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Abstract: The object of this paper is to introduce a bidimensional model of vehicular traffic
flow. The model is bidimensional in the sense that the underlying network is approximated by a
continuous medium, and that traffic flow is approximated as a bidimensional fluid. The model
is homogeneous in the sense that it does not presuppose local privileged directions of travel.
Thus the proposed model is dynamic and recaptures several existing models. It can also be
interfaced with the GSOM (Generic second order model) for traffic on networks, allowing to
treat large networks with major arteries (modelled via GSOM) and dense subnetworks, modelled
by the proposed bidimensional model. The bidimensional model is introduced in a discretized
and phenomenological way, and is completely described in this setting.
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1. INTRODUCTION

The object of this paper is to present a bidimensional
model of vehicular traffic. Bidimensional modelling of traf-
fic networks relies on two approximations: the approxima-
tion of the traffic network as a continuous medium, and
the approximation of traffic flow on this network as a
bidimensional fluid flowing on the bidimensional medium.
Such a double approximation (traffic and geometry) relies
on the idea that the network is dense enough to justify its
description as a bidimensional medium.

The motivation is the following. We want to be able to
model traffic on very large dense networks. The difficulties
to be overcome are several: complexity of the network,
but also insufficiency of traffic information. Indeed on very
large dense networks, traffic information, whether origi-
nating from fixed measurement stations (loops, cameras
etc) or from streaming data (portables, GPS etc) does
not provide a precise description of traffic flow everywhere
at all times. Further, a very precise description of traffic
flow, for instance on small streets, is not really necessary
for most applications such as traffic management, route
guidance etc. Hence the idea of bidimensional modelling
which will provide approximate description of traffic on
large areas with little requirements in terms of data input.

This approach has been used for solving flow problems
(shortest path, max capacity) on large networks via mathe-
matical programming as in Taguchi and Iri (1982), then to
solve planification assignment problems, first static (refer
to Yang et al. (1994), Wong (1998), Ho and Wong (2006)),
then dynamic assignment problems (see Jiang et al. (2011),
Jiang et al. (2016)). The basic idea being that the medium
i.e. the network is locally isotropic, and described by local
cost functions depending on the local density of vehicles.

The approach is similar to the continuum approach of
pedestrian dynamics, refer to Huang et al. (2009) for
instance.

The MFD (macroscopic fundamental diagram) method in-
troduced more recently (Daganzo and Geroliminis (2008),
Ramezani et al. (2015)) yields a phenomenological ap-
proach to bidimensional modeling and dynamic traffic as-
signment (refer to Knoop and Hoogendoorn (2015), Knoop
et al. (2015) and Loder et al. (2017)). This method can be
viewed as the discretization of an isotropic bidimensional
model, since the basic idea of MFD is that the flow ex-
changed by an area is a function of the quantity of vehicles
contained in this area.

All these models assume that the network is locally
isotropic and traffic essentially one-directional. Saumtally
(2012) introduced an anisotropic model in which the net-
work is endowed locally with privileged directions of prop-
agation and traffic flows along those directions while being
disaggregated per destination. This model was applied to
static assignment and started to be extended in a simple
way to the dynamic case in Saumtally et al. (2013). This
work was completed in Sossoe et al. (2015) and Sossoe
(2017), and applied to dynamic traffic assignment in Sos-
soe and Lebacque (2017). This model will be denoted
ABTM (anisotropic bidimensional trafic model) in the
paper.

Urban areas, especially in Europe, alternate sectors in
which the surface network is very structured, with obvious
privileged directions of travel, and unstructured sectors in
which traffic travels in any direction. Refer to Figure 1
(adapted from Saumtally (2012)), which shows anisotropic
areas (in which there are two privileged travel directions
depicted by blue arrows), and an isotropic area in which

15th IFAC Symposium on Control in Transportation Systems
June 6-8, 2018. Savona, Italy

Copyright © 2018 IFAC 61

Homogeneous Bidimensional Traffic Flow
Model

Megan M. Khoshyaran ∗ Jean-Patrick Lebacque ∗∗

∗ ETC Economics Traffic Clinic, 34 av. des Champs-Elysées, F75008
Paris, FRANCE (e-mail: etclinic@wanadoo.fr).

∗∗ UPE/IFSTTAR, COSYS/GRETTIA, 14-20 Bd Newton, F77447
Marne-la-Vallée, FRANCE (e-mail: jean-patrick.lebacque@ifsttar.fr)

Abstract: The object of this paper is to introduce a bidimensional model of vehicular traffic
flow. The model is bidimensional in the sense that the underlying network is approximated by a
continuous medium, and that traffic flow is approximated as a bidimensional fluid. The model
is homogeneous in the sense that it does not presuppose local privileged directions of travel.
Thus the proposed model is dynamic and recaptures several existing models. It can also be
interfaced with the GSOM (Generic second order model) for traffic on networks, allowing to
treat large networks with major arteries (modelled via GSOM) and dense subnetworks, modelled
by the proposed bidimensional model. The bidimensional model is introduced in a discretized
and phenomenological way, and is completely described in this setting.

Keywords: macroscopic model, transportation, traffic, GSOM, discretization, continuum
model, multimodal, anisotropic, isotropic

1. INTRODUCTION

The object of this paper is to present a bidimensional
model of vehicular traffic. Bidimensional modelling of traf-
fic networks relies on two approximations: the approxima-
tion of the traffic network as a continuous medium, and
the approximation of traffic flow on this network as a
bidimensional fluid flowing on the bidimensional medium.
Such a double approximation (traffic and geometry) relies
on the idea that the network is dense enough to justify its
description as a bidimensional medium.

The motivation is the following. We want to be able to
model traffic on very large dense networks. The difficulties
to be overcome are several: complexity of the network,
but also insufficiency of traffic information. Indeed on very
large dense networks, traffic information, whether origi-
nating from fixed measurement stations (loops, cameras
etc) or from streaming data (portables, GPS etc) does
not provide a precise description of traffic flow everywhere
at all times. Further, a very precise description of traffic
flow, for instance on small streets, is not really necessary
for most applications such as traffic management, route
guidance etc. Hence the idea of bidimensional modelling
which will provide approximate description of traffic on
large areas with little requirements in terms of data input.

This approach has been used for solving flow problems
(shortest path, max capacity) on large networks via mathe-
matical programming as in Taguchi and Iri (1982), then to
solve planification assignment problems, first static (refer
to Yang et al. (1994), Wong (1998), Ho and Wong (2006)),
then dynamic assignment problems (see Jiang et al. (2011),
Jiang et al. (2016)). The basic idea being that the medium
i.e. the network is locally isotropic, and described by local
cost functions depending on the local density of vehicles.

The approach is similar to the continuum approach of
pedestrian dynamics, refer to Huang et al. (2009) for
instance.

The MFD (macroscopic fundamental diagram) method in-
troduced more recently (Daganzo and Geroliminis (2008),
Ramezani et al. (2015)) yields a phenomenological ap-
proach to bidimensional modeling and dynamic traffic as-
signment (refer to Knoop and Hoogendoorn (2015), Knoop
et al. (2015) and Loder et al. (2017)). This method can be
viewed as the discretization of an isotropic bidimensional
model, since the basic idea of MFD is that the flow ex-
changed by an area is a function of the quantity of vehicles
contained in this area.

All these models assume that the network is locally
isotropic and traffic essentially one-directional. Saumtally
(2012) introduced an anisotropic model in which the net-
work is endowed locally with privileged directions of prop-
agation and traffic flows along those directions while being
disaggregated per destination. This model was applied to
static assignment and started to be extended in a simple
way to the dynamic case in Saumtally et al. (2013). This
work was completed in Sossoe et al. (2015) and Sossoe
(2017), and applied to dynamic traffic assignment in Sos-
soe and Lebacque (2017). This model will be denoted
ABTM (anisotropic bidimensional trafic model) in the
paper.

Urban areas, especially in Europe, alternate sectors in
which the surface network is very structured, with obvious
privileged directions of travel, and unstructured sectors in
which traffic travels in any direction. Refer to Figure 1
(adapted from Saumtally (2012)), which shows anisotropic
areas (in which there are two privileged travel directions
depicted by blue arrows), and an isotropic area in which

15th IFAC Symposium on Control in Transportation Systems
June 6-8, 2018. Savona, Italy

Copyright © 2018 IFAC 61

Homogeneous Bidimensional Traffic Flow
Model

Megan M. Khoshyaran ∗ Jean-Patrick Lebacque ∗∗

∗ ETC Economics Traffic Clinic, 34 av. des Champs-Elysées, F75008
Paris, FRANCE (e-mail: etclinic@wanadoo.fr).

∗∗ UPE/IFSTTAR, COSYS/GRETTIA, 14-20 Bd Newton, F77447
Marne-la-Vallée, FRANCE (e-mail: jean-patrick.lebacque@ifsttar.fr)

Abstract: The object of this paper is to introduce a bidimensional model of vehicular traffic
flow. The model is bidimensional in the sense that the underlying network is approximated by a
continuous medium, and that traffic flow is approximated as a bidimensional fluid. The model
is homogeneous in the sense that it does not presuppose local privileged directions of travel.
Thus the proposed model is dynamic and recaptures several existing models. It can also be
interfaced with the GSOM (Generic second order model) for traffic on networks, allowing to
treat large networks with major arteries (modelled via GSOM) and dense subnetworks, modelled
by the proposed bidimensional model. The bidimensional model is introduced in a discretized
and phenomenological way, and is completely described in this setting.

Keywords: macroscopic model, transportation, traffic, GSOM, discretization, continuum
model, multimodal, anisotropic, isotropic

1. INTRODUCTION

The object of this paper is to present a bidimensional
model of vehicular traffic. Bidimensional modelling of traf-
fic networks relies on two approximations: the approxima-
tion of the traffic network as a continuous medium, and
the approximation of traffic flow on this network as a
bidimensional fluid flowing on the bidimensional medium.
Such a double approximation (traffic and geometry) relies
on the idea that the network is dense enough to justify its
description as a bidimensional medium.

The motivation is the following. We want to be able to
model traffic on very large dense networks. The difficulties
to be overcome are several: complexity of the network,
but also insufficiency of traffic information. Indeed on very
large dense networks, traffic information, whether origi-
nating from fixed measurement stations (loops, cameras
etc) or from streaming data (portables, GPS etc) does
not provide a precise description of traffic flow everywhere
at all times. Further, a very precise description of traffic
flow, for instance on small streets, is not really necessary
for most applications such as traffic management, route
guidance etc. Hence the idea of bidimensional modelling
which will provide approximate description of traffic on
large areas with little requirements in terms of data input.

This approach has been used for solving flow problems
(shortest path, max capacity) on large networks via mathe-
matical programming as in Taguchi and Iri (1982), then to
solve planification assignment problems, first static (refer
to Yang et al. (1994), Wong (1998), Ho and Wong (2006)),
then dynamic assignment problems (see Jiang et al. (2011),
Jiang et al. (2016)). The basic idea being that the medium
i.e. the network is locally isotropic, and described by local
cost functions depending on the local density of vehicles.

The approach is similar to the continuum approach of
pedestrian dynamics, refer to Huang et al. (2009) for
instance.

The MFD (macroscopic fundamental diagram) method in-
troduced more recently (Daganzo and Geroliminis (2008),
Ramezani et al. (2015)) yields a phenomenological ap-
proach to bidimensional modeling and dynamic traffic as-
signment (refer to Knoop and Hoogendoorn (2015), Knoop
et al. (2015) and Loder et al. (2017)). This method can be
viewed as the discretization of an isotropic bidimensional
model, since the basic idea of MFD is that the flow ex-
changed by an area is a function of the quantity of vehicles
contained in this area.

All these models assume that the network is locally
isotropic and traffic essentially one-directional. Saumtally
(2012) introduced an anisotropic model in which the net-
work is endowed locally with privileged directions of prop-
agation and traffic flows along those directions while being
disaggregated per destination. This model was applied to
static assignment and started to be extended in a simple
way to the dynamic case in Saumtally et al. (2013). This
work was completed in Sossoe et al. (2015) and Sossoe
(2017), and applied to dynamic traffic assignment in Sos-
soe and Lebacque (2017). This model will be denoted
ABTM (anisotropic bidimensional trafic model) in the
paper.

Urban areas, especially in Europe, alternate sectors in
which the surface network is very structured, with obvious
privileged directions of travel, and unstructured sectors in
which traffic travels in any direction. Refer to Figure 1
(adapted from Saumtally (2012)), which shows anisotropic
areas (in which there are two privileged travel directions
depicted by blue arrows), and an isotropic area in which

15th IFAC Symposium on Control in Transportation Systems
June 6-8, 2018. Savona, Italy

Copyright © 2018 IFAC 61

Homogeneous Bidimensional Traffic Flow
Model

Megan M. Khoshyaran ∗ Jean-Patrick Lebacque ∗∗

∗ ETC Economics Traffic Clinic, 34 av. des Champs-Elysées, F75008
Paris, FRANCE (e-mail: etclinic@wanadoo.fr).

∗∗ UPE/IFSTTAR, COSYS/GRETTIA, 14-20 Bd Newton, F77447
Marne-la-Vallée, FRANCE (e-mail: jean-patrick.lebacque@ifsttar.fr)

Abstract: The object of this paper is to introduce a bidimensional model of vehicular traffic
flow. The model is bidimensional in the sense that the underlying network is approximated by a
continuous medium, and that traffic flow is approximated as a bidimensional fluid. The model
is homogeneous in the sense that it does not presuppose local privileged directions of travel.
Thus the proposed model is dynamic and recaptures several existing models. It can also be
interfaced with the GSOM (Generic second order model) for traffic on networks, allowing to
treat large networks with major arteries (modelled via GSOM) and dense subnetworks, modelled
by the proposed bidimensional model. The bidimensional model is introduced in a discretized
and phenomenological way, and is completely described in this setting.

Keywords: macroscopic model, transportation, traffic, GSOM, discretization, continuum
model, multimodal, anisotropic, isotropic

1. INTRODUCTION

The object of this paper is to present a bidimensional
model of vehicular traffic. Bidimensional modelling of traf-
fic networks relies on two approximations: the approxima-
tion of the traffic network as a continuous medium, and
the approximation of traffic flow on this network as a
bidimensional fluid flowing on the bidimensional medium.
Such a double approximation (traffic and geometry) relies
on the idea that the network is dense enough to justify its
description as a bidimensional medium.

The motivation is the following. We want to be able to
model traffic on very large dense networks. The difficulties
to be overcome are several: complexity of the network,
but also insufficiency of traffic information. Indeed on very
large dense networks, traffic information, whether origi-
nating from fixed measurement stations (loops, cameras
etc) or from streaming data (portables, GPS etc) does
not provide a precise description of traffic flow everywhere
at all times. Further, a very precise description of traffic
flow, for instance on small streets, is not really necessary
for most applications such as traffic management, route
guidance etc. Hence the idea of bidimensional modelling
which will provide approximate description of traffic on
large areas with little requirements in terms of data input.

This approach has been used for solving flow problems
(shortest path, max capacity) on large networks via mathe-
matical programming as in Taguchi and Iri (1982), then to
solve planification assignment problems, first static (refer
to Yang et al. (1994), Wong (1998), Ho and Wong (2006)),
then dynamic assignment problems (see Jiang et al. (2011),
Jiang et al. (2016)). The basic idea being that the medium
i.e. the network is locally isotropic, and described by local
cost functions depending on the local density of vehicles.

The approach is similar to the continuum approach of
pedestrian dynamics, refer to Huang et al. (2009) for
instance.

The MFD (macroscopic fundamental diagram) method in-
troduced more recently (Daganzo and Geroliminis (2008),
Ramezani et al. (2015)) yields a phenomenological ap-
proach to bidimensional modeling and dynamic traffic as-
signment (refer to Knoop and Hoogendoorn (2015), Knoop
et al. (2015) and Loder et al. (2017)). This method can be
viewed as the discretization of an isotropic bidimensional
model, since the basic idea of MFD is that the flow ex-
changed by an area is a function of the quantity of vehicles
contained in this area.

All these models assume that the network is locally
isotropic and traffic essentially one-directional. Saumtally
(2012) introduced an anisotropic model in which the net-
work is endowed locally with privileged directions of prop-
agation and traffic flows along those directions while being
disaggregated per destination. This model was applied to
static assignment and started to be extended in a simple
way to the dynamic case in Saumtally et al. (2013). This
work was completed in Sossoe et al. (2015) and Sossoe
(2017), and applied to dynamic traffic assignment in Sos-
soe and Lebacque (2017). This model will be denoted
ABTM (anisotropic bidimensional trafic model) in the
paper.

Urban areas, especially in Europe, alternate sectors in
which the surface network is very structured, with obvious
privileged directions of travel, and unstructured sectors in
which traffic travels in any direction. Refer to Figure 1
(adapted from Saumtally (2012)), which shows anisotropic
areas (in which there are two privileged travel directions
depicted by blue arrows), and an isotropic area in which

15th IFAC Symposium on Control in Transportation Systems
June 6-8, 2018. Savona, Italy

Copyright © 2018 IFAC 61

Homogeneous Bidimensional Traffic Flow
Model

Megan M. Khoshyaran ∗ Jean-Patrick Lebacque ∗∗

∗ ETC Economics Traffic Clinic, 34 av. des Champs-Elysées, F75008
Paris, FRANCE (e-mail: etclinic@wanadoo.fr).

∗∗ UPE/IFSTTAR, COSYS/GRETTIA, 14-20 Bd Newton, F77447
Marne-la-Vallée, FRANCE (e-mail: jean-patrick.lebacque@ifsttar.fr)

Abstract: The object of this paper is to introduce a bidimensional model of vehicular traffic
flow. The model is bidimensional in the sense that the underlying network is approximated by a
continuous medium, and that traffic flow is approximated as a bidimensional fluid. The model
is homogeneous in the sense that it does not presuppose local privileged directions of travel.
Thus the proposed model is dynamic and recaptures several existing models. It can also be
interfaced with the GSOM (Generic second order model) for traffic on networks, allowing to
treat large networks with major arteries (modelled via GSOM) and dense subnetworks, modelled
by the proposed bidimensional model. The bidimensional model is introduced in a discretized
and phenomenological way, and is completely described in this setting.

Keywords: macroscopic model, transportation, traffic, GSOM, discretization, continuum
model, multimodal, anisotropic, isotropic

1. INTRODUCTION

The object of this paper is to present a bidimensional
model of vehicular traffic. Bidimensional modelling of traf-
fic networks relies on two approximations: the approxima-
tion of the traffic network as a continuous medium, and
the approximation of traffic flow on this network as a
bidimensional fluid flowing on the bidimensional medium.
Such a double approximation (traffic and geometry) relies
on the idea that the network is dense enough to justify its
description as a bidimensional medium.

The motivation is the following. We want to be able to
model traffic on very large dense networks. The difficulties
to be overcome are several: complexity of the network,
but also insufficiency of traffic information. Indeed on very
large dense networks, traffic information, whether origi-
nating from fixed measurement stations (loops, cameras
etc) or from streaming data (portables, GPS etc) does
not provide a precise description of traffic flow everywhere
at all times. Further, a very precise description of traffic
flow, for instance on small streets, is not really necessary
for most applications such as traffic management, route
guidance etc. Hence the idea of bidimensional modelling
which will provide approximate description of traffic on
large areas with little requirements in terms of data input.

This approach has been used for solving flow problems
(shortest path, max capacity) on large networks via mathe-
matical programming as in Taguchi and Iri (1982), then to
solve planification assignment problems, first static (refer
to Yang et al. (1994), Wong (1998), Ho and Wong (2006)),
then dynamic assignment problems (see Jiang et al. (2011),
Jiang et al. (2016)). The basic idea being that the medium
i.e. the network is locally isotropic, and described by local
cost functions depending on the local density of vehicles.

The approach is similar to the continuum approach of
pedestrian dynamics, refer to Huang et al. (2009) for
instance.

The MFD (macroscopic fundamental diagram) method in-
troduced more recently (Daganzo and Geroliminis (2008),
Ramezani et al. (2015)) yields a phenomenological ap-
proach to bidimensional modeling and dynamic traffic as-
signment (refer to Knoop and Hoogendoorn (2015), Knoop
et al. (2015) and Loder et al. (2017)). This method can be
viewed as the discretization of an isotropic bidimensional
model, since the basic idea of MFD is that the flow ex-
changed by an area is a function of the quantity of vehicles
contained in this area.

All these models assume that the network is locally
isotropic and traffic essentially one-directional. Saumtally
(2012) introduced an anisotropic model in which the net-
work is endowed locally with privileged directions of prop-
agation and traffic flows along those directions while being
disaggregated per destination. This model was applied to
static assignment and started to be extended in a simple
way to the dynamic case in Saumtally et al. (2013). This
work was completed in Sossoe et al. (2015) and Sossoe
(2017), and applied to dynamic traffic assignment in Sos-
soe and Lebacque (2017). This model will be denoted
ABTM (anisotropic bidimensional trafic model) in the
paper.

Urban areas, especially in Europe, alternate sectors in
which the surface network is very structured, with obvious
privileged directions of travel, and unstructured sectors in
which traffic travels in any direction. Refer to Figure 1
(adapted from Saumtally (2012)), which shows anisotropic
areas (in which there are two privileged travel directions
depicted by blue arrows), and an isotropic area in which

15th IFAC Symposium on Control in Transportation Systems
June 6-8, 2018. Savona, Italy

Copyright © 2018 IFAC 61



62	 Megan M. Khoshyaran  et al. / IFAC PapersOnLine 51-9 (2018) 61–66

Fig. 1. Part of Barcelona network, with anisotropic and
isotropic areas.
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Fig. 2. Cell: boundary flows and stock variables.

there are no privileged travel directions. Thus it is nec-
essary to extend the ABTM model developped in Saum-
tally et al. (2013), Saumtally (2012), Sossoe and Lebacque
(2017) and Sossoe et al. (2015) in order to accommodate
also locally isotropic networks.

The development of this extension constitutes the main
result introduced in this paper. The new model actually
encompasses the anisotropic bidimensional model and also
the MFD. It will be denoted GBTM (generic bidimensional
traffic model) in the paper. In the second section of
the paper we will describe the model. The third section
addresses some specific points and applications.

2. PHENOMENOLOGICAL MODEL.

As mentionned in the introduction, the global framework
of the GBTM model described in this paper is the same as
in the ABTM model developped in Sossoe and Lebacque
(2017). The network is divided into polygonal cells; and
the model calculates dynamically the flows through the
cell boundaries and the numbers of vehicles inside each
cell. The main innovation in the GBTM model described
in this section is that there are no privileged traffic flow
directions in cells. The division of a network into cells is
exemplified in Figures 1 and 7.

2.1 Main notations

The setting is illustrated by the following Figure 2. Let us
introduce the notations.

• Cells (c), c ∈ C. The typical order of magnitude of
the size of a cell is 1 - 5 km.

• (t)
def
= [t∆t, (t+ 1)∆t] with t ∈ T : the current time-

step. The typical time-step duration is 1 - 5 mn.
• d ∈ D: the indices of final destinations of traffic (d),
according to which the traffic is disaggregated.

• c ∈ C: the cell indices. A cell with index c is denoted
(c). A cell (h) is a predecessor of cell (c) if traffic can
flow from (h) to (c), i.e. (h) ∈ Pred(c). A cell (g) is
a successor of cell (c) if traffic can flow from (c) to
(g), i.e. (g) ∈ Succ(c). A special cell (ω) accounts for
areas outside of the cells of the network.

• Stock variables of traffic in cells:
· Nd,t

c,cg = vehicles present at the begin of time-step
(t) in cell (c), heading for cell (g) ∈ Succ(c), with
final destination (d);

· Nd,t
c,hc = vehicles present at the begin of time-

step (t) in cell (c), which entered cell (c) from
cell (h) ∈ Pred(c), with final destination (d).

They constitute the basic dynamic variables. We
define also

Nd,t
c

def
=

∑
(g)∈Succ(c)

Nd,t
c,cg +

∑
(h)∈Pred(c)

Nd,t
c,hc (1)

• �c,cg = total length of lanes in cell (c) which are
available for traffic (c) → (g), if (g) ∈ Succ(c).

• �c,hc = total length of lanes in cell (c) which are
available for traffic (h) → (c), if (h) ∈ Pred(c).

• Densities in cell (c) are now defined as:∣∣∣∣∣∣∣∣

ρd,tc,cg
def
= Nd,t

c,cg/�c,cg and ρtc,cg
def
=

∑
d∈D

ρd,tc,cg

ρd,tc,hc

def
= Nd,t

c,hc/�c,hc and ρtc,hc
def
=

∑
d∈D

ρd,tc,hc

(2)

Note that the couples cg, hc are connected to the cell
boundaries (c)− (g) and (h)− (c) respectively.

• νccg = number of lanes available inside cell (c) for
traffic flowing (c) → (g). Note that in general it is
possible that νccg �= νgcg.

• νchc = number of lanes available inside cell (c) for
traffic flowing (h) → (c). In general it is possible that
νchc �= νhhc.

2.2 Through-flows between cells: boundary flows.

In order to derive conservation equations for the stock

variables Nd,t
c,cg and Nd,t

c,hc, for all c ∈ C, all d ∈ D and all

(g) ∈ Succ(c), (h) ∈ Pred(c), it is necessary to calculate
the flows (c) → (g) and (h) → (c).

We denote ∆c
e(.) and Σc

e(.) the lane specific equilibrium
supply and demand functions in cell (c) (refer to Lebacque
(1995) and Lebacque and Khoshyaran (2013) for these
concepts). Figure 3 illustrates these functions. For each
cell (c) we define the boundary supplies and demands
(Lebacque (1995), Sossoe (2017)) during time-step (t):∣∣∣∣∣

δtc,cg
def
= νccg ∆

c
e

(
ρtc,cg

)

σt
c,gc

def
= νcgc Σ

c
e

(
ρtc,gc

) (3)

We obtain the through-flows (c) → (g) during time-step
(t) following the min principle (Lebacque (1995), Sossoe
(2017)):
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Fig. 1. Part of Barcelona network, with anisotropic and
isotropic areas.
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Fig. 2. Cell: boundary flows and stock variables.

there are no privileged travel directions. Thus it is nec-
essary to extend the ABTM model developped in Saum-
tally et al. (2013), Saumtally (2012), Sossoe and Lebacque
(2017) and Sossoe et al. (2015) in order to accommodate
also locally isotropic networks.

The development of this extension constitutes the main
result introduced in this paper. The new model actually
encompasses the anisotropic bidimensional model and also
the MFD. It will be denoted GBTM (generic bidimensional
traffic model) in the paper. In the second section of
the paper we will describe the model. The third section
addresses some specific points and applications.

2. PHENOMENOLOGICAL MODEL.

As mentionned in the introduction, the global framework
of the GBTM model described in this paper is the same as
in the ABTM model developped in Sossoe and Lebacque
(2017). The network is divided into polygonal cells; and
the model calculates dynamically the flows through the
cell boundaries and the numbers of vehicles inside each
cell. The main innovation in the GBTM model described
in this section is that there are no privileged traffic flow
directions in cells. The division of a network into cells is
exemplified in Figures 1 and 7.

2.1 Main notations

The setting is illustrated by the following Figure 2. Let us
introduce the notations.

• Cells (c), c ∈ C. The typical order of magnitude of
the size of a cell is 1 - 5 km.

• (t)
def
= [t∆t, (t+ 1)∆t] with t ∈ T : the current time-

step. The typical time-step duration is 1 - 5 mn.
• d ∈ D: the indices of final destinations of traffic (d),
according to which the traffic is disaggregated.

• c ∈ C: the cell indices. A cell with index c is denoted
(c). A cell (h) is a predecessor of cell (c) if traffic can
flow from (h) to (c), i.e. (h) ∈ Pred(c). A cell (g) is
a successor of cell (c) if traffic can flow from (c) to
(g), i.e. (g) ∈ Succ(c). A special cell (ω) accounts for
areas outside of the cells of the network.

• Stock variables of traffic in cells:
· Nd,t

c,cg = vehicles present at the begin of time-step
(t) in cell (c), heading for cell (g) ∈ Succ(c), with
final destination (d);

· Nd,t
c,hc = vehicles present at the begin of time-

step (t) in cell (c), which entered cell (c) from
cell (h) ∈ Pred(c), with final destination (d).

They constitute the basic dynamic variables. We
define also

Nd,t
c

def
=

∑
(g)∈Succ(c)

Nd,t
c,cg +

∑
(h)∈Pred(c)

Nd,t
c,hc (1)

• �c,cg = total length of lanes in cell (c) which are
available for traffic (c) → (g), if (g) ∈ Succ(c).

• �c,hc = total length of lanes in cell (c) which are
available for traffic (h) → (c), if (h) ∈ Pred(c).

• Densities in cell (c) are now defined as:∣∣∣∣∣∣∣∣

ρd,tc,cg
def
= Nd,t

c,cg/�c,cg and ρtc,cg
def
=

∑
d∈D

ρd,tc,cg

ρd,tc,hc

def
= Nd,t

c,hc/�c,hc and ρtc,hc
def
=

∑
d∈D

ρd,tc,hc

(2)

Note that the couples cg, hc are connected to the cell
boundaries (c)− (g) and (h)− (c) respectively.

• νccg = number of lanes available inside cell (c) for
traffic flowing (c) → (g). Note that in general it is
possible that νccg �= νgcg.

• νchc = number of lanes available inside cell (c) for
traffic flowing (h) → (c). In general it is possible that
νchc �= νhhc.

2.2 Through-flows between cells: boundary flows.

In order to derive conservation equations for the stock

variables Nd,t
c,cg and Nd,t

c,hc, for all c ∈ C, all d ∈ D and all

(g) ∈ Succ(c), (h) ∈ Pred(c), it is necessary to calculate
the flows (c) → (g) and (h) → (c).

We denote ∆c
e(.) and Σc

e(.) the lane specific equilibrium
supply and demand functions in cell (c) (refer to Lebacque
(1995) and Lebacque and Khoshyaran (2013) for these
concepts). Figure 3 illustrates these functions. For each
cell (c) we define the boundary supplies and demands
(Lebacque (1995), Sossoe (2017)) during time-step (t):∣∣∣∣∣

δtc,cg
def
= νccg ∆

c
e

(
ρtc,cg

)

σt
c,gc

def
= νcgc Σ

c
e

(
ρtc,gc

) (3)

We obtain the through-flows (c) → (g) during time-step
(t) following the min principle (Lebacque (1995), Sossoe
(2017)):
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Fig. 4. Internal flows in a cell.
∣∣∣∣∣∣∣

ptc,cg = min
[
δtc,cg, σ

t
g,cg

]
(4.1)

pd,tc,cg = χd,t
c,cg p

t
c,cg (4.2)

with χd,t
c,cg

def
= ρd,tc,cg/ρ

t
c,cg (4.3)

(4)

The total through-flow ptc,cg (c) → (g) is disaggregated per

destination (d), and the partial flows are denoted pd,tc,cg.

The composition coefficient χd,t
c,cg denotes the fraction of

the traffic (c) → (g) with destination (d).

Actually (4.2) means that destination is considered as a
passive attribute of traffic and that the underlying traffic
flow model belongs to the GSOM (Generic traffic flow
model) family, refer to Lebacque et al. (2007), (Lebacque
and Khoshyaran, 2013).

Finally, note that by conservation of traffic:

ptc,cg = ptg,cg and pd,tc,cg = pd,tg,cg (5)

Note that

χd,t
c,cg p

t
g,cg ≤ νccg ρd,tc,cg ∆

c
e

(
ρtc,cg

)
/ρtc,cg

≤ νccg ρ
d,t
c,cg Vc,max < +∞

(since ∂ρ∆
c
e (ρ)|ρ=0 = Vc,max). Thus the composition

coefficients in (4.3) induce no division by 0 problems in
(4.2) and the flows pd,tc,cg are always well defined.

Remark: if c = ω, the demand δtc,cg and the supply σt
c,gc are

not calculated according to (3) but are given as external
boundary data.

2.3 Internal cell flows

Refer to Figure 4 for this subsection. If we consider a cell
(c), the vehicles having entered the cell coming from a
predecessor cell (h) must be routed towards the successor

cells (g). This internal assignment is the result of three
competing processes:

• the demand of vehicles having entered the cell coming
from the predecessor cell (h),

• the supply available for vehicles bound to exit (c)
towards the successor cells (g);

• the route choice of drivers in order to reach their
destination (d). This route choice is expressed by
assignment coefficients.

We will now describe these processes. Let µc
cg and µc

gc the
number of lanes inside cell (c) dedicated to traffic (c) → (g)
respectively (g) → (c). Thus 
ck�/µ

c
k� can be considered as

the approximate mean length used in cell (c) by traffic
(k) → (
) (with one of the cells (k), (
) being (c), the
other being a neighboring cell).

The internal cell supply Σt
c,cg and demands ∆t

c,hc follow:
∣∣∣∣∣
Σt

c,cg
def
= µc

cg Σ
c
e

(
ρtc,cg

)

∆t
c,hc

def
= µc

hc ∆
c
e

(
ρtc,hc

) (6)

The basic assignment coefficients are:

• Γd,t
c,gh = the fraction of traffic (h) → (c) (with h ∈

Pred(c)), with final destination (d), d ∈ D, which
chose the cell (g) with g ∈ Succ(c) to exit (c).

These assignment coefficients can be derived from reactive
or predictive DTA (dynamic traffic assignment) schemes.
The assignment coefficients result from the expression of
individual travel choices. They satisfy the following:∣∣∣∣∣∣

∑
g∈Succ(c)

Γd,t
c,hg = 1

Γd,t
c,hg ≥ 0

∀ c ∈ C, d ∈ D, h ∈ Pred(c)

The global assignment coefficients in cell (c) during time
step (t) result:

γt
c,hg

def
=

∑
d∈D

χd,t
c,hc Γ

d,t
c,gh ∀g ∈ Succ(c), h ∈ Pred(c) (7)

Let us define the internal cell flows:

• qtc,hc = flow leaving N t
c,hc during time step (t). This

flow is limited by the demand ∆t
c,hc.

• rtc,cg = flow joining N t
c,cg during time step (t). This

flow is limited by the supply Σt
c,cg.

These flows are also connected through the assignment co-
efficients, expressing route choice, and conservation of traf-
fic. Thus the internal flows satisfy the following constraints
(which express the three competing processes mentionned
at the beginning of the subsection 2.3):∣∣∣∣∣∣∣∣

0 ≤ qtc,hc ≤ ∆t
c,hc ∀h ∈ Pred(c)

0 ≤ rtc,cg ≤ Σt
c,cg ∀g ∈ Succ(c)

rtc,cg =
∑

h∈Pred(c)

γt
c,hg q

t
c,hc ∀g ∈ Succ(c)

(8)

Following (Lebacque and Khoshyaran, 2005), we use an
optimality in order to derive the internal flows. Thus the
internal flows qtc,hc, r

t
c,cg are obtained as the solutions of

the following optimization problem:
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Max(
(qhc)h∈Pred(c)

(rcg)g∈Succ(c)

)

 ∑
h∈Pred(c)

Φc
hc(qhc) + . . .

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. . .+
∑

g∈Succ(c)

Ψc
cg(rcg)




0 ≤ qhc ≤ ∆t
c,hc ∀h ∈ Pred(c)

0 ≤ rcg ≤ Σt
c,cg ∀g ∈ Succ(c)

rcg =
∑

h∈Pred(c)

γt
c,hg qhc ∀g ∈ Succ(c)

(9)

Thus if q∗hc, r
∗
cg denote the solutions of (9), qtc,hc = q∗hc,

rtc,cg = r∗cg. The functions Φc
hc(.) and Ψc

cg(.) should be
positive, concave and increasing. They express the global
behavior of the intersections in cell (c). A simple model for
these functions, already used in several applications (see
for instance Sossoe et al. (2015)), would be:

Φc
hc(qhc) = (qhc/µ

c
hcQc,max)− (qhc)

2/2
Ψc

cg(rcg) =
(
qcg/µ

c
cgQc,max

)
− (qcg)

2/2

2.4 Global traffic conservation updates for a cell

The conservation of vehicles implies, for all h ∈ Pred(c)
and all g ∈ Succ(c):∣∣∣∣

N t+1
c,hc = N t

c,hc +∆t
(
ptc,hc − qtc,hc

)
N t+1

c,cg = N t
c,cg +∆t

(
rtc,cg − ptc,cg

) (10)

If we disaggregate the flows by destination, the following
conservation equation is satisfied for all d ∈ D:∣∣∣∣∣∣∣

Nd,t+1
c,hc = Nd,t

c,hc +∆t
(
pd,tc,hc − χd,t

c,hc q
t
c,hc

)

Nd,t+1
c,cg = Nd,t

c,cg +∆t (
∑

h∈Pred(c)

χd,t
c,hc Γ

d,t
c,hg q

t
c,hc − pd,tc,cg)

(11)

The model, with its main equations (3), (4), (6), (5),
(9), (10), (11), is thus complete. As mentionned before,
the cell (ω), which represents the domain outside of the
modelled network, provides the external demand as well
as the supply for the network outflow.

3. SPECIFIC QUESTIONS AND ASPECTS.

3.1 Consistency checks.

Let us first check that (10) can be derived from (11).∑
d∈D

∑
h∈Pred(c)

χd,t
c,hc Γ

d,t
c,hg q

t
c,hc

=
∑

h∈Pred(c)

γt
c,hc q

t
c,hc = rtc,cg

Thus summing (11) over d ∈ D we obtain (10).

Let us now sum (10) over h ∈ Pred(c) and over g ∈
Succ(c). Using the definition (1) it follows:

N t+1
c = N t

c +∆t


 ∑
h∈Pred(c)

ptc,hc −
∑

g∈Succ(c)

ptc,cg


 (12)

because the internal cell flows cancel each other out. (12)
expresses of course the global traffic flow conservation for

(c)Cell

Privileged
 directions
of travel

Streets

Fig. 5. An anisotropic cell.

the cell. But it can also be interpreted in terms of MFD
if we aggregate all boundary demands as a single cell
demand. In this sense the proposed model encompasses
the MFD models because it recaptures it if the demand
functions are simplified (expressed in terms of the total
number of vehicles N t

c only).

3.2 The CFL condition.

In the one-dimensional case (for instance when discretizing
the GSOM model) this condition expresses that within
a time-step traffic waves originating from different cell
boundaries do not interact. In the present case cells are
bidimensional. The time step duration ∆t must be less
than the minimum mean crossing time of any cell (c).
Generalizing the CFL in the one-dimensional case we posit
that the CFL condition in the bidimensional case can be
expressed as follows. The time step duration ∆t must be
less than the minimum mean crossing time of any cell (c).
The mean crossing time must be understood as the travel
time from a (h) − (c) boundary to a (c) − (g) boundary
(with h ∈ Pred(c) and over g ∈ Succ(c)).

It must be noted that traffic waves originating from
distinct interfaces (h1) − (c), (h2) − (c), sharing a corner
may interact at this corner inside the cell (c). Similarly
waves crossing the cell (c) from interface (h1) − (c) to
(c) − (g1) can interact with waves crossing the cell (c)
from interface (h2) − (c) to (c) − (g2). Nevertheless these
interactions will have little impact on the cell inflows or
outflows.

3.3 Connection with the anisotropic bidimensional model
ABTM

In the anisotropic bidimensional model ABTM, cells have
typically four sides and traffic flows in the cell according
to four privileged directions, as depicted in Figure 5.
Now let us consider the setting of Figure 6. There is a
privileged travel direction say (i) corresponding to (h) →
(g) traffic inside (c), and a privileged travel direction (j)
corresponding to (g) → (h) traffic inside (c). Let us carry
out the aggregations∣∣∣∣∣

N t
c,i

def
= N t

c,hc +N t
c,cg

Nd,t
c,i

def
= Nd,t

c,hc +Nd,t
c,cg

(13)

N t
c,i denotes the number of vehicles in cell (c) at the

beginning of time-step (t) which have the direction (i).
This number can be disaggregated per destination d,

yielding the Nd,t
c,i . If we apply equations (9), (10), (11) of

the GBTM to the directional traffic variables N t
c,i, N

d,t
c,i ,
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Max(
(qhc)h∈Pred(c)

(rcg)g∈Succ(c)

)

 ∑
h∈Pred(c)

Φc
hc(qhc) + . . .

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. . .+
∑

g∈Succ(c)

Ψc
cg(rcg)




0 ≤ qhc ≤ ∆t
c,hc ∀h ∈ Pred(c)

0 ≤ rcg ≤ Σt
c,cg ∀g ∈ Succ(c)

rcg =
∑

h∈Pred(c)

γt
c,hg qhc ∀g ∈ Succ(c)

(9)

Thus if q∗hc, r
∗
cg denote the solutions of (9), qtc,hc = q∗hc,

rtc,cg = r∗cg. The functions Φc
hc(.) and Ψc

cg(.) should be
positive, concave and increasing. They express the global
behavior of the intersections in cell (c). A simple model for
these functions, already used in several applications (see
for instance Sossoe et al. (2015)), would be:

Φc
hc(qhc) = (qhc/µ

c
hcQc,max)− (qhc)

2/2
Ψc

cg(rcg) =
(
qcg/µ

c
cgQc,max

)
− (qcg)

2/2

2.4 Global traffic conservation updates for a cell

The conservation of vehicles implies, for all h ∈ Pred(c)
and all g ∈ Succ(c):∣∣∣∣

N t+1
c,hc = N t

c,hc +∆t
(
ptc,hc − qtc,hc

)
N t+1

c,cg = N t
c,cg +∆t

(
rtc,cg − ptc,cg

) (10)

If we disaggregate the flows by destination, the following
conservation equation is satisfied for all d ∈ D:∣∣∣∣∣∣∣

Nd,t+1
c,hc = Nd,t

c,hc +∆t
(
pd,tc,hc − χd,t

c,hc q
t
c,hc

)

Nd,t+1
c,cg = Nd,t

c,cg +∆t (
∑

h∈Pred(c)

χd,t
c,hc Γ

d,t
c,hg q

t
c,hc − pd,tc,cg)

(11)

The model, with its main equations (3), (4), (6), (5),
(9), (10), (11), is thus complete. As mentionned before,
the cell (ω), which represents the domain outside of the
modelled network, provides the external demand as well
as the supply for the network outflow.

3. SPECIFIC QUESTIONS AND ASPECTS.

3.1 Consistency checks.

Let us first check that (10) can be derived from (11).∑
d∈D

∑
h∈Pred(c)

χd,t
c,hc Γ

d,t
c,hg q

t
c,hc

=
∑

h∈Pred(c)

γt
c,hc q

t
c,hc = rtc,cg

Thus summing (11) over d ∈ D we obtain (10).

Let us now sum (10) over h ∈ Pred(c) and over g ∈
Succ(c). Using the definition (1) it follows:

N t+1
c = N t

c +∆t


 ∑
h∈Pred(c)

ptc,hc −
∑

g∈Succ(c)

ptc,cg


 (12)

because the internal cell flows cancel each other out. (12)
expresses of course the global traffic flow conservation for
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Fig. 5. An anisotropic cell.

the cell. But it can also be interpreted in terms of MFD
if we aggregate all boundary demands as a single cell
demand. In this sense the proposed model encompasses
the MFD models because it recaptures it if the demand
functions are simplified (expressed in terms of the total
number of vehicles N t

c only).

3.2 The CFL condition.

In the one-dimensional case (for instance when discretizing
the GSOM model) this condition expresses that within
a time-step traffic waves originating from different cell
boundaries do not interact. In the present case cells are
bidimensional. The time step duration ∆t must be less
than the minimum mean crossing time of any cell (c).
Generalizing the CFL in the one-dimensional case we posit
that the CFL condition in the bidimensional case can be
expressed as follows. The time step duration ∆t must be
less than the minimum mean crossing time of any cell (c).
The mean crossing time must be understood as the travel
time from a (h) − (c) boundary to a (c) − (g) boundary
(with h ∈ Pred(c) and over g ∈ Succ(c)).

It must be noted that traffic waves originating from
distinct interfaces (h1) − (c), (h2) − (c), sharing a corner
may interact at this corner inside the cell (c). Similarly
waves crossing the cell (c) from interface (h1) − (c) to
(c) − (g1) can interact with waves crossing the cell (c)
from interface (h2) − (c) to (c) − (g2). Nevertheless these
interactions will have little impact on the cell inflows or
outflows.

3.3 Connection with the anisotropic bidimensional model
ABTM

In the anisotropic bidimensional model ABTM, cells have
typically four sides and traffic flows in the cell according
to four privileged directions, as depicted in Figure 5.
Now let us consider the setting of Figure 6. There is a
privileged travel direction say (i) corresponding to (h) →
(g) traffic inside (c), and a privileged travel direction (j)
corresponding to (g) → (h) traffic inside (c). Let us carry
out the aggregations∣∣∣∣∣

N t
c,i

def
= N t

c,hc +N t
c,cg

Nd,t
c,i

def
= Nd,t

c,hc +Nd,t
c,cg

(13)

N t
c,i denotes the number of vehicles in cell (c) at the

beginning of time-step (t) which have the direction (i).
This number can be disaggregated per destination d,

yielding the Nd,t
c,i . If we apply equations (9), (10), (11) of

the GBTM to the directional traffic variables N t
c,i, N

d,t
c,i ,

2018 IFAC CTS
June 6-8, 2018. Savona, Italy

64

(c)
(g)

(h)

[i]

[j]

Fig. 6. Privileged directions associated to neighboring
cells.

we recapture the anisotropic bidimensional model ABTM
Sossoe (2017).

3.4 Definition of the global cell functions Φc
hc and Ψc

cg

In subsection 2.3 a simple form has been proposed for
the functions Φc

hc and Ψc
cg . This functional form has

also been proposed for intersection modeling for instance
in Lebacque and Khoshyaran (2005) and Lebacque and
Khoshyaran (2013) (actually in the case of a simple merge
this form boils down to the priority model of Daganzo).

It is necessary to address the issue of the connection of
the global cell functions Φc

hc and Ψc
cg with the local inter-

section functions. The functions Φc
hc and Ψc

cg can indeed
be derived from corresponding intersection functions, by
aggregating them. This aggregation process can be carried
out in a rigorous way under some hypotheses:

• the network presents local regularity (i.e. periodicity);
• the intersections are identical and placed periodically;
• the behavior of each intersections is described by a
model analogous to (9) i.e. an optimization model
with intersection functions φi and ψj which regulate
the split of supplies and demands among intersection
through-flows;

• the traffic demand and supply at the cell boundary
are constant.

The result of the analysis is that global cell functions Φc
hc

and Ψc
cg are obtained by aggregating the local intersection

functions φi and ψj . The details are beyond the scope of
this paper.

Let us note that this question has been addressed in a
simulation context, in Saumtally (2012) in the static case,
and in Mazloumian et al. (2010) for instance. The idea
being to deduce macroscopic features from mesoscopic
simulation.

3.5 Interface with GSOM models and applications

The static ABTM model has been applied to a number
of academic cases in Saumtally (2012) and Sossoe (2017).
The results are completely consistent with expectations in
terms of traffic peak propagation, and congestion and sup-
ply reduction back-propagation. In Sossoe and Lebacque
(2017) and subsequent work the dynamic ABTM model
has been applied to a real size case: the Marne-la-Vallée
site. The application concerned some tasks of the ANR
project TrafiPollu, specifically to estimate traffic dynamics

Fig. 7. The Marne-la-Vallée site. Left the MODUS descrip-
tion of the network, right the division into cells.

in order to derive pollutant emission on the site which is a
network of some 6 x 13 km. The figure 7 shows the site as
well as its division into cells. As mentionned, the cells must
be large, of the order of a kilometer. The zone of study
includes some motorways which are modelled by GSOM.
The GSOM cells are interfaced with the bidimensional cells
through the supply/demand mechanism.

The model ABTM allowed to evaluate various strategies
of large-scale traffic management from the point of view
of pollutant emission and to determine the best strategy
from that point of view. These results are described in
Haj-Salem (2016). Some cells of the network are only very
roughly anisotropic with privileged propagation directions
and the calculations were revisited with the GBTM model,
with consistent results.

4. CONCLUSION.

The model presented in this paper encompasses the
anisotropic bidimensional model, the MFD and can also
be interfaced with the GSOM model, thus allowing the
description of traffic dynamics on large networks which are
heterogeneous, i.e. which comprise dense areas (structured
or unstructured) and also a network of high capacity in-
frastructure. The latter is modelled by a GSOM approach.

Further it has been shown that the GSOM model can
be extended to multimodal transportation network mod-
elling (Lebacque and Khoshyaran (2017), Khoshyaran and
Lebacque (2018)). This extension can be envisionned for
multimodal bidimensional modelling and is the object of
current work. From a theoretical point of view the homoge-
nization approach should be applied in order to deduce the
macroscopic (bidimensional) properties of networks from
the microscopic properties of links and intersections.

REFERENCES

Daganzo, C.F. and Geroliminis, N. (2008). An analytical
approximation for the macroscopic fundamental dia-
gram of urban traffic. Transportation Research Part B:
Methodological, 42(9), 771–781.

Haj-Salem, H. (2016). Modélisation du trafic et de ses
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