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Abstrat. Within this paper, a new kind of learning agents - so alled Constraint based

Memory Units (CbMU) - is desribed. The framework is the inremental building of a

omplex behaviour, given a set of basi tasks and a set of pereptive onstraints that must

be ful�lled to ahieve the behaviour; the deision problem may be non-Markovian. At eah

time, one of the basi tasks is exeuted, so that the omplex behaviour is a temporal sequene

of elementary tasks.

A CbMU an be modelled as an adaptive swith whih learns to hoose among its set of

output hannels the one to be ativated (given its pereptive data and a short term memory),

in order to respet a partiular onstraint. An output hannel may be linked either to the

�ring of a basi task or to the ativation of another CbMU; this allows a hierarhial deisional

proess, implying di�erent levels of ontexts.

The dynamis of the system is learnt by the mean of a pereptive graph and the yles

deteted by the short term memory of a CbMU are utilised as sub-goals to build internal

ontexts. The learning proedure of a CbMU is a reinforement learning inspired algorithm

based on an heuristi whih does not need internal parameters. It is ahieved by a onsisteny

law between the binary values of the onneted nodes of the pereptive graph, inspired from

the AI minimax algorithm.

In this artile, an example of programming with CbMUs is given, using a simulated Khepera

robot. The objetive is to build a goal-reahing behaviour whih is formulated by a high

level strategy omposed of logial rules using pereptive primitives. Four CbMUs are reated,

eah one dediated to the exploitation of partiular pereptive data, and �ve basi tasks are

utilised.

1 Introdution.

1.1 Development ontext.

Within the framework of mobile robotis, it is often

diÆult to establish a relationship between the data

pereived by the robot and the behaviour it must

ahieve aording to its input data.

Indeed, the pereptive data may be very noisy or

may not be interpreted easily, so that modelling

the mapping between pereption and ould be a

very diÆult task. Reinforement learning meth-

ods (Watkins, 1989) have been widely used in that

ontext (Lin, 1992),(Asada et al., 1996), mainly be-

ause they do not need a prior knowledge about the

proess model. Moreover, they theoretially ahieve

inremental learning and they an ope with a pos-

sible inertia of the system. But �nding suitable in-

ternal parameters for those algorithms is not intu-

itive and may be a diÆult task (Bersini and Gor-

rini, 1996). Besides, it is not easy to �nd a om-

promise between the stability and the robustness

of the algorithm and its inremental harateristi.

So, the learning stage may be fast, but the amount

of time needed to develop a suessful experiment

is often important. Finally, given that the rein-

forement methods need to suÆiently explore the



pereption spae before �nding a suitable solution,

learning to �t a omplex behaviour in a reasonable

lapse of time turns to be impossible without �nding

out some harateristis of the proess, leading to

a problem with a signi�antly dereased pereption

spae. A solution ould be to divide the whole task

into oordinated sub-tasks, eah one being easier to

learn than the omplex behaviour. However, the

problem is turned into another one: hoosing to ex-

eute a preise sub-task is often triky, espeially

if the hoie depends on the pereptual data of the

agent. In that ase, applying a simple swithing is

not generally suÆient; the agent has to learn to

deide whih sub-task is to be exeuted aording

to its input data. Moreover, when a failure in the

learning proess ours, one has to know if the ause

of the mistake is due to a misleading hoie of a

sub-task or to an internal de�ieny of the eleted

sub-task unit. In the last eventuality, it ould be

neessary to modify this unit to make it avoiding

the same mistake. So, it must have the apaity

to learn at anytime it is used: this is an important

fous of inremental learning methods.

1.2 Overview.

The framework is the inremental building of a om-

plex behaviour, given a �xed set of basi tasks. We

suppose that the desired task an be seen as a set

of onstraints. For example, the art pole prob-

lem (�g. 1) possesses two onstraints whih must

be veri�ed at eah time: X 2 [X

min

; X

max

℄ and

� 2 [�

min

; �

max

℄.

So, a deisional proess must be learnt, aording to

the pereptive onstraints, in order to ful�l them at

eah time. A CbMU is a part of the deisional pro-

ess. It is an adaptive swith whih learns to hoose

among its output hannels the one to be ativated,

given its input data. Here, the learning riteria is

the respet of the CbMU onstraint. Thus, it dif-

fers from the typial reinforement based methods,

whereas it has some hard links with the reinfore-

ment learning onept: it is a trial/failure method

whih does not need a prior knowledge of the pro-

ess model and it is inremental.

1.3 Validation of the omputing

method that uses CbMUs.

A general goal-seeking problem will be omputed, in

whih the obstale avoidane is performed by a wall-

following behaviour. To do so, the mobile robot

Khepera (Mondada et al., 1994) simulator written

by O.Mihel (Mihel, 1996), running on Unix-like

Xmin Xmax

Θ Θ

Θ

min max

X

Figure 1: The art pole problem: a typial on-

straint based issue.

operating systems, will be utilised, whih allows to

test the robustness of the algorithm in a very noisy

pereptive data ontext. The inremental apabil-

ity and the learning rapidity of the algorithm will

be shown.

2 Constraint based Memory

Unit spei�ations.

2.1 Main ideas

framework In this paper, we suppose that the task

whih is to learn an be ahieved with a temporal

sequene of a �nite set of basi tasks (let p be the

number of the basi tasks). Thus, at eah time, one

of them is exeuted, in order to ful�l a set of binary

onstraints. A onstraintK an be written like this:

8t;X

min

< X(t) or like this: 8t;X(t) < X

max

where

X is one signal of the ontinuous input spae of the

learning agent.

hierarhial deomposition of the task Let

onsider a very simple task (T ): \follow a wall",

whih is arried out with three basi tasks: \go for-

ward", \move on the left" and \move on the right".

The task an be divided into \follow a wall on the

left"(T

1

) OR \follow the wall on the right"(T

2

). T

1

an be expressed like this: \do not bump into a

wall on the left"(T

3

) AND \do not be too far from

the wall on your left"(T

4

). The same deomposition

an be done for (T

2

). The hoie between T

1

and T

2

is ontext-dependant; one deides to exeute one of

the two sub-tasks depending on two di�erent on-

texts: \there is a wall on the left and there is no ob-

stale on the right"(C

1

) and \there is a wall on the

right and there is no obstale on the left"(C

2

); the

hoie between T

3

and T

4

is also ontext-dependant:

\Am I going to bump into the wall ?"(C

3

) and \Am

I going to be too far from the wall ?"(C

4

). All the

ontexts an be expressed with onstraints.

We notie that the hoie among the three basi

tasks implies a hierarhial deisional proess at

eah time:



(T ) [K

T

= K

T

1

OR K

T

2

℄ IF CONTEXT(T)=C

1

DO T

1

ELSE IF CONTEXT(T)=C

2

DO T

2

ELSE

This is not a proper ontext for following a wall

(T

1

) [K

T

1

℄ IF CONTEXT(T

1

)=C

3

DO T

3

ELSE IF

CONTEXT(T

1

)=C

4

DO T

4

ELSE hoose the basi

task \go forward"

(T

3

) Choose the basi task \move on the right"

(T

4

) Choose the basi task \move on the left"

K

T

1

an be expressed with the input signals of the

system.

(some idential sub-tasks an be done for (T

2

) )

This basi example shows that we have built a pro-

gram with some a priori knowledge upon what we

preisely know about the task (for example, \if I

am far from the wall on my left side, move on the

left"). The bounds of the ontexts and the swithes

from one ontext to another have to be learnt. This

is done by the CbMUs, eah one oping with a par-

tiular swith (C

1

$ C

2

,C

3

$ C

4

). The deom-

position may redue the input spae or the output

spae for eah learning swith.

Thus, knowing the hierarhial deomposition of

the onstraints and the set of basi tasks, the prob-

lem is to shape the di�erent ontexts and to learn

how the dynamis brings the system from a ontext

to another to ful�l the onstraints.

Context spei�ation We assume that a ontext

is not redued to an area of the input spae but

also inludes a short term memory (the task may

be non-Markovian). Thus, a deision is taken a-

ording to the urrent input signal and the ontent

of the short term memory.

Coarse desription of a CbMU A CbMU has a

spei� onstraint to ope with. Its input spae is

ontinuous and is divided into a set of boxes (let n

be the dimension of the input spae). The CbMU

may swith from one sub-task to another one when

its input signal moves from one box to another.

The binary onstraint of the CbMU is a set of on-

ditions upon some of the omponents of the input

spae. For example, in the art-pole problem, two

of the four input omponents possess a onstraint

(X and �).

The CbMU learning proess is based on a oarse

learning of the dynamis of the system, by the mean

of a pereptive graph (�g. 2). Eah box of the in-

put spae is assoiated to a preise node (round

node). The ation of hoosing a sub-task when en-

tering a box (when the input signal moves from one

box to another) is linked to a square node. The ar

from a round node to a square node symbolises the

hoie of the CbMU whereas the ar from a square

to a round node represents the response of the dy-

namis of the system when having hosen a preise

sub-task from a partiular box. The node \E" is

reahed whenever the onstraint is not ful�lled.

When entering a box, a sub-task is seleted. The de-

ision is taken regarding the binary quality of eah

ation node.

Consisteny law Eah node of the pereptive

graph possesses a binary quality (- or +). At the be-

ginning of the learning proess, the quality of eah

node is +, exept the quality of the ending node (-).

For we onsider the learning of the dynamis as a

two players games (the CbMU and the dynamis),

the qualities may be turned to - using a onsisteny

law between the onneted nodes, derivated from

the AI minimax algorithm. This may happen when

a new ar is disovered. So, a CbMU may learn

(modi�es its quality values) only when a new fea-

ture in the dynamis in disovered.

Main hypothesis: the yles within the per-

eptive graph are of speial interest Remem-

ber that we want to ful�l a onstraint at eah time.

For the pereptive graph possesses a �nite number

of nodes, some yles may appear. Our hypothesis

is that the yles may be used to build the internal

ontexts of the CbMU.

Let's take the example of the pole-balaning prob-

lem with a 1-dimensional input spae generated by

�. The onstraint is � 2 [�0:2rad; 0:2rad℄ and the

two basi tasks are \push on the left" and \push on

the right".[-0.2,0.2℄ is divided into 10 states S

1

::S

10

(�g. 3). The problem is learly non-Markovian be-

ause we do not know the angular speed of the pole;

we annot build a suessful poliy if only one a-

tion is assoiated to eah state.

Let onsider a short term memory ontaining the

last 5 states reahed. If a state appears twie in

this memory, a yle has been performed and a new

ontext is reated (with its own poliy). We an

build a suessful poliy with the following rule:

(At the beginning of the trial, no speial ontext)

IF � > 0 PUSH ON THE RIGHT ELSE PUSH ON

THE LEFT

(A yle has been performed) Let S = [S

min

; S

max

℄

be the last state in the short term memory. The pol-

iy is: IF S

max

> 0 (IF � > 0:04 PUSH ON THE

RIGHT ELSE PUSH ON THE LEFT) ELSE (IF

� > �0:04 PUSH ON THE RIGHT ELSE PUSH

ON THE LEFT)

Although this rule is very simple, it permits to bal-

ane the pole for 100000 steps at least, even with a

15 perent noise upon �.

So, the basi idea is that when a yle is disovered

in a pereptive graph, a speial node and a new

meta-ation are reated: the speial node means \I

have just done this yle" and the meta-ation is
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Figure 2: The pereptive graph of a CbMU.

the sequene of state/ation performed in this y-

le. And a ontext is the ombination of the last

yle enountered and an area in the input spae.

Advantages of the proposed method

� The hierarhial deomposition of the task

through the di�erent onstraints permits to

bring some a priori knowledge, reduing the in-

put or the output spae for eah learning pro-

ess. At eah time, the deision involves dif-

ferent levels of ontexts whih �lter the input

data

� The CbMUs an ope with Partially observable

Markov deision problems (POMDPs): the de-

tetion of yles into the pereptive graph is

used to build new internal ontexts. A y-

le is a kind of sub-goal whih is memorised,

like in the HQ-Learning method (Wiering and

Shmidhuber, 1997). But the number of possi-

ble sub-goals does not need to be �xed at the

beginning of the learning stage.

� A CbMU is able to adapt itself whenever a new

ar is reated in its pereptive graph, breaking

the onsisteny law upon the qualities of some

nodes.

� There are no internal parameters.

� The learning proess is not CPU onsuming,

beause it only onsists on adding nodes or ars

and performing min or max operations upon

the qualities of the nodes.

Drawbaks of the proposed method

� The learning proess is designed for onstraint

based tasks (no optimal poliy)

� The number of input signals must be small to

have a reasonable number of nodes.

0 0.02 0.06 0.10 0.200.16-0.20 -0.16 -0.10 -0.06 -0.02

S1 S2 S3 S4 S5 S7 S8 S9 S10S6

Figure 3: The pole-balaning problem with a 1-

dimensional input spae.
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Figure 4: The external struture of a CbMU.

2.2 External struture of a CbMU.

A CbMU (�g. 4) is a blak box omposed of three

kinds of inputs: the pereptive data, whih is a ve-

tor (I

1

; :::; I

n

) 2 R

n

, the CST bit, whih is the

binary value of the onstraint at time t, and the

ACT bit, whih is the urrent state of ativation

of the CbMU. An output hannel among the ve-

tor (O

1

; :::; O

p

) 2 f0; 1g

p

may be �red only if the

ACT bit is set to 1 (the CbMU is ativated). At

eah time, one and only one hannel may be ati-

vated. It represents the hoie of the CbMU, given

the pereptive data (I

1

; :::; I

n

), in order to respet

the onstraint given by the CST bit.

The hoie leads to a modi�ation of the CbMU

environment, so that it hanges the values of the

input data, leading to a possible hange of the CST

bit (�g. 5 ). The external available informations

are:

� the binary qualities (V

1

; :::; V

p

) 2 f0; 1g

p

asso-

iated to the �ring of the output hannels. If

V

k

is set to 0, it means that the ativation of

the hannel k is onsidered to lead (sooner or

later) to a non-respet of the onstraint CST

(see paragraph 2.4).

� The FAIL bit, whih is set to 1 if the learning

proedure of the CbMU has failed (see para-

graph 2.4)

� The CNX bit, whih is set to 1 if the onnexion

to the CbMU is allowed (the ACT bit modi�a-

tion is permitted by the CbMU). The allowane

ondition is: FAIL=0 and CST=1. If the CNX

bit equals 0, the ACT bit is automatially set

to 0 (the CbMU disonnets itself).
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Figure 5: Diagram showing the links between a

CbMU and its environment, while the CNX bit re-

mains equal to 1.

2.3 Internal struture of a CbMU.

The CbMU is internally omposed of two main

items (�g. 6), whih goal is to provide at eah time

a quality to the �ring of eah available output han-

nel, given a partiular input data:

� a set of pereptual areas fZ

1

; :::; Z

p

g, eah one

linked to a partiular output hannel. Eah

Z

k

2 R

n

k

�n

is onneted to some of the input

hannels of the CbMU and is divided a priori

into a set of b

k

boxes Box

j;j2f1;:::;b

k

g

k

reated

aordingly to the following set of equations:

8

>

>

>

>

>

<

>

>

>

>

>

:

8k 2 f1; : : : ; pg

S

j2f1;:::;b

k

g

Box

j

k

= Z

k

8 fj; lg 2 f1; : : : ; pg

2

; j 6= l;

Box

j

k

T

Box

l

k

= ;

Box

j

k

= fI = (I

1

; : : : ; I

n

k

) /

8l 2 f1; : : : ; n

k

g ;m

j

l

� I

l

< M

j

l

g

Thus, eah box Box

j

k

is parameterised by

n

k

ouples of values (m

j

l

;M

j

l

) whih are the

boundary values for eah pereptive input sig-

nal used by the pereptive area Z

k

assoiated

with the hannel k of the CbMU.

� a set of pre-onneted bits, whose initial value

is 1, divided into two ategories:

1. the pereptual state bits P, eah of them

may be assoiated to a set of p boxes

fBox

j

1

1

; :::; Box

j

p

p

g.

2. the hoie bits C, eah of them pre-

onneted to a pereptual state bit.

The pre-existing ending state E orresponds

to a non-respet of the CST onstraint (CST

turns to 0).

The way the pereptual areas are divided is onsid-

ered to be an a priori knowledge: it is not modi�ed

during the learning stage of the CbMU.

Short term memory and yle detetion It re-

alls the last 5 ation nodes the CbMU has reahed.

If the last element of the short term memory is equal

to one of the four others, a yle has just been per-

formed and the CbMU swithes to a new ontext.

All the ontexts are assoiated to a preise yle

and possess their own pereptive graph; the system

swithes from a ontext K

i

to a ontext K

j

by per-

forming the yle assoiated toK

j

in the pereptive

graph of K

i

.

2.4 Learning proedure of a CbMU.

Introdution The proposed learning algorithm

has some hard links with the reinforement learn-

ing onept: it is a trial/failure method, it does

not need a prior knowledge of the proess model, it

opes with the temporal redit assignment problem

and it is inremental.

However, it is not based on an optimisation method,

but on the respet of binary pereptive onstraints.

Moreover, eah CbMU may learn (that is to say

\adapts itself to orret a deteted inonsisteny be-

tween the real fats and the predited ones") when-

ever it is ativated.

The objetive of eah pre-onneted set of bits is to

evaluate the impat of a hoie among the O

k

on

the evolution of the pereption signal I reeived by

the CbMU. The binary value of a P bit expresses

the quality of the assoiated pereptive state, that

is to say the apability of the CbMU to �nd a se-

quene of hoies from this state in order to respet

the onstraint of the CbMU.The binary value of a C

bit expresses the quality of a hoie from a preise

pereptive state.

The learning algorithm is based on two items:

� the on-line building of onnexions between the

sets of pre-onneted bits(so alled the perep-

tive graph), making an internal representation

of the dynamis of the system.

� a onsisteny law between two onneted bits

of the pereptive graph, derived from the AI

minimax algorithm (Rih, 1983).

The pereptive graph. The objetive is to eval-

uate the impat of a hoie among the O

k

on the

evolution of the pereption signal I reeived by the

CbMU. To do so, while the CST bit remains equal

to 1, the CbMU possesses at eah time a single a-

tive pereptual state P. When a failure is deteted

(CST turns to 0), the CbMU is in the speial state

E.

Thus, the CbMU A

i

has a �nite number of states,

inluding an ending state E. The dynamis of the

system makes the agent move from one state P to

another state P', aording to the hoie C

i

made



among the elements of O. The transition P ! P

0

produes an ar between the pre-onneted C

i

bit

of the pereptual state P and the pereptual bit P'.

If the result of the hoie O

i

is a failure (the CST

bit turns to 0), an ar is made between the pre-

onneted C

i

bit of the pereptual state P and the

ending state E (the E bit is always equal to 0).

The onsisteny law. The problem whih on-

sists on taking a deision aording to the ful�lment

of onstraints, with a given dynamis of the system

may be seen as a two players game: the CbMU and

the dynamis. The aim of the CbMU is to never

reah the losing state E , whih quality q

E

is 0. To

do so, we use the minimax algorithm: the minimax

searhing tree is the pereptual graph and the eval-

uation funtion values are the qualities (the value

of the bits). The onsisteny law applied for eah

node (these are the bits) of the graph is given by the

following two relationships. The �rst one is dealing

about the pereptive bits P , whereas the seond one

is applied to the pre-onneted bits C assoiated to

a deision-making when the pereptive state of the

CbMU is P :

q

P

= max

C

i

2Child(P )

fq

C

i

g (1)

q

C

= min

P

i

2Child(C)

fq

P

i

g (2)

Where Child(P ) is the set of the hildren of P in

the graph and Child(C) is the set of the hildren of

C.

Using the onsisteny law to learn. As soon

as an ar from a C

i

bit to a P

0

bit is reated

while the dynamis makes the pereptual data of

the agent evolve, Child(C

i

) may be modi�ed, there-

fore the onsisteny relationship ould be broken

(�g. 7). In that ase, the value of C

i

is fored in

order to respet the equation (2). If q

C

i

is modi�ed,

the value of the quality assoiated with the father P

ould be onsequently modi�ed due to the equation

(1). A sequene of modi�ations may then happen,

leading to a bak-propagation of the prior modi�-

ation. This ends as soon as the onsisteny law is

ful�lled by the qualities of all the nodes.

If all the pereptual states are onsidered to lead

to the losing state E, the learning stage has failed.

Then, the FAIL bit (see �g. 4) is set to 1.

2.5 Deision-making.

The deision-making (that is to say the �ring of

an output hannel) of an ativated CbMU remains
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I3

I2

O1

O2

Perceptive
area Z1

Perceptive
area Z2

I3

I2

1
3 4

2

a b c

e fd

Z2
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I2

I1

E

ending state (CST turns to 0)

C2

C1

P 1
1

1

C_P C_OCNG

PR1

PR2

Figure 6: The internal struture of a CbMU: a set

of two pereptive areas ( Z

1

and Z

2

linked with the

two output hannels O

1

and O

2

) and a set of pre-

onneted bits (P is a bit linked with a pereptive

state of the CbMU = (Box 2 Z

1

; Box 2 Z

2

) ), C

1

(resp.C

2

) is a bit assoiated with the �ring of the

hannel 1 (resp. 2), given that the pereptive state

at time t is P. C P is a pointer to the urrent ati-

vated P, C O is a pointer to the urrent ativated

output hannel and the CNG bit is set to 1 when the

C P bit has just been modi�ed (transition between

two pereptual states).

1 0

1 0 0 0

0

1

1

1

1 1

P

C2C1

maximization

layer
minimization

layer

P’ PP

Figure 7: Detail of the graph assoiated with the

learning proess of a CbMU. The urrent pereptive

state is P . The past experiene of the agent allows it

to detet the transition to one pereptive state (PP)

from P when the hoie C

2

is made. The ativation

of the output O

2

make the pereptive state turn to

P', whih reates a new ar (dashed line). Then,

the onsisteny law is broken so that C

2

moves to

0 and, by retro-propagation, P turns to 0 too.



unhanged while the C P bit (see �g. 6) is equal to

0 (the input data remains in the C P state).

When a transition between two pereptual states

is deteted (the CNG bit turns to 1), the new �red

output hannel C O is the one whih assoiated

V

C O

is maximal. If two or more hannels annot

be disriminated with the former rule, the one

whih priority PR (see �g. 6) is maximal is eleted.

If two or more hannels annot be disriminated

with this rule, one is randomly hosen.

2.6 Global learning algorithm.

A CbMU an be seen as an independent proess

whih interats with other proesses, by the way

of the ACT bit, the CST BIT, the CNX bit and

the output hannels O. Its learning phase begins as

soon as the ACT bit turns to 1 (the CbMU is alled

by another proess), given that the onnexion is al-

lowed by the CbMU (the CNX bit is equal to 1).

It stops when the ACT bit turns to 0 (the alling

proess disonnet the CbMU) or the CST bit turns

to 0 (the onstraint is not ful�lled).

Step 1 - (when the ACT bit turns to 1) Retrieval

of the internal parameters C P and C O (by the

deision-making rule: see paragraph 2.5), given the

urrent input vetor I. The CNG bit is set to 0.

Step 2 - (while the CNG bit remains equal to 0)

The output hannel linked with C O is �red.

Step 3 - [learning phase℄ (when the CNG bit turns

to 1 and the CST bit is equal to 1) Retrieval of

the new internal parameters C P' and C O'. If the

bits pointed by C O and C P' are not onneted

yet, onnet them and run the onsisteny law to

eventually orret the value of the bits into the per-

eptual graph. Set the CNG bit to 0, and return to

step 2.

Step 3' - [learning phase, failure deteted℄ (when

the CNG bit turns to 1 and the CST bit is equal

to 0) If the bit pointed by C O and the E bit are

not onneted yet, onnet them and run the on-

sisteny law to eventually orret the value of the

bits into the pereptual graph. Set the CNX bit to

0 (the CbMU disonnets itself).

2.7 Hierarhial onnexion of Cb-

MUs.

In this paragraph, a basi idea of how to onnet

CbMUs is given. The main objetive is to divide the

whole behaviour into smaller ones that are driven

by partiular onstraints.

In the �gure 8, the art-pole problem is divided into
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ACT
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CNX
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(cart)

master
activation

O1

O2

SELECTED
O1

SELECTED

O2

CST 3
CbMU 3

CST 2
CbMU 2

Figure 8: The art-pole problem is arried out with

three CbMUs: one is dediated to the balane of

the pole (CbMU 3), one is dediated to the bal-

ane of the art (CbMU 2) and one (the master) is

oordinating the two other behaviours (CbMU 1).

three tasks, whih are learnt together:

1. balane the pole (CbMU 3, CST 3)

2. balane the art (CbMU 2, CST 2)

3. oordinate CbMU 2 and CbMU 3 (CbMU 1,

CST1=CST3 if O2 is seleted or CST1=CST2

if O1 is seleted)

CbMU 2 and CbMU 3 are \speialised" and

they are learning independently from eah other,

whereas CbMU 1 has to learn how to swith from a

art balaning ontext to a pole balaning ontext

and vie versa. So, the ACT bit of CbMU 2 and

CbMU 3 are onneted to the output hannels of

CbMU 1: when CbMU 1 hoose to �re O

1

(resp.

O

2

), CbMU 2 (resp. CbMU 3) is ativated and

hoose among the \push left" and the \push right"

task.

If CbMU 2 is hosen by CbMU 1 and CST 3 is not

ful�lled, CbMU 1 has taken a mismathed deision

(the ontrol should have been given to CbMU 3 to

balane the pole).

3 Validation experiments.

3.1 Context of the experiments.

The experiments have been arried out with the

help of the Khepera simulator. Khepera (�g. 9)

is a small mobile robot developed at Eole Poly-

tehnique F�ed�erale de Lausanne (EPFL) whih has

a irular shape featuring 55 mm in diameter. It

possesses 8 infrared sensors s

1

; : : : ; s

8

, allowing the

measurement of distanes in a short range from



goal

s3 s4
s5

s6

ls2ls1

s8 s7

s1

s2

α

infrared
sensor

wheel
steering

Figure 9: The miniature mobile robot Khepera.

about 1 m to 5 m and the values they give ranges

from 0 (no obstale found) to 1024 (an obstale is

very near).

The Khepera simulator reprodues the imperfe-

tions of the sensors, so that it has been notied that

the experimental results dedued from the real and

the simulated Khepera are very lose.

In the following experiments, the simulated robot

is ontrolled by reeiving the values of the linear

speed ls

1

and ls

2

of its two wheels. These values

ranges from -10 to 10, orresponding to a maximal

speed of about 40 mm/s.

The objetive is to build a goal-seeking behaviour,

making the hypothesis that the absolute oordi-

nates of both the goal and the robot are supposed

to be preisely known at eah time. The obsta-

le avoidane is performed by a wall following be-

haviour, divided into two sub-tasks: follow the wall

on the left and follow the wall on the right.

Four di�erent input signals are utilised: I =

(d

left

; d

forward

; d

right

; �). � is the angle between

the robot diretion and the goal. The value

of the angle is supposed to be known at eah

time. d

left

= max(s

1

; s

2

), d

forward

= max(s

3

; s

4

),

d

right

= max(s

5

; s

6

).

Five basi tasks have been hosen, whih are linked

to ouples (ls

1

; ls

2

): T = fT

1

; T

2

; T

3

; T

4

; T

5

g. Their

spei�ation is given by table 1.

The robot possesses three internal binary feedbak

signals, whih are the three onstraints being used

by the CbMUs: BUMP, FWL and FWR. BUMP is

equal to 1 if the robot has bumped into an obsta-

le, else it is equal to 0. FWL (resp. FWR) is equal

to 0 if the d

left

(resp. d

right

) value has remained

smaller than 10 for more than 30 learning steps.

3.2 High level goal-seeking algo-

rithm.

The goal-seeking strategy followed by the robot is

a high-level algorithm in whih three ontexts are

onsidered: \reah the goal", \follow the wall on

the left" and \follow the wall on the right".

Tasks meaning ls

1

ls

2

T

1

Move forward 3 3

T

2

Move to the right 2 0

T

3

Move to the left 0 2

T

4

Turn on the right 2 -2

T

5

Turn on the left -2 2

Table 1: Basi tasks utilised in the experiments.

The ls

1

and ls

2

values ome without any unit.

[reah the goal℄

If the goal is behind the robot and it an go forward,

T

1

is exeuted.

If the robot is near from an obstale and the goal is

on the same diretion, it swithes to a ontext [follow

the wall℄

[follow the wall on the right (resp.left)℄

If (the goal is on the left (resp. right) side of the robot

and it an go on the left (resp. right) without olliding)

or (the goal is behind the robot and it an go forward

without olliding), it swithes its ontext to [reah the

goal℄.

Else the CbMU assoiated to a \follow the wall on

the right (resp. left)" behaviour is utilised.

3.3 Spei�ation of the CbMUs.

The algorithm desribed in the last paragraph

shows that the strategy of the robot uses its per-

eptive data. The learning proess fouses on their

management. Both the hierarhial set of CbMUs

and their internal onstraints, using BUMP, FWR

and FWL, are given by �g. 10. There are two mas-

ter CbMUs A

1

and A

0

1

, whih respetively aom-

plish the \follow the wall on the right" and \fol-

low the wall on the left" tasks. A

2

and A

0

2

Cb-

MUs must avoid obstales respetively by moving

on the left and by moving on the right. The per-

eptive areas assoiated to these four agents are

three dimensional ontinuous spaes generated by

(d

left

; d

forward

; d

right

); they are regularly divided

into 4� 4� 4 = 64 boxes.

The quality of the box �red in the pereptive area

of the agent A

2

assoiated to the hoie of T

3

is

used by the robot to know if it an turn on the left

without olliding (see paragraph 3.2). In the same

way, the quality of the box �red in the pereptive

area of the agent A

0

2

assoiated to the hoie of T

2

is used by the robot to know if it an turn on the

right without olliding.

3.4 Learning protool.

A learning proess, whih onsists of trials/failures

steps, is developed in the environment given by �g.
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Figure 10: Hierarhial onnexion of the CbMUs

used by Khepera.

11. A trial ends when a failure is deteted by one

of the CbMUs or when the goal is reahed.

All the CbMUs are learning from srath together.

In the next paragraph, we will onsider that the

learning stage is suessful if none of the four im-

plied CbMUs have made a mistake during 500000

onseutive learning steps.

3.5 Results.

10 learning attempts have been done for the global

learning of the four CbMUs. All the attempts were

suessful, ending after 57 up to 258 trials. Fig.13

shows the evolution of the number of onseutive

learning steps without failure (inluding all the Cb-

MUs) for one of the attempts. It is notied that

the duration of a trial is a funtion of the num-

ber of nodes in the pereptual graph (�g. 14 is

given for the CbMU A

2

). It simply means that

as soon as a CbMU has a wide pereptive expe-

riene, it is able to respet its onstraints with

making very few mistakes. Aording to the per-

eptive areas division proess (see paragraph 3.3),

the maximal number of nodes for all the CbMUs is

64+3�64+1 = 257. This number is nearly reahed

at the end of the learning stage. If the learning en-

vironment is hanged to another one (�g. 12), the

Khepera robot is able to go to the goal without any

failure after only 15 trials (new pereptive data have

been tested).

4 Disussion and future work.

The CbMUs are designed to permit an inremen-

tal learning of a global behaviour. The hierarhial

onnexion of the CbMUs allows to divide the whole

behaviour into smaller ones, eah of them driven

by a partiular pereptive onstraint. Aording to

its pereption, the aim of eah of a CbMU is to re-

spet its internal binary onstraints. To do so, it

Starting position of the robot

position of the goal

Figure 11: Goal-reahing behaviour in the Khepera

simulator environment.

must deide to exeute a basi task or to all an-

other CbMU, to let it hoose by itself.

The learning proedure of a CbMU is made by a

low CPU ost algorithm whih is based on the re-

spet of an internal onsisteny law between the

nodes of the built-on-line pereptive graph. The bi-

nary value of these nodes may be modi�ed when

a new ar is reated into the graph. Using a sim-

ulated Khepera robot whih aim is to learn a safe

goal-reahing behaviour, it has been shown that the

hierarhial set of CbMUs reated for this task are

able to learn at any time they are alled. Thus,

they an learn together in a high level algorithm

framework where they have to fae new pereptive

situations and must adapt themselves whenever an

inonsisteny between what has happened in real

and what was predited is disovered. Besides, the

algorithm an ope with very noisy pereptive data

produed by the infra-red sensors of Khepera.

The quality assoiated to eah node of the perep-

tive graph of a CbMU an be used to statially

reognise some pereptive situations. Moreover, it

should be possible to use the pereptive graph in a

dynami environment reognising proess: the exe-

ution of the wall-following task generates a parti-

ular yli sequene of pereptive states for the wall-

following agent. So, we are thinking of adding new

kind of nodes assoiated to yles into the graph to

ope with dynami reognition of situations.
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