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Abstract: Deep Neural Networks are state-of-the-art in a large number of challenges in machine
learning. However, to reach the best performance they require a huge pool of parameters. Indeed,
typical deep convolutional architectures present an increasing number of feature maps as we go
deeper in the network, whereas spatial resolution of inputs is decreased through downsampling
operations. This means that most of the parameters lay in the final layers, while a large portion of
the computations are performed by a small fraction of the total parameters in the first layers. In
an effort to use every parameter of a network at its maximum, we propose a new convolutional
neural network architecture, called ThriftyNet. In ThriftyNet, only one convolutional layer is defined
and used recursively, leading to a maximal parameter factorization. In complement, normalization,
non-linearities, downsamplings and shortcut ensure sufficient expressivity of the model. ThriftyNet
achieves competitive performance on a tiny parameters budget, exceeding 91% accuracy on CIFAR-10
with less than 40 k parameters in total, 74.3% on CIFAR-100 with less than 600 k parameters, and
67.1% On ImageNet ILSVRC 2012 with no more than 4.15 M parameters. However, the proposed
method typically requires more computations than existing counterparts.

Keywords: convolutional neural network; factorization technique; recurrent residual network

1. Introduction

Convolutional Neural Networks (CNNs) have revolutionized the field of computer
vision, providing consistent state-of-the-art results in a wide range of tasks, from image
recognition to semantic segmentation. This increase in performance was accompanied by
an increase in the depth, size and overall complexity of the corresponding models. It is not
unusual to encounter models with hundreds of layers and tens of millions of parameters.
This is even more true in the field of Natural Language Processing where very large models
usually lead to the best performance.

There are multiple reasons why it would be desirable to reduce the size of CNNs. For
example, for some applications, it is required to deploy systems on resource-constrained
hardware (e.g., IoT) or to provide real-time predictions (e.g., assisted surgery, autonomous
vehicles. . . ). More generally, deep learning systems are often deployed as black boxes
trained on huge available datasets, and are therefore lacking understandability and inter-
pretability: reducing the number of parameters can help in visualizing and explaining
decisions. Additionally, datacenters are increasingly used for deep learning, and their
impact on the environment is becoming a concern.

For all these reasons, there have been a significant amount of works aiming at reducing
the size and computational cost of CNNs. To cite a few, some works propose to prune
the connections in deep learning systems so as to reduce their numbers [1]. Other works
propose to distillate the knowledge from large architecture to smaller ones [2]. It is also
possible to focus on reducing the bit precision of weights and/or activations [3] or to
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factorize some of the operations [4,5]. Finally, a lot of efforts have been dedicated to finding
efficient architectures [6–8].

A key difficulty in the field is tied to the fact that there are multiple metrics to act
upon, and a lot of possible hardware targets, on which some methods might not be
applicable. Throughput, latency, energy, power, flexibility and scalability are among the
most discussed ones in the literature. In this work, we focus on reducing the number of
parameters of architectures,which is usually strongly connected to the memory usage of the
model. In this area, factorizing methods, which identify similar sets of parameters and
merge them [4], are particularly effective, in that they considerably reduce the number
of parameters while maintaining the same global structure and number of flops. Our
contribution can be thought of as a factorization technique.

In this work, we propose to introduce a new factorized deep learning model, in which
the factorization is not learned during training, but rather imposed at the creation of the
model. We call these models ThriftyNets, as they typically contain a very constrained
number of parameters, while achieving top-tier results on standard classification vision
datasets. The core idea we introduce consists of recycling the same convolution to be
applied a large number of times when processing an input element. In more details, we
introduce ThriftyNets, a new family of deep learning models that are designed with a fixed
number of parameters and variable depths and flops. To report ThriftyNet perormance, we
perform experiments on standard vision datasets and show that we are able to outperform
current deep learning solutions for tiny parameters budget. We also design experiments to
stress the impact of the hyperparameters of the proposed models on the accuracy and the
flops of obtained solutions.

The outline of the paper is as follows. In Section 2 we present related work and discuss
the context of our proposed method. In Section 3 we introduce the proposed methodology
and discuss the role of hyperparameters on the total number of parameters. In Section 4 we
perform experiments using standard vision datasets and compare the proposed method
with existing alternative architectures. Section 5 is a conclusion.

2. Related Work

Many different approaches were explored in the field of neural network compres-
sion, always with the goal of finding the best trade-off between resource efficiency and
model accuracy. Most of those methods are orthogonal to one another, meaning that they
can be used all together on the same model. For example, pruning, quantization and
distillation methods could be applied to ThriftyNets for even smaller model sizes. In the
next paragraphs, we introduce the main contributions to the field, grouped by the type of
compression they perform.

2.1. Pruning

Pruning, first introduced by [9], aims at deleting parameters, channels, or parts of a
network while preserving the global performance [10]. While setting single parameters
to zero induces sparsity in both the intermediate representations and parameter tensors,
deleting complete channels is harder to achieve with good performance, yet allows faster
inference time and less resource consumption. Pruning can be performed once and for
all after training, in order to reduce the model’s size [1,9,11,12], or during training [5,13]
to impact training time as well. In the first case, the stress is put on defining a metric for
deleting the least useful neurons or channels. In the latter, mechanisms are designed in
order to force the network to abandon the use of some of its parameters during training.
Pruning can be applied to the proposed ThriftyNets to reduce their number of parameters.

2.2. Quantization

While standard floating-point values have 32 bits of precision, many works have
experimentally demonstrated that neural networks do not lose a lot of performance when
their parameters are restricted to a small set of possible values [14], up to binary neural
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networks with only two possible values and one bit storage for each parameter [15].
Reducing precision allows models to be more compact by a great factor, and allows
implementation on dedicated low precision hardware [16,17]. Like pruning, quantization
can be performed after training through a transformation of the parameters [18–20], or
during training [3]. Despite the fact quantization can greatly benefit the memory usage of
CNNs, it usually does not reduce the number of parameters and is therefore quite different
from the aim of this paper.

2.3. Distillation

Distillation techniques consist of training a deep neural network, termed ‘student’, to
reproduce the outputs of another model, termed ‘teacher’, with the student being typically
smaller than the teacher. While initially only considering the final output of the teacher
model [2], methods evolved to take into account intermediate representations [21,22].
Distilling a model into itself, or self-distillation has also proven to be effective when
iterated [23]. While individual knowledge distillation focused on the student mimicking
the outputs of the teacher, relational knowledge distillation [24,25] made it reproduce the
same relations and distances between training examples, yielding a better representation
of the latent space for the student, and better generalization capabilities.

2.4. Efficient Scaling

While the diversity of datasets in computer vision does not cease to increase, some
works are focused on the re-usability of architectures that perform well on specific tasks.
Mainly, the resolution and complexity of the input image play a great role in the minimal
number of parameters required to achieve good performance. While it is possible to
scale architectures by adding layers (depth increase) [26] or by adding filters (width
increase) [6,27], a correct balance between those hyperparameters has been shown to lead
to better results [8].

2.5. Factorization

Factorization consists of reusing parameters, channels or whole parts of the network
several times, thus effectively reducing its size compared to a counterpart where the re-
peated parts would be made of distinct elements. Parameters can be grouped by values,
and accessed through an indirection table [4], in approaches that are often coupled with
quantization [28]. Convolution kernels of great size can be factorized into smaller ker-
nels before training [7,29] or using matrix factorization after training [19]. The proposed
architectures can be thought of as heavily factorized CNNs.

2.6. Recurrent Residual Networks as ODE

Since the initial proposal of residual networks [26], many works have studied them
theoretically, observing that the forward pass of a residual network resembles the explicit
Euler scheme of an ordinary differential equation [30–32]. The question of stability, in-
vertibility and reusability of the convolutional filters became central [33,34]. Experiments
were conducted on recurrent residual networks with a single filter iterated over time [35].
Those studies provide theoretical insight on why reusing filters at different depths can be
effective. The proposed method is highly inspired by those works.

3. Methodology
3.1. Context

CNNs form a family of Deep Neural Networks which parameters are mainly arranged
in convolutional layers. Such layers are determined by two tensors W and B, corresponding
to the kernels and biases parameters respectively. Denoting by fin the number of input
channels, fout the number of output channels, a the kernel width and b the kernel height,
the cardinality of W can be written as fin foutab, while B has cardinality fout.
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In most cases, architectures become wider in their deep layers, where the spatial
dimension of processed signals is reduced. As a consequence, most of the parameters are
contained in the deep layers, while the number of operations is almost evenly distributed
along the architecture [26]. In an effort to reduce the number of parameters in deep
convolutional neural networks, it is therefore usual to target the deep layers in priority.
This is in contradiction with the fact that the number of parameters scales quadratically
with the depth of the architecture in many models. This is even more problematic since
state-of-the-art results often rely on the use of (very) deep neural networks.

In order to remove this dependency, we propose to share kernels between layers, from
the input to the output of the considered architecture. Similar ideas were proposed in
previous works [35]. As a result, the proposed architectures can be scaled to any depth
with little impact on the total number of trainable parameters.

3.2. Thrifty Networks

Consider a problem in which the aim is to associate an input tensor x with an output
y through the network function f . This network function is trained using a variant of the
stochastic gradient descent algorithm to minimize a loss function L over a dataset D.

We propose to define a convolutional layer C, parametrized by weights W, and to
build a deep neural network using only this layer iteratively applied T times on successive
latent representations of the input. Note that we do not use convolution with bias in
this work.

This architecture, called ThriftyNet, is then defined by the following recursive sequence:
x0 = PAD(x)
xt+1 = Dt[BNt(x + σ(W ? xt))]
y = FC(xT)

, (1)

where PAD creates extra channels filled with constant values to extend the dimension of x,
BN is a batchnorm layer, Dt is a downsampling operation (typically achieved with strides or
pooling) or the identity function, and FC is a final fully connected layer. Note that the PAD
function is only used on the input of the network as a mean to adapt the input tensor shape
to the convolutional layer. Note that an overview of the proposed method is depicted in
Figure 1.

Several classical activation functions σ were considered in this algorithm. In our case,
not only do they break the linearity, they also play an important role in regularizing the
norm of the activation tensor. We found that the hyperbolic tangent and ReLU yielded the
best results in term of accuracy. However, for the purpose of implementing this algorithm
onto specific hardware, we focused on rectified linear units (ReLU).

Note that convolutions can be applied to inputs of any spatial dimensions, which is
why we can reduce the spatial dimension of the inputs throughout the process.

3.3. Augmented Thrifty Networks

In order to boost the performance of thrifty networks, we add a shortcut mechanism,
where activations from previous iterations can be added from the past. This augmented
thrifty network adds T(h + 1) parameters on top of a regular thrifty network, with h
being a hyperparameter representing how many steps in history are kept in memory when
processing a new iteration. They are grouped in a matrix α. Those parameters are the
coefficients weighting the contribution from past activations at each step. In augmented
thrifty nets, Equation (1) is replaced as follows:
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x0 = PAD(x)
at+1 = σ(W ? xt)

bt+1 = Dt[at+1] +
h

∑
i=0

α[t, i]
t
©
j=0
Dj[xt−i]

xt+1 = BNt(bt+1)
y = FC(xT)

, (2)

where© denotes the composition operator. Previous activations xt−i are added only if
t− i > 0.

Adding contributions from the past lead to better performance of the architecture on
every task at the expanse of only a handful of additional parameters. However, the cost of
computation is slightly increased, as well as the memory requirements to store previous
activations. This trade-off will be discussed in the experiments section.

THRIFTY ITERATION

Conv σ + BN
xt xt+1

AUGMENTED THRIFTY ITERATION

Conv σ + BN
xt xt+1

[xt−1, ..., xt−h]

PAD Iteration

Downsampling

Global
Pooling FC

x x0 xT y

xt, t < T

Figure 1. Flow diagram of our algorithm (bottom). The typical three-channeled input is first padded with zeros to match a
predetermined number of filters. Then, ThriftyNet performs a user-defined amount of iterations T, consisting of a convolution with
the filter, a non-linear activation, a shortcut and a Batch Normalization (left box). Alternatively, an augmented ThriftyNet performs the
same operation, as well as a weighted sum of this result with previous iterations before the normalization step (right box). In both
cases, the final tensor xT is fed into a global max pooling, extracting one feature per filter, and into a fully connected layer, connecting
it to the output classes. The resulting architecture contains very few parameters mostly determined by the number of feature maps in
the convolutional layer.

3.4. Pooling Strategy

Pooling has two notables effects: firstly, it diminishes the number of computations
made by one iteration which significantly increases the speed of a forward pass in the
model. Secondly, it allows the convolutional filter to take effect into larger regions of the
initial images. In the augmented thrifty network, pooling is applied to every elements
in the history, in order to guarantee size compatibility. The pooling positions are set as
hyperparameters, and various strategies are possible and discussed in the experiments.

A key property of convolutional layers is that they are defined independently of the
input dimensions. As such, we can reuse the same convolutional on inputs of various
dimensions, starting from the full spatial resolution to strongly downscaled representations.

As a consequence, once the hyperparameters of the convolution are fixed, a ThriftyNet
is characterized by an integer sequence (Dt)0≤t<T , where Dt denotes the downsampling
that occurs at step t (1 means by convention that no downsampling is performed at
this step).
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3.5. Grouped Convolutions

In our models, we found that using grouped convolutions can lead to better perfor-
mance for some tasks. Recall that a group convolution is obtained by splitting the input
tensor along the feature maps axis, and performing computations on each resulting slice
concurrently with independent kernels. In more details, in some experiments we design
convolutions that are obtained by composing two elementary convolutions: the first one
uses a kernel-size ab and as many groups as feature maps in the input. The second one uses
kernel-size of 1 and only one group. As a result, the first convolution exploits the spatial
structure of the input, but treats each feature maps independently, whereas the second
convolution disregards the spatial structure but mixes feature maps. The total number of
parameters in the weights of such a convolution is therefore foutab + fin fout.

3.6. Hyperparameters and Size of the Model

In Table 1 we recap the hyperparameters to define ThriftyNet and their augmented
version. These hyperparameters are recalled or defined in the following list:

• The number of filters f in the convolutional layer
• The dimension (a, b) of the convolution kernel
• The number of iterations T
• The number of steps h to consider when performing shortcuts from previous activa-

tions
• The downsampling sequence (Dt)t

Table 1. Summary of the number of parameters of the proposed models, as functions of the hyperpa-
rameters.

Model Convolutions Size

ThriftyNet Classical f 2ab + 2 f T
ThriftyNet Grouped f (ab + f ) + 2 f T

augmented ThriftyNet Classical f 2ab + 2 f T + hT
augmented ThriftyNet Grouped f (ab + f ) + 2 f T + hT

3.7. Depth and Abstraction

One could believe that ThriftyNets are not likely to reach top performance, as generic
deep neural networks are believed to produce more abstract features as we go deeper in
their architectures, whereas ThriftyNets use the same features at any depth. We argue that
specialized features would likely occur if objects to recognize would have very similar
scales. For challenging vision datasets, it is likely that the scale changes from an image
to the next. In this case, it is desirable to retrieve similar features at various depths in
the architecture, because increasing depth leads to encompassing increasingly larger local
receptive fields. As such, ThriftyNets are likely to yield increased invariance to scale, which
probably explains in part its ability to reach good performance despite its few parameters.

4. Experiments

In this section, we explore the performances obtained with various values of hy-
perparameters, namely the total number of iterations T, the number of downsamplings
performed, the history, and the number of filters f , which is directly linked to the number
of parameters.

Experiments were performed on CIFAR-10, CIFAR-100, SVHN and ImageNet ILSVRC
2012. CIFAR-10 and CIFAR-100 [36] are datasets of tiny colored images of 32 × 32 pixels.
They contain both 50,000 samples for training and 10,000 samples for test. CIFAR-10 is
made of 10 classes, whereas CIFAR-100 contains 100 classes. Note that state-of-the-art
accuracy is 98.9% on CIFAR-10 and 91.70% on CIFAR-100 using EfficientNet-B7 [8] (64 M
parameters). SVHN is a dataset of digit classification from pictures of house numbers.
Images are also of size 32 × 32 and present up to three digits in them. The classification
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task consists in identifying the central digit. The state-of-the-art performance without data
augmentation was achieved by a Wide-ResNet-16-8 [27] with 98.46% accuracy. ImageNet
ILSVRC 2012 is a dataset containing high resolution images, and made of 1000 classes,
where each class contains about 1000 training images and 50 images for test. The state of
the art Top 1 accuracy is 88.61% achieved by EfficientNet-L2-475 [37].

We use Stochastic Gradient Descent as an optimizer, and a starting learning rate of
10−1 and dividing it by 10, usually at epochs 50, 100 and 150, for a total of 200 epochs
when considering CIFAR-10, CIFAR100 and SVHN, and a starting learning rate of 10−1 and
dividing it by 10, usually at epochs 30 and 60, for a total of 90 epochs when considering
ImageNet ILSVRC 2012.

4.1. Impact of Data Augmentation

In this experiment, we aim at stressing the effect of data augmentation on the accuracy
of proposed networks. Note that when we work with tiny networks, regularization tech-
niques like heavy data augmentation, mixup or cutmix, designed to help very expressive
networks to achieve better generalization performance, have little to no effect, as observed
in our experiments. In Table 2, we report the performance on test sets we obtained when
using an augmented ThriftyNet with 40 k parameters and 20 iterations trained on CIFAR-10
as described in Section 4. We observe very little impact in using more advanced techniques
of data augmentation. We hypothesize that thrifty architectures are less likely to cause
overfitting because of the very constrained number of parameters. On SVHN, a 20 k param-
eter ThriftyNet, trained with Auto Augment [38] and Cutout of size 8 [39] achieves 97.25%
accuracy, compared to the 96.59% of the same architecture trained on the raw dataset.

Table 2. Impact of the chosen data augmentation technique on the test sets accuracy when training
augmented ThriftyNets with 40 k parameters and 20 iterations trained on CIFAR-10.

Data Augment Test Accuracy

Standard (crops and horizontal flips) 90.64%
Standard + auto augment [38] 91.00%
Standard + cutout size 8 [39] 90.40%

Standard + mixup [40] 88.09%
Standard + cutmix [41] 88.47%

As a result, and to fairly compare the proposed method with other state-of-the-art
solutions, we use in the following experiments standard augmentation consisting of hori-
zontal flips (for CIFAR only) and random crops. Note that when considering ImageNet
ILSVRC 2012, we use standard data augmentation defined in [42].Note that int the follow-
ing experiments, the same data augmentation is used for all methods.

4.2. Comparison with Standard Architectures

We then compare in Tables 3 and 4 the performance of the proposed ThriftyNet
architectures to standard ones found in the literature, resp. on CIFAR-10 and CIFAR-100.
Note that Macs refers to the number of multiplications required to process one input and
classify it.

The first observation that we can draw from Table 3 and 4 is that ThriftyNets present
competitive results with the literature for a tiny parameter budget. The augmented
ThriftyNet we use on CIFAR-10 achieves up to 91% accuracy while using less than 40 K
parameters in total. The only size-comparable architecture we found is the one introduced
in [35], but its accuracy is significantly lower than that of the ThriftyNets. Since it is not
completely fair to compare architectures that target different accuracies, we run an addi-
tional experiment in which we scale down DenseNet-BC and Resnet so that they contain a
comparable number of parameters. More precisely, we proportionally reduce the number
of feature maps of every single convolutional layer in the considered architectures until
reaching the targeted number of parameters. We obtain that DenseNet-BC achieves 87.91%
accuracy, and Resnet 86.72% accuracy. Again, we observe a significant drop in accuracy
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compared to ThriftyNets. We conclude that for the same parameter budget, The proposed
architecture achieves better accuracy than other counterparts.

Table 3. Comparative results on CIFAR-10. Experiments were performed 5 times and the interval is
the observed standard deviation.

Model Parameters Macs Test Accuracy

Resnet-110 [26] 1.7 M 250 M 93.57%
FitNet [21] 1.6 M - 91.10%
SANet [13] 980 k <42 M 95.52%

Pruned ShuffleNets [43] 879 K <4 M 93.05%
DenseNet-BC [44] 800 k 129 M 95.49%

Pruned MobileNet [43] 671 K <7.8 M 91.53%
Wide-ResNet [27] 564 K 84.3 M 93.15%

IRKNets [45] 320 k - 92.82%
Resnet-20 [26] 270 k 40 M 91.25%

3-state Recurrent Resnet [35] 121 K - 92.53%
Fully Recurrent Resnet [35] 39.7 K - 87%

Tiny Resnet (ours) 43.6 K 6.8 M 86.72%
Tiny DensetNet-BC (ours) 39.6 K 6 M 87.81%

ThriftyNet h = 5, T = 15 (ours) 39.6 K 130 M 90.15 ± 0.42%
ThriftyNet h = 5, T = 45 (ours) 39.6 K 300 M 90.95 ± 0.45%

Table 4. Comparative results on CIFAR-100.

Model Parameters Macs Test Accuracy

FitNet [21] 2.5 M - 64.96%
ResNet-164 [26] 1.7 M 257 M 75.67%

IRKNets [45] 1.4 M - 79.15%
SANet [13] 1.01 M 42 M 77.39%

DenseNet-BC [44] 800 k 129 M 77.73%
Wide-ResNet [27] 600 k 84.3 M 69.11%

ThriftyNet h = 5, T = 40 (ours) 600 k 2740 M 74.37%

To perform comparisons on ImageNet ILSVRC 2012, we had to adapt the proposed
ThriftyNets. Indeed, since inputs are typical of high resolutions, the first filters require too
many computations. We thus used a combination of a Resnet18 for processing the first
layers of the architecture with a ThriftyNet for the last ones, when the spatial resolution
has significantly reduced. We compared with a scaled-down Resnet18 (small-Resnet18).
Table 5 shows that when replacing the last B building blocks by ThriftyNet, we achieve
comparable accuracy to the Resnet baselines while considerably reducing the number of
parameters. Note that this gain in the number of parameters comes with the disadvantage
of a significant increase in the number of multiplications.

Table 5. Comparative results on ImageNet ILSVRC 2012, considering Top 1 Accuracy (Top1A),
Top 5 Accuracy (Top5A), number of parameters and number of operations (Macs).

Model Parameters Macs Top1A Top5A

Resnet18 11.6 M 1816 M 69.7% 89.8%
small-Resnet18 6.7 M 1044 M 66.7% 87.5%

Resnet18-ThriftyNet h = 1, T = 3, B = 2 (ours) 6.84 M 1810 M 68.4% 88.7%
Resnet18-ThriftyNet h = 1, T = 7, B = 4 (ours) 4.15 M 4347 M 67.1% 87.5%

What we draw from these experiments is that when the parameter budget is very
constrained, ThriftyNets appear as an interesting choice. For CIFAR-100, the proposed aug-
mented ThriftyNet architecture achieves 74.37% accuracy, which is competitive regarding
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its 600 k parameters in total, and for ImageNet, it achieves 67.1% accuracy while requiring
only 4.15 M parameters.

However, let us point out that this performance comes at the expense of the number
of operations performed by the network. Since ThriftyNets apply the same convolutional
filter at each iteration, first iterations using both the full depth of the filter and the full
resolution of images are very costly. We investigate this limitation later in this section. In
brief, we can say that ThriftyNets represents an efficient solution when considering the
number of parameters to be constrained, but it is outperformed by other state-of-the-art
architectures when considering complexity (i.e., number of operations).

4.3. Factorization and Filter Usage

Iterating over the same convolutional filter on a ThriftyNet that presents downsam-
plings means that the architecture is offered the possibility to reuse filters over different
spatial resolutions of the inputs. One could then imagine that the optimization scheme
would associate some filters with wide spatial representations and some with deeper itera-
tions in the network. In Figure 2, we plot the mean activation of the filters over the training
set of CIFAR-10 for each iteration, for a trained augmented ThriftyNet with 64 filters and
20 iterations. We observe that no clear pattern appears in the activation of the filters, from
which we deduce that they are being consistently used at every iteration.

Figure 2. Visualization of the mean activation of each convolutional filter at every iterations.

4.4. Efficient ThriftyNets

In an effort to reduce the impact of the computational cost of the first iterations, it
can be beneficial to perform downsamplings sooner than later. In the last experiments, we
used a regular spacing of downsamplings. However, here we consider performing them
at any iteration. On CIFAR-10, we were able to obtain an accuracy of 85.35% for a total of
49 M Macs, while the regular pooling version achieves a mean of 90.15% for 130 M Macs.

This sheds light on a trade-off in neural network architectures, where a small number
of parameters can be compensated by a large number of computations. In Figure 3, we
illustrate this phenomenon by plotting the final test accuracy on CIFAR-10 for various
ThriftyNets as a function of their Mac count, for a fixed number of parameters (40 k). We
distinguish two possibilities: in blue, we depict what happens when performing irregularly
spaced downsamplings and in orange what happens when the total number of iterations
varies but downsamplings are regularly spaced.

Interestingly, the two solutions we compare to reduce the number of operations
seem to lead to similar behaviors in terms of the trade-off between Macs and accuracy.
While irregular downsamplings may lead to more iterations for the same Macs budget,
we hypothesize that reducing the number of iterations on high-resolution intermediate
representations can lead to significant drops in accuracy.

4.5. Effect of the Number of Iterations

Another important hyperparameter to design ThriftyNets is the number of iterations
we use. Normally, this hyperparameter directly influences the number of parameters in the
architecture (c.f. Table 1). As a consequence, it is difficult to analyze the influence of T. In
Figure 4, we report the test-set accuracy of ThriftyNets and augmented ThriftyNets when
varying the number of iterations T, but for a fixed parameters budget of 40 k that we reach
by tuning the number of feature maps f accordingly.
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Figure 3. Accuracy on CIFAR-10 of various ThriftyNets of 40 k parameters, as a function of the
number of Macs they perform. In blue, the points are obtained by considering the irregular spacing
of downsamplings. In red, the points are obtained by varying the number of iterations, while
maintaining a regular spacing between downsamplings.

First, let us point out that extreme values of T would necessarily lead to poor perfor-
mance. Indeed, choosing T = 1 would lead to a shallow network with poor generalization
abilities. Choosing a too-large T would cause the number of filters to become too small
to expect good performance. What we observe in the experiments is that the choice of T
could be more tightly restricted since in the case of ThriftyNets, T = 10 and T = 50 lead
to poorer performance than values in between. Yet, in the range [20 . . . 40], we observe
that tuning the number of iterations for a given parameters budget has little influence on
overall performance.

10 20 30 40 50
89

89.5

90

90.5

91

91.5

92

Number of iterations

Te
st

ac
cu

ra
cy

on
C

IF
A

R
-1

0
(%

)

History 1
History 5

Figure 4. Accuracy on CIFAR-10 as a function of the number of iterations. The number of parameters
is fixed at 40 k, and pooling is evenly spaced in order to be performed 4 times, plus one last time in
the end. Experiments were performed 5 times and the mean accuracy is plotted.

4.6. Effect of the Number of Filters

Next, we investigate the evolution in accuracy when the number of filters f increases.
Of course, increasing the number of filters leads to more parameters, as shown in Table 1.
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Figure 5 shows the evolution of accuracy for CIFAR-10 and SVHN as a function of the
number of parameters, obtained when varying f . In both cases, we observe that the
trade-off between the number of parameters and accuracy is not linear: reaching 1% extra
accuracy can be very costly in terms of the required number of parameters, if the accuracy
is already high. This trade-off is even sharper in the case of SVHN where we observe a
two-step phenomenon, where accuracy is first increased quickly but then saturates. We
think that this is a consequence of the difficulty of considered datasets: achieving 93%
accuracy on CIFAR-10 is significantly harder than in the case of SVHN.
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Figure 5. Accuracy on CIFAR-10 (left) and SVHN (right) as function of the number of parameters. Experiments were performed for
different numbers of iterations (T) of an augmented ThriftyNet. h=5. Pooling was performed every T/5 iterations. The number of
filters varied from 32 to 256 by increments of 32.

4.7. Effect of the Number of Downsamplings

Then, we perform an ablation experiment for investigating the importance of pooling
in our architecture. We fix the number of parameters and number of iterations, and we re-
port in Figure 6 the evolution of the accuracy as a function of the number of downsamplings.
Without surprise, we observe that the more downsamplings, the better the accuracy.

Interestingly, increasing the number of downsamplings has a decreasing consequence
on the number of operations that are performed. So contrary to what we reported in
Figure 3, here increasing the number of downsamplings is beneficial to both computational
complexity and accuracy.

4.8. Freezing the Shortcut Parameters in an Augmented ThriftyNet

In most modern architectures, shortcut mechanisms consist in adding previous activa-
tions to the current one, thus bypassing some of the layers. While they are often fixed and
involve only one past activation, we designed augmented ThriftyNets to take into account
the h last activations, weighted by parameters α. This is designed with the hope that the
optimization of α leads ThriftyNet into finding the most efficient architectures, and avoid
the introduction of additional hyperparameters and user priors.

To demonstrate this phenomenon, we perform an ablation experiment. We train
an augmented ThriftyNet with an additional loss Lα, designed to make the shortcut
parameters converge to 0 or 1. More precisely:

Lα = λ ∑
x∈α

x2(1− x)2.
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Figure 6. Accuracy on CIFAR-10 as function of the number of downsamplings. We performed 30,
and downsamplings are evenly spaced, with a global max pooling at the very end.

We perform 150 epochs of training, with λ being multiplied by 1 + ε after every for-
ward and backward pass of a batch (500 batches per epoch, λ = 3× 10−4, ε = 1.5× 10−4).
Parameters α are then binarized using a threshold at 0.5. From this, we train for 150 addi-
tional epochs:

(a) The same model without resetting the other parameters
(b) The same model starting from the same initialization
(c) The same model starting from another (random) initialization

Table 6 sums up the results obtained on CIFAR-10 for this experiment. We observe
that the baseline gives the best results. This was expected since shortcuts remain free
parameters that can take values other than 0 or 1. Once shortcuts have been fixed and
binarized, training from the same initialization is what ranks next. In our experiments,
it evens outperforms fine-tuning, as the binarization step has a dramatic effect on the
accuracy. Training from scratch with random initialization and the same shortcuts leads to
a drop of about 1% accuracy.

Table 6. Shortcut freezing experiment on CIFAR-10.

Model Test Accuracy

Baseline accuracy 91.08%
After binarization and fine tuning (a) 88.50%
After training from the same initialization (b) 90.47%
After training from another initialization (c) 89.98%

5. Conclusions

We introduced ThriftyNet, a convolutional neural network architecture that explores
the limits of layer factorization and the efficacy of architectures with tiny parameter count.
Based around a single convolutional layer, ThriftyNets iterate over this layer, alternating
convolution operations with non-linear activation, batch normalization, downsampling
through pooling operations and weighted sums with results from previous iterations.
This leads to a very compact architecture that achieves competitive results regarding the
trade-off between the total number of parameters and accuracy. Such a solution would be
beneficial to memory-constrained systems. Moreover, since the introduced architecture
uses sequentially the same layer, it may ease the hardware implementation of DNNs when
considering limited resources embedded systems that have to use the same hardware
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sequentially to compute different operations. In future work, we consider investigating
other strategies to mitigate the large computational cost of ThriftyNets.
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