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 

Abstract—The Timepix chip has been exposed to the outer 

space for the first time with the SATRAM (Space Application of 

Timepix-based Radiation Monitor) instrument on Proba-V 

(Project for On-Board Autonomy Vegetation), a European Space 

Agency’s (ESA) satellite. This study’s objective is to develop a 

new technique to improve the separation of protons and 

electrons, which are detected by the single layer Timepix detector 

in SATRAM. The current identification method, proposed by 

S. Gohl et al. [1], is based on pattern recognition and stopping 

power measurements. In this article, the limitations of this 

method are discussed. A new method based on neural network 

trained with Geant4 data is proposed. Its validation with 

SATRAM data is presented. Similarly, a neural network trained 

with Geant4 data is introduced. Its purpose is to deduce the 

particles’ incident energy using the energy deposited in the 

Timepix. 

 
Index Terms—Geant4, Monte-Carlo simulations, neural 

networks, radiation belts, radiation monitor, space environment, 

Timepix. 

I. INTRODUCTION 

ROTONS and electrons are trapped by the magnetic field 

of the Earth and constitute radiation belts [2]. These 

charged particles can interact with satellites’ 

components and cause damages [3]. Measurements are 

required to develop and improve models, such as AP-8, AE-8 

[4] [5], AP-9, AE-9 [6], or GREEN [7], describing the 

radiation environment. Indeed, this knowledge allows to 

predict the effects of particles on the satellites’ components, 

and therefore to prevent radiation effect damages on 

electronics. In order to detect and separate electrons and 

protons in a broad range of energies, devices with several 

sensing and shielding elements are typically employed [8]–

[12]. These radiation monitors have a mass of several 

kilograms which can cause difficulties to find flight 
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opportunities. This study’s aim is to propose a solution to 

measure simultaneously, with a single sensor, a wide energy 

range for protons and electrons. The detector shall be 

compatible with small satellites such as Cubesat, thus 

imposing a low power consumption, and small mass and 

volume requirements on the instrument. The Timepix chip 

[13], a 256 × 256 pixelated silicon sensor with a thickness of 

300 µm, is compatible with Cubesat. Several Timepix 

detectors flew [1] [14]–[16] e.g. on the LUCID experiment 

[17]. Furthermore, methods have been proposed to identify 

type of particles in radiation belts based on SATRAM 

measurements [1]. However, optimizations are required to 

improve these methods since some limitations have been 

noticed. 

In section II a brief presentation of the SATRAM 

instrument is given, along with a short description of the 

previous identification methods used. In section III a new 

particle identification method based on neural networks is 

proposed. In this section, the data base creation with Geant4, 

as well as the neural networks training and its validation with 

SATRAM data are discussed. A neural network for energy 

recognition for protons and electrons is proposed in section 

IV. Finally, conclusions are given in section V. 

II. PREVIOUS PARTICLE IDENTIFICATION METHOD BASED ON 

SATRAM DATA AND ITS LIMITATIONS 

 SATRAM [1] [14], a technology demonstrator, is the first 

instrument based on the use of the Timepix chip exposed to 

the outer space. It flew on the Proba-V satellite launched on 

May 7th, 2013 into a sun-synchronous orbit at an altitude of 

820 km. The SATRAM instrument consists of a Timepix chip 

and electronics, housed in an aluminum box. It weights a total 

of 380 g with a power consumption of 2.5 W. The Timepix 

chip [13], developed by the Medipix collaboration at CERN, is 

a hybrid semiconductor pixel detector, made up of a 300 µm 

thick silicon layer. Its 256 × 256 pixels of pitch size 55 µm are 

operated in the Time-over-Threshold (ToT) mode. The energy 

deposited by ionizing particles in each pixel is registered in 

the square matrix of pixels read out in frames of preset 

acquisition time. Ionizing particles passing through the 

Timepix sensor leave tracks in the pixel matrix. These tracks 

are sets of energy depositions in neighboring pixels and are 

referred to as clusters. Due to the frame based architecture, 

incident particle tracks may overlap in the sensor, thus 

A new technique based on convolutional neural 

networks to measure the energy of protons and 

electrons with a single Timepix detector  

M. Ruffenach, S. Bourdarie, B. Bergmann, S. Gohl, J. Mekki, and J. Vaillé  

P 



 2 

creating a single cluster. A method has been developed by 

S. Gohl et al. [1] to identify type of particles using the cluster 

shape, stopping power, cluster height, angle definition, mass 

and geometrical centers of the cluster. All these parameters are 

detailed in [1] and [18]. This identification method has been 

applied to SATRAM data to separate protons and electrons. 

World maps of proton and electron count rates obtained for 

SATRAM data from 10/01/2014 to 10/10/2014 are illustrated 

in Fig. 1. 

 

 
Fig. 1. Maps of count rates of electrons and protons obtained with the 
identification method, as described in [1], for SATRAM data from 10/01/2014 

to 10/10/2014. 

 The radiation belts’ axis of symmetry corresponds to the 

Earth's magnetic dipole axis, since the particles that are in the 

radiation belts are trapped by the Earth's magnetic field. At the 

level of the South Atlantic Anomaly (SAA), protons and 

electrons of the radiation belts are observed at a lower altitude, 

as the magnetic field is inclined and eccentric. Moreover, the 

outer electron belt is close to the Earth near to the polar cones. 

These characteristics are illustrated in Fig. 2. 

 

 
Fig. 2. A Low Earth Orbit satellite in the proton radiation belt (left) and in the 

electron radiation belts (right). 

 On satellites with a low orbit, this leads to the observation 

of strong electron fluxes near the poles, and of strong proton 

and electron fluxes at the SAA. No protons with an energy 

higher than several MeV are expected near the poles. Indeed, 

the Earth’s magnetic field for these magnetic field lines is too 

weak. Due to the SATRAM instrument’s shielding, protons 

with an energy lower than 20 MeV cannot reach the Timepix 

[1]. Hence, the SATRAM instrument cannot measure protons 

near the poles. Therefore, regarding Fig. 1, the major part of 

particles seems to be correctly classified. However, protons 

with an energy greater than 20 MeV are detected in large 

quantities near the poles while, at these locations, they cannot 

be trapped in the radiation belts. Such a feature does not 

support the radiation belt theory as measurements indicate 

high > 20 MeV proton fluxes beyond the magnetic shielding 

location. Besides, some characteristic structures of electrons as 

the one at the South-West of the SAA appear in the proton 

fluxes world map. This highlights the necessity to come up 

with algorithms with a better particle separation capability. In 

this paper, convolutional neural networks are used to improve 

the particle identification. 

III. PARTICLE IDENTIFICATION METHOD BASED ON NEURAL 

NETWORKS TRAINED WITH GEANT4 DATA 

Convolutional neural networks (CNNs) [19] are deep 

learning neural networks containing at least one layer where a 

convolution operation is made. They are widely used to 

analyze arrays of data such as images. Indeed, these 

algorithms detect patterns in data which allow their 

categorization into different classes. 

In most cases, tracks of protons and electrons in the 

Timepix are, depending on the energy and the incoming angle, 

quite different. CNNs detect features that are specific to an 

object. In particular, they may detect features characterizing 

tracks of protons and electrons in the Timepix, thus allowing 

to make the difference between both types of particles. For 

this purpose, CNNs need to be trained with labelled data. For 

particle type recognition, thousands of labelled data of protons 

and electrons are required. 

Furnell et al. [17] have tested a CNN to classify particles 

registered in Timepix on-board the LUCID experiment. To 

train the CNN, they use a web application called LUCID 

Trainer where volunteers classify tracks of particles. 

Constituted of 1800 particle tracks and valid only for the 

geometry of the LUCID instrument, the training data base is 

thus based entirely on human classification. 

It is quite difficult to label manually thousands of data. 

Moreover, labelling errors lead to poor learning of the neural 

network. A reliable data base generated automatically is 

required. In this work, Geant4 is used for the training and 

validation datasets. 

A. Creation of the data base with Geant4 

The Geant4 (Geometry ANd Tracking) [20] [21] toolkit 

allows to perform Monte-Carlo simulations reproducing the 

interaction between particles and matter. The SATRAM 

instrument model contains the Timepix sensor, PCB’s, and the 

aluminum box. The satellite is simplified to a block of 

aluminum with the corresponding stopping power. The 
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complete description of the SATRAM instrument can be 

found in [1]. An omnidirectional radiation field was created 

using a spherical source surrounding the SATRAM instrument 

with a cosine-law angular distribution of the particles’ initial 

velocities [22]. Ten million particles are simulated per incident 

energy, with 154 incident energies from 0.4 MeV to 5 MeV 

for electrons (with a step of 30 keV) and 161 incident energies 

from 17 MeV to 200 MeV for protons (with a step of 200 keV 

from 17 MeV to 30 MeV, a step of 1 MeV from 30 MeV to 

100 MeV, and a step of 4 MeV from 100 MeV to 200 MeV). 

Protons and electrons, respectively with an energy higher than 

200 MeV and 5 MeV, are not simulated. Indeed, protons of 

200 MeV and higher produce similar tracks in the SATRAM 

instrument, as do electrons of 5 MeV and higher. Also, 

electrons lower than 0.4 MeV and protons lower than 17 MeV 

are not simulated since they do not reach the Timepix due to 

the SATRAM instrument’s shielding. For each particle, the 

deposited energy in each pixel is registered at the output of the 

Geant4 simulations. Heavy ions are not simulated, since only 

the species predominantly present in the Earth’s space 

environment are taken into consideration. The error introduced 

will not be significant, as fluxes of heavy ions are very low 

compared to those of protons and electrons. However, this will 

lead to a misclassification if a track of a heavy ion is 

registered by the SATRAM instrument. It will be falsely 

classified as a proton or an electron. 

The advantage of using Geant4 to create the data base of 

labelled data is that the particles’ type and energy are known. 

The data base is separated into two sets for the training phase 

and the validation phase. Each set contains around 4000 tracks 

of protons and 4000 tracks of electrons. All energies simulated 

by Geant4 are used to create the training and the validation 

datasets, with the same number of particles taken into 

consideration for each incident energy. Energies chosen for 

simulations allow to take into account all the behaviors that a 

particle can have according to its direction of arrival, its type, 

and its energy. Each track has its corresponding label one-hot 

encoded (all input and output variables in machine learning 

algorithms must be numeric). Consequently, the 

corresponding label of an electron is 0, while it is 1 for a 

proton (it is an arbitrary choice). All the values of deposited 

energies are normalized to the maximum deposited energy 

value in a pixel found in the validation and the training data 

sets. This ensures better performances of the neural networks, 

in particular to avoid their divergence. First, computers lose 

accuracy when too large and too small numbers are used for 

mathematical operations. Then, corrections brought to weights 

are more homogeneous. Indeed, using normalized data, the 

different features vary on similar ranges of values. 

B. Discrimination of protons and electrons with neural 

networks 

The training data set is used to train the neural network to 

recognize the type of particles by analyzing tracks in the 

Timepix. The validation data set is then used to check the 

accuracy of the neural network to recognize the type of 

particles. The CNN’s architecture is based on convolution, 

pooling, activation, and fully connected layers. These layers 

are explained later in the paper. The Python library 

Tensorflow [23] is used to code the neural network. This tool, 

developed by Google, allows to build and train neural 

networks easily. Indeed, basic operations used in machine 

learning are available through optimized objects. Before 

training, weights of features and layers are initialized 

randomly. Then, they are modified at each epoch to improve 

the CNN’s performances for the particle type identification. 

An epoch is a complete pass (one forward pass and one 

backward pass) through the entire training samples. 

Training and validation sets created with Geant4 for the 

SATRAM instrument are used to train the CNN. Several 

architectures have been tested as well as several sets of hyper-

parameters. Hyper-parameters represent variables determining 

the neural network’s structure and how it is trained. Number 

of epochs, number of samples used during each epoch (also 

called batch size), type and number of layers, and also 

parameters of layers (number and size of filters…) are hyper-

parameters, as well as the learning rate which determines how 

quickly the model is adapted at each epoch. The best training 

has been obtained for a neural network composed of a 

convolutional layer, max-pooling layer and ReLU (Rectified 

Linear Units) layer, repeated twice, and two fully connected 

layers. This architecture is illustrated on Fig. 3. 

 

 
Fig. 3. Architecture of the neural network. 

The convolutional layers are used to detect features. Neural 

networks are invariant to scale and orientation changes using 

the max-pooling layers [24]. Activation layers ReLU [25] 

introduce non-linearity which allows to learn more complex 

functions. This leads to better performances during the 

training phase. Fully connected layers [26] are used to learn 

complex combinations. The softmax function [27] is used in 

the normalization layer to calculate the probability for each 

class. The expression of the softmax function is given in Eq. 1. 
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𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑥)𝑖 =

𝑒𝑥𝑝(𝑥𝑖)

∑ 𝑒𝑥𝑝(𝑥𝑗)𝐶
𝑗=1

 (1) 

 

where C is the number of elements of the x vector, or in other 

words the number of classes, and xi the ith component of the 

vector x. The class predicted by the CNN is the one which has 

the higher probability. 

 The cross-entropy is used to calculate the error of the neural 

network, that is, the difference between predicted labels and 

true labels. A neural network which is well trained has a cross-

entropy close to 0. Its expression is given in Eq. 2. 

 

 

𝐿 = −
1

𝑁
∑ ∑ 𝑦𝑖,𝑗𝑙𝑛(𝑝𝑖,𝑗)

𝐶

𝑗=1

𝑁

𝑖=1

 (2) 

 

where C is the number of classes, N the number of tracks that 

are analyzed, y the label one-hot encoded, and p the 

probabilities obtained at the softmax function output. 

During each epoch, a batch of 32 tracks picked randomly in 

the training data set with their corresponding labels is used to 

train the CNN with a learning rate of 10-4. Weights are 

adjusted in order to have a good correspondence between the 

output of the CNN and the labels given for input tracks. Once 

weights are adjusted, the CNN is tested on the entire 

validation set by comparing the outputs given by the neural 

network and their corresponding labels. The classification 

accuracy of the CNN is then computed. This process is 

repeated each time until the neural network has learned 

correctly. The learning phase ends when the accuracy of the 

identification is stabilized. It is not necessary to continue 

learning when the accuracy does not evolve, otherwise it could 

cause over-fitting (the network has memorized the training 

data and fails to generalize). The accuracy as well as the error 

calculated using the cross-entropy are illustrated on Fig. 4. 

 

 
Fig. 4. Evolution of the accuracy (top) and of the error (bottom) as a function 

of the number of epoch for the validation set. 

The error value for the validation set continuously decreases 

during the training phase, until it reaches a limit value. This 

means that the neural network learns correctly, thus excluding 

the case of over-fitting, the case of under-fitting (the network 

learns and generalizes but the optimal value has not yet been 

reached), as well as the case of non-learning (the network does 

not learn and does not generalize). After 50 epochs the 

accuracy stabilizes at 94.79 % for the validation set, which is a 

good result in the case of discriminating the types of particles 

in radiation belts. This means that the neural network is able to 

correctly differentiate between protons and electrons in 

94.79 % of cases, regardless of their energy and angle of 

incidence. Results are illustrated using a normalized confusion 

matrix given in Fig. 5. 

 

 

This means that the neural network is able to discriminate 

electron tracks in 98 % of cases, and proton tracks in 92 % of 

cases. The next step is to apply this neural network to real 

data. 

C. Validation of type recognition performed by neural 

networks with in-flight data 

Since the complete geometry of the SATRAM instrument 

as well as the satellite have been taken into consideration to 

perform Geant4 simulations, simulated tracks and real tracks 

must be similar. The aim of this section is to apply the neural 

network trained with Geant4 data to in-flight measurements 

performed by the SATRAM instrument on-board the Proba-V 

satellite. SATRAM data are analyzed for ten days from 

10/01/2014 to 10/10/2014. Consecutive frames have an 

exposure time of 20 s, 200 ms, and 2 ms. Only the frames with 

an occupancy lower than 20 % are considered, otherwise the 

large number of overlaps from various tracks makes the 

analysis with the neural network impossible. Indeed, clusters 

are composed of neighbour pixels. If two tracks overlap, they 

will falsely be considered as a single cluster. Therefore, this 

situation must be reduced by analyzing frames with an 

occupancy lower than 20 %. In addition, if a particle deposits 

energy in at least one pixel on the edges of the Timepix 

matrix, it is not taken into account. Indeed, truncated tracks 

are not treatable and lead to a bad classification. In addition to 

the measurements made by the Timepix, the satellite’s 

position (longitude, latitude, and altitude) is available for each 

frame. 

Fig. 5. Normalized confusion matrix for the type recognition. The numbers 

are in percent. 
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For each frame, each cluster is extracted individually. The 

deposited energy is normalized by the maximum value of 

deposited energy in a pixel obtained with Geant4 data. 

Normalized clusters are then analyzed by the neural network 

which produces an output corresponding to the particle’s type. 

This allows establishing maps of proton and electron count 

rates, expressed in number of clusters per second, obtained by 

neural network analysis for the SATRAM data. Results are 

given in Fig. 6. 

 

 
Fig. 6. Maps of electron (top) and proton (bottom) count rates obtained with 

the CNN applied to SATRAM data from 10/01/2014 to 10/10/2014. 

In Fig. 6, electrons are mostly observed near the poles at 

high latitudes and in the SAA, while protons are mostly found 

in the SAA. Some protons can be found near the poles, which 

is probably due to errors during the training phase. Moreover, 

particles are detected outside the SAA and the poles, 

especially in the case of electrons. Only particles 

predominantly present in radiation belts are taken into account 

during the training phase of the neural network. The CNN is 

not trained to recognize protons with an energy higher than 

200 MeV nor heavy ions (Z > 1). When analyzing the data 

acquired by the SATRAM instrument, if a track is produced 

by these particles, it is identified by default as being a proton 

or an electron. Then, the ions can also interact with the 

shielding of the SATRAM instrument and produce secondary 

particles, which are classified as electrons. However, particles 

fluxes detected outside the SAA and the poles are very low, 

even negligible, compared to those observed for protons and 

electrons in radiation belts. That is why the simulation of ion 

tracks to train the neural network is not considered in this 

paper. Some tracks measured outside the poles and the SAA 

classified as electron tracks are illustrated on Fig. 7. 

 

 
Fig. 7. Tracks detected outside the SAA and the poles classified as electrons 

by the neural network. 

Tracks shown in Fig. 7, classified as being produced by the 

interaction of electrons in the Timepix, may have actually 

been made by ions, including energetic protons from cosmic 

radiations. These tracks are indeed linear, which is a 

characteristic usually attributed to the tracks produced by 

protons rather than those produced by electrons. The low 

fluxes measured outside the SAA and the poles for the proton 

and electron maps are generally attributed to the product of 

cosmic rays, and not to protons and electrons trapped in 

radiation belts. 

Blanks observed for proton measurements near the poles 

and outside the SAA in Fig. 6 are not due to a lack of data but 

to the fact that the neural network has classified all tracks as 

electrons. Blanks observed at the middle of the SAA for 

protons and electrons are due to the processing of frames with 

an occupancy lower than 20%. Indeed, very high fluxes are 

observed inside the SAA and thus the occupancy is higher 

than 20% for this region, even by considering 2 ms exposure 

time frames. 

Results shown in Fig. 6 are encouraging. Indeed, protons 

and electrons are quite well distinguished by the neural 

network. This can be supported by other measurements. Maps 

of electron measurements made by the ICARE-NG [8] [9] 

(Influence sur les Composants Avancés des Radiations de 

l'Espace-Nouvelle Génération) instrument on-board the SAC-

D (Satellite for Scientific Applications-D) satellite are shown 

on Fig. 8, and maps of proton measurements made by the EPT 

[28] (Energetic Particle Telescope) instrument on-board 

Proba-V satellite are illustrated on Fig. 9. 
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Fig. 8. ICARE-NG electron fluxes for energies higher than 0.986 MeV in 

2014. 

 

 
Fig. 9. EPT proton fluxes for energies between 13 MeV and 29 MeV from 

January 2015 to June 2015. 

In Fig. 9, protons are only measured in the SAA while 

electrons are measured both in the SAA and near the poles in 

Fig. 8. These types of maps are produced by the analysis of 

SATRAM data with the neural network. 

IV. ENERGY RECOGNITION BASED ON NEURAL NETWORKS FOR 

PROTONS AND ELECTRONS 

The CNN developed in the previous section allows 

identifying particles’ type, i.e. protons and electrons. To go 

further, CNNs are tested to deduce from the tracks, in addition 

to the type, the incident energy of particles. The incident 

energy corresponds to the energy of the particle before it 

interacts with the instrument. 

A CNN is developed with an architecture identical to the 

one used for the particle identification, but with different 

hyper-parameters, to perform energy identification for 

protons. Data are divided into 10 classes in the energy range 

from 17 to 200 MeV. 

The neural network is trained with Geant4 data. The same 

Geant4 output files are used to create the training and the 

validation data sets. For each class, around 400 proton tracks 

are considered for the training data set and likewise, 400 

proton tracks for the validation data set. All energies simulated 

by Geant4 are used to create the training and the validation 

data sets, with the same number of particles taken into 

consideration for each class. Results obtained after the training 

of the CNN are illustrated in Fig. 10 using normalized 

confusion matrix. 

 

 
Fig. 10. Confusion matrix for the energy recognition in the case of protons. 

In Fig. 10 a good distinction between energy classes can be 

noticed. However, most of errors come from neighbour 

classes. For instance, a 50 MeV proton produces in the 

Timepix a similar track as the one produced by a 49 MeV 

proton. That is why errors between neighbour classes are 

observed. 

This trained neural network is used on SATRAM data to 

calculate proton fluxes. Tracks detected as protons by the 

neural network of type recognition are injected in this neural 

network for energy recognition. Fluxes of protons for an 

energy higher than 69 MeV (integrated fluxes above 69 MeV) 

are calculated. This energy range is chosen to be compared 

with ICARE-NG measurements on-board the JASON-2 

satellite at an altitude of 1336 km [9]. Proba-V and JASON-2 

are not on the same orbit. However, a tool developed by 

ONERA has been used to project fluxes measured by ICARE-

NG on-board JASON-2 as if they were performed on the same 

orbit as Proba-V [29]. Results are illustrated on Fig. 11 for 

ICARE-NG measurements. 

 

 
Fig. 11. Fluxes of protons with an energy higher than 69 MeV measured by 

ICARE-NG on-board the JASON-2 satellite projected at an altitude of 

820 km. 

Fluxes obtained by neural networks applied to SATRAM 

measurements are illustrated on Fig. 12. Fluxes are expressed 

in same units as those of ICARE-NG by dividing by the 

surface of the Timepix, by the exposure time, and by the solid 
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angle 4𝜋. 

 

 
Fig. 12. Fluxes of protons with an energy higher than 69 MeV measured by 

SATRAM on-board the Proba-V satellite using the neural network. 

Since proton fluxes are mostly observed in the SAA, they 

are calculated for a latitude of -30° for both instruments for a 

better comparison. Proton fluxes at a latitude of -30° are 

illustrated on Fig. 13 for SATRAM and ICARE-NG 

measurements. 

 

 
Fig. 13. Proton fluxes for energies higher than 69 MeV measured by ICARE-

NG and SATRAM at a latitude of -30°. 

 Globally, fluxes calculated for the SATRAM instrument 

and those obtained by ICARE-NG measurements projected on 

the Proba-V orbit are similar, except at the middle of the SAA, 

for a longitude close to -50°. In particular, fluxes of protons 

with an energy higher than 69 MeV measured by SATRAM 

are around 100 cm-².s-1.sr-1 for a latitude of -30° and a 

longitude of -50°, while those measured by the ICARE-NG 

instrument are around 400 cm-².s-1.sr-1. In these regions, fluxes 

are very high resulting in a low quantity of tracks that can be 

analyzed due to the limitation of frames with an occupancy 

lower than 20%. Due to this limitation, statistical errors occur 

for these regions, which explains why fluxes measured by the 

SATRAM instrument are lower than those measured by 

ICARE-NG at the middle of the SAA. 

Energy recognition has also been tested for electrons. 

However, whatever the architecture of the neural network and 

hyper-parameters, the accuracy is very low. Different classes 

have been tested to train the neural network. However, results 

are not conclusive, probably due to the high diffusion of 

electrons in matter and all arrival directions which lead to 

similar tracks even if the incident energy is different. Other 

techniques have to be applied in order to be able to recover 

electrons’ energy. For example, it is possible to apply the 

same technique than the one used for most of the radiation 

monitors such as ICARE-NG. This method is based on the 

calculation of proton and electron response functions using 

Geant4 and the use of counts measured by an instrument [8] 

[9] [30] [31]. This will allow determining fluxes of electrons 

with an energy higher than a certain value, that is integrated 

fluxes. 

V. CONCLUSION 

A new technique based on convolutional neural network has 

been proposed to identify types of particles using the tracks 

registered with Timepix. A first neural network allows to 

discriminate, in 95% of cases, proton tracks from electron 

tracks. Its application on SATRAM data on-board the Proba-V 

satellite leads to better results than those obtained with other 

techniques. Maps of electron and proton fluxes produced by 

the CNN are similar to those obtained with the bigger 

instruments commonly used. A second CNN used for the 

energy recognition produces encouraging results for protons. 

A good training can be noticed, even if errors are observed for 

neighbour classes. Its application on SATRAM data to 

calculate fluxes of protons for energies higher than 69 MeV 

leads to similar measurements than those performed with the 

ICARE-NG instrument, except at the middle of the SAA 

where high fluxes are observed, which leads to statistical 

errors. However, fluxes calculated for SATRAM and ICARE-

NG are of the same order of magnitude. Energy recognition 

for electrons seems to be more complicated due to their high 

diffusion in matter. However, solutions can be brought with 

the calculation of response functions to calculate integrated 

fluxes, the use of dE-E detectors, or stopping filters. 

A new version of the Timepix is now available, Timepix3 

[32]. This new version allows to measure simultaneously the 

energy deposited by particles in pixels and their arrival time. 

The use of the Timepix3 to measure protons and electrons in 

radiation belts could lead to better measurements, since frames 

with an occupancy higher than 20% could be analyzed using 

the arrival time of the particles. 

Many other types of neural networks exist and can be tested 

to measure protons and electrons with a single Timepix 

detector. In their paper, Furnell et al. [17] tested for example 

the classification of particles using a small number of features 

(number of pixels, curvature radius, density, width...) 

calculated for each track. It would be interesting in a further 

work to test this type of classification, as well as other 

classification techniques, with the use of Geant4 for the 

training phase and the validation phase. 

Several radiation monitors based on the use of the Timepix 

detector are developed such as MIRAM (Miniaturized 

Radiation Monitor) [33] which will be launched on the 

GOMX-5 mission in 2022. Thus, much more data will be 

available for the comparison of different data analysis 

algorithms and radiation models. 
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