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Abstra
t. Within this paper, a new kind of learning agents - so 
alled Constraint based

Memory Units (CbMU) - is des
ribed. The framework is the in
remental building of a


omplex behaviour, given a set of basi
 tasks and a set of per
eptive 
onstraints that must

be ful�lled to a
hieve the behaviour; the de
ision problem may be non-Markovian. At ea
h

time, one of the basi
 tasks is exe
uted, so that the 
omplex behaviour is a temporal sequen
e

of elementary tasks.

A CbMU 
an be modelled as an adaptive swit
h whi
h learns to 
hoose among its set of

output 
hannels the one to be a
tivated (given its per
eptive data and a short term memory),

in order to respe
t a parti
ular 
onstraint. An output 
hannel may be linked either to the

�ring of a basi
 task or to the a
tivation of another CbMU; this allows a hierar
hi
al de
isional

pro
ess, implying di�erent levels of 
ontexts.

The dynami
s of the system is learnt by the mean of a per
eptive graph and the 
y
les

dete
ted by the short term memory of a CbMU are utilised as sub-goals to build internal


ontexts. The learning pro
edure of a CbMU is a reinfor
ement learning inspired algorithm

based on an heuristi
 whi
h does not need internal parameters. It is a
hieved by a 
onsisten
y

law between the binary values of the 
onne
ted nodes of the per
eptive graph, inspired from

the AI minimax algorithm.

In this arti
le, an example of programming with CbMUs is given, using a simulated Khepera

robot. The obje
tive is to build a goal-rea
hing behaviour whi
h is formulated by a high

level strategy 
omposed of logi
al rules using per
eptive primitives. Four CbMUs are 
reated,

ea
h one dedi
ated to the exploitation of parti
ular per
eptive data, and �ve basi
 tasks are

utilised.

1 Introdu
tion.

1.1 Development 
ontext.

Within the framework of mobile roboti
s, it is often

diÆ
ult to establish a relationship between the data

per
eived by the robot and the behaviour it must

a
hieve a

ording to its input data.

Indeed, the per
eptive data may be very noisy or

may not be interpreted easily, so that modelling

the mapping between per
eption and 
ould be a

very diÆ
ult task. Reinfor
ement learning meth-

ods (Watkins, 1989) have been widely used in that


ontext (Lin, 1992),(Asada et al., 1996), mainly be-


ause they do not need a prior knowledge about the

pro
ess model. Moreover, they theoreti
ally a
hieve

in
remental learning and they 
an 
ope with a pos-

sible inertia of the system. But �nding suitable in-

ternal parameters for those algorithms is not intu-

itive and may be a diÆ
ult task (Bersini and Gor-

rini, 1996). Besides, it is not easy to �nd a 
om-

promise between the stability and the robustness

of the algorithm and its in
remental 
hara
teristi
.

So, the learning stage may be fast, but the amount

of time needed to develop a su

essful experiment

is often important. Finally, given that the rein-

for
ement methods need to suÆ
iently explore the



per
eption spa
e before �nding a suitable solution,

learning to �t a 
omplex behaviour in a reasonable

lapse of time turns to be impossible without �nding

out some 
hara
teristi
s of the pro
ess, leading to

a problem with a signi�
antly de
reased per
eption

spa
e. A solution 
ould be to divide the whole task

into 
oordinated sub-tasks, ea
h one being easier to

learn than the 
omplex behaviour. However, the

problem is turned into another one: 
hoosing to ex-

e
ute a pre
ise sub-task is often tri
ky, espe
ially

if the 
hoi
e depends on the per
eptual data of the

agent. In that 
ase, applying a simple swit
hing is

not generally suÆ
ient; the agent has to learn to

de
ide whi
h sub-task is to be exe
uted a

ording

to its input data. Moreover, when a failure in the

learning pro
ess o

urs, one has to know if the 
ause

of the mistake is due to a misleading 
hoi
e of a

sub-task or to an internal de�
ien
y of the ele
ted

sub-task unit. In the last eventuality, it 
ould be

ne
essary to modify this unit to make it avoiding

the same mistake. So, it must have the 
apa
ity

to learn at anytime it is used: this is an important

fo
us of in
remental learning methods.

1.2 Overview.

The framework is the in
remental building of a 
om-

plex behaviour, given a �xed set of basi
 tasks. We

suppose that the desired task 
an be seen as a set

of 
onstraints. For example, the 
art pole prob-

lem (�g. 1) possesses two 
onstraints whi
h must

be veri�ed at ea
h time: X 2 [X

min

; X

max

℄ and

� 2 [�

min

; �

max

℄.

So, a de
isional pro
ess must be learnt, a

ording to

the per
eptive 
onstraints, in order to ful�l them at

ea
h time. A CbMU is a part of the de
isional pro-


ess. It is an adaptive swit
h whi
h learns to 
hoose

among its output 
hannels the one to be a
tivated,

given its input data. Here, the learning 
riteria is

the respe
t of the CbMU 
onstraint. Thus, it dif-

fers from the typi
al reinfor
ement based methods,

whereas it has some hard links with the reinfor
e-

ment learning 
on
ept: it is a trial/failure method

whi
h does not need a prior knowledge of the pro-


ess model and it is in
remental.

1.3 Validation of the 
omputing

method that uses CbMUs.

A general goal-seeking problem will be 
omputed, in

whi
h the obsta
le avoidan
e is performed by a wall-

following behaviour. To do so, the mobile robot

Khepera (Mondada et al., 1994) simulator written

by O.Mi
hel (Mi
hel, 1996), running on Unix-like

Xmin Xmax

Θ Θ

Θ

min max

X

Figure 1: The 
art pole problem: a typi
al 
on-

straint based issue.

operating systems, will be utilised, whi
h allows to

test the robustness of the algorithm in a very noisy

per
eptive data 
ontext. The in
remental 
apabil-

ity and the learning rapidity of the algorithm will

be shown.

2 Constraint based Memory

Unit spe
i�
ations.

2.1 Main ideas

framework In this paper, we suppose that the task

whi
h is to learn 
an be a
hieved with a temporal

sequen
e of a �nite set of basi
 tasks (let p be the

number of the basi
 tasks). Thus, at ea
h time, one

of them is exe
uted, in order to ful�l a set of binary


onstraints. A 
onstraintK 
an be written like this:

8t;X

min

< X(t) or like this: 8t;X(t) < X

max

where

X is one signal of the 
ontinuous input spa
e of the

learning agent.

hierar
hi
al de
omposition of the task Let


onsider a very simple task (T ): \follow a wall",

whi
h is 
arried out with three basi
 tasks: \go for-

ward", \move on the left" and \move on the right".

The task 
an be divided into \follow a wall on the

left"(T

1

) OR \follow the wall on the right"(T

2

). T

1


an be expressed like this: \do not bump into a

wall on the left"(T

3

) AND \do not be too far from

the wall on your left"(T

4

). The same de
omposition


an be done for (T

2

). The 
hoi
e between T

1

and T

2

is 
ontext-dependant; one de
ides to exe
ute one of

the two sub-tasks depending on two di�erent 
on-

texts: \there is a wall on the left and there is no ob-

sta
le on the right"(C

1

) and \there is a wall on the

right and there is no obsta
le on the left"(C

2

); the


hoi
e between T

3

and T

4

is also 
ontext-dependant:

\Am I going to bump into the wall ?"(C

3

) and \Am

I going to be too far from the wall ?"(C

4

). All the


ontexts 
an be expressed with 
onstraints.

We noti
e that the 
hoi
e among the three basi


tasks implies a hierar
hi
al de
isional pro
ess at

ea
h time:



(T ) [K

T

= K

T

1

OR K

T

2

℄ IF CONTEXT(T)=C

1

DO T

1

ELSE IF CONTEXT(T)=C

2

DO T

2

ELSE

This is not a proper 
ontext for following a wall

(T

1

) [K

T

1

℄ IF CONTEXT(T

1

)=C

3

DO T

3

ELSE IF

CONTEXT(T

1

)=C

4

DO T

4

ELSE 
hoose the basi


task \go forward"

(T

3

) Choose the basi
 task \move on the right"

(T

4

) Choose the basi
 task \move on the left"

K

T

1


an be expressed with the input signals of the

system.

(some identi
al sub-tasks 
an be done for (T

2

) )

This basi
 example shows that we have built a pro-

gram with some a priori knowledge upon what we

pre
isely know about the task (for example, \if I

am far from the wall on my left side, move on the

left"). The bounds of the 
ontexts and the swit
hes

from one 
ontext to another have to be learnt. This

is done by the CbMUs, ea
h one 
oping with a par-

ti
ular swit
h (C

1

$ C

2

,C

3

$ C

4

). The de
om-

position may redu
e the input spa
e or the output

spa
e for ea
h learning swit
h.

Thus, knowing the hierar
hi
al de
omposition of

the 
onstraints and the set of basi
 tasks, the prob-

lem is to shape the di�erent 
ontexts and to learn

how the dynami
s brings the system from a 
ontext

to another to ful�l the 
onstraints.

Context spe
i�
ation We assume that a 
ontext

is not redu
ed to an area of the input spa
e but

also in
ludes a short term memory (the task may

be non-Markovian). Thus, a de
ision is taken a
-


ording to the 
urrent input signal and the 
ontent

of the short term memory.

Coarse des
ription of a CbMU A CbMU has a

spe
i�
 
onstraint to 
ope with. Its input spa
e is


ontinuous and is divided into a set of boxes (let n

be the dimension of the input spa
e). The CbMU

may swit
h from one sub-task to another one when

its input signal moves from one box to another.

The binary 
onstraint of the CbMU is a set of 
on-

ditions upon some of the 
omponents of the input

spa
e. For example, in the 
art-pole problem, two

of the four input 
omponents possess a 
onstraint

(X and �).

The CbMU learning pro
ess is based on a 
oarse

learning of the dynami
s of the system, by the mean

of a per
eptive graph (�g. 2). Ea
h box of the in-

put spa
e is asso
iated to a pre
ise node (round

node). The a
tion of 
hoosing a sub-task when en-

tering a box (when the input signal moves from one

box to another) is linked to a square node. The ar


from a round node to a square node symbolises the


hoi
e of the CbMU whereas the ar
 from a square

to a round node represents the response of the dy-

nami
s of the system when having 
hosen a pre
ise

sub-task from a parti
ular box. The node \E" is

rea
hed whenever the 
onstraint is not ful�lled.

When entering a box, a sub-task is sele
ted. The de-


ision is taken regarding the binary quality of ea
h

a
tion node.

Consisten
y law Ea
h node of the per
eptive

graph possesses a binary quality (- or +). At the be-

ginning of the learning pro
ess, the quality of ea
h

node is +, ex
ept the quality of the ending node (-).

For we 
onsider the learning of the dynami
s as a

two players games (the CbMU and the dynami
s),

the qualities may be turned to - using a 
onsisten
y

law between the 
onne
ted nodes, derivated from

the AI minimax algorithm. This may happen when

a new ar
 is dis
overed. So, a CbMU may learn

(modi�es its quality values) only when a new fea-

ture in the dynami
s in dis
overed.

Main hypothesis: the 
y
les within the per-


eptive graph are of spe
ial interest Remem-

ber that we want to ful�l a 
onstraint at ea
h time.

For the per
eptive graph possesses a �nite number

of nodes, some 
y
les may appear. Our hypothesis

is that the 
y
les may be used to build the internal


ontexts of the CbMU.

Let's take the example of the pole-balan
ing prob-

lem with a 1-dimensional input spa
e generated by

�. The 
onstraint is � 2 [�0:2rad; 0:2rad℄ and the

two basi
 tasks are \push on the left" and \push on

the right".[-0.2,0.2℄ is divided into 10 states S

1

::S

10

(�g. 3). The problem is 
learly non-Markovian be-


ause we do not know the angular speed of the pole;

we 
annot build a su

essful poli
y if only one a
-

tion is asso
iated to ea
h state.

Let 
onsider a short term memory 
ontaining the

last 5 states rea
hed. If a state appears twi
e in

this memory, a 
y
le has been performed and a new


ontext is 
reated (with its own poli
y). We 
an

build a su

essful poli
y with the following rule:

(At the beginning of the trial, no spe
ial 
ontext)

IF � > 0 PUSH ON THE RIGHT ELSE PUSH ON

THE LEFT

(A 
y
le has been performed) Let S = [S

min

; S

max

℄

be the last state in the short term memory. The pol-

i
y is: IF S

max

> 0 (IF � > 0:04 PUSH ON THE

RIGHT ELSE PUSH ON THE LEFT) ELSE (IF

� > �0:04 PUSH ON THE RIGHT ELSE PUSH

ON THE LEFT)

Although this rule is very simple, it permits to bal-

an
e the pole for 100000 steps at least, even with a

15 per
ent noise upon �.

So, the basi
 idea is that when a 
y
le is dis
overed

in a per
eptive graph, a spe
ial node and a new

meta-a
tion are 
reated: the spe
ial node means \I

have just done this 
y
le" and the meta-a
tion is
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Figure 2: The per
eptive graph of a CbMU.

the sequen
e of state/a
tion performed in this 
y-


le. And a 
ontext is the 
ombination of the last


y
le en
ountered and an area in the input spa
e.

Advantages of the proposed method

� The hierar
hi
al de
omposition of the task

through the di�erent 
onstraints permits to

bring some a priori knowledge, redu
ing the in-

put or the output spa
e for ea
h learning pro-


ess. At ea
h time, the de
ision involves dif-

ferent levels of 
ontexts whi
h �lter the input

data

� The CbMUs 
an 
ope with Partially observable

Markov de
ision problems (POMDPs): the de-

te
tion of 
y
les into the per
eptive graph is

used to build new internal 
ontexts. A 
y-


le is a kind of sub-goal whi
h is memorised,

like in the HQ-Learning method (Wiering and

S
hmidhuber, 1997). But the number of possi-

ble sub-goals does not need to be �xed at the

beginning of the learning stage.

� A CbMU is able to adapt itself whenever a new

ar
 is 
reated in its per
eptive graph, breaking

the 
onsisten
y law upon the qualities of some

nodes.

� There are no internal parameters.

� The learning pro
ess is not CPU 
onsuming,

be
ause it only 
onsists on adding nodes or ar
s

and performing min or max operations upon

the qualities of the nodes.

Drawba
ks of the proposed method

� The learning pro
ess is designed for 
onstraint

based tasks (no optimal poli
y)

� The number of input signals must be small to

have a reasonable number of nodes.

0 0.02 0.06 0.10 0.200.16-0.20 -0.16 -0.10 -0.06 -0.02

S1 S2 S3 S4 S5 S7 S8 S9 S10S6

Figure 3: The pole-balan
ing problem with a 1-

dimensional input spa
e.
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FAIL CNX

Figure 4: The external stru
ture of a CbMU.

2.2 External stru
ture of a CbMU.

A CbMU (�g. 4) is a bla
k box 
omposed of three

kinds of inputs: the per
eptive data, whi
h is a ve
-

tor (I

1

; :::; I

n

) 2 R

n

, the CST bit, whi
h is the

binary value of the 
onstraint at time t, and the

ACT bit, whi
h is the 
urrent state of a
tivation

of the CbMU. An output 
hannel among the ve
-

tor (O

1

; :::; O

p

) 2 f0; 1g

p

may be �red only if the

ACT bit is set to 1 (the CbMU is a
tivated). At

ea
h time, one and only one 
hannel may be a
ti-

vated. It represents the 
hoi
e of the CbMU, given

the per
eptive data (I

1

; :::; I

n

), in order to respe
t

the 
onstraint given by the CST bit.

The 
hoi
e leads to a modi�
ation of the CbMU

environment, so that it 
hanges the values of the

input data, leading to a possible 
hange of the CST

bit (�g. 5 ). The external available informations

are:

� the binary qualities (V

1

; :::; V

p

) 2 f0; 1g

p

asso-


iated to the �ring of the output 
hannels. If

V

k

is set to 0, it means that the a
tivation of

the 
hannel k is 
onsidered to lead (sooner or

later) to a non-respe
t of the 
onstraint CST

(see paragraph 2.4).

� The FAIL bit, whi
h is set to 1 if the learning

pro
edure of the CbMU has failed (see para-

graph 2.4)

� The CNX bit, whi
h is set to 1 if the 
onnexion

to the CbMU is allowed (the ACT bit modi�
a-

tion is permitted by the CbMU). The allowan
e


ondition is: FAIL=0 and CST=1. If the CNX

bit equals 0, the ACT bit is automati
ally set

to 0 (the CbMU dis
onne
ts itself).



CbMU

feedback signal
CST

output channel activated

modification
environment

input vector I

Figure 5: Diagram showing the links between a

CbMU and its environment, while the CNX bit re-

mains equal to 1.

2.3 Internal stru
ture of a CbMU.

The CbMU is internally 
omposed of two main

items (�g. 6), whi
h goal is to provide at ea
h time

a quality to the �ring of ea
h available output 
han-

nel, given a parti
ular input data:

� a set of per
eptual areas fZ

1

; :::; Z

p

g, ea
h one

linked to a parti
ular output 
hannel. Ea
h

Z

k

2 R

n

k

�n

is 
onne
ted to some of the input


hannels of the CbMU and is divided a priori

into a set of b

k

boxes Box

j;j2f1;:::;b

k

g

k


reated

a

ordingly to the following set of equations:

8

>

>

>

>

>

<

>

>

>

>

>

:

8k 2 f1; : : : ; pg

S

j2f1;:::;b

k

g

Box

j

k

= Z

k

8 fj; lg 2 f1; : : : ; pg

2

; j 6= l;

Box

j

k

T

Box

l

k

= ;

Box

j

k

= fI = (I

1

; : : : ; I

n

k

) /

8l 2 f1; : : : ; n

k

g ;m

j

l

� I

l

< M

j

l

g

Thus, ea
h box Box

j

k

is parameterised by

n

k


ouples of values (m

j

l

;M

j

l

) whi
h are the

boundary values for ea
h per
eptive input sig-

nal used by the per
eptive area Z

k

asso
iated

with the 
hannel k of the CbMU.

� a set of pre-
onne
ted bits, whose initial value

is 1, divided into two 
ategories:

1. the per
eptual state bits P, ea
h of them

may be asso
iated to a set of p boxes

fBox

j

1

1

; :::; Box

j

p

p

g.

2. the 
hoi
e bits C, ea
h of them pre-


onne
ted to a per
eptual state bit.

The pre-existing ending state E 
orresponds

to a non-respe
t of the CST 
onstraint (CST

turns to 0).

The way the per
eptual areas are divided is 
onsid-

ered to be an a priori knowledge: it is not modi�ed

during the learning stage of the CbMU.

Short term memory and 
y
le dete
tion It re-


alls the last 5 a
tion nodes the CbMU has rea
hed.

If the last element of the short term memory is equal

to one of the four others, a 
y
le has just been per-

formed and the CbMU swit
hes to a new 
ontext.

All the 
ontexts are asso
iated to a pre
ise 
y
le

and possess their own per
eptive graph; the system

swit
hes from a 
ontext K

i

to a 
ontext K

j

by per-

forming the 
y
le asso
iated toK

j

in the per
eptive

graph of K

i

.

2.4 Learning pro
edure of a CbMU.

Introdu
tion The proposed learning algorithm

has some hard links with the reinfor
ement learn-

ing 
on
ept: it is a trial/failure method, it does

not need a prior knowledge of the pro
ess model, it


opes with the temporal 
redit assignment problem

and it is in
remental.

However, it is not based on an optimisation method,

but on the respe
t of binary per
eptive 
onstraints.

Moreover, ea
h CbMU may learn (that is to say

\adapts itself to 
orre
t a dete
ted in
onsisten
y be-

tween the real fa
ts and the predi
ted ones") when-

ever it is a
tivated.

The obje
tive of ea
h pre-
onne
ted set of bits is to

evaluate the impa
t of a 
hoi
e among the O

k

on

the evolution of the per
eption signal I re
eived by

the CbMU. The binary value of a P bit expresses

the quality of the asso
iated per
eptive state, that

is to say the 
apability of the CbMU to �nd a se-

quen
e of 
hoi
es from this state in order to respe
t

the 
onstraint of the CbMU.The binary value of a C

bit expresses the quality of a 
hoi
e from a pre
ise

per
eptive state.

The learning algorithm is based on two items:

� the on-line building of 
onnexions between the

sets of pre-
onne
ted bits(so 
alled the per
ep-

tive graph), making an internal representation

of the dynami
s of the system.

� a 
onsisten
y law between two 
onne
ted bits

of the per
eptive graph, derived from the AI

minimax algorithm (Ri
h, 1983).

The per
eptive graph. The obje
tive is to eval-

uate the impa
t of a 
hoi
e among the O

k

on the

evolution of the per
eption signal I re
eived by the

CbMU. To do so, while the CST bit remains equal

to 1, the CbMU possesses at ea
h time a single a
-

tive per
eptual state P. When a failure is dete
ted

(CST turns to 0), the CbMU is in the spe
ial state

E.

Thus, the CbMU A

i

has a �nite number of states,

in
luding an ending state E. The dynami
s of the

system makes the agent move from one state P to

another state P', a

ording to the 
hoi
e C

i

made



among the elements of O. The transition P ! P

0

produ
es an ar
 between the pre-
onne
ted C

i

bit

of the per
eptual state P and the per
eptual bit P'.

If the result of the 
hoi
e O

i

is a failure (the CST

bit turns to 0), an ar
 is made between the pre-


onne
ted C

i

bit of the per
eptual state P and the

ending state E (the E bit is always equal to 0).

The 
onsisten
y law. The problem whi
h 
on-

sists on taking a de
ision a

ording to the ful�lment

of 
onstraints, with a given dynami
s of the system

may be seen as a two players game: the CbMU and

the dynami
s. The aim of the CbMU is to never

rea
h the losing state E , whi
h quality q

E

is 0. To

do so, we use the minimax algorithm: the minimax

sear
hing tree is the per
eptual graph and the eval-

uation fun
tion values are the qualities (the value

of the bits). The 
onsisten
y law applied for ea
h

node (these are the bits) of the graph is given by the

following two relationships. The �rst one is dealing

about the per
eptive bits P , whereas the se
ond one

is applied to the pre-
onne
ted bits C asso
iated to

a de
ision-making when the per
eptive state of the

CbMU is P :

q

P

= max

C

i

2Child(P )

fq

C

i

g (1)

q

C

= min

P

i

2Child(C)

fq

P

i

g (2)

Where Child(P ) is the set of the 
hildren of P in

the graph and Child(C) is the set of the 
hildren of

C.

Using the 
onsisten
y law to learn. As soon

as an ar
 from a C

i

bit to a P

0

bit is 
reated

while the dynami
s makes the per
eptual data of

the agent evolve, Child(C

i

) may be modi�ed, there-

fore the 
onsisten
y relationship 
ould be broken

(�g. 7). In that 
ase, the value of C

i

is for
ed in

order to respe
t the equation (2). If q

C

i

is modi�ed,

the value of the quality asso
iated with the father P


ould be 
onsequently modi�ed due to the equation

(1). A sequen
e of modi�
ations may then happen,

leading to a ba
k-propagation of the prior modi�-


ation. This ends as soon as the 
onsisten
y law is

ful�lled by the qualities of all the nodes.

If all the per
eptual states are 
onsidered to lead

to the losing state E, the learning stage has failed.

Then, the FAIL bit (see �g. 4) is set to 1.

2.5 De
ision-making.

The de
ision-making (that is to say the �ring of

an output 
hannel) of an a
tivated CbMU remains

I1

I3

I2

O1

O2

Perceptive
area Z1

Perceptive
area Z2

I3

I2

1
3 4

2

a b c

e fd

Z2

Z1
I2

I1

E

ending state (CST turns to 0)

C2

C1

P 1
1

1

C_P C_OCNG

PR1

PR2

Figure 6: The internal stru
ture of a CbMU: a set

of two per
eptive areas ( Z

1

and Z

2

linked with the

two output 
hannels O

1

and O

2

) and a set of pre-


onne
ted bits (P is a bit linked with a per
eptive

state of the CbMU = (Box 2 Z

1

; Box 2 Z

2

) ), C

1

(resp.C

2

) is a bit asso
iated with the �ring of the


hannel 1 (resp. 2), given that the per
eptive state

at time t is P. C P is a pointer to the 
urrent a
ti-

vated P, C O is a pointer to the 
urrent a
tivated

output 
hannel and the CNG bit is set to 1 when the

C P bit has just been modi�ed (transition between

two per
eptual states).

1 0

1 0 0 0

0

1

1

1

1 1

P

C2C1

maximization

layer
minimization

layer

P’ PP

Figure 7: Detail of the graph asso
iated with the

learning pro
ess of a CbMU. The 
urrent per
eptive

state is P . The past experien
e of the agent allows it

to dete
t the transition to one per
eptive state (PP)

from P when the 
hoi
e C

2

is made. The a
tivation

of the output O

2

make the per
eptive state turn to

P', whi
h 
reates a new ar
 (dashed line). Then,

the 
onsisten
y law is broken so that C

2

moves to

0 and, by retro-propagation, P turns to 0 too.



un
hanged while the C P bit (see �g. 6) is equal to

0 (the input data remains in the C P state).

When a transition between two per
eptual states

is dete
ted (the CNG bit turns to 1), the new �red

output 
hannel C O is the one whi
h asso
iated

V

C O

is maximal. If two or more 
hannels 
annot

be dis
riminated with the former rule, the one

whi
h priority PR (see �g. 6) is maximal is ele
ted.

If two or more 
hannels 
annot be dis
riminated

with this rule, one is randomly 
hosen.

2.6 Global learning algorithm.

A CbMU 
an be seen as an independent pro
ess

whi
h intera
ts with other pro
esses, by the way

of the ACT bit, the CST BIT, the CNX bit and

the output 
hannels O. Its learning phase begins as

soon as the ACT bit turns to 1 (the CbMU is 
alled

by another pro
ess), given that the 
onnexion is al-

lowed by the CbMU (the CNX bit is equal to 1).

It stops when the ACT bit turns to 0 (the 
alling

pro
ess dis
onne
t the CbMU) or the CST bit turns

to 0 (the 
onstraint is not ful�lled).

Step 1 - (when the ACT bit turns to 1) Retrieval

of the internal parameters C P and C O (by the

de
ision-making rule: see paragraph 2.5), given the


urrent input ve
tor I. The CNG bit is set to 0.

Step 2 - (while the CNG bit remains equal to 0)

The output 
hannel linked with C O is �red.

Step 3 - [learning phase℄ (when the CNG bit turns

to 1 and the CST bit is equal to 1) Retrieval of

the new internal parameters C P' and C O'. If the

bits pointed by C O and C P' are not 
onne
ted

yet, 
onne
t them and run the 
onsisten
y law to

eventually 
orre
t the value of the bits into the per-


eptual graph. Set the CNG bit to 0, and return to

step 2.

Step 3' - [learning phase, failure dete
ted℄ (when

the CNG bit turns to 1 and the CST bit is equal

to 0) If the bit pointed by C O and the E bit are

not 
onne
ted yet, 
onne
t them and run the 
on-

sisten
y law to eventually 
orre
t the value of the

bits into the per
eptual graph. Set the CNX bit to

0 (the CbMU dis
onne
ts itself).

2.7 Hierar
hi
al 
onnexion of Cb-

MUs.

In this paragraph, a basi
 idea of how to 
onne
t

CbMUs is given. The main obje
tive is to divide the

whole behaviour into smaller ones that are driven

by parti
ular 
onstraints.

In the �gure 8, the 
art-pole problem is divided into

CST ACT FAIL CNX

CST

CST

ACT

ACT

FAIL

FAIL

CNX

CNX

CbMU 1

CbMU 2

CbMU 3

X

X_DOT

THETA

THETA_DOT

X

X_DOT

THETA

THETA_DOT

X in [Xmin,Xmax]

THETA in [THETA_min,THETA_max]

Push left

Push right

Push left

Push right

(master)

(pole)

(cart)

master
activation

O1

O2

SELECTED
O1

SELECTED

O2

CST 3
CbMU 3

CST 2
CbMU 2

Figure 8: The 
art-pole problem is 
arried out with

three CbMUs: one is dedi
ated to the balan
e of

the pole (CbMU 3), one is dedi
ated to the bal-

an
e of the 
art (CbMU 2) and one (the master) is


oordinating the two other behaviours (CbMU 1).

three tasks, whi
h are learnt together:

1. balan
e the pole (CbMU 3, CST 3)

2. balan
e the 
art (CbMU 2, CST 2)

3. 
oordinate CbMU 2 and CbMU 3 (CbMU 1,

CST1=CST3 if O2 is sele
ted or CST1=CST2

if O1 is sele
ted)

CbMU 2 and CbMU 3 are \spe
ialised" and

they are learning independently from ea
h other,

whereas CbMU 1 has to learn how to swit
h from a


art balan
ing 
ontext to a pole balan
ing 
ontext

and vi
e versa. So, the ACT bit of CbMU 2 and

CbMU 3 are 
onne
ted to the output 
hannels of

CbMU 1: when CbMU 1 
hoose to �re O

1

(resp.

O

2

), CbMU 2 (resp. CbMU 3) is a
tivated and


hoose among the \push left" and the \push right"

task.

If CbMU 2 is 
hosen by CbMU 1 and CST 3 is not

ful�lled, CbMU 1 has taken a mismat
hed de
ision

(the 
ontrol should have been given to CbMU 3 to

balan
e the pole).

3 Validation experiments.

3.1 Context of the experiments.

The experiments have been 
arried out with the

help of the Khepera simulator. Khepera (�g. 9)

is a small mobile robot developed at E
ole Poly-

te
hnique F�ed�erale de Lausanne (EPFL) whi
h has

a 
ir
ular shape featuring 55 mm in diameter. It

possesses 8 infrared sensors s

1

; : : : ; s

8

, allowing the

measurement of distan
es in a short range from



goal

s3 s4
s5

s6

ls2ls1

s8 s7
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α
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Figure 9: The miniature mobile robot Khepera.

about 1 
m to 5 
m and the values they give ranges

from 0 (no obsta
le found) to 1024 (an obsta
le is

very near).

The Khepera simulator reprodu
es the imperfe
-

tions of the sensors, so that it has been noti
ed that

the experimental results dedu
ed from the real and

the simulated Khepera are very 
lose.

In the following experiments, the simulated robot

is 
ontrolled by re
eiving the values of the linear

speed ls

1

and ls

2

of its two wheels. These values

ranges from -10 to 10, 
orresponding to a maximal

speed of about 40 mm/s.

The obje
tive is to build a goal-seeking behaviour,

making the hypothesis that the absolute 
oordi-

nates of both the goal and the robot are supposed

to be pre
isely known at ea
h time. The obsta-


le avoidan
e is performed by a wall following be-

haviour, divided into two sub-tasks: follow the wall

on the left and follow the wall on the right.

Four di�erent input signals are utilised: I =

(d

left

; d

forward

; d

right

; �). � is the angle between

the robot dire
tion and the goal. The value

of the angle is supposed to be known at ea
h

time. d

left

= max(s

1

; s

2

), d

forward

= max(s

3

; s

4

),

d

right

= max(s

5

; s

6

).

Five basi
 tasks have been 
hosen, whi
h are linked

to 
ouples (ls

1

; ls

2

): T = fT

1

; T

2

; T

3

; T

4

; T

5

g. Their

spe
i�
ation is given by table 1.

The robot possesses three internal binary feedba
k

signals, whi
h are the three 
onstraints being used

by the CbMUs: BUMP, FWL and FWR. BUMP is

equal to 1 if the robot has bumped into an obsta-


le, else it is equal to 0. FWL (resp. FWR) is equal

to 0 if the d

left

(resp. d

right

) value has remained

smaller than 10 for more than 30 learning steps.

3.2 High level goal-seeking algo-

rithm.

The goal-seeking strategy followed by the robot is

a high-level algorithm in whi
h three 
ontexts are


onsidered: \rea
h the goal", \follow the wall on

the left" and \follow the wall on the right".

Tasks meaning ls

1

ls

2

T

1

Move forward 3 3

T

2

Move to the right 2 0

T

3

Move to the left 0 2

T

4

Turn on the right 2 -2

T

5

Turn on the left -2 2

Table 1: Basi
 tasks utilised in the experiments.

The ls

1

and ls

2

values 
ome without any unit.

[rea
h the goal℄

If the goal is behind the robot and it 
an go forward,

T

1

is exe
uted.

If the robot is near from an obsta
le and the goal is

on the same dire
tion, it swit
hes to a 
ontext [follow

the wall℄

[follow the wall on the right (resp.left)℄

If (the goal is on the left (resp. right) side of the robot

and it 
an go on the left (resp. right) without 
olliding)

or (the goal is behind the robot and it 
an go forward

without 
olliding), it swit
hes its 
ontext to [rea
h the

goal℄.

Else the CbMU asso
iated to a \follow the wall on

the right (resp. left)" behaviour is utilised.

3.3 Spe
i�
ation of the CbMUs.

The algorithm des
ribed in the last paragraph

shows that the strategy of the robot uses its per-


eptive data. The learning pro
ess fo
uses on their

management. Both the hierar
hi
al set of CbMUs

and their internal 
onstraints, using BUMP, FWR

and FWL, are given by �g. 10. There are two mas-

ter CbMUs A

1

and A

0

1

, whi
h respe
tively a

om-

plish the \follow the wall on the right" and \fol-

low the wall on the left" tasks. A

2

and A

0

2

Cb-

MUs must avoid obsta
les respe
tively by moving

on the left and by moving on the right. The per-


eptive areas asso
iated to these four agents are

three dimensional 
ontinuous spa
es generated by

(d

left

; d

forward

; d

right

); they are regularly divided

into 4� 4� 4 = 64 boxes.

The quality of the box �red in the per
eptive area

of the agent A

2

asso
iated to the 
hoi
e of T

3

is

used by the robot to know if it 
an turn on the left

without 
olliding (see paragraph 3.2). In the same

way, the quality of the box �red in the per
eptive

area of the agent A

0

2

asso
iated to the 
hoi
e of T

2

is used by the robot to know if it 
an turn on the

right without 
olliding.

3.4 Learning proto
ol.

A learning pro
ess, whi
h 
onsists of trials/failures

steps, is developed in the environment given by �g.



A1 A1’

A2’A2
!BUMP !BUMP

T5

T2

T1

T4

T3

!BUMP&FWR !BUMP&FWL

Figure 10: Hierar
hi
al 
onnexion of the CbMUs

used by Khepera.

11. A trial ends when a failure is dete
ted by one

of the CbMUs or when the goal is rea
hed.

All the CbMUs are learning from s
rat
h together.

In the next paragraph, we will 
onsider that the

learning stage is su

essful if none of the four im-

plied CbMUs have made a mistake during 500000


onse
utive learning steps.

3.5 Results.

10 learning attempts have been done for the global

learning of the four CbMUs. All the attempts were

su

essful, ending after 57 up to 258 trials. Fig.13

shows the evolution of the number of 
onse
utive

learning steps without failure (in
luding all the Cb-

MUs) for one of the attempts. It is noti
ed that

the duration of a trial is a fun
tion of the num-

ber of nodes in the per
eptual graph (�g. 14 is

given for the CbMU A

2

). It simply means that

as soon as a CbMU has a wide per
eptive expe-

rien
e, it is able to respe
t its 
onstraints with

making very few mistakes. A

ording to the per-


eptive areas division pro
ess (see paragraph 3.3),

the maximal number of nodes for all the CbMUs is

64+3�64+1 = 257. This number is nearly rea
hed

at the end of the learning stage. If the learning en-

vironment is 
hanged to another one (�g. 12), the

Khepera robot is able to go to the goal without any

failure after only 15 trials (new per
eptive data have

been tested).

4 Dis
ussion and future work.

The CbMUs are designed to permit an in
remen-

tal learning of a global behaviour. The hierar
hi
al


onnexion of the CbMUs allows to divide the whole

behaviour into smaller ones, ea
h of them driven

by a parti
ular per
eptive 
onstraint. A

ording to

its per
eption, the aim of ea
h of a CbMU is to re-

spe
t its internal binary 
onstraints. To do so, it

Starting position of the robot

position of the goal

Figure 11: Goal-rea
hing behaviour in the Khepera

simulator environment.

must de
ide to exe
ute a basi
 task or to 
all an-

other CbMU, to let it 
hoose by itself.

The learning pro
edure of a CbMU is made by a

low CPU 
ost algorithm whi
h is based on the re-

spe
t of an internal 
onsisten
y law between the

nodes of the built-on-line per
eptive graph. The bi-

nary value of these nodes may be modi�ed when

a new ar
 is 
reated into the graph. Using a sim-

ulated Khepera robot whi
h aim is to learn a safe

goal-rea
hing behaviour, it has been shown that the

hierar
hi
al set of CbMUs 
reated for this task are

able to learn at any time they are 
alled. Thus,

they 
an learn together in a high level algorithm

framework where they have to fa
e new per
eptive

situations and must adapt themselves whenever an

in
onsisten
y between what has happened in real

and what was predi
ted is dis
overed. Besides, the

algorithm 
an 
ope with very noisy per
eptive data

produ
ed by the infra-red sensors of Khepera.

The quality asso
iated to ea
h node of the per
ep-

tive graph of a CbMU 
an be used to stati
ally

re
ognise some per
eptive situations. Moreover, it

should be possible to use the per
eptive graph in a

dynami
 environment re
ognising pro
ess: the exe-


ution of the wall-following task generates a parti
-

ular 
y
li
 sequen
e of per
eptive states for the wall-

following agent. So, we are thinking of adding new

kind of nodes asso
iated to 
y
les into the graph to


ope with dynami
 re
ognition of situations.
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