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Abstract One of the major challenges in hydrology consists in the conception of models to 20 

predict runoff evolution in time, as this is of crucial importance in water resource assessment and 21 

management. These models are required to provide estimations of high flows and low flows, so that 22 

appropriate short-term (flood) emergency measures and long-term (drought) management activities 23 

can be undertaken. However, due to the inherent nonlinearity of climate inputs (e.g. rainfall) and the 24 

heterogeneous nature of watersheds, understanding and modeling the catchment hydrologic 25 

response is tremendously challenging. This is particularly the case for karstic watersheds that are 26 

generally highly nonlinear and also sensitive to initial conditions. Investigation of the dynamic nature 27 

of hydrologic response is an important first step towards developing reliable models for such 28 

watersheds. To this end, this study examines the dynamic nature of streamflow discharge from 29 

karstic watersheds, especially the short-term variations. A nonlinear dynamic method, the 30 

correlation dimension method, is employed to unique long, continuous, and high-resolution (30-min) 31 

streamflow data from two karstic watersheds in the Pyrénées Mountains (Ariège) of France: the 32 

Aliou spring and the Baget spring. The results reveal the presence of deterministic chaos in the 33 

streamflow dynamics of the two watersheds, with attractor dimension values below 3. These results 34 

have great significance regarding the presence of deterministic chaos in karstic flows and in the issue 35 

of data size regarding chaos studies in hydrology. 36 
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Introduction 44 

If we consider a watershed as a hydrological “system”, then we may consider rainfall as the 45 

principal input to the system and streamflow discharge (or a hydrobiogeochemistry index, 46 

such as conductivity, temperature, or bacteria distribution) as a representative output from 47 

the system. Therefore, study of discharge time series should give us relevant information on 48 

the hydrological behavior of the watershed that integrates the rainfall inputs and the 49 

different pathways of water in the several compartments of the watershed. This approach, 50 

based on the study of an input-output temporal relationship, known as the systemic analysis 51 

(Mangin, 1984), appears as a valuable paradigm in hydrology and hydrogeology. For a long 52 

time, this input-output relationship had been considered as linear (Labat et al., 2000). 53 

However, due to the co-existence of saturated or diphasic conditions with surface free or 54 

under pressure flow conditions, the dynamics of water and, hence, the rainfall-runoff 55 

relationship is inherently complex and nonlinear. As a result, estimation and prediction of 56 

discharge is very difficult. The problem is further complicated due to our inability to provide 57 

a precise knowledge of the initial conditions as well as the spatial and temporal variability of 58 

the physical parameters that control the transfer of water. This insufficient information 59 

limits our understanding and predictive ability. 60 

Among all the different types of hydrological watersheds, arguably the least predictable 61 

remain the watersheds with underground karstic water pathways. Karstic aquifers constitute 62 

a freshwater resource that emerges from complex carbonate geological systems 63 

characterized by a high degree of heterogeneity. On one hand, these watersheds are 64 

characterized by unexpected flash floods, such as those occurred over the cities of Nimes (in 65 

the year 1988) or Vaison La Romaine (in the year 1992) in France, that cause human losses 66 



and severe economic damages. On the other hand, they will certainly play a key role in the 67 

future, as water demands continue to grow and the quantity of freshwater available (per 68 

capita) continues to shrink. The exploitation of these aquifers is much more difficult than 69 

porous, fissured and even fractured aquifers. This is a direct consequence of the dissolution 70 

of the limestone. When water infiltrates in the upper zone of the aquifer, it becomes acid 71 

because of the contact with the microfauna and the roofs that produce the acid carbonic. 72 

Therefore, when water percolates in the fractured carbonate media, the dissolution process 73 

favored by the existence of fractures or fissures involves the development of a high 74 

permeability together with the presence of micro- and macro-porosity. Water penetrates in 75 

the system via boreholes or sinks and then flows into drains and conduits connected to large 76 

water reserves (Labat et al., 2000). But this rapid infiltration contrasts with delayed 77 

infiltration via epikarstic soil. Saturated or diphasic conditions, together with surface free or 78 

under pressure flow conditions, generally co-exist and the dynamics of water in a watershed 79 

remains nonlinear and complex. The concomitance of both flows leads to a nonlinear 80 

response reflecting the large diversity of pathways connecting the surface with springs that 81 

involves complex hydraulic connections in the saturated zone. Karstic watersheds are then 82 

essentially spatially heterogeneous groundwater systems characterized by an inherent 83 

temporal nonstationarity and nonlinearity of their hydrological response that should be 84 

naturally investigated by nonlinear techniques, especially those that address the sensitivity 85 

to initial conditions (chaos). 86 

First described by Lorenz in the context of meteorological models (Lorenz, 1963) and then 87 

connected to the concepts of fractal geometry by Mandelbrot (e.g. Mandelbrot, 1983), the 88 

theory of chaos has been successfully applied in many areas of engineering and natural 89 

sciences during the last three decades. Basically, a chaotic system is defined as a nonlinear 90 



deterministic system in which small changes in the initial conditions could lead to severe 91 

divergence in its future behavior. This property is obvious, for example, in global climate 92 

system, where it is popularly known as the “butterfly effect”. Therefore, it is quite difficult to 93 

distinguish a chaotic deterministic system from a purely random system, since both of them 94 

can produce irregular and apparently unpredictable temporal and/or spatial variability. The 95 

theory of chaos in hydrological sciences was introduced in the late 1980s (e.g. Hense, 1987; 96 

Rodriguez-Iturbe et al., 1989). Since then, applications of chaos theory in hydrological 97 

sciences have been significantly advanced, including some very recent studies (e.g. 98 

Jayawardena et al., 2010; Kyoung et al., 2011; Sivakumar and Singh, 2012; Tongal et al., 99 

2013; Tongal and Berndtsson, 2014); see, for example, Sivakumar (2000, 2004, 2009) for 100 

detailed reviews. 101 

A few important points must be noted from the literature on chaos studies on streamflow 102 

(and other hydrological) processes. 103 

1. Thus far, chaos applications to streamflow processes have been largely limited to 104 

classical surface hydrological watersheds. However, as mentioned earlier, streamflow 105 

discharge from karstic springs may exhibit very different dynamics from that in 106 

surface hydrological watersheds. Therefore, whether streamflow from karstic springs 107 

exhibit chaotic behavior is an important question to study. To our knowledge, the 108 

study by Lambrakis et al. (2000) has been the only study that has attempted such an 109 

analysis, and further exploration is certainly worthwhile. 110 

2. Chaos studies on streamflow time series (e.g. Lambrakis et al. (2000)) have largely 111 

focused on daily or coarser- resolution dynamics, with a few rare exceptions (e.g. 112 

Stehlik, 1999). While understanding the dynamics of streamflow at daily and coarser 113 



resolutions is indeed useful for various water resources and environmental 114 

applications, study of streamflow at much finer resolutions (e.g. in the order of hours 115 

and minutes) also serves important purposes, especially in the context of flood 116 

forecasting and emergency measures. 117 

3. In almost all the chaos studies on streamflow, the length of data considered is less 118 

than 104, which amounts to roughly 25 years of consecutive daily data at best; for 119 

instance, Lambrakis et al. (2000) have used just over 8000 values of daily data (22 120 

years). Although reliable identification of chaotic behavior of streamflow can be 121 

made even with a few hundreds or just over a thousand of data representing a 122 

system (e.g. Jayawardena and Lai, 1994; Sivakumar et al., 2002b; Sivakumar, 2005), it 123 

is obviously desirable to have a much longer time series to eliminate any misgivings 124 

about the analysis and results. 125 

These observations provide the motivation for the present study. In this study, we 126 

investigate the dynamics of long-term high-resolution streamflow data from two karstic 127 

systems in the Pyrénées Mountains (Ariège) of France: the Aliou spring and the Baget spring. 128 

We use streamflow data observed at every 30-minute resolution over a period of about 20 129 

years, which amount to a total of over 350,000 values. We believe that these long-term, 130 

high-resolution discharge data provide the hydrological community the best opportunity for 131 

a highly reliable analysis of nonlinear and chaotic dynamics in karstic systems, and 132 

streamflow dynamics in general. 133 

 Method 134 

A popular approach for detection of chaotic patterns in time series is based on the 135 

estimation of the correlation dimension, introduced by Grassberger and Procaccia (1983). 136 



The correlation dimension method uses the correlation integral to distinguish between 137 

chaotic and stochastic systems. Let us assume that the time series under investigation is 138 

generated by a nonlinear dynamical system with m-degree of freedom. It is first necessary to 139 

construct a series of state vectors Xm(t) (e.g. Packard et al., 1980). With observations of only 140 

the variable of interest available, one way to deal with this reconstruction is by using delay 141 

coordinates in an m-dimensional phase space (Takens, 1981): 142 

])1((),...,(),([)(   mtXtXtXtX m        (1) 143 

where m is called the embedding dimension and  is an appropriate delay time. These 144 

vectors describe the trajectory of the system in the phase space. If the system is 145 

characterized by a low-dimensional chaotic behavior, the trajectories of the system will 146 

converge towards the subset of the phase space called “attractor.” When dealing with 147 

natural processes, which are inherently nonlinear, convergence with a cyclic trajectory 148 

cannot be observed. Rather, nonlinear natural dynamical systems tend to converge on 149 

attractors on which the motion is periodic and unpredictable over long time, called “strange 150 

attractors.”  151 

The choice of the delay time is a very important step in phase space reconstruction and, 152 

hence, in the correlation integral estimation. It is well known that if the delay time is too 153 

small, the phase-space coordinates will not be independent enough to produce new 154 

information about the evolution of the system, whereas if it is too large then all the relevant 155 

information is lost because of diverging trajectories. Additionally, if the delay time is smaller 156 

than necessary to unfold the attractor, then the estimated correlation dimension from the 157 

Grassberger-Procaccia algorithm will be smaller (i.e. underestimation) than the "true" 158 

dimension of the attractor. In chaos studies, two functions are commonly used to determine 159 



a proper delay time: the autocorrelation function (Holzfuss and Mayer-Kress, 1986) and the 160 

mutual information function (Fraser and Swinney, 1986); see Islam and Sivakumar (2002) for 161 

an example of their applications for streamflow time series. In the autocorrelation function 162 

method, a common rule consists of setting the delay time as the lag time at which the 163 

autocorrelation function first reaches zero, but some authors have also suggested 0.1 (Tsonis 164 

and Elsner, 1988) or 0.5 (Schuster, 1988). In the mutual information method, the lag time 165 

corresponding to the first minimum of the mutual information is generally chosen as the 166 

delay time. 167 

Considering the set of points in the attractor, one can define the correlation integral (or 168 

function) in order to distinguish between stochastic and chaotic behavior. In practice, when 169 

dealing with the sampled (not continuous) time series, the radius cannot tend to zero and 170 

the correlation integral is approximated numerically and computed as follows: 171 
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where N is the number of points XN(t), Nref is the number of reference points taken from N 173 

and (r) is the Heaviside function. Therefore, the correlation integral consists of an estimate 174 

of the number of points out of the data set which are closer than a radius r or within an 175 

hypersphere of radius r. Then, when the radius tends towards zero, the correlation integral 176 

will be characterized by an asymptotic power-law behavior  177 

rrC )(            (3) 178 

where  is the correlation exponent given by the slope of correlation integral versus radius in 179 

a log-log plot. In order to detect chaotic behavior, the correlation exponent has to be plotted 180 



against the embedding dimension m. If the correlation exponent  increases with the 181 

embedding dimension, then no chaotic behavior is present in the dynamical system. For 182 

example, a purely random process, where there is no determinism, is characterized by a 183 

linear increase of the correlation exponent with the embedding dimension without 184 

saturation value. If the correlation exponent  reaches a saturation value, the asymptotic 185 

value is called the correlation dimension of the attractor. The correlation dimension is often 186 

fractal, meaning that it is a non-integer dimension typical from a chaotic system. The nearest 187 

integer above the correlation dimension is generally assumed to be the number of degrees 188 

of freedom of the system. This information is of great importance in the modeling and 189 

prediction process. The effective region of scaling in the log C(r) versus log r plot is dictated 190 

principally by the possible presence of noise and so the intrinsic quality of the data (Lai and 191 

Lerner, 1998) and also by the proper determination of the delay time.  192 

The correlation dimension method has been very widely used to distinguish between chaotic 193 

and stochastic time series in almost all fields. However, there have also been strong 194 

criticisms on the use of the method to real time series. Extensive details of the associated 195 

issues, including temporal correlations, data size, data noise, and presence of zeros, are 196 

already available in the literature (e.g. Osborne and Provenzale, 1989; Nerenberg and Essex, 197 

1990; Theiler, 1990; Tsonis et al., 1993; Schreiber and Kantz, 1996; Sivakumar, 2005). The 198 

issue of data size, however, has often dominated criticisms on chaos studies in hydrology, 199 

since hydrologic time series are often very short; see, for example, Schertzer et al. (2002) 200 

and Sivakumar et al. (2002a) for a discussion. It is our hope that analysis of a very long time 201 

series will help to have more confidence in the search for the presence of chaos in 202 

hydrological time series. 203 



Data, analysis, and results 204 

We focus here our attention on the analysis of long-term high-resolution streamflow records 205 

from karstic systems in order to highlight possible chaotic dynamics in their temporal 206 

variations. We study 30-min discharge data observed over a period of about 20 years from 207 

two karstic springs of the Pyrénées Mountains (Ariège): the Aliou and the Baget springs 208 

(Figure 1). Owing to the geographic proximity of these mid-altitude basins, both basins are 209 

under the influence of the same rainfall input function. Both watersheds are characterized 210 

by similar hydrological indexes with a mean daily discharge around 0.5 m3/s, an area around 211 

13 km2 and a median altitude around 900m a.s.l. 212 

The Aliou watershed, which is known as extremely karstified with a very short time response 213 

(less than a day), exhibits a discharge increase from 0.1 m3/s to nearly 30 m3/s in as little as 214 

8 hours followed by a decrease that is equally quick (Figure 1, top). The 30-min sampling rate 215 

was adopted in the first time by analogy with other karstic springs. However, we recently put 216 

in evidence that for these two karstic springs, it is the best sampling rate in term of 217 

information. Then, in order to verify that it is the best sampling rate in terms of information 218 

content in hydrologic processes, we consider here 3-min sampling rate for one year as 219 

demonstrated in Labat et al. (2011). The spectral density of such a discharge series shows 220 

that below the 30-min timescale, the power spectrum density is flat meaning that there is 221 

only noise in the signal. It also shows a power-law behavior of the spectral density up to a 1-222 

hour period. Therefore, the 30-min sampling time that has been adopted since the beginning 223 

of the 1990s, appears as the best compromise in terms of hydrological information. The 224 

Baget spring also exhibits a very short response time in flow dynamics (Figure 1, bottom), 225 

although the discharge is not as high as that for the Aliou spring. Figure 1 displays a 226 



visualization of the 30-min sampling rate for Aliou and Baget springs discharge time series 227 

(left) and compares it to the daily mean classical value (right). One can see that the 30-min 228 

data allow a far better resolution of the flood event than the classic daily mean sampling 229 

rate. It reveals the complete dynamics of the hydrological system response, especially the 230 

sharp rising part of flow (i.e. flood) within a short period for the two watersheds. 231 

For analysis, we consider two different periods of data for each watershed: 1995–2000 and 232 

2005–2015. Data from the intervening period 2000–2005 are not considered in this study, 233 

because continuous runoff measurements at high sampling rates could not be made due to 234 

several technical issues that were encountered during the measurement. With this, the 235 

longest series corresponds to more than 160,000 consecutive streamflow data. To our 236 

knowledge, this dataset constitutes the longest available series at this sampling rate on 237 

karstic system worlwide. The analysis of the power spectrum densities for the two longest 238 

discharge time series (Figure 2) highlight a power law behavior with a break-in-scale around 239 

10 hours for Aliou and 16 hours for Baget. This break-in-scale, indicated in Figure 2 by a 240 

vertical line, corresponds to the frequency where the two power law behaviors cross. This is 241 

an indication that two stochastic processes can be deciphered in the discharge time series, 242 

corresponding to high-frequency and low-frequency processes. While the high-frequency 243 

process corresponds roughly to the response of the system to rainfall impulses, the low-244 

frequency process corresponds roughly to the response of the system to the synoptic 245 

climate variations.  246 

We apply the correlation dimension method to identify the presence of chaotic dynamics in 247 

these two streamflow time series. The delay time is estimated based on the mutual 248 

information function, as it is a much better representation of nonlinear dynamics when 249 



compared to the autocorrelation function, which is essentially a linear tool. Nevertheless, for 250 

the two time series considered here, the autocorrelation function method also offers 251 

somewhat similar values of delay time obtained using the mutual information. The 252 

estimated delay time value using the mutual information function method is 40 hours for 253 

the Aliou watershed and 60 hours for the Baget watershed (Figure 3), which is about 1.5 and 254 

2.5 days, respectively. Both values are in good accordance with previous studies based on 255 

daily data on these watersheds over the 1970–2000 time period (Labat et al., 2000). By 256 

comparison, for example, a delay time of 7 days was selected in the study by Islam and 257 

Sivakumar (2002), 10 days by Elshorbagy et al. (2002), 14 days in Ng et al. (2007), and up to 258 

146 days in Pasternack (1999). 259 

Based on these delay time values, the data are reconstructed and the correlation integrals 260 

are estimated. Figure 4 shows, for five selected embedding dimensions, the correlation 261 

integral plots for the longer time series from Aliou and Baget. The correlation integral 262 

exhibits a power law behavior in the log–log plot, characterized by a linear behavior across 263 

low values of radius. Some authors have used the Takens-Theiler estimates of correlation 264 

dimension to identify the scaling regions more clearly (e.g. Wang et al., 2006), but here we 265 

prefer to identify the region where correlation between linear scaling and correlation 266 

integral presents the highest values. 267 

The linear scaling regimes in these plots allow reliable determination of the slope, i.e. 268 

correlation exponent (). Figure 5(a) to (d) show the relationship between the correlation 269 

exponent and embedding dimension for the four time series. For all the four time series, the 270 

correlation exponent  first increases with the embedding dimension and then reaches a 271 

saturation value. The saturation value of the correlation exponent is 1.17 and 1.95 for the 272 



Aliou streamflow time series and 2.75 and 1.55 for the Baget streamflow time series. The 273 

low and fractal values of the correlation exponents suggest the presence of low-dimensional 274 

deterministic dynamic nature of the four streamflow time series characterized by a certain 275 

number of dominant variables. The correlation exponent values also indicate that there are 276 

at least 2 or 3 independent variables dominantly governing the temporal dynamics of 277 

streamflow in the Aliou and Baget watersheds. More precisely, if we use m > d (Takens, 278 

1981) and m ≥ 2d+1 (Abarbanel et al., 1990) for the lower and upper limits of number of 279 

dominant variables, it can be concluded that different number of dominant variables are 280 

acting in streamflow dynamics for the different periods for the same basins. Both basins are 281 

located in the same zone and continuous and multiresolution wavelet analyses (not provided 282 

here) do not show any significant changes in the rainfall regimes during the two intervals. 283 

One may suspect, therefore, that the changes in the number of dominant variables can be 284 

related to the influence of snow on some winters or to some changes in the internal 285 

structure of karst in relationship with floods. For example, some hydraulic connections could 286 

have been changed due to the large amount of sediments and materials carried out by water 287 

in the drainage network. 288 

The correlation dimension results for the Aliou and Baget watersheds provide further 289 

support to the results reported by most of the chaos studies in hydrology, at least from two 290 

perspectives: 291 

(1) The dynamics of streamflow (and other hydrological processes), including in karstic 292 

watersheds, often exhibit low-dimensional chaotic behavior. This is particularly the 293 

case for high-resolution time series, such as those finer than daily, where the 294 

smoothing effects (which are often observed at daily scale due to averaging, as 295 



shown in Figure 1) are not significant; see also Regonda et al. (2004) and Salas et al. 296 

(2005). 297 

(2) Data size (in terms of the sheer number of values in time series) is not necessarily a 298 

serious limiting factor in the estimation of correlation dimension (or any other chaos 299 

indicator), as long as the time series is long enough to represent the essential 300 

features of the system dynamics; see also Sivakumar et al. (2002a, b) and Sivakumar 301 

(2005). 302 

 303 

Conclusion 304 

Considering the heterogeneous karstic systems, chaotic approach appears as a valuable 305 

method for determining the level of complexity of such systems. The chaos analysis gives 306 

relevant and useful information on the system not only for designing or exploitation of the 307 

water resources but also for flood prevention. Since previous studies on chaos applications 308 

in streamflow series have focused in a large majority on mean daily data, they could not 309 

account for the short-term variations in the streamflow process. Therefore, past results 310 

regarding the presence of chaotic behavior in streamflow may not be as strong as they can 311 

be. This study provides the first observation of chaotic behavior in long, continuous, and 312 

high-resolution (30-min) streamflow series from karstic systems.  313 

It is important to note that streamflow process in karstic systems (and any hydrologic system 314 

for that matter) exhibits at least two different kinds of responses at different scales. The 315 

short-term response of the karstic systems (almost at daily scale) corresponds to the 316 

hydrologic response to a given rainfall event and highlights a large amount of the 317 



nonlinearity of the rainfall-runoff relationship. On the other hand, the medium- to long-term 318 

response of the karstic system corresponds to its response to seasonality of rainfall. 319 

Considering these two different kinds of system responses and developing models to 320 

integrate them will likely offer a better way to study the streamflow dynamics. We strongly 321 

encourage hydrologists to apply nonlinear dynamic and chaos methods towards 322 

development of such an integrated framework in order to provide a new vision of the 323 

hydrological systems. 324 
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Figures  434 
 435 
 436 
Figure 1: Visualization of the 30-min discharge time series for Aliou and Baget watersheds. Figure 1-a 437 
represents the two 30-min discharge times series for Aliou watershed and Figure 1-b compares 30-438 
min high resolution sampling rate and daily sampling rate for the flood corresponding to the 439 
restricted interval 2/12/1995–7/12/1995. Figure 1-c represents the two 30-min discharge time series 440 
for Baget watershed and Figure 1-d compares 30-min high resolution sampling rate and daily 441 
sampling rate for the flood corresponding to the restricted interval 9/6/2000–14/6/2000. 442 
 443 
Figure 2: Power spectrum density function of the normalized frequency (in hours-1) for the longest 444 
discharge time series available for the Aliou (a) and Baget (b) karstic systems. The vertical line 445 
corresponds to the frequency where the two power law behaviors cross. It indicates that two stochastic 446 
processes can be deciphered in the discharge time series, corresponding to high-frequency and low-frequency 447 
process processes. The high-frequency process corresponds roughly to the response of the system to rainfall 448 
impulses, whereas the low-frequency process corresponds roughly to the response of the system to the 449 
synoptic climate variations 450 
 451 
Figure 3: Average mutual information function of the time delay obtained for the longest discharge 452 
time series available on Aliou (a) and Baget (b) karstic systems. The first minimum roughly 453 
corresponds to 40 hours for Aliou watershed and 60 hours for Baget watershed. 454 
 455 
Figure 4: Log-log plot of the correlation integral function for five selected embedding dimensions m 456 
obtained for the longest 30-min discharge time series on the Aliou (a) and Baget (b) watershed. The 457 
C(r) function exhibits a clear power law behavior highlighted by the straight line. 458 
 459 
Figure 5: Correlation exponent versus embedding dimension for discharge time series from Aliou and 460 
Baget watersheds. The top plots correspond, respectively, to the first (a) and second discharge time 461 
(b) series of Aliou watershed and the bottom plots correspond, respectively, to the first (c) and 462 

second (d) discharge time series of Baget watershed. The correlation exponent  first increases with 463 

the embedding dimension and then reaches a saturation value. The saturation value  of the 464 
correlation exponent is 1.17 and 1.95 for the Aliou streamflow time series and 2.75 and 1.55 for the 465 
Baget streamflow time series. 466 
 467 


