-seq, density gradient centrifugation is used to resolve RNPs up to the size of a monosome. Both the protein and the RNA
components of each fraction are profiled by mass spectrometry and RNA-seq, respectively. The RNA profiles are clustered to identify cohorts of similarly behaving
transcripts (likely forming the same kind of RNPs). Select members of each cohort are used as baits in pull-down assays to identify their protein partners. Then, the
sedimentation profiles of the enriched proteins are correlated with those of the RNA baits, and the most consistent and recurrent candidates are cross-validated by
RIP-seq or CLIP-seq. If the mutual interaction is confirmed, the RNP membership of the analyzed cohort can be considered established.
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FIGURE 3 | The “family tree” of principal complexomic approaches and the conceptual links between them. High-throughput techniques initially interrogating only
the protein or only the RNA dimension of stable macromolecular complexes (the first two columns) inspired the development of the Grad-seq family of methods that
profile both components simultaneously to infer stable RNA–protein associations (the third column). Adaptations of the latter technique have recently enabled the
systematic identification of proteins involved in stable RNPs, be they genuine RBPs or indirectly associated subunits (the last column).

(Menon et al., 2009). However, because the RNA composition
of fractions was not explicitly interrogated, the interpretation
of a wide diversity of observed RBP distributions, e.g., those of
mitochondrial PPR proteins (Wessels et al., 2013; Senkler et al.,
2017; Rugen et al., 2019), numerous RNA-related complexes in
chloroplasts (Peltier et al., 2006), or a potential RNA chaperone
in archaea (Menon et al., 2009), was precluded.

First attempts to visualize the RNA component of
RNPs relied on low-throughput northern blotting (e.g.,
Wassarman and Storz, 2000). The polysome and ribosome
profiling, later joined by the translation complex profile
sequencing (TCP-seq), the selective TCP-seq (Sel-TCP-seq)

and the ribosome complex profiling (RCP-seq) (Figure 2C),
marked a decisive turn in handling the RNA dimension by
introducing the unbiased and comprehensive quantification
of mRNAs isolated from defined sucrose gradient fractions by
microarray and later RNA-seq (Arava et al., 2003; Ingolia et al.,
2009; Archer et al., 2016; Bohlen et al., 2020; Giess et al., 2020;
Wagner et al., 2020). Such approaches have revolutionized our
view of dynamic translation but are naturally limited to specific
types of class IIa (elongating or scanning ribosomes), class IIIc
(stalled ribosomes), and sometimes lncRNA-ribosome complexes
(van Heesch et al., 2014; Carlevaro-Fita et al., 2016). Another
transcriptome-wide technique, RNPomics, that similarly resolves
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cellular complexes in a gradient, sequences the constituent RNAs,
and focuses instead on the sedimentation range 10S–30S, thereby
excluding ribosome-bound transcripts (Rederstorff et al., 2010).
This procedure enriches well for RBP-bound noncoding RNAs,
but because all RNP-containing fractions are ultimately pulled
and analyzed together, it does not really profile them and thus
cannot provide further information about the diversity and the
composition of these RNPs. Such a feat has become a reality only
with the advent of gradient profiling by sequencing and mass
spectrometry (Grad-seq).

PROFILING STABLE RNPS WITH
GRAD-SEQ

General Pipeline
Grad-seq was introduced in 2016 as a new technique to
comprehensively chart the landscape of an organism’s stable
RNA and protein complexes without resorting to tagging
or enrichment of cellular components (Smirnov et al.,
2016, 2017a). This hybrid method marries the logic of a
traditional complexomic approach with the power of RNA-
seq to quantitatively profile transcripts of all expressed genes
(Figure 3). The Grad-seq pipeline (Figure 2D) begins with
the native lysis of biological material (bacterial or human cell
culture) at low temperature to stabilize dynamic complexes. The
cleared lysate is then loaded onto a linear density gradient and
subjected to velocity centrifugation to resolve cellular complexes
across the size range of interest (typically up to monosomes).
Upon centrifugation, the gradient is split in a series of equal-
volume fractions, and their RNA and protein components are
isolated. The distributions of selected macromolecules across
the gradient can be analyzed with conventional methods, i.e.,
gel electrophoresis, staining, western and northern blotting. To
profile proteins and transcripts genome-wide, each fraction is
subjected to label-free LC-MS/MS and RNA-seq. The obtained
data are normalized with the help of added spike-in molecules
and the bona fide in-gradient distributions of individual
macromolecules revealed with conventional methods. The
result is a complete collection of sedimentation profiles of
potentially all expressed proteins and RNAs present in the
studied biological model.

Peaks in each distribution indicate the stable assemblies
of profiled molecules. Calculation of the sedimentation
coefficient for each fraction, based on the behavior of known
complexes or standards, enables access to molecular weight
estimates for any detected complex (Erickson, 2009). With this
“sedimentation ruler” one can make reasonable assumptions
regarding the complexity of each observed particle, e.g., evidence
for oligomerization or the degree of heterogeneity. Besides
this physical information, one can now compare profiles
between them, and this is where the genuine power of the
approach reveals itself. Like classical complexomics, Grad-seq
permits to evaluate and either confirm or reject proposed stable
associations between proteins and RNAs, based on the similarity
or dissimilarity of their sedimentation profiles. When the profiles
are compared with each other globally, e.g., with the help of such

analytical tools as PCA and t-SNE, one can go even further and
forward hypotheses about novel complexes between similarly
distributed proteins and transcripts (Smirnov et al., 2016; Hör
et al., 2020a,b).

Additionally, if uncharacterized transcripts or proteins co-
segregate with other components, whose molecular role has been
determined (e.g., RNAP, ribosomal subunits, RNA chaperones,
or other established RBPs), one can leverage guilt-by-association
and predict their involvement in a similar kind of processes
or assemblies. Such hypotheses can be verified with the help
of accessory techniques, such as RNA and protein pull-downs,
to robustly establish the composition of the observed RNPs
(Figure 2D). Therefore, Grad-seq bridges the biochemical
profiling of cellular complexes with functional information,
which makes it a versatile functional genomics approach.

Case Study: Comparative Analysis of
Bacterial Stable RNPs
To date, Grad-seq has been used to profile stable RNPs in several
model bacteria, such as the γ-proteobacteria S. Typhimurium
(Smirnov et al., 2016; Gerovac et al., 2020; Venturini et al., 2020),
Escherichia coli (Hör et al., 2020a), and Pseudomonas aeruginosa
(Gerovac et al., 2021), the firmicute Streptococcus pneumoniae
(Hör et al., 2020b), the cyanobacterium Synechocystis sp.
(Riediger et al., 2020), and even in human cells (Aznaourova et al.,
2020). Additionally, the RNPs formed by P. aeruginosa RNAs
have been analyzed along with phage 8KZ transcripts during
viral infection in what can be considered the first “dual Grad-
seq” experiment (Gerovac et al., 2021). These known biological
models provided the first touchstone and an essential benchmark
for this new technique. Figures 4–6 show back-to-back select
examples of stable RNPs detected in the three proteobacteria and
the evolutionarily distant S. pneumoniae. Let us consider them
in further detail to see what kind of functional insights can be
gleaned from such analysis.

The core transcriptional machinery (Figure 4) is well
assembled in all examined species. RNAP is abundantly present
as the holoenzyme, as can be judged by the cosedimentation
of σ-factors with the core subunits in the 15-18S range,
corresponding to transcription initiation or early elongation
events. However, some elongation accidents have obviously
taken place in the proteobacterial species, as can be attested
by the recruitment of the elongation factor GreB, stimulating
RNA cleavage and reactivation of deeply backtracked RNAP
(Abdelkareem et al., 2019), and the ATPase RapA, forcing the
translocation of stalled RNAP (Liu et al., 2015). Interestingly,
GreA, specialized on very small backtracks usually caused
by nucleotide misincorporation, is not recruited, highlighting
the division of labor between the two paralogues present in
enterobacteria (Borukhov et al., 1993). Similarly, the termination
factors NusA, NusG, and Rho are at best only marginally
associated with RNAP; indeed, Rho shows a peak of ∼10S,
which agrees well with the 10.4S reported for a free hexamer
(Geiselmann et al., 1992).

The translational machinery (Figure 5) features well-defined
30 and 50S subunits recognizable by their rRNA and r-protein
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FIGURE 4 | Back-to-back view of the transcriptional machinery from S. Typhimurium, E. coli, P. aeruginosa, and S. pneumoniae profiled by Grad-seq. The Grad-seq
distributions of select proteins and RNAs, forming the RNAP holoenzyme or involved in transcription regulation and rescue, are shown as heat-maps reflecting the
abundance of each macromolecule along the gradient. Some of the profiles highlighted with color are illustrated with the corresponding structures below (PDB
codes: 6RIN, 4S20, 6P1K, 5IPL, 6PMI, and 5VT0). Note that S. pneumoniae, in contrast to the proteobacteria, has only one Gre factor.

markers. At the bottom of the gradient, 70S ribosomes
engaged in translation are prominently represented; this is
where most mRNAs naturally peak. Interestingly, endogenous
P. aeruginosa mRNAs were observed mostly in low-molecular-
weight complexes under these conditions. By contrast, during
phage infection, viral messengers accumulated in ribosome-rich
fractions, suggesting that they were effectively overtaking the
translational apparatus of the cell (Gerovac et al., 2021).

Like transcription, translation elongation sometimes seems
to go awry. In S. pneumoniae, the LepA GTPase, also
known as elongation factor 4, is recruited to the ribosomes,
suggesting inefficient translocation (Heller et al., 2017). In
E. coli, the presence in the same fraction of tmRNA (in
addition to the free tmRNA-SmpB complex sedimenting at 11–
12S) betrays the accumulation of no-stop or no-go translation

elongation complexes awaiting resolution (Keiler, 2015). In
S. Typhimurium, both these aberrant states are clearly present.
Similar to earlier observations (Chen and Williamson, 2013),
several ribosome assembly intermediates appear to be abundant
and long-lived enough to permit their detection by Grad-
seq. These include the broadly conserved RsmA/KsgA and
RbfA stages of 30S biogenesis, readily observable in all
four bacteria (Datta et al., 2007; Boehringer et al., 2012).
Association of other assembly factors with immature ribosomal
subunits shows a great degree of species- and likely condition-
specificity.

In this regard, it is appealing to compare in more detail
the two enterobacterial datasets, given that S. Typhimurium
and E. coli are genetically extremely close, and both were
harvested during the transition between the exponential
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FIGURE 5 | Back-to-back view of the translational machinery and the associated RNAs from S. Typhimurium, E. coli, P. aeruginosa, and S. pneumoniae profiled by
Grad-seq. The Grad-seq distributions of select proteins and RNAs involved in the ribosome structure, assembly of rescue, are depicted in the same way as in
Figure 4, and some of the complexes are illustrated with solved cryo-EM structures on the right (PDB codes: 6Q95, 5J8B, 4ADV, and 3J8G). Additionally, the
Grad-seq profiles of autoregulated r-protein-encoding mRNAs are provided below to showcase their involvement in low molecular weight RNPs (left side of the
profile) or association with translating ribosomes (last fraction). The r-proteins negatively regulating each cistron are specified on the right of the profiles. Certain
enterobacterial sRNAs, shown in red at the bottom of the figure, have been re-annotated as short mRNAs due to the presence of a confirmed ORF and association
with translating ribosomes. Their old sRNA identifiers are given on the left of each profile and the new approved protein-coding gene names are provided on the right.

Frontiers in Molecular Biosciences | www.frontiersin.org 14 April 2021 | Volume 8 | Article 661448

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org/
https://www.frontiersin.org/journals/molecular-biosciences#articles


fmolb-08-661448 March 30, 2021 Time: 13:31 # 15

Gerovac et al. Grad-Seq Profiles Stable RNPs

and the stationary phases of growth (Smirnov et al., 2016;
Hör et al., 2020a). In both species, 6S RNA is already
beginning to engage the housekeeping (σ70) form of RNAP,
and the recruitment of σ28 marks the commitment of both
cultures to foster motility at the wake of the exponential
phase (Barembruch and Hengge, 2007). However, the E. coli
σS, unlike its Salmonella counterpart, does not yet have a
privileged access to the transcriptional machinery (Figure 4).
Moreover, most ribosomal proteins and mRNAs in E. coli
sharply peak at the bottom of the gradient, indicating active
translation (Figure 5). Considerably higher amounts of
ribosome assembly intermediates are visible in E. coli, as
compared to the S. Typhimurium culture, suggesting actively
ongoing ribosome biogenesis (Chen and Williamson, 2013).
In S. Typhimurium, but not E. coli, r-protein-encoding
mRNAs appear to be significantly involved in low-molecular-
weight complexes reminiscent of the already mentioned
autoregulatory class IIIa RNPs (Meyer, 2018). The corresponding
r-proteins are also more abundant in extraribosomal fractions
in S. Typhimurium, suggesting that they may indeed engage
in inhibitory complexes with their own messengers, as would
be expected when the ribosome production is curtailed
(Figure 5). Altogether, these observations suggest that, at the
moment of harvest, the E. coli population was physiologically
considerably more exponential than the S. Typhimurium
one, which had already begun to show some stationary-phase
hallmarks. This little exercise illustrates how analysis of stable
complexes by Grad-seq can inform on the functional state of
the studied system.

This state is to a large extent governed by class III and IV
RNPs formed by key posttranscriptional regulators CsrA and
Hfq which had their fair share in the three proteobacterial
gradients (Figure 6). CsrA homologues are expectedly
involved in class IIIb complexes with their sRNA decoys
(Babitzke and Romeo, 2007). However, in S. Typhimurium
and P. aeruginosa, a significant proportion of CsrA/Rsm
proteins appears to have reached some of their mRNA targets,
such as flhDC, glgC and nhaR in enterobacteria (Baker et al.,
2002; Pannuri et al., 2012; Yakhnin et al., 2013) and pslA,
PA0081, and PA4492 in P. aeruginosa (Brencic and Lory, 2009;
Irie et al., 2010). The majority of Hfq-dependent sRNAs in
S. Typhimurium form complexes of ∼350 kDa, and even
larger assemblies are visible in P. aeruginosa. Given the ∼67
kDa of one Hfq hexamer plus an average of ∼40 kDa sRNA,
this suggests the existence in vivo of rather more complex
RNPs than traditionally believed (Dimastrogiovanni et al.,
2014; Obregon et al., 2015; Bandyra et al., 2016; Caillet et al.,
2019). Interestingly, several Salmonella Hfq-dependent sRNAs,
including ArcZ, DsrA, and RprA, co-migrate with RNAP,
which is reminiscent of their antitermination activity during
transcription of the σS-encoding rpoS mRNA as cells enter
the stationary phase (Sedlyarova et al., 2016). Remarkably,
only part of Hfq-dependent sRNAs cosediment with the
low-molecular-weight pool of Hfq in E. coli, whereas the
majority are found in the pellet associated with translating
ribosomes (Hör et al., 2020a). It appears that in this case
most Hfq-dependent sRNAs follow their mRNA targets,

while the free Hfq pool is usurped by a few high-affinity
binders that are less inclined to interact with actively
translated messengers.

The quick look at what Grad-seq permitted to reveal about
known RNA-protein complexes inspired confidence in its ability
to go beyond this canonical purview and interrogate new
biology that had eluded the attention of researchers. Unexpected
discoveries were not slow to appear.

New RNPs Discovered by Grad-Seq
Class IIa: Translated Small ORFs in Presumed sRNAs
A common problem in the automatic de novo annotation of
protein-coding genes is the default cut-off of 100 amino acids
below which the genome sequence is typically not queried
to avoid false positives (Harrison et al., 2002). This means
that, in the absence of additional experimental evidence, key
proteins such as CsrA (61 aa), RpoZ (91 aa), and many
ribosomal proteins would have been simply missed—rather a
disconcerting prospect. Molding the annotation from a related
species by homology search improves the situation but does
not sort the issue entirely out, since preexisting knowledge
is still required, and certain ORFs—albeit functional—are too
short and insufficiently conserved to be robustly detected (Storz
et al., 2014). Therefore, direct experimental evidence of the
polypeptide production is necessary. This can be achieved
either by the identification of the molecule in question (by
MS or western blotting) or by demonstrating the involvement
of the corresponding mRNA in translation (Makarewich and
Olson, 2017). The former approach has been recently used
to support the existence of 170 small proteins, including 89
uncharacterized ones, in a S. Typhimurium Grad-seq dataset
(Venturini et al., 2020). Their detection has become possible
thanks to a higher sensitivity offered by Grad-seq protein
profiling which, by fractionating the cell lysate, considerably
decreases the complexity of analyzed samples. Moreover, 82
of the uncharacterized small proteins were found to form
complexes with other molecules, providing first evidence of
their functionality.

The first Grad-seq analysis unveiled the fundamental
biochemical dichotomy between coding and noncoding RNAs
in Salmonella: the former expectedly tended to cosediment
with 30S and 70S ribosomes whereas the latter preferred small
RNPs (Smirnov et al., 2016). The flagrant association of a few
sRNAs with ribosomal particles urged to reconsider their coding
potential and, with support of complementary experimental
and comparative genomic evidence, re-annotate them as
small mRNAs (Figure 5) (Hemm et al., 2008, 2010; Waters
et al., 2011; Kato et al., 2012; Smirnov et al., 2016; Hör et al.,
2020a). For example, the E. coli Grad-seq dataset exposed the
interesting case of the prophage-encoded sRNA RyeG strongly
associated with 30S and 70S ribosomes (Bak et al., 2015; Hör
et al., 2020a). The existence within this transcript of a short
yodE ORF, encoding a 48-aa bacteriostatic peptide, has been
corroborated in vitro by 30S toeprinting and in vivo by modified
ribosome profiling and functional assays, indicating that RyeG
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FIGURE 6 | Back-to-back view of global regulatory RBPs and the associated RNAs from S. Typhimurium, E. coli, P. aeruginosa, and S. pneumoniae profiled by
Grad-seq. The Grad-seq distributions of three major proteobacterial RBPs, CsrA, Hfq, and ProQ, and the S. pneumoniae exoribonuclease Cbf1 are shown along
with select profiles of their sRNA and mRNA ligands (except for the P. aeruginosa ProQ, for which in vivo ligands have not been studied as for now). Decoy sRNAs in
proteobacteria are highlighted with violet. The CsrA, Hfq, and ProQ structures—PDB codes: 1Y00, 2YLB, 5NB9, and 5NBB. The 3D structure of Cbf1 is predicted
by RaptorX (Xu, 2019). The P. aeruginosa ProQ protein lacks the “Tudor-like” domain (Gerovac et al., 2021).
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is in fact a minute mRNA (Weaver et al., 2019; Hör et al.,
2020a).

Class IIb: New Ribosome Assembly Factors
Earlier studies showed that many proteins involved in ribosome
biogenesis stably associate with free 30S and 50S subunits during
gradient centrifugation, which can be exploited to predict new
ribosome assembly factors (Chen and Williamson, 2013). The
bacterial Grad-seq datasets revealed a few proteins cosedimenting
with either subunit, including several uncharacterized ones
(Smirnov et al., 2016; Hör et al., 2020a,b; Gerovac et al., 2021).
One of them, the 12-kDa DUF469 protein YggL found in many γ-
and β-proteobacteria, showed pronounced association with 50S
and 70S particles (Figure 5). Given that yggL is mostly expressed
in the exponential phase, and its deletion has a strong effect on
the 50S levels, the protein likely functions in late LSU assembly
(Chen and Williamson, 2013; Smirnov et al., 2016; Hör et al.,
2020a). This specific example provides a modus operandi to study
other candidate ribosome biogenesis factors spotted by Grad-seq,
especially in less studied species (Hör et al., 2020b; Riediger et al.,
2020).

Class IIIb: A Scaffolding lncRNA to Organize the
Immune Response to Bacterial Infection
Grad-seq has been recently adapted to eukaryotic cells to study
lncRNPs produced by immune cells in response to bacterial
infection (Aznaourova et al., 2020). Human macrophages,
activated by Salmonella lipopolysaccharide, were lysed and
resolved on a glycerol gradient to comprehensively profile
subribosomal RNPs. Focusing on the transcripts upregulated
by infection-relevant stimuli, the authors noticed that the
uncharacterized cytoplasmic lncRNA MaIL1 cosedimented with
components of the ubiquitin-proteasome system. Its main
partner, identified by RNA affinity purification and confirmed by
Grad-seq profiling, is the ubiquitin-adapter optineurin (OPTN),
which platforms the TBK1 kinase within the TLR4-TRIF
pathway to induce type I interferon expression (Gleason et al.,
2011; Munitic et al., 2013). MaIL1 is strictly required for the
stability and the ubiquitin-dependent aggregation of OPTN.
The emerging model posits that MaIL1 scaffolds the assembly
of the ubiquitin-associated OPTN platform to enable type I
interferon production and thereby activate antibacterial defense
mechanisms (Aznaourova et al., 2020). A large repertoire of
distinct lncRNPs revealed by Grad-seq in this study promises
further surprises in this dynamically evolving research area
(Walther and Schulte, 2020).

Class IIIc: A Trapped RNase to Protect sRNAs?
While sRNAs are omnipresent in bacteria, their associated
proteins have much patchier phylogenetic distributions, and
ample evidence indicates that, for instance, Hfq, important as it
is in proteobacteria, does not play as pervasive a role in other
bacterial clades (Zheng et al., 2016; Santiago-Frangos et al., 2017).
Defining the organizational principles of regulatory sRNPs in
Gram-positive bacteria has become a big challenge in microbial
RNA biology over the last years. Consequently, performing
Grad-seq in the model Firmicute Streptococcus pneumoniae,

lacking all presently known global sRNA-binding RBPs, promised
to be an exciting endeavor (Hör et al., 2020b). Gratifyingly,
the 141 currently annotated pneumococcal sRNAs showed
massive involvement in small RNPs of varying complexity. Some
of them showed remarkably similar sedimentation patterns,
suggesting shared RNP architecture (Figure 6). Capturing their
protein partners from the cell lysate identified several candidate
RBPs. One of them, the conserved 3′–5′ exoribonuclease
Cbf1/YhaM (Oussenko et al., 2002; Lécrivain et al., 2018),
strongly interacted with the five csRNAs, involved in competence
control (Schnorpfeil et al., 2013; Laux et al., 2015), but not
with differently distributed control transcripts. UV CLIP-seq
corroborated this finding and revealed a number of additional
sRNA and mRNA ligands, indicating that Cbf1 is in fact a global
RNA binder. Importantly, the in-gradient distributions of many
Cbf1-associated sRNAs turned out to be highly correlated with
the Cbf1 profile, strongly supporting their involvement in the
same stable sRNPs (Figure 6). The deletion of this unusual RNase,
composed of an HD-domain (Histidine/Aspartate-containing
metal-dependent phosphohydrolase) and an Oligonucleotide-
Binding (OB)-fold, resulted in csRNA destabilization, supporting
its protective role, similar to Hfq in Gram-negative bacteria
(Oussenko et al., 2002; Hör et al., 2020b).

How can an RNase stably associate with—and even protect—
RNA instead of destroying it? Cbf1 crosslinks tend to occur on
the 3′-ends of transcripts, where this exoribonuclease normally
cleaves (Hör et al., 2020b). However, the role of Cbf1 in cellular
RNA turnover is at best modest (Oussenko et al., 2005; Lécrivain
et al., 2018). In fact, in vitro assays and recent in vivo data
revealed that Cbf1 trims the single-stranded 3′-oligo(U)-tail of
its ligands by ∼3 nucleotides but fails to digest any further
(Lécrivain et al., 2018; Hör et al., 2020b). The enzyme does
not seem to be halted by a stable secondary structure, as no
such feature has been observed around trimmed sites in vivo
(Lécrivain et al., 2018), nor impeded by another RBP sitting
on the 3′-end of the target RNA, since the same behavior
has been recapitulated in a minimal system on protein-free
RNA (Hör et al., 2020b). This lack of processivity may be
an intrinsic feature of Cbf1 itself, which is reminiscent of the
behavior of another HD-domain protein acting on the RNA 3′-
end, the CCA-adding enzyme (Cca). Unlike template-dependent
polymerases, Cca stably anchors to its tRNA substrate and
does not translocate upon addition of nucleotides, which makes
the catalyzed reaction self-limiting—it necessarily stops after
addition of the 3-nucleotide CCA-tail (Shi et al., 1998; Cho
et al., 2006; Kuhn et al., 2015). Whatever the exact mechanics
of the Cbf1 cleavage is, current biochemical and functional
evidence converges on a model where this exoribonuclease forms
class IIIc RNPs (inhibited enzyme-substrate complexes) with its
RNA ligands and thereby shields them from cellular degradative
enzymes (Hör et al., 2020b).

Cbf1 and the associated csRNAs are involved in competence
control in S. pneumoniae by repressing the comC mRNA
(Schnorpfeil et al., 2013; Laux et al., 2015; Aprianto et al.,
2018; Hör et al., 2020b). However, the large number of
identified Cbf1 ligands and phenotypic data suggest that its
physiological roles may go way beyond this small regulon
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(van Opijnen and Camilli, 2012; Lécrivain et al., 2018; Hör et al.,
2020b). The other pneumococcal sRNPs uncovered by Grad-
seq also await detailed characterization, promising identification
of additional RBPs involved in riboregulation in Gram-positive
bacteria (Zheng et al., 2017).

Classes IIIa and IV: ProQ, a New Global RNA
Chaperone Acting on mRNAs and sRNAs
When Grad-seq entered the stage (Smirnov et al., 2016), CsrA
and Hfq largely dominated the panorama of posttranscriptional
regulation in enterobacteria (Van Assche et al., 2015). However,
Grad-seq analysis of the RNPs formed by Salmonella sRNAs
uncovered a surprising heterogeneity of profiles: while Hfq-
binding sRNAs constituted a well-defined biochemical class of
complexes (Figure 6), they accounted for only ∼30% of sRNA
distributions, the other two thirds of noncoding RNAs being
involved in different kinds of assemblies (Smirnov et al., 2016,
2017a). A group of such unusual transcripts clearly clustered
together and were selected for RNA pull-downs to identify
their shared protein partners. This analysis zeroed in on ProQ,
an RNA chaperone of unknown functional role involved in
osmoregulation (Milner and Wood, 1989; Kunte et al., 1999;
Chaulk et al., 2011).

ProQ RIP-seq, later supported by CLIP-seq experiments,
identified the same sRNAs and several hundred other transcripts,
both coding and noncoding, as specific ProQ ligands (Smirnov
et al., 2016; Holmqvist et al., 2018a). The ProQ-associated sRNAs
are mostly Hfq-independent and, unlike classical Hfq-binding
riboregulators, highly structured. Their in-gradient profiles
correlated well with that of ProQ, indicating the formation of
small (100-150 kDa) stable RNPs (Figure 6). The abundance
and the stability of most ProQ-binding sRNAs and at least
some mRNAs depend on ProQ which, similar to Hfq, tends
to bind its ligands close to the 3′-end, protecting them from
cellular RNases (Smirnov et al., 2016; Holmqvist et al., 2018a).
RNA-seq analyses of 1proQ strains uncovered a profound
impact of this prolific RNA binder on gene expression in
enterobacteria, making it, along with Hfq and CsrA, the third
global regulatory RBP in this group (Smirnov et al., 2016;
Melamed et al., 2020).

The ProQ research is now booming: from an obscure protein
(unfairly) commanding only passing interest it has grown
into a major topic of bacterial RNA biology (Olejniczak and
Storz, 2017; Holmqvist et al., 2020). ProQ homologues have
been found in a number of proteobacteria (Attaiech et al.,
2016; Smirnov et al., 2016) and implicated in key physiological
processes, including competence (Sexton and Vogel, 2004;
Attaiech et al., 2016; Durieux et al., 2019), virulence, chemotaxis,
motility and biofilm formation (Sheidy and Zielke, 2013;
Westermann et al., 2019), metabolism (Kunte et al., 1999;
Smirnov et al., 2016), stress resistance, plasmid and core
genome maintenance (Smirnov et al., 2016; Bauriedl et al.,
2020; Gerovac et al., 2020). Many known base-pairing sRNAs
repressing their targets in-cis or in-trans turned out to be
avid ProQ binders, but only in a handful of cases the role
of this protein in regulation has been solved mechanistically
(Smirnov et al., 2017b; Silva et al., 2019; Westermann et al.,

2019), and an even larger number of ProQ-dependent sRNAs
remain totally uncharacterized. Pioneering biochemical studies
highlighted generic RNA chaperone properties of ProQ
homologs (Chaulk et al., 2010, 2011). Their role as new RNA
matchmakers, mechanistically distinct from Hfq, is being
intensively studied, but the molecular details of the interplay
between ProQ and its natural RNA ligands only begin to
emerge (Melamed et al., 2020). Structural and functional
studies highlighted the importance of the conserved N-terminal
FinO-like domain, which harbors most of the RNA-binding
activity and places ProQ into a larger family of FinO-like
RNA chaperones (Chaulk et al., 2010, 2011; Glover et al.,
2015; Gonzalez et al., 2017b; Eidelpes et al., 2020; Gerovac
et al., 2020, 2021; Immer et al., 2020; Pandey et al., 2020; Stein
et al., 2020). However, the role of the C-terminal “Tudor-like”
domain (Figure 6), that contributes to the RNA chaperone
activities of ProQ (Chaulk et al., 2011; Gonzalez et al., 2017b),
does not cease to intrigue researchers. Recent comparative
analysis uncovered striking structural and functional similarities
between several small β-barrel (SSB) folds, such as Sm, OB,
cold-shock and Tudor domains, and proposed a unifying
concept of “urfold” highlighting their biological relatedness
(Youkharibache et al., 2019). The remarkable frequency of
the SSB urfold among bacterial global RBPs, including Hfq,
ribosomal protein S1, Cbf1, ProQ, PNPase, RNases E and R,
suggests that it may constitute a recurrent signature of pleiotropic
RNA-binding regulators.

BEYOND GRAD-SEQ

The basic Grad-seq pipeline has recently seen two interesting
adaptations, marking new important developments in RNA-
protein complexomics (Figure 3). In one case, ATLAS-
seq brings the complex profiling logic to the cell biology
level: entire organelles from mildly lysed cells are resolved
on a sucrose gradient and systematically profiled for their
protein and RNA contents (Foster et al., 2006; Adekunle and
Wang, 2020). Applied to mouse liver, this method revealed
genome-wide distributions of transcripts across diverse cellular
microenvironments, identified cases of differential localization
for mRNA isoforms, and visualized RBPs following their targets
(Adekunle and Wang, 2020).

Since Grad-seq studies broadly illustrated the dependence
of RBP sedimentation on their RNA ligands (Figures 4–6),
three independently developed approaches have leveraged this
principle to systematically profile the protein components of
stable RNPs (Caudron-Herger et al., 2019; Mallam et al., 2019;
Gerovac et al., 2020). They do so by comparing global MS-
derived protein profiles in lysates treated or not with an RNase,
as destruction of the RNA component typically shifts the
distribution of the associated proteins to lighter fractions or
causes their disassembly. Thus, R-Deep employed the sucrose
gradient fractionation of HeLa S3 cells and identified 1,784
proteins whose distributions changed upon RNase treatment,
of which only ∼70% were known to be direct RNA binders
(Caudron-Herger et al., 2019). Similarly, DIF-FRAC resolved
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complexes by size-exclusion chromatography and found >1,000
RNA-dependent proteins in HEK293T and mouse embryonic
stem cells, of which ∼40% lacked RBP annotation. Based on
the effect of the RNase treatment on the RNP behavior, all
RNA-protein complexes were broadly classified into apo-stable
(i.e., persisting even in the absence of RNA), structural (fully
dependent on the RNA component), and compositional (with
only some protein subunits contingent on the presence of RNA)
(Mallam et al., 2019). Finally, GradR profiled Salmonella protein
complexes on glycerol gradients and revealed a number of
RNA-dependent proteins, including Hfq, CsrA, and ProQ, while
also spotting an uncharacterized plasmid-encoded FinO/ProQ
homolog, FopA, as a potential RBP. RIP-seq and in vitro
assays confirmed its specific binding to the Inc sRNA and
showed that FopA dramatically accelerates the base-pairing
between Inc and the cis-encoded repZ mRNA involved in
plasmid replication (Gerovac et al., 2020). This study brought to
three the number of ProQ/FinO-like chaperones simultaneously
residing in the same bacterial cell (ProQ, FinO, FopA), which
is an exceptional case with potentially interesting evolutionary
implications. All in all, these approaches beautifully complement
the existing RBP discovery techniques, such as RNA interactome
capture and the new crosslinking-based methods OOPS, PTex,
TRAPP, and XRNAX (Hentze et al., 2018; Queiroz et al., 2019;
Shchepachev et al., 2019; Trendel et al., 2019; Urdaneta et al.,
2019; Smith et al., 2020b), by adding those RNP components
which do not interact with RNA directly or crosslink poorly
yet contribute to the structure and the functionality of the
complexes. Like the classical Grad-seq, they provide important
biochemical data on the organization and the RNA dependency
of cellular RNPs.

OUTLOOK

Considering Grad-seq warts-and-all, next to the advances it
brought about in six model species, the method still must
face up to a few challenging issues. The most important
one is profile matching. A recent critical appraisal exposed a
surprisingly high false discovery rate of global complexomic
analyses, when complex membership is called by direct matching
of protein distributions (Shatsky et al., 2016). This happens
despite the ever more sophisticated bioinformatic pipelines
used for the analysis of complexomic data (Dong et al.,
2008; Havugimana et al., 2012; Kristensen et al., 2012; Giese
et al., 2014; Gazestani et al., 2016; Páleníková et al., 2021a).
The problem comes, on the one side, from natural spurious
overlapping of unrelated profiles, and on the other, from
the general analytical caveat of matching algorithms: most
statistical measures are inherently tailored to look for differences,
not similarities (Motulsky, 2010). For the moment, Grad-seq
suffers from the same limitation: while clustering algorithms
and especially dimensionality reduction methods (PCA, t-SNE)
could be applied to classify and compare profiles, predicting
complexes based solely on such profile similarities is dangerous.
Therefore, Grad-seq prudently incorporates an RNA pull-
down step to prioritize protein candidates and only then

performs profile matching to call RNPs – expectedly with
a much higher success rate (Figure 2D). It is desirable,
however, to develop in future more elaborate similarity metrics
and information-rich profile descriptors to enable automated
detection of RNPs from Grad-seq datasets with acceptable
accuracy and sensitivity.

Data mining is another issue. The Grad-seq publications
highlighted in this review primarily reported on a few particularly
striking findings illustrating the power of the method. But those
are merely the tip of the iceberg, and the RNA and especially the
protein Grad-seq datasets await deeper exploration to unearth
new potentially interesting macromolecular assemblies. This is
particularly important if we want to approach the functions of
understudied proteins and transcripts.

We contemplate many possible avenues for further
development of RNP complexomics. It will be exciting
to apply Grad-seq family approaches to more exotic and
recalcitrant biological systems, such as newly discovered
microbes, evolutionarily diverged eukaryotes, and semi-
autonomous organelles, like mitochondria and chloroplasts,
in search for novel RNA biology (Castelle and Banfield,
2018; Adl et al., 2019). We foresee that RNP complexomics
will become increasingly comparative, confronting different
species or assessing how the ensemble of stable complexes
within the same organism changes between conditions or in
time. Experimental settings and statistical tools have definitely
matured to carry out such complex studies (Heide et al., 2012;
Kristensen et al., 2012; Moutaoufik et al., 2019; Van Strien
et al., 2019; Gerovac et al., 2021; Páleníková et al., 2021a,b).
Finally, albeit the identification of RNA from cryoEM structures
remains challenging (Greber et al., 2014), the expansion of
the bottom-up structural proteomics (Figure 2B, Ho et al.,
2020) to the RNP world is now as tantalizing a perspective
as never before.
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