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Abstract
Recently authors have introduced the idea of training discrete weights neural networks using
a mix between classical simulated annealing and a replica ansatz known from the statistical
physics literature. Among other points, they claim their method is able to find robust config-
urations. In this paper, we analyze this so called “replicated simulated annealing” algorithm.
In particular, we give criteria to guarantee its convergence, and study when it successfully
samples from configurations. We also perform experiments using synthetic and real data
bases.

Keywords Simulated annealing · Replicas · Perceptron · Neural networks · Optimization

Mathematics Subject Classification 60J10 · 82C32 · 65C05

1 Introduction

In the past few years, there has been a growing interest in finding methods to train dis-
crete weights neural networks. As a matter of fact, when it comes to implementations,
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discrete weights allow to reach a better efficiency, as they considerably simplify the multiply-
accumulate operations, with the extreme case where weights become binary and there is no
need to perform any multiplication anymore. Unfortunately, training discrete weights neural
networks is complex in practice, since it basically boils down to a NP-hard optimization
problem. To circumvent this difficulty, many works have introduced techniques that aim at
finding reasonable approximations [6,7,13,24].

Among these works, in a recent paper Baldassi et al. [2] discuss the learning process in
artificial neural networks with discrete weights and try to explain why these networks work
so efficiently. Their approach is based on an analysis of the learning procedure in artificial
neural networks. In this process a huge number of connection weights are adjusted using
some stochastic optimization algorithm for a given target function. Some of the resulting
optima of the target or energy function have better computational performance and general-
ization properties, other worse. The authors in [2] propose that the better and more robust
configurations of weights lie in dense regions with many maxima or minima (depending on
the sign) of the target function, while the optimal configurations that are isolated, i.e. far
away from the next optimum of the energy function have poor computational performance.
They propose a newmeasure, called the robust ensemble, that suppresses such configurations
with bad computational performance. On the other hand, the robust ensemble amplifies the
dense regions with many good configurations. In [2] the authors present various algorithms
to sample from this robust ensemble, one of them isReplicated Simulated Annealing or Simu-
lated Annealing with Scoping. This algorithm combines the replica approach from statistical
physics with the simulated annealing algorithm that is supposed to find the minima (or max-
ima) of a target function. The replica technique is used to regularize the highly non-convex
target or energy function (another regularization idea was introduced recently in [4]), while
the simulated annealing algorithm is used afterwards to minimize this new energy. We will
define Replicated Simulated Annealing in Sect. 2.

To give a first impression of this algorithm, assume we haveΣ := {−1,+1}N as our state
space and N is large. On Σ we have very rugged energy function E : Σ → R and assume
that minσ∈Σ E(σ ) = 0. To find the minima of E one could run a Metropolis algorithm for
the Gibbs measure at inverse temperature β > 0:

πβ(σ ) := exp(−βE(σ ))

Zβ

, σ ∈ Σ.

Here Zβ := ∑
σ ′ exp(−βE(σ ′)) is the partition function of the model, a normalizing factor

that makes πβ a probability measure. If one carefully lowers the temperature, i.e. if one
increases β slowly enough during the process the corresponding Markov chain will get stuck
in one of the maxima of π∞ which are easily seen to be the minima of E . This is the classical
Simulated Annealing algorithm, cf. [25] or [15] for the seminal papers. The question how to
choose the optimal dependence of β from time t and its convergence properties have been
extensively discussed.We just mention [5,8,18,20,22], for a short and by far not complete list
of references. The upshot is that good a ”cooling schedule” is of the form βt = 1

m log(1+Ct),
where m can be roughly described as the largest hill to be climbed to get from an arbitrary
state to one of the global minima of the target function.

However, sometimes not all the global minima are equally important, in particular one
may be interested in regions with many global minima (or almost global minima), so called
dense regions. An obstacle may be, that E exhibits many global minima, but only relatively
few of them are in dense regions. Let us motivate this question by a central example which
we will often have in mind in this context and which also is one of the central objects in [2].
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Example 1 Assume we have patterns ξ1, . . . , ξM , ξμ ∈ {±1}N , μ = 1, . . . , M where M =
αN for some α > 0. Each of these patterns belongs to one of two groups, which we indicate
by ϑ(ξμ) = ϑμ ∈ {±1}.

The task is to classify these patterns. One of the standard methods to do this in machine
learning is the perceptron. Perceptron was defined in the 1960s by Rosenblatt [34]. It is one of
the first mathematical models of neural networks, inspired by the biological phenomenon of
vision. In its simplest form, the one we are studying here, it is a single neuron, corresponding
to the mathematical model of Mac Culloch and Pitts [30]. It is then a binary classifier, which
separates two sets of points linearly separable by a hyperplane. In mathematical terms it
maps its input x to f (x) which is either 1 or 0, and thus puts it into one of two classes. This
decision is made with the help of a vector of weights

W = (W1, . . . ,WN ) ∈ {−1,+1}N .

More precisely,

f (x) =
{
1 if 〈W , x〉 > 0,

0 otherwise

where 〈W , x〉 is the dot product 〈W , x〉 = ∑
i Wi xi . These weights W = (W1, . . . ,WN ) ∈

{−1,+1}N have to learned and we want the classification to be perfect, i.e. we want that

Θ(ϑμ〈W , ξμ〉) := Θ(ϑμ
N∑

i=1

Wiξ
μ
i ) = 1

for all μ = 1, . . . M . Here

Θ(x) =
{
1 if x > 0
0 otherwise

denotes the Heaviside-function. Hence our classification task is fulfilled if

M∑

μ=1

Θ(−ϑμ〈W , ξμ〉) = 0

(where we assume that N is even to avoid the specification of tie-breaking rules) or, equiva-
lently

M∏

μ=1

Θ(ϑμ〈W , ξμ〉) = 1. (1)

Note that in Rosenblatt’s initial model, the weights (W1, . . . ,WN ), called synaptic weights,
are real-valued and not restricted to take their values in {−1,+1}N . The objective now
is to find weights W such that (1) is true, i.e. we are searching for weights W such that
E(W ) = −∏M

μ=1 Θ(ϑμ〈W , ξμ〉) is minimal. Obviously, this optimization problem is of
the above mentioned form. However, one prefers weights W in co called dense regions, i.e.
weights that are surrounded by weights W̃ that are also minima of E . The idea is that these
states have good generalization properties or a small generalization error. This means that
we want to find weights, that still classify input patterns correctly, which we have not seen in
our training set ξ1, . . . , ξM . It is at least plausible that weights with a small generalization
error lie in dense regions of {±1}N .
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In this work we are interested in making explicit convergence properties of the algorithm
of Replicated Simulated Annealing. We also perform experiments using synthetic and real
data bases. The outline is as follows: in Sect. 2 we mathematically formalize and describe the
algorithm of Replicated Simulated Annealing, in Sect. 3 we study its convergence properties.
Naturally, this convergence will be studied on an infinite time horizon. This is a slightly
different set-up than in [2], where experiments are performed for finite time. However, the
question, whether or not Replicated Simulated Annealing converges is the first question that
should be analyzed, before studying which choice of parameters yields the best results. This
latter question is addressed in Sect. 4, where we perform experiments using synthetic and
real data bases. Of course, the time horizon for such experiments is finite. On the other hand,
in finite time we can control the influence of the choice of the parameters on the performance
which is hard to control theoretically. Finally, Sect. 5 is a conclusion.

2 Replicated Simulated Annealing

Recall that we are searching for the minima of a function E : Σ → R, where Σ :=
{−1,+1}N . To find minima of E in dense regions of the state space the authors in [2]
propose a new measure given by

Py,β,γ (σ ) := exp(yΦβ,γ (σ ))

Z(y, β, γ )
(2)

where

Z(y, β, γ ) :=
∑

σ ′′
exp(yΦβ,γ (σ ′′)). (3)

Py,β,γ has, at least formally, the structure of a Gibbs measure at inverse temperature y. Its
”energy function” is given by

Φβ,γ (σ ) := log
∑

σ ′∈Σ

exp(−βE(σ ′) − γ d(σ, σ ′)), (4)

where d(·, ·) is some monotonically increasing function of a distance on Σ . This distance
will be chosen below, but there are not too many reasonable essentially different distance
functions on Σ , anyway.

Since Φy,β,γ weights each configuration σ by a function of its distance to σ ′ and the σ ′
again by an exponential of their energy, it is, indeed, plausible that Φy,β,γ is much smoother
than E and will have its minima in dense regions. We will come back to this question in the
next section.

However, a serious problem is, how one could simulate from the measure Py,β,γ . Indeed,
computing the ”energy” Φy,β,γ (σ ) of a single configuration σ involves, among others, com-
puting E(σ ′) for all σ ′ ∈ Σ . Computing these values is almost as hard as finding the minima
of E (even though one might not be immediately able to tell which of these minima are in
dense regions). To find a promising algorithm that does not rely on computing all the values
of E(σ ), Baldassi et al. [2] propose the following:

First of all assume that y ≥ 2 is an integer. Second take as function of the distance between
two spins σ and σ ′ the (negative) inner product: d(σ, σ ′) = −〈σ, σ ′〉. As a matter of fact, this
is a natural choice, since two natural distance functions, the Hamming distance and the square
of the Euclidian distance are functions of the inner product:

∑
i (σi − σ ′

i )
2 = 2N − 2〈σ, σ ′〉

as well as dH (σ, σ ′) = N−〈σ,σ ′〉
2 and the N dependent terms cancel, because they also occur
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in Z(y, β, γ ). Using the fact that y is an integer, we can now compute the partition function
Z(y, β, γ ) (by replacing σ ′′ by σ in (3)) of this model:

Z(y, β, γ ) =
∑

σ∈Σ

exp(yΦβ,γ (σ )) =
∑

σ∈Σ

exp(
y∑

a=1

Φβ,γ (σ ))

=
∑

σ∈Σ

y∏

a=1

∑

σ a∈Σ

exp(−βE(σ a) − γ d(σ, σ a))

=
∑

σ∈Σ

∑

σ 1∈Σ

. . .
∑

σ y∈Σ

exp(−βE(σ 1) − γ d(σ, σ 1)) . . . exp(−βE(σ y) − γ d(σ, σ y))

=
∑

σ∈Σ

∑

{σ a}∈Σ y

exp(−β

y∑

a=1

E(σ a) − γ

y∑

a=1

d(σ, σ a)).

Here
∑

{σ a} is the sum over all σ 1, . . . , σ y . Hence Z(y, β, γ ) can be considered as a partition

function on the space of all (σ, {σ a}) ∈ Σ y+1 of the measure

Q((σ, {σ a}) := exp(−β
∑y

a=1 E(σ a) − γ
∑y

a=1 d(σ, σ a))

Z(y, β, γ )
. (5)

Its marginal with respect to the second coordinate {σ a} is given by

Q({σ a}) :=
∑

σ exp(−β
∑y

a=1 E(σ a) − γ
∑y

a=1 d(σ, σ a))

Z(y, β, γ )
. (6)

Making use of our choice d(σ, σ ′) = −〈σ, σ ′〉 we obtain for the numerator in Q:

Z(y, β, γ )Q({σ a}) =
∑

σ

exp

(

−β

y∑

a=1

E(σ a) + γ

y∑

a=1

〈σ, σ a〉
)

= 2N

2N
∑

σ

exp

(

−β

y∑

a=1

E(σ a) + γ

N∑

i=1

y∑

a=1

σiσ
a
i

)

= 2N exp

(

−β

y∑

a=1

E(σ a) +
N∑

i=1

log cosh(γ
y∑

a=1

σ a
i )

)

Putting the 2N into the normalizing constant we thus obtain that

Q({σ a}) =
exp

(
−β

∑y
a=1 E(σ a) + ∑N

i=1 log cosh(γ
∑y

a=1 σ a
i )

)

Z ′(y, β, γ )
.

This form of the measure Q is now accessible to a Simulated Annealing algorithm: being in
{σ a} one picks one of the σ a at random and one coordinate σ a

i of σ a at random and flips it to
become −σ a

i . This new configuration is then accepted with the usual Simulated Annealing
probabilities.

Example 2 (Example 1 continued) In our perceptron example we so far proposed the energy
function

E(W ) = −
M∏

μ=1

Θ(ϑμ〈W , ξμ〉) = −
αN∏

μ=1

Θ(ϑμ〈W , ξμ〉).
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This function, however, may be a bit unwieldy when using Simulated Annealing, since it just
tells how many patterns have been classified correctly but not whether we are moving in a
”good” or a ”bad” direction when the proposed configuration {W ′a} has the same energy as
the old configuration {Wa}. We therefore propose (as e.g. [2]) to use the energy function

E(W ) =
αN∑

μ=1

Eμ(W ) with Eμ(W ) = R(−ϑμ〈W , ξμ〉),

instead. Here R(x) = x+1
2 Θ(x) and we again assume that N is odd, otherwise we would

need to take R(x) x2Θ(x). In other words Eμ is the number of bits that we need to change,
in order to classify ξμ correctly.

3 Convergence of the Annealing Process

In this section we want to discuss the convergence properties of the annealing procedure
introduced above. The two major questions are: Does the process converge to an invariant
measure, and if so, does this measure have the desired property of favoring dense regions?
This question is not addressed in [2]. However, we feel that it is the first problem that needs to
be analyzed. Indeed, if the process does not converge to the desired distribution the question
is rather when to stop it than what is the optimal choice of parameters.

We will distinguish two cases: the first is when γ in the definition of the measures Q in
(5) and Q in (6) does not depend on time, while the second is, when it does.

Before analyzing these two cases, we will slightly modify the annealing procedure, to
make it accessible to the best results that are available for discrete time, see [1]. As a matter
of fact, we find discrete time slightly more appropriate for computer simulations than the
continuous time set-up in e.g. [22], [18], or [8]. To this end, we will study cooling schedules,
where the inverse temperature βn is fixed for Tn consecutive steps of the annealing process.
Denote by νn the distribution of the annealing process Xn at time

Ln := T1 + . . . + Tn .

Note that νn can be computed recursively: If Sβ denotes the transition matrix of the
Metropolis–Hastings chain (see [19] or [21]) at inverse temperature β (see (7) below), then

νn = νn−1S
Tn
βn

where ν0 is a fixed probability measure on Σ y .

Here, of course, STnβn
is the Tn’th power of the transition matrix Sβn (which is constant for the

last Tn steps, as described above).

3.1 Fixed �

If γ is fixed it is convenient to split the Simulated Annealing algorithm introduced above
into a γ -dependent part and a β-dependent part. To this end, let us introduce the following
probability measure μ0 on Σ y :

μ0({σ a}) :=
exp

(∑N
i=1 log cosh(γ

∑y
a=1 σ a

i )
)

Γ

with Γ := ∑
{σ̃ a} exp

(∑N
i=1 log cosh(γ

∑y
a=1 σ̃ a

i )
)
.
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Next define a transition matrix Π on Σ y . Π will only allow transition from {σ a} to {σ̃ a},
if there are exactly one σ a, a = 1, . . . y and one i = 1, . . . N , such that σ a

i = −σ̃ a
i , and for

all other b and j we have σ b
j = σ̃ b

j . In this case, we define

Πγ ({σ a}, {σ̃ a}) := Π({σ a}, {σ̃ a})min

(

1,
cosh(γ

∑y
a=1 σ̃ a

i )

cosh(γ
∑y

a=1 σ a
i )

)

.

For all other configurations {σ̂ a} 	= {σ a}, we have Πγ ({σ a}, {σ̂ a}) = 0 and we set

Πγ ({σ a}, {σ a}) := 1 −
∑

{σ̃ a}	={σ a}
Πγ ({σ a}, {σ̃ a}).

Note thatΠγ is nothing but theMetropolis–Hastings algorithm for themeasureμ0 (see [21]).
In particular, Πγ is reversible with respect to the measure μ0, i.e.

μ0({σ a})Πγ ({σ a}, {σ̃ a}) = μ0({σ̃ a})Πγ ({̃σ a}, {σ a}).
Now consider the Metropolis–Hastings chain on Σ y with proposal chain Πγ and transition
probabilities

Sβ({σ a}, {σ̃ a})

:=
⎧
⎨

⎩

exp
(
−β(

∑y
a=1 E(σ a) − ∑y

a=1 E(σ̃ a))+
)

Πγ ({σ a}, {σ̃ a}) if {σ a} 	= {σ̃ a}
1 − ∑

{σ̂a }	={σa } exp
(
−β(

∑y
a=1 E(σ a) − ∑y

a=1 E(σ̂ a))+
)

Πγ ({σ a}, {σ̂ a}) if {σ a} = {σ̃ a}(7)

Here (x)+ := max{x, 0}. For an appropriate normalizing constant Γ̂ this chain has as its
invariant measure

exp(−β
∑y

a=1 E(σ a))

Γ̂
μ0({σ a}) = Q({σ a}) =: Qβ({σ a}). (8)

So indeed for each fixed β > 0, γ > 0 we have found a Metropolis chain for Q.
If we now let β = βn depend on n in the form described at the beginning of the section,

we arrive at a Simulated Annealing algorithm with piecewise constant temperature.
We will quickly introduce some of Azencott’s notation [1]. The invariant measure of Sβn

is Qβn . Recall that we assumed that minσ∈Σ E(σ ) = 0 and define

B := min
σ :E(σ )	=0

E(σ ). (9)

Next we bound

||Qβn − Qβn+1 ||∞ ≤ κ1 exp(−βn B)

for some constant κ1. Indeed such an estimate is true for any difference of Gibbs measures
with respect to the same energy function. To see this let

ρβn := exp(−βnU (x))

Zn

be a sequence of Gibbs measures with respect to the energy function U on a discrete space
of size K . We assume minx U (x) = 0 (without loss of generality, otherwise we subtract the
minimum from U ) and minx :U (x)	=0U (x) = B. Let k := |{x : U (x) = 0}|. Then, for any x
with U (x) = 0 we simply have

|ρβn (x) − ρβn+1(x)| = | ∑y:U (y)	=0 exp(−βnU (y)) − exp(−βn+1U (y))|
Zn Zn+1

≤ 2(K − k)e−βn B ,
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51 Page 8 of 22 V. Gripon

since βn+1 ≥ βn and Zn ≥ 1 for all n. Otherwise, if U (x) > 0, we trivially can compute

|ρβn (x) − ρβn+1(x)| ≤ e−βnU (x) + e−βn+1U (x) ≤ 2e−βn B .

To describe the spectral gap of Sβn , for any two {σ a}, {τ a} ∈ Σ y let P({σ a}, {τ a}) be the set
of all paths in Σ y from {σ a} to {τ a}. For p ∈ P({σ a}, {τ a}) with vertices {νa,r }Mr=0 define

Elev(p) := max
{νa,r }Mr=0

y∑

a=1

E(νa,r ).

Moreover define

H({σ a}, {τ a}) = min
p∈P({σ a},{τa})Elev(p)

and

m := max{σ a},{τa}(H({σ a}, {τ a}) −
y∑

a=1

E(σ a) −
y∑

a=1

E(τ a). (10)

The quantitym is related to the optimal cooling schedule for Simulated Annealing as well as
to the spectral gap of the associated Metropolis Hastings algorithm Sβ . To understand this,
define the operator Lβ f ({σ a}) for {σ a} ∈ Σ y and f : Σ y → R by

Lβ f ({σ a}) =
∑

{τa}

(
f ({σ a}) − f ({τ a})) Sβ({σ a}, {τ a}).

Let Eβ be the associated Dirichlet form, i.e. for functions f , g : Σ y → R

Eβ( f , g) := −
∫

(
f , Lβg

)
dQβ

= 1

2Γ̂

∑

{σ a},{τa}
( f ({σ a}) − f ({τ a})(g({σ a}) − g({τ a})

× exp

(

−β(
∑

a

E(σ a) ∨
∑

a

E(τ a))

)

μ0({σ a})Πγ ({σ a}, {τ a}).

Then with

ψ(β) := inf{E( f , f ) : || f ||L2(Qβ ) = 1 and
∫

f dQβ = 0}

we have

Proposition 1 There are constants c > 0 and C < ∞ such that for all β ≥ 0,

ce−βm ≤ ψ(β) ≤ Ce−βm .

Proof See [22, Theorem 2.1]. �
But we also have that

ψ(β) = 1 − λ1(β)

where λ1(β) is the second largest eigenvalue of Sβ , cf. [23, p. 176] or [9, (1.2)]. This estab-
lishes the relation of m to the spectral gap of Sβ .

123



Some Remarks on Replicated Simulated... Page 9 of 22 51

Introduce

εn := ||Qβn − νn ||∞.

Then

Theorem 1 εn converges to 0, if

lim
n→∞

[

−
n∑

k=1

Tk exp(−βkm) + n log κ1

]

= −∞. (11)

In particular, we need that
∑n

k=1 Tk exp(−βkm) → ∞. In this case νn has the same limit as
Qβn and this is given by a distribution Q∞ on

N0 := {{σ a} :
y∑

a=1

E(σ a) = 0} (12)

such that

Q∞({σ a}) � μ0({σ a}), if {σ a} ∈ N0

and Q∞({σ a}) = 0, otherwise (here� denotes proportionality). Of course Q∞ is normalized
in such a way that it is a probability measure on N0.

Proof The convergence part is basically the content of [1, Sect. 7]. Note that the computations
there are done for a proposal chainΠ that has the uniformmeasure as its invariant distribution.
However, the proof on p. 231 [1] carries over verbatim to our situation.

After that it is easy matter to check that Qβn has a limiting distribution Q∞ and that Q∞
charges every point in N0 with a probability proportional to μ0({σ a}). �

A choice for Tk where (11) holds is given by

Tk := exp(−mβk)

C
(log κ1 + Cb)

for a constant b > 0, m as given in (10), and C as given in Proposition 1.
As Azencott [1] points out, in this case

βn ∼ α

B
log n + b

B
n,

for some α > 1 and B defined as in (9),

Tn ∼ n
αm
B exp(

bB

m
n),

and Tn and Ln have the same order of magnitude, i.e. the algorithm spends most of the time
in the lowest temperature band.

One also sees the logarithmic relation between β and T , i.e.

βn ∼ 1

m
log(Ln) ∼ 1

m
log(Tn).

We now turn to the question whether this algorithm achieves that typical samples from it
have realizations in dense regions of Σ . First of all this needs to be defined:
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51 Page 10 of 22 V. Gripon

Definition 1 Let σ ∈ Σ with E(σ ) = 0 and let R > 0 and k ∈ N. The discrete ball
BR(σ ) ⊂ Σ with radius R, centered in σ is called an (R, k)-dense with respect to E , if there
are exactly k global minima τ of E in BR(σ ). (Without loss of generality all balls considered
here and henceforth are Hamming balls.)

σ is called R-isolated, if σ is the only global minimum of E in BR(σ ).

The authors in [2] are not very explicit about a definition of ”dense regions” and the
situation where Replicated Simulated Annealing should be applied. However, from their
examples, they seem to have in mind a situation close to the following caricature:

Situation 1 Given 1 < a < b < 1 and αN → ∞, δN → ∞ with

lim
N→∞

αN

δN
= 0 as well as lim

N→∞
δN

N
= 0,

we say that a sequence of energy functions EN onΣN := Σ = {−1,+1}N is (a, b, αN , δN )-
regular, if it has bN globalminima, if there existsσ ∈ ΣN such that BαN (σ ) is (αN , aN )-dense
and such that all the other bN − aN minima are δN -isolated.

It is now rather obvious that Q∞({·}) prefers such dense regions:

Proposition 2 Assume we are in the situation described in Situation 1. Hence we have a
sequence of energy functions that is (a, b, αN , δN )-regular. Then, given ε > 0, for any
admissible choice of these parameters, there exist y, N0 and γ such that

Q∞(×y
i=1BαN (σ )) := Q∞({(σ 1, . . . , σ y) : σ a ∈ BαN (σ )∀a}) ≥ 1 − ε

for all N ≥ N0.

Proof Note that Q∞ has its mass concentrated on the set N0 (given by equation (12)) and
the differences in the mass for the various configurations from this set stem from factor

μ0({σ a}) =
exp

(∑N
i=1 log cosh(γ

∑y
a=1 σ a

i )
)

Γ

Let us just consider the numerators of these weights.
Let σ be an δN -isolated minimum of EN . If all σ 1, . . . , σ y are located in σ , then the

numerator of μ0({σ a}) equals exp (N log cosh(γ y)). Otherwise there is at least one σ a that
is different from σ , say in a global minimum τ of EN . By assumption dH (σ, τ ) ≥ δN . Thus
a configuration that has at least one σ a = τ has a weight at most

exp((N − δN ) log cosh(γ y) + δN log cosh((y − 2)γ )).

Now there are bN − aN δN isolated minima. Hence the sum of the numerators of the proba-
bilities of these isolated minima can be be bounded from above by

exp (N log cosh(γ y)) bN
(

1 + bNy e
(N−δN ) log cosh(γ y)+δN log cosh((y−2)γ ))

eN log cosh(γ y)

)

.

Here bN is a bound on the number of isolated minima, exp (N log cosh(γ y)) is the weight,
when all σ a are identical, bNy is an upper bound on the number of choices we have,
when one σ a equals a given isolated minimum and at least one σ b is different, and finally
e(N−δN ) log cosh(γ y)+δN log cosh((y−2)γ )) is a rough upper bound on the weight in that case.
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Note, that we will choose γ and y below in such a way that yγ → ∞, when N → ∞. We
will therefore bound log cosh(yγ ) ≤ yγ . Then the total contribution of the isolated minima
becomes at most:

eNγ ybN
(
1 + bNye−2γ δN

)

If we choose γ ≥ Ny log b
2δN

the contribution to the numerator of the probability of the isolated

minima will be at most 2 exp (Nγ y)) bN .
On the other hand, for the case that all σ a are in the dense region BαN (σ ) we have aNy

choices. For each of these choices at least N − yαN of the coordinates of all σ 1, . . . , σ y

are identical. Again, since yγ → ∞, when N → ∞, given ε′ > 0 we may bound
log cosh(yγ ) ≥ yγ (1 − ε′). Thus the overall weight (this is again the numerator of the
corresponding probability) of the dense region is at least aNye(N−yαN )γ y(1−ε′).

To compare the two weights, let us see, if we can arrange the parameters in such a way
that

aNye(N−yαN )γ y(1−ε′) � 2eNγ ybN

(by which we mean that

aNye(N−yαN )γ y(1−ε′)

2eNγ ybN
→ ∞

as N → ∞). Since ε′ > 0 is fixed and arbitrarily small, we may as well check whether

aNye(N−yαN )γ y � 2eNγ ybN

which is the case, if and only if

exp

(

Ny

(

log a − yγαN

N
− log b

y

))

� 1.

To this end, substitute γ = Ny log b
2δN

(and note that indeed γ = γN → ∞ as N → ∞) to
obtain for the exponent on the right hand side:

Ny

(

log a − y2 log b αN

2δN
− log b

y

)

.

Now take y = � 1
2
log b
log a �. Since, by assumption αN

δN
→ 0 and y does not depend on N , also

y2 log b αN
2δN

converges to 0. This implies that the exponent will eventually become negative,
hence the dense region carries an arbitrarily large mass. �

Remark 1 Reading [2] carefully, one may get the impression that for them a dense region
is one with an exponential number of local minima of EN (again, the authors in [2] are not
very explicit about this). However, if we are taking the limit β → ∞ slowly enough as
in a real Simulated Annealing schedule, the local minima that are not global minima will
eventually get zero probability and hence are negligible. As a matter of fact, if one works
with finite times as in our next section, this is, of course, not true. In this case however, one
could equally well study a low temperature Metropolis chain, since most of the time in the
annealing schedules is spent in the low temperature region, anyway, as remarked above. For
this Metropolis–Hastings chain a result similar to Proposition 2 can be shown very similarly.
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3.2 The Limit � → ∞

The situation where also γ depends on time and converges to infinity, when time becomes
large, is different to the fixed γ situation. Even though this is not explicitly stated in [2] it
seems to be the version of the algorithm that the authors in have inmind. Indeed, asmentioned,
they only consider a finite time horizon, in which they, however, increase γ .

In the situationwith γ → ∞we need tomodify the considerations of the previous section.
Again we will assume that we keep βn, γn constant on an interval Tn ≤ t ≤ Tn+1−1. For the
algorithm in this fixed time interval, again, the invariant measure is given by Qβ with β = βn

and γ = γn as given in (8). This is the case because during this interval the parameters of
the Metropolis chain do not change. To stress the dependence on both parameters, we will
now denote this measure by Qβ,γ .

Following the arguments in the previous subsection we now see that there is a constant
κ2, such that

||Qβn ,γn − Qβn+1,γn+1 ||∞ ≤ κ2e
−(βn B+γn B′).

Here again, B := minσ :E(σ )	=0 E(σ ). Analogously, the constant B ′ is defined as the gap
between the maximum of the function

H({σ a}) :=
N∑

i=1

log cosh(
y∑

a=1

σ a
i ) on Σ y

and its second largest value. Hence

B ′ := N log cosh(γ y) − ((N − 1) log cosh(γ y) + log cosh(γ (y − 2)))

= log cosh(γ y) − log cosh(γ (y − 2)).

The maximum of H is realized when we take all σ a identical, while the second term in B ′
stems from the fact that the we obtain the second largest value of H by changing one σ a in
one spin from a maximizing configuration. Since we will consider the limit γ → ∞ we may
safely replace log cosh(γ y) by γ y − log 2 and log cosh(γ (y − 2)) by γ (y − 2) − log 2 to
obtain

B ′ ≈ 2γ.

To determine how the cooling schedule has to be chosen, we need to estimate the spectral
gap of the Metropolis chain. Note that, if we use Proposition 1 to do so, we run into the
problem, that the constants c and C there depend on time, because the energy function does.
The solution is, of course, to include this time dependence into the definitions. Hence for a
time t let

Ft ({σ a}) :=
y∑

a=1

E(σ a) − γt

βt
H({σ a}).

Then, we can represent the Simulated Annealing chain, which we will now denote by Sβ,γ

and which is still given by (7) (with the only difference that now also Πγ depends on time)
as a Simulated Annealing algorithm with time-dependent energy function Ft , see e.g. [28],
[14]. Indeed, in this case we may replace the proposal chain Πγ in (7) to Π . Here Π being in
{σ a} picks one of a = 1, . . . y and one index i = 1, . . . , N at random and flips σ a

i to −σ a
i .

Then Sβ,γ can be written as
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Sβ,γ ({σ a}, {σ̃ a})
:=

{
exp

(−β(Ft ({σ a}) − Ft ({σ̃ a}))+)
Π({σ a}, {σ̃ a}) if {σ a} 	= {σ̃ a}

1 − ∑
{σ̂ a} exp

(−β(Ft ({σ a}) − Ft ({σ̂ a}))+)
Π({σ a}, {σ̂ a}) if {σ a} = {σ̃ a}

(13)

Now we can use results from [28] (cf. [27] for related work) to compute the spectral gap
Sβ,γ . In analogy to what we did in the previous subsection, define

mt := max{σ a},{τa}(Ht ({σ a}, {τ a}) − Ft ({σ a}) − Ft ({τ a})

where

Ht ({σ a}, {τ a}) = min
p∈P({σ a},{τa})Elevt (p)

and

Elevt (p) := max
{νa,r }Mr=0

Ft ({νa}).

Again, in analogy to the previous subsection for functions f , g : Σ y → R let the Dirichlet-
form Eβ,γ be given by

Et,β,γ ( f , g) = 1

2Γ̂

∑

{σ a},{τa}
( f ({σ a}) − f ({τ a})(g({σ a}) − g({τ a})

× exp
(−β(Ft ({σ a}) ∨ Ft ({τ a}))

)
μ0({σ a})Π({σ a}, {τ a}).

Then for

ψt (β) := inf{Et,β,γ ( f , f ) : || f ||L2(Qβ,γ ) = 1 and
∫

f dQβ,γ ) = 0}
it holds

Proposition 3 There are constants c > 0 and C < ∞ such that for all β ≥ 0.

ce−βmt ≤ ψt (β) ≤ Ce−βmt .

Proof This is the content of [28, Theorem 2.1]. �
As before Proposition 3 implies for the second largest eigenvalue λ1(β, γ ) of Sβ,γ that

|λ1(βn, γn)| ≤ 1 − Ce−βnmN .

From linear algebra we therefore obtain that for each n = 1, 2, . . . and any probability
measure ν0 on Σ y

||ν0STnβn ,γn
||∞ ≤ κ3

(
1 − Ce−βnmn

)Tn ||ν0||∞
for some constant κ3 > 0 (cf. the very similar argument for ordinary Simulated Annealing
in [1, (7.8)]). Writing again

εn := ||Qβn ,γn − νn ||∞
by the recursive structure of the annealing algorithm and the considerations above we obtain
the estimate

εn ≤ κ2e
−(βn B+γn B′) + κ3

(
1 − Ce−βnmn

)Tn
εn−1.
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Solving this recursive inequality gives

εn ≤ κn
3

n∏

k=1

(
1 − Ce−βkmk

)Tk
(

n∑

k=1

κ2e−(βn B+γn B′)

uk
+ ε0

)

(14)

(cf. [1, (7.14)]). Here

uk := κk
3

k∏

j=1

(
1 − Ce−β j m j

)Tj
.

Hence we need to chose our parameters βn, γn, Tn in such a way that the right hand side
converges to zero. In this case we have shown the following theorem.

Theorem 2 If

κn
3

n∏

k=1

(
1 − Ce−βkmk

)Tk
(

n∑

k=1

κ2e−(βn B+γn B′)

uk
+ ε0

)

→ 0 (15)

as n → ∞, the distribution νn of Sβn ,γn has the same limit as Qβn ,γn as n → ∞.
Following [1, (7.17)] a necessary condition for (15) is

lim
n→∞

(

−
n∑

k=1

Tke
−βkmk + n log κ3

)

= −∞

Remark 2 If we are right with the assumption that the authors in [2] would take γn → ∞
when time gets large, the result of the theorem is, however, not what the authors in [2] seem
to intend with their introduction of Replicated Simulated Annealing algorithm. Indeed, when
βn → ∞, and γn → ∞ the measure Qβn ,γn converges to Q∞,∞. However, the latter is
nothing but the uniform distribution on

Ñ0 := {{σ 1, . . . , σ y} : E(σ a) = 0 for all a = 1, . . . y, and σ 1 = . . . = σ y}.
In particular, Q∞,∞ does not put higher probability on configuration in dense regions of the
state space.

Remark 3 Note that for both, Theorems 1 and 2, the cooling schedules have to be chosen
very carefully. An anonymous referee remarked that there are simulation algorithms for
Gibbs measures that do not use such a cooling strategy as parallel tempering [33], swapping
[16,17,32], or equi-energy sampling [26]. We are grateful for this remark.

However, there are some issues with these algorithms. First of all, all of these algorithms
simulate Gibbs measures at non-zero temperatures. That means we will obtain an impression
of the energy landscapes, but not necessarily convergence towards their global maxima or
minima. However, for the simulations in Sect. 4 this is still an important remark.

The tempering algorithms usually suffer from the deficit that they require computation of
partition functions which is as hard as finding theminima ormaxima of the energies involved.
Swapping circumvents these problems. However, the speed convergence may be a problem
(as it is for simulated annealing). In some situations the swapping algorithm converges rapidly
(i.e. in polynomial time), see e.g. [12,29,31], in others the convergence takes exponentially
long, see [3] or [10]. The results in [11] show that equi-energy sampling typically does not
overcome the problem of torpid mixing.

In the next section, we empirically study a slightly modified version of the algorithm of
Replicated Simulated Annealing, using both synthetic toy datasets and real data bases.
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4 Experiments

Throughout this section, we present various experiments we conducted to empirically study
the effectiveness of Replicated Simulated Annealing. While the previous section had an
emphasis on theoretical results on the asymptotic behaviour of the algorithm—which from
our point of view is necessary for its introduction—the current section analyzes its finite time
behaviour and the role of the choice of parameters.

Notice that hence in this simulation section we will necessarily stay closer to the setting in
[2]. Especially, other than in the preceding theoretical section we will not let β and γ tend to
infinity (for the theoretical part this was necessary in order to get convergence results, while
it is impossible in practical applications). The precise setting will be described below. We
will put an emphasis on studying the effect of the choice of these hyperparameters on the
performance of our algorithm, as well as the robustness of the found solutions.

We conduct our experiments using theMNIST dataset, also described below, and synthetic
data.

4.1 MNIST Dataset

MNIST is a dataset of images depictingdigits between0 and9.We randomly choose a learning
set of 6000 examples per digit, i.e. these examples are used to calibrate the model. The aim is
to train a classifier to correctly predict which digits are depicted in previously unseen images.
This ability of generalization is measured using a test set containing 1000 examples per digit,
distinct from those appearing in the training set. The proportion of correctly classified images
in the training set (resp. test set) is called the training accuracy (resp. test accuracy). MNIST
images are 28 × 28 pixels and grey-leveled. As such, they are typically represented by a
784-sized vector of numbers between 0 and 255.

When training a binary (weights can only be − 1 or 1) logistic regression classifier on
MNIST using Replicated Simulated Annealing, we typically achieve a 88% accuracy on the
test set, which is on par with the performance obtained with continuous weights and gradient
descent. Note that when training our models, we use the cross-entropy loss as our energy,
which we refer to as the training loss in the following. In the case of classification with
K = 10 classes, the output of the model associated to an input xi is a probability vector
yi = (yi,1, . . . , yi,K ), and the cross-entropy is then

H(t, y) = −
n∑

i=1

K∑

k=1

ti,k log(yi,k),

where ti ∈ {0, 1}K is the true class of xi . Beside, the cross-entropy loss on the test set is
referred to as the test loss.We train the networks for a total of 300,000 total iterations, starting
from a random configuration. Our models contain a total of 784 · 10 = 7840 parameters,
corresponding to a single matrix the input of which is a raw image of 784 dimensions and
the output of which is a 10-sized vector where the largest coordinate indicates the associated
decision.

4.2 Effect of the Initial and Final Values ofˇ

As mentioned above in our experiments we will always take β from a certain bounded range
of values [βi , β f ] (these bounds will be used in the remaining of this work). We first explore
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Table 1 Number of active transitions, during the learning of MNIST, as a function of βi and β f

βi /β f 10 100 1000 10,000 100,000 1,000,000

1 271,733 246,793 204,681 160,424 129,138 107,549

10 251,891 219,362 172,511 122,851 92,480 74,444

100 220,294 182,280 121,842 73,605 48,810 36,684

1000 171,610 122,934 60,901 24,248 13,690 10,216

10,000 125,211 76,515 25,593 7542 5061 4415

Table 2 Final MNIST train set loss and corresponding accuracies, as a function of βi and β f

βi /β f 100 1000 10,000 100,000 1,000,000

1 3.49 (77.56%) 1.71 (86.08%) 1.47 (87.57%) 1.43 (87.53%) 1.47 (87.35%)

10 3.54 (76.84%) 1.72 (86.10%) 1.44 (87.29%) 1.44 (87.44%) 1.44 (87.41%)

100 3.32 (77.66%) 1.64 (86.34%) 1.35 (87.78%) 1.32 (87.56%) 1.37 (87.64%)

1000 3.18 (78.60%) 1.59 (86.00%) 1.45 (87.25%) 1.52 (87.03%) 1.50 (86.94%)

10,000 3.14 (77.57%) 1.69 (85.07%) 1.61 (86.16%) 1.59 (86.95%) 1.59 (86.70%)

Bold numbers correspond to the best results across the table

the influence of the initial and final values for β. Throughout our experiments, we change the
value ofβ fromβi toβ f following an exponential interpolationwhereβ = βi

(
β f /βi

)i t/i tmax ,
i t being the current number of iterations and i tmax the total number of iterations. This choice
of interpolation appeared to give the best andmost consistent results among the interpolations
we tried, including linear and quadratic with various parameters. Note that for this first series
of experiments we only train one model (γ = 0). First in Table 1, we indicate the number of
active transitions (when a potential flip of a value has been performed). Little surprisingly,
we observe that the higher the values of β, the less likely we perform flips. We observe a
range of two orders of magnitude with our selected parameters.

In Table 2, we depict the corresponding training loss and training accuracy. Interestingly,
we observe that the largest values of β are not necessarily giving the best results, suggesting
that allowing to perform flips that immediately slightly lower the loss can be beneficial in the
long run. We also observe that the results do not seem to be very sensitive of the choice of the
initial and final values for β, as a large range of these values yield a very similar performance.
Together with Table 1, we can observe that βi = 100 and β f = 100, 000 is a reasonable
choice of parameters. This is also confirmed by the results given in Table 3 where we depict
the corresponding test loss and test accuracy.

4.3 Influence of �

To gain a better understanding of the influence of γ , in the next series of experiments we
reduce the number of training samples to accelerate computations. Namely we use 10,000
arbitrary training samples. We perform 10 runs for each value of γ , choosing the best values
of βi and β f found in the previous section.We plot the error bars (confidence interval at 95%)
for each value of γ . In Fig. 1 we depict the evolution of the training accuracy and training
loss. In Fig. 2 the evolution of the test accuracy and test loss, and in Fig. 3 the evolution of
the number of active transitions. We observe that γ helps in finding better solutions, that is

123



Some Remarks on Replicated Simulated... Page 17 of 22 51

Table 3 Final MNIST test set loss and corresponding accuracies, as a function of βi and β f

βi /β f 100 1000 10,000 100,000 1,000,000

1 3.27 (78.29%) 1.69 (86.66%) 1.51 (87.50%) 1.55 (87.46%) 1.56 (87.51%)

10 3.41 (77.45%) 1.72 (85.94%) 1.50 (87.62%) 1.54 (87.34%) 1.52 (87.35%)

100 3.05 (78.84%) 1.60 (86.31%) 1.51 (87.48%) 1.36 (87.69%) 1.46 (87.46%)

1000 3.11 (78.88%) 1.68 (86.31%) 1.61 (87.11%) 1.63 (87.09%) 1.65 (87.14%)

10,000 3.13 (77.81%) 1.69 (85.77%) 1.65 (86.69%) 1.73 (86.55%) 1.68 (86.46%)

Bold numbers correspond to the best results across the table

Fig. 1 Evolution of the train accuracy and train loss as a function of γ , and for various values of y

to say solutions with higher accuracies on both the training and the test set. That is only true
for a limited range though, as increasing γ too much lead to dramatic decrease in overall
performance. This is not surprising as a too large γ leads to forbidmany transitions that would
result in reducing the loss. Also this may be seen as being in agreement with the findings
of Proposition 2, Theorem 15 and Remark 2 in the previous section (even though there we
chose the parameters in such a way to convergence to an invariant measure was guaranteed).

4.4 Robustness of TrainedModels

To study the robustness of trained models, we consider randomly perturbating a proportion
p of the weights in the trained models, and evaluating the impact on the test accuracy. We
average each point over 1000 runs of random perturbations, but since it takes a very long
time to train the models with MNIST, we always use the same trained models (one for each
value of γ ). In Fig. 4, we depict the results for y = 3, in Fig. 5 for y = 5, and in Fig. 6
for y = 7. In order to add statistically more significant results, we also plot in Fig. 7 results
obtained with synthetic data and y = 10. Synthetic data is created by generating 30 vectors
uniformly drawn with repetition from all binary vectors of size 100. In this experiment, we
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Fig. 2 Evolution of the test accuracy and test loss as a function of γ , and for various values of y

Fig. 3 Evolution of the number of active iterations as a function of γ , and for various values of y

average the results over 1000 tests for each point. For this additional experiment, we found
that the best values are βi = 0.1 and β f = 1000.

Interestingly, we observe that the most robust models are the ones for a balanced value
of γ , typically 0.8 or 1.6. This is even true for the case of synthetic data, despite the fact all
the models start with a perfect accuracy of 100% when uncorrupted. This is inline with the
claims of the authors of [2].
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Fig. 4 Robustness of trainedmodels onMNIST as a funciton of the proportion of flipped parameters p (y = 3).
Shaded regions around the curves correspond to the confidence interval at 95%

Fig. 5 Robustness of trainedmodels onMNIST as a function of the proportion of flipped parameters p (y = 5).
Shaded regions around the curves correspond to the confidence interval at 95%

Fig. 6 Robustness of trainedmodels onMNIST as a function of the proportion of flipped parameters p (y = 7).
Shaded regions around the curves correspond to the confidence interval at 95%
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Fig. 7 Robustness of trained models with synthetic data as a function of the proportion of flipped parameters
p (y = 10). Shaded regions around the curves correspond to the confidence interval at 95%

5 Conclusion

In this work, we have proposed to mathematically and empirically study the algorithm of
Replicated Simulated Annealing, that is used to find good configurations of discrete weights
neural networks. Here the term “good configurations” refers to configurations in so called
dense regions. We have proposed a definition of such dense regions, which are supposed to
yield good generalization properties. We have given conditions that ensure convergence of
the algorithm and discussed its ability to find good configurations in dense robust regions
of the search space. We have seen that to do so the parameter β always need to be taken to
infinity when time becomes large, while the parameter γ needs to stay finite.

We also performed experiments using both real datasets and synthetic data to illustrate the
role of the choice of the parameters in finite time. Overall, our findings show that Replicated
Simulated Annealing is able to find interesting, i.e. ”good”, configurations, but that the gain
compared to a simple Simulated Annealing is rather small, sometimes even nonexistent in
the asymptotic regime, depending on whether one lets γ → ∞ or not.
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