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Introduction.

Constraint based Memory Units for Reac-
tive Navigation Learning
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*CEMIF - Systémes Complezes, 40, Rue du Pelvour - 91020 EVRY CEDEX - FRANCE,
davesne @cemif.univ-evry.fr

** CEMIF - Systémes Complezes, 40, Rue du Pelvour - 91020 EVRY CEDEX - FRANCE,
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Abstract. Within this paper, a new kind of learning agents - so called Constraint based
Memory Units (CbMU) - is described. The framework is the incremental building of a
complex behaviour, given a set of basic tasks and a set of perceptive constraints that must
be fulfilled to achieve the behaviour; the decision problem may be non-Markovian. At each
time, one of the basic tasks is executed, so that the complex behaviour is a temporal sequence
of elementary tasks.

A CbMU can be modelled as an adaptive switch which learns to choose among its set of
output channels the one to be activated (given its perceptive data and a short term memory),
in order to respect a particular constraint. An output channel may be linked either to the
firing of a basic task or to the activation of another CbMU; this allows a hierarchical decisional
process, implying different levels of contexts.

The dynamics of the system is learnt by the mean of a perceptive graph and the cycles
detected by the short term memory of a CbMU are utilised as sub-goals to build internal
contexts. The learning procedure of a CbMU is a reinforcement learning inspired algorithm
based on an heuristic which does not need internal parameters. It is achieved by a consistency
law between the binary values of the connected nodes of the perceptive graph, inspired from
the AI minimax algorithm.

In this article, an example of programming with CbMUs is given, using a simulated Khepera
robot. The objective is to build a goal-reaching behaviour which is formulated by a high
level strategy composed of logical rules using perceptive primitives. Four CbMUs are created,
each one dedicated to the exploitation of particular perceptive data, and five basic tasks are
utilised.

cause they do not need a prior knowledge about the

1.1 Development context.

Within the framework of mobile robotics, it is often
difficult to establish a relationship between the data
perceived by the robot and the behaviour it must
achieve according to its input data.

Indeed, the perceptive data may be very noisy or
may not be interpreted easily, so that modelling
the mapping between perception and could be a
very difficult task. Reinforcement learning meth-
ods (Watkins, 1989) have been widely used in that
context (Lin, 1992),(Asada et al., 1996), mainly be-

process model. Moreover, they theoretically achieve
incremental learning and they can cope with a pos-
sible inertia of the system. But finding suitable in-
ternal parameters for those algorithms is not intu-
itive and may be a difficult task (Bersini and Gor-
rini, 1996). Besides, it is not easy to find a com-
promise between the stability and the robustness
of the algorithm and its incremental characteristic.
So, the learning stage may be fast, but the amount
of time needed to develop a successful experiment
is often important. Finally, given that the rein-
forcement methods need to sufficiently explore the



perception space before finding a suitable solution,
learning to fit a complex behaviour in a reasonable
lapse of time turns to be impossible without finding
out some characteristics of the process, leading to
a problem with a significantly decreased perception
space. A solution could be to divide the whole task
into coordinated sub-tasks, each one being easier to
learn than the complex behaviour. However, the
problem is turned into another one: choosing to ex-
ecute a precise sub-task is often tricky, especially
if the choice depends on the perceptual data of the
agent. In that case, applying a simple switching is
not generally sufficient; the agent has to learn to
decide which sub-task is to be executed according
to its input data. Moreover, when a failure in the
learning process occurs, one has to know if the cause
of the mistake is due to a misleading choice of a
sub-task or to an internal deficiency of the elected
sub-task unit. In the last eventuality, it could be
necessary to modify this unit to make it avoiding
the same mistake. So, it must have the capacity
to learn at anytime it is used: this is an important
focus of incremental learning methods.

1.2 Overview.

The framework is the incremental building of a com-
plex behaviour, given a fixed set of basic tasks. We
suppose that the desired task can be seen as a set
of constraints. For example, the cart pole prob-
lem (fig. 1) possesses two constraints which must
be verified at each time: X € [X,in, Ximaez] and
0¢c [eminyemaz]-

So, a decisional process must be learnt, according to
the perceptive constraints, in order to fulfil them at
each time. A CbMU is a part of the decisional pro-
cess. It is an adaptive switch which learns to choose
among its output channels the one to be activated,
given its input data. Here, the learning criteria is
the respect of the CbMU constraint. Thus, it dif-
fers from the typical reinforcement based methods,
whereas it has some hard links with the reinforce-
ment learning concept: it is a trial/failure method
which does not need a prior knowledge of the pro-
cess model and it is incremental.

1.3 Validation of the computing
method that uses CbMUs.

A general goal-seeking problem will be computed, in
which the obstacle avoidance is performed by a wall-
following behaviour. To do so, the mobile robot
Khepera (Mondada et al., 1994) simulator written
by O.Michel (Michel, 1996), running on Unix-like
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Figure 1: The cart pole problem: a typical con-
straint based issue.

operating systems, will be utilised, which allows to
test the robustness of the algorithm in a very noisy
perceptive data context. The incremental capabil-
ity and the learning rapidity of the algorithm will
be shown.

2 Constraint based Memory
Unit specifications.

2.1 DMain ideas

framework In this paper, we suppose that the task
which is to learn can be achieved with a temporal
sequence of a finite set of basic tasks (let p be the
number of the basic tasks). Thus, at each time, one
of them is executed, in order to fulfil a set of binary
constraints. A constraint K can be written like this:
Vt, Xonin < X (t) or like this: Vi, X (t) < X,pqwhere
X is one signal of the continuous input space of the
learning agent.

hierarchical decomposition of the task Let
consider a very simple task (7"): “follow a wall”,
which is carried out with three basic tasks: “go for-
ward”, “move on the left” and “move on the right”.
The task can be divided into “follow a wall on the
left” (T1) OR “follow the wall on the right” (7). T}
can be expressed like this: “do not bump into a
wall on the left” (T5) AND “do not be too far from
the wall on your left” (Ty). The same decomposition
can be done for (T%). The choice between T} and T»
is context-dependant; one decides to execute one of
the two sub-tasks depending on two different con-
texts: “there is a wall on the left and there is no ob-
stacle on the right”(C;) and “there is a wall on the
right and there is no obstacle on the left” (Cs); the
choice between T3 and T} is also context-dependant:
“Am I going to bump into the wall ?”(C3) and “Am
I going to be too far from the wall ?”(Cy4). All the
contexts can be expressed with constraints.

We notice that the choice among the three basic
tasks implies a hierarchical decisional process at
each time:



(T') [Kr = K7, OR K] IF CONTEXT(T)=C,
DO Ty ELSE IF CONTEXT(T)=C> DO T> ELSE
This is not a proper context for following a wall
(Th) [Kq,] IF CONTEXT(T7)=C5 DO T3 ELSE IF
CONTEXT(T1)=C4 DO T4 ELSE choose the basic
task “go forward”

(T3) Choose the basic task “move on the right”
(T4) Choose the basic task “move on the left”

K71, can be expressed with the input signals of the
system.

(some identical sub-tasks can be done for (73) )
This basic example shows that we have built a pro-
gram with some a priori knowledge upon what we
precisely know about the task (for example, “if I
am far from the wall on my left side, move on the
left”). The bounds of the contexts and the switches
from one context to another have to be learnt. This
is done by the CbMUs, each one coping with a par-
ticular switch (Cy < C3,C3 < C4). The decom-
position may reduce the input space or the output
space for each learning switch.

Thus, knowing the hierarchical decomposition of
the constraints and the set of basic tasks, the prob-
lem is to shape the different contexts and to learn
how the dynamics brings the system from a context
to another to fulfil the constraints.

Context specification We assume that a context
is not reduced to an area of the input space but
also includes a short term memory (the task may
be non-Markovian). Thus, a decision is taken ac-
cording to the current input signal and the content
of the short term memory.

Coarse description of a CbMU A CbMU has a
specific constraint to cope with. Its input space is
continuous and is divided into a set of boxes (let n
be the dimension of the input space). The CbMU
may switch from one sub-task to another one when
its input signal moves from one box to another.
The binary constraint of the CbMU is a set of con-
ditions upon some of the components of the input
space. For example, in the cart-pole problem, two
of the four input components possess a constraint
(X and 0).

The CbMU learning process is based on a coarse
learning of the dynamics of the system, by the mean
of a perceptive graph (fig. 2). Each box of the in-
put space is associated to a precise node (round
node). The action of choosing a sub-task when en-
tering a box (when the input signal moves from one
box to another) is linked to a square node. The arc
from a round node to a square node symbolises the
choice of the CbMU whereas the arc from a square
to a round node represents the response of the dy-
namics of the system when having chosen a precise

sub-task from a particular box. The node “E” is
reached whenever the constraint is not fulfilled.
When entering a box, a sub-task is selected. The de-
cision is taken regarding the binary quality of each
action node.

Consistency law Each node of the perceptive
graph possesses a binary quality (- or +). At the be-
ginning of the learning process, the quality of each
node is +, except the quality of the ending node (-).
For we consider the learning of the dynamics as a
two players games (the CbMU and the dynamics),
the qualities may be turned to - using a consistency
law between the connected nodes, derivated from
the Al minimax algorithm. This may happen when
a new arc is discovered. So, a CbMU may learn
(modifies its quality values) only when a new fea-
ture in the dynamics in discovered.

Main hypothesis: the cycles within the per-
ceptive graph are of special interest Remem-
ber that we want to fulfil a constraint at each time.
For the perceptive graph possesses a finite number
of nodes, some cycles may appear. Our hypothesis
is that the cycles may be used to build the internal
contexts of the CbMU.

Let’s take the example of the pole-balancing prob-
lem with a 1-dimensional input space generated by
6. The constraint is 6 € [-0.2rad, 0.2rad] and the
two basic tasks are “push on the left” and “push on
the right”.[-0.2,0.2] is divided into 10 states S1..S1o
(fig. 3). The problem is clearly non-Markovian be-
cause we do not know the angular speed of the pole;
we cannot build a successful policy if only one ac-
tion is associated to each state.

Let consider a short term memory containing the
last 5 states reached. If a state appears twice in
this memory, a cycle has been performed and a new
context is created (with its own policy). We can
build a successful policy with the following rule:
(At the beginning of the trial, no special context)
IF 6 > 0 PUSH ON THE RIGHT ELSE PUSH ON
THE LEFT

(A cycle has been performed) Let S = [Syin, Smaz)
be the last state in the short term memory. The pol-
icy is: IF Spee > 0 (IF 6 > 0.04 PUSH ON THE
RIGHT ELSE PUSH ON THE LEFT) ELSE (IF
# > —0.04 PUSH ON THE RIGHT ELSE PUSH
ON THE LEFT)

Although this rule is very simple, it permits to bal-
ance the pole for 100000 steps at least, even with a
15 percent noise upon 6.

So, the basic idea is that when a cycle is discovered
in a perceptive graph, a special node and a new
meta-action are created: the special node means “I
have just done this cycle” and the meta-action is
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Figure 2: The perceptive graph of a CbMU.

the sequence of state/action performed in this cy-
cle. And a context is the combination of the last
cycle encountered and an area in the input space.
Advantages of the proposed method

e The hierarchical decomposition of the task
through the different constraints permits to
bring some a priori knowledge, reducing the in-
put or the output space for each learning pro-
cess. At each time, the decision involves dif-
ferent levels of contexts which filter the input
data

e The CbMUs can cope with Partially observable
Markov decision problems (POMDPs): the de-
tection of cycles into the perceptive graph is
used to build new internal contexts. A cy-
cle is a kind of sub-goal which is memorised,
like in the HQ-Learning method (Wiering and
Schmidhuber, 1997). But the number of possi-
ble sub-goals does not need to be fixed at the
beginning of the learning stage.

e A CbMU is able to adapt itself whenever a new
arc is created in its perceptive graph, breaking
the consistency law upon the qualities of some
nodes.

e There are no internal parameters.

e The learning process is not CPU consuming,
because it only consists on adding nodes or arcs
and performing min or max operations upon
the qualities of the nodes.

Drawbacks of the proposed method

e The learning process is designed for constraint
based tasks (no optimal policy)

e The number of input signals must be small to
have a reasonable number of nodes.

1020 -016 010 -006 -002 0 002 006 0.0 016 020

Figure 3: The pole-balancing problem with a 1-
dimensional input space.
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Figure 4: The external structure of a CbMU.

2.2 External structure of a CbMU.

A CbMU (fig. 4) is a black box composed of three
kinds of inputs: the perceptive data, which is a vec-
tor (Ii,...,I,) € R™ the CST bit, which is the
binary value of the constraint at time t, and the
ACT bit, which is the current state of activation
of the CbMU. An output channel among the vec-
tor (O1,...,0p) € {0,1}? may be fired only if the
ACT bit is set to 1 (the CbMU is activated). At
each time, one and only one channel may be acti-
vated. It represents the choice of the CbMU, given
the perceptive data (1, ..., ), in order to respect
the constraint given by the CST bit.

The choice leads to a modification of the CbMU
environment, so that it changes the values of the
input data, leading to a possible change of the CST
bit (fig. 5 ). The external available informations
are:

e the binary qualities (Vi,...,Vp) € {0, 1}? asso-
ciated to the firing of the output channels. If
Vi is set to 0, it means that the activation of
the channel k is considered to lead (sooner or
later) to a non-respect of the constraint CST
(see paragraph 2.4).

e The FAIL bit, which is set to 1 if the learning
procedure of the CbMU has failed (see para-
graph 2.4)

e The CNX bit, which is set to 1 if the connexion
to the CbMU is allowed (the ACT bit modifica-
tion is permitted by the CbMU). The allowance
condition is: FAIL=0 and CST=1. If the CNX
bit equals 0, the ACT bit is automatically set
to 0 (the CbMU disconnects itself).
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Figure 5: Diagram showing the links between a
CbMU and its environment, while the CNX bit re-
mains equal to 1.

2.3 Internal structure of a CbMU.

The CbMU is internally composed of two main
items (fig. 6), which goal is to provide at each time
a quality to the firing of each available output chan-
nel, given a particular input data:

e a set of perceptual areas {Z1, ..., Z,}, each one
linked to a particular output channel. Each
Zy, € R™=" is connected to some of the input
channels of the CbMU and is divided a priori
into a set of by boxes Boxi’jE{l""’b’“} created
accordingly to the following set of equations:

Vi€ {L,....p} Ujeqr, sy Bow = Zi

V{il}e{l,....p} i #1,

Bow; (| Box), =

Boxy, ={I = (I1,...,1y,)/ _

Vie{l,...,ng},m) <I; <M}

Thus, each box Boazi is parameterised by
ny couples of values (mj], M]) which are the
boundary values for each perceptive input sig-

nal used by the perceptive area Z; associated
with the channel k of the CbMU.

e a set of pre-connected bits, whose initial value
is 1, divided into two categories:

1. the perceptual state bits P, each of them
may be associated to a set of p boxes
{Boz}', ..., Bor;’ }.

2. the choice bits C, each of them pre-
connected to a perceptual state bit.

The pre-existing ending state E corresponds
to a non-respect of the CST constraint (CST
turns to 0).

The way the perceptual areas are divided is consid-
ered to be an a priori knowledge: it is not modified
during the learning stage of the CbMU.

Short term memory and cycle detection It re-
calls the last 5 action nodes the CbMU has reached.
If the last element of the short term memory is equal

to one of the four others, a cycle has just been per-
formed and the CbMU switches to a new context.
All the contexts are associated to a precise cycle
and possess their own perceptive graph; the system
switches from a context K; to a context K; by per-
forming the cycle associated to K in the perceptive
graph of K.

2.4 Learning procedure of a CbMU.

Introduction The proposed learning algorithm
has some hard links with the reinforcement learn-
ing concept: it is a trial/failure method, it does
not need a prior knowledge of the process model, it
copes with the temporal credit assignment problem
and it is incremental.

However, it is not based on an optimisation method,
but on the respect of binary perceptive constraints.
Moreover, each CbMU may learn (that is to say
“adapts itself to correct a detected inconsistency be-
tween the real facts and the predicted ones”) when-
ever it is activated.

The objective of each pre-connected set of bits is to
evaluate the impact of a choice among the Oy on
the evolution of the perception signal I received by
the CbMU. The binary value of a P bit expresses
the quality of the associated perceptive state, that
is to say the capability of the CbMU to find a se-
quence of choices from this state in order to respect
the constraint of the CbMU.The binary value of a C
bit expresses the quality of a choice from a precise
perceptive state.

The learning algorithm is based on two items:

e the on-line building of connexions between the
sets of pre-connected bits(so called the percep-
tive graph), making an internal representation
of the dynamics of the system.

e a consistency law between two connected bits
of the perceptive graph, derived from the AI
minimax algorithm (Rich, 1983).

The perceptive graph. The objective is to eval-
uate the impact of a choice among the O on the
evolution of the perception signal I received by the
CbMU. To do so, while the CST bit remains equal
to 1, the CbMU possesses at each time a single ac-
tive perceptual state P. When a failure is detected
(CST turns to 0), the CbMU is in the special state
E.

Thus, the CbMU A; has a finite number of states,
including an ending state E. The dynamics of the
system makes the agent move from one state P to
another state P’, according to the choice C; made



among the elements of O. The transition P — P’
produces an arc between the pre-connected C; bit
of the perceptual state P and the perceptual bit P’.
If the result of the choice O; is a failure (the CST
bit turns to 0), an arc is made between the pre-
connected C; bit of the perceptual state P and the
ending state E (the E bit is always equal to 0).

The consistency law. The problem which con-
sists on taking a decision according to the fulfilment
of constraints, with a given dynamics of the system
may be seen as a two players game: the CbMU and
the dynamics. The aim of the CbMU is to never
reach the losing state £ , which quality ¢z is 0. To
do so, we use the minimax algorithm: the minimax
searching tree is the perceptual graph and the eval-
uation function values are the qualities (the value
of the bits). The consistency law applied for each
node (these are the bits) of the graph is given by the
following two relationships. The first one is dealing
about the perceptive bits P, whereas the second one
is applied to the pre-connected bits C' associated to
a decision-making when the perceptive state of the
CbMU is P:

= m , 1
w Ciec‘f?z%i(P) lac:} (L)
= i , 2
qc min ©) {ar} (2)

P;eChild

Where Child(P) is the set of the children of P in
the graph and Child(C) is the set of the children of
C.

Using the consistency law to learn. As soon
as an arc from a C; bit to a P’ bit is created
while the dynamics makes the perceptual data of
the agent evolve, Child(C;) may be modified, there-
fore the consistency relationship could be broken
(fig. 7). In that case, the value of C; is forced in
order to respect the equation (2). If g¢, is modified,
the value of the quality associated with the father P
could be consequently modified due to the equation
(1). A sequence of modifications may then happen,
leading to a back-propagation of the prior modifi-
cation. This ends as soon as the consistency law is
fulfilled by the qualities of all the nodes.

If all the perceptual states are considered to lead
to the losing state E, the learning stage has failed.
Then, the FAIL bit (see fig. 4) is set to 1.

2.5 Decision-making.

The decision-making (that is to say the firing of
an output channel) of an activated CbMU remains
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Figure 6: The internal structure of a CbMU: a set
of two perceptive areas ( Z; and Z, linked with the
two output channels O; and O» ) and a set of pre-
connected bits (P is a bit linked with a perceptive
state of the CbMU = (Boz € Z1, Box € Z3) ), Cy
(resp.Cs ) is a bit associated with the firing of the
channel 1 (resp. 2), given that the perceptive state
at time t is P. C_P is a pointer to the current acti-
vated P, C_O is a pointer to the current activated
output channel and the CNG bit is set to 1 when the
C_P bit has just been modified (transition between
two perceptual states).

maximization
layer

minimization
layer

Figure 7: Detail of the graph associated with the
learning process of a CbMU. The current perceptive
state is P. The past experience of the agent allows it
to detect the transition to one perceptive state (PP)
from P when the choice Cs is made. The activation
of the output O make the perceptive state turn to
P’, which creates a new arc (dashed line). Then,
the consistency law is broken so that C moves to
0 and, by retro-propagation, P turns to 0 too.



unchanged while the C_P bit (see fig. 6) is equal to
0 (the input data remains in the C_P state).
When a transition between two perceptual states
is detected (the CNG bit turns to 1), the new fired
output channel C'_O is the one which associated
Veo_o is maximal. If two or more channels cannot
be discriminated with the former rule, the one
which priority PR (see fig. 6) is maximal is elected.
If two or more channels cannot be discriminated
with this rule, one is randomly chosen.

2.6 Global learning algorithm.

A CbMU can be seen as an independent process
which interacts with other processes, by the way
of the ACT bit, the CST BIT, the CNX bit and
the output channels O. Its learning phase begins as
soon as the ACT bit turns to 1 (the CbMU is called
by another process), given that the connexion is al-
lowed by the CbMU (the CNX bit is equal to 1).
It stops when the ACT bit turns to 0 (the calling
process disconnect the CbMU) or the CST bit turns
to 0 (the constraint is not fulfilled).

Step 1 - (when the ACT bit turns to 1) Retrieval
of the internal parameters C_P and C_O (by the
decision-making rule: see paragraph 2.5), given the
current input vector I. The CNG bit is set to 0.
Step 2 - (while the CNG bit remains equal to 0)
The output channel linked with C_O is fired.

Step 3 - [learning phase] (when the CNG bit turns
to 1 and the CST bit is equal to 1) Retrieval of
the new internal parameters C_P’ and C_O’. If the
bits pointed by C_O and C_P’ are not connected
yet, connect them and run the consistency law to
eventually correct the value of the bits into the per-
ceptual graph. Set the CNG bit to 0, and return to
step 2.

Step 3’ - [learning phase, failure detected] (when
the CNG bit turns to 1 and the CST bit is equal
to 0) If the bit pointed by C_O and the E bit are
not connected yet, connect them and run the con-
sistency law to eventually correct the value of the
bits into the perceptual graph. Set the CNX bit to
0 (the CbMU disconnects itself).

2.7 Hierarchical connexion of Cb-
MUs.

In this paragraph, a basic idea of how to connect
CbMUs is given. The main objective is to divide the
whole behaviour into smaller ones that are driven
by particular constraints.

In the figure 8, the cart-pole problem is divided into

Xin [Xmin,Xmax]

— Pushleft
CbMU 2

X_DOT (cart)
cst]act] Fai] cnx Pushright
x
X_DOT,
= oMUl oL
| master)
THETA (masen) 02
= cstact[Fan] onx
THETA_DPT
THETA —— Pushleft
master
activation C(l:z:g 3
0 02 THETA_DOT | cst act] Fai] onx Pushrright
SELECTED

SELECTED

CsT2
CbMU 2

THETA in [THETA_min,THETA_max]

Figure 8: The cart-pole problem is carried out with
three CbMUs: one is dedicated to the balance of
the pole (CbMU 3), one is dedicated to the bal-
ance of the cart (CbMU 2) and one (the master) is
coordinating the two other behaviours (CbMU 1).

three tasks, which are learnt together:
1. balance the pole (CbMU 3, CST 3)
2. balance the cart (CbMU 2, CST 2)

3. coordinate CbMU 2 and CbMU 3 (CbMU 1,
CST1=CST3 if 02 is selected or CST1=CST2
if O1 is selected)

CbMU 2 and CbMU 3 are “specialised” and
they are learning independently from each other,
whereas CbMU 1 has to learn how to switch from a
cart balancing context to a pole balancing context
and vice versa. So, the ACT bit of CbMU 2 and
CbMU 3 are connected to the output channels of
CbMU 1: when CbMU 1 choose to fire Oy (resp.
03), CbMU 2 (resp. CbMU 3) is activated and
choose among the “push left” and the “push right”
task.

If CbMU 2 is chosen by CbMU 1 and CST 3 is not
fulfilled, CbMU 1 has taken a mismatched decision
(the control should have been given to CbMU 3 to
balance the pole).

3 Validation experiments.

3.1 Context of the experiments.

The experiments have been carried out with the
help of the Khepera simulator. Khepera (fig. 9)
is a small mobile robot developed at Ecole Poly-
technique Fédérale de Lausanne (EPFL) which has
a circular shape featuring 55 mm in diameter. It
possesses 8 infrared sensors si, ..., ss, allowing the
measurement of distances in a short range from
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Figure 9: The miniature mobile robot Khepera.

about 1 cm to 5 cm and the values they give ranges
from 0 (no obstacle found) to 1024 (an obstacle is
very near).

The Khepera simulator reproduces the imperfec-
tions of the sensors, so that it has been noticed that
the experimental results deduced from the real and
the simulated Khepera are very close.

In the following experiments, the simulated robot
is controlled by receiving the values of the linear
speed [s; and lsy of its two wheels. These values
ranges from -10 to 10, corresponding to a maximal
speed of about 40 mm/s.

The objective is to build a goal-seeking behaviour,
making the hypothesis that the absolute coordi-
nates of both the goal and the robot are supposed
to be precisely known at each time. The obsta-
cle avoidance is performed by a wall following be-
haviour, divided into two sub-tasks: follow the wall
on the left and follow the wall on the right.

Four different input signals are utilised: [ =
(dieft, dforward, drignt, ). « is the angle between
the robot direction and the goal. The value
of the angle is supposed to be known at each
time. djeyt = max(s1,s2), dforwarda = max(ss, s1),
dright = max(ss, s¢).

Five basic tasks have been chosen, which are linked
to couples (Is1,0s2): T ={T1,T5,T5,T4,T5}. Their
specification is given by table 1.

The robot possesses three internal binary feedback
signals, which are the three constraints being used
by the CbMUs: BUMP, FWL and FWR. BUMP is
equal to 1 if the robot has bumped into an obsta-
cle, else it is equal to 0. FWL (resp. FWR) is equal
to 0 if the djest (resp. dpigne ) value has remained
smaller than 10 for more than 30 learning steps.

3.2 High
rithm.

level goal-seeking algo-

The goal-seeking strategy followed by the robot is
a high-level algorithm in which three contexts are
considered: “reach the goal”, “follow the wall on
the left” and “follow the wall on the right”.

| Tasks | | ls1 | s |
T Move forward 3 3
Ts Move to the right 2 0
T3 Move to the left 0 2
Ty Turn on the right | 2 -2
Ts Turn on the left -2 2

meaning

Table 1: Basic tasks utilised in the experiments.
The Is; and lss values come without any unit.

[reach the goal]

If the goal is behind the robot and it can go forward,
T, is executed.

If the robot is near from an obstacle and the goal is
on the same direction, it switches to a context [follow
the wall]

[follow the wall on the right (resp.left)]

If (the goal is on the left (resp. right) side of the robot
and it can go on the left (resp. right) without colliding)
or (the goal is behind the robot and it can go forward
without colliding), it switches its context to [reach the
goal].

Else the CbMU associated to a “follow the wall on
the right (resp. left)” behaviour is utilised.

3.3 Specification of the CbMUs.

The algorithm described in the last paragraph
shows that the strategy of the robot uses its per-
ceptive data. The learning process focuses on their
management. Both the hierarchical set of CbMUs
and their internal constraints, using BUMP, FWR
and FWL, are given by fig. 10. There are two mas-
ter CbMUs A; and Af, which respectively accom-
plish the “follow the wall on the right” and “fol-
low the wall on the left” tasks. A, and A, Cb-
MUs must avoid obstacles respectively by moving
on the left and by moving on the right. The per-
ceptive areas associated to these four agents are
three dimensional continuous spaces generated by
(dieft, dforward, drignt); they are regularly divided
into 4 x 4 x 4 = 64 boxes.

The quality of the box fired in the perceptive area
of the agent A, associated to the choice of T3 is
used by the robot to know if it can turn on the left
without colliding (see paragraph 3.2). In the same
way, the quality of the box fired in the perceptive
area of the agent Al associated to the choice of T%
is used by the robot to know if it can turn on the
right without colliding.

3.4 Learning protocol.

A learning process, which consists of trials/failures
steps, is developed in the environment given by fig.
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Figure 10: Hierarchical connexion of the CbMUs
used by Khepera.

11. A trial ends when a failure is detected by one
of the CbMUs or when the goal is reached.

All the CbMUs are learning from scratch together.
In the next paragraph, we will consider that the
learning stage is successful if none of the four im-
plied CbMUs have made a mistake during 500000
consecutive learning steps.

3.5 Results.

10 learning attempts have been done for the global
learning of the four CbMUs. All the attempts were
successful, ending after 57 up to 258 trials. Fig.13
shows the evolution of the number of consecutive
learning steps without failure (including all the Cb-
MUs) for one of the attempts. It is noticed that
the duration of a trial is a function of the num-
ber of nodes in the perceptual graph (fig. 14 is
given for the CbMU A,). It simply means that
as soon as a CbMU has a wide perceptive expe-
rience, it is able to respect its constraints with
making very few mistakes. According to the per-
ceptive areas division process (see paragraph 3.3),
the maximal number of nodes for all the CbMUs is
64+3x 6441 = 257. This number is nearly reached
at the end of the learning stage. If the learning en-
vironment is changed to another one (fig. 12), the
Khepera robot is able to go to the goal without any
failure after only 15 trials (new perceptive data have
been tested).

4 Discussion and future work.

The CbMUs are designed to permit an incremen-
tal learning of a global behaviour. The hierarchical
connexion of the CbMUs allows to divide the whole
behaviour into smaller ones, each of them driven
by a particular perceptive constraint. According to
its perception, the aim of each of a CbMU is to re-
spect its internal binary constraints. To do so, it

Starting position of the robot
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\

| position of the goal

Figure 11: Goal-reaching behaviour in the Khepera
simulator environment.

must decide to execute a basic task or to call an-
other CbMU, to let it choose by itself.

The learning procedure of a CbMU is made by a
low CPU cost algorithm which is based on the re-
spect of an internal consistency law between the
nodes of the built-on-line perceptive graph. The bi-
nary value of these nodes may be modified when
a new arc is created into the graph. Using a sim-
ulated Khepera robot which aim is to learn a safe
goal-reaching behaviour, it has been shown that the
hierarchical set of CbMUs created for this task are
able to learn at any time they are called. Thus,
they can learn together in a high level algorithm
framework where they have to face new perceptive
situations and must adapt themselves whenever an
inconsistency between what has happened in real
and what was predicted is discovered. Besides, the
algorithm can cope with very noisy perceptive data
produced by the infra-red sensors of Khepera.

The quality associated to each node of the percep-
tive graph of a CbMU can be used to statically
recognise some perceptive situations. Moreover, it
should be possible to use the perceptive graph in a
dynamic environment recognising process: the exe-
cution of the wall-following task generates a partic-
ular cyclic sequence of perceptive states for the wall-
following agent. So, we are thinking of adding new
kind of nodes associated to cycles into the graph to
cope with dynamic recognition of situations.
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