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ABSTRACT

The development of highly efficient catalysts using inexpensive and earth-abundant metals is a
crucial factor in a large-scale commercialization of direct methanol fuel cells (DMFCs). In this study,
we explored a new catalyst based on copper dendrites supported on carbon nanofibers/poly(para-
phenylenediamine) (CNF/PpPD) nanocomposite for methanol oxidation reaction (MOR). The
catalyst support was prepared on a carbon paste electrode using electropolymerization of para-
phenylenediamine monomer on a drop-cast carbon nanofibers network. Afterwards, the copper
dendrites (CuDs) were electrodeposited on the nanocomposite through a potentiostatic method.
The morphology and the structure of the prepared nanomaterials were characterized by a
transmission electron microscope, scanning electron microscope, energy dispersive X-ray, X-ray
diffraction, and an X-ray photoelectron spectroscope. The results suggested that a three-dimensional
dendritic structure consisting of Cu;O and Cu(OH); formed on the hybrid CNE/PpPD
nanocomposite. The catalytic performance of copper dendrites supported on CNF, PpPD and
CNE/PpPD catalyst supports was evaluated for MOR wunder alkaline conditions. The
CNE/PpPD/CuDs exhibits a highest activity (50 mA.cm?) and stability toward MOR over 6h, with
respect to CNF/CuDs (40 mA.cm?) and PpPD/CuDs (36 mA.cm™). This inexpensive catalyst with

high catalytic activity and stability is a promising anode catalyst for alkaline DMFC applications.

KEYWORDS: methanol electrooxidation; electrocatalysis; copper dendrites; carbon nanofibers;

poly(para-phenylenediamine).



1. INTRODUCTION

The massive growth of population around the world accompanied by the tremendous industrial
development, as well as the environmental consequences caused by oil, have led to growing demand
for new and effective energy sources [1-3]. However, when addressing energy issues and meeting the
world's energy needs, it is extremely important to consider the serious consequences of this
development on the environment, especially the problem of global warming [4,5]. Fuel cell has been
considered as a promising candidate to get over the current and future problems of energy.
Especially, direct methanol fuel cells (DMFCs) present a remarkable advantage over the other types
of fuel cells, such as their excellent volumetric energy density, high operating efficiency and ease of
transportation/storage and large availability of methanol. Therefore, DMFCs are widely considered

for their potential application in potable mobile devices and in automobile fields [6,7].

DMFC-anode electrocatalysts based on platinum have been extensively studied, because of their high
catalytic properties to enhance the efficiency of methanol oxidation reaction (MOR) [8-11].
However, some limitations still obstruct the wide-scale commercialization of DMFCs, namely, the
high cost of platinum and the poisoning of the electrocatalyst surface by the formation of the
intermediate CO species during MOR. Consequently, several studies have been conducted and
much efforts are underway to prepare electrocatalysts using inexpensive and earth-abundant metals
with high electrocatalytic performance. Copper-based catalyst has received considerable attention

due to its promising regarded performance for MOR and its lower affinity to CO species compared



to noble metals [12,13] even though its low to moderate stability [14]. Therefore, the association of
copper with other metals [12,15-17] or the use of copper (hydro)oxide structures [14,18,19] could
be suitable ways to overcome the stability problem. Cuprous oxide (Cu,O) is a p-type semiconductor,
which was considered as an attractive and promising catalyst thanks to its band gap (2.0-2.2 eV) [20-
22]. Ashassi-Sorkhabi et al. prepared a catalyst based on polypyrrole (PPy) electrochemically doped
by cuprous oxide (Cu;O), gold nanoparticles (Au) and nanodiamond (ND) for methanol
electrooxidation. The results showed that Cu;O manifested a good catalytic activity for MOR, while
PPy, ND, and Au acted as catalyst-support to promote its catalytic performance [23]. Other studies
demonstrated that the morphology of the deposited copper catalyst plays an important role in
enhancing catalytic performance by increasing the real surface area and enlarging the available
electrochemical active sites [24,25]. In this context, CuO and Cu(OH); nanowires were prepared by
Pawar et al. through a chemical oxidation. The nanowires exhibited high electrocatalytic activity for
methanol oxidation with a current density of about 50 A.g". The good catalytic performance of this
catalyst was related to the electroactive nanostructure formed, which leads to facilitate the electron
transfer at the surface of the electrode and to increase the electrochemical active sites [26]. Chen et
al. reported the synthesis of three-dimensional nanoporous copper catalyst and provided that the
high porosity and the large specific surface area of the catalyst were key factors for a high catalytic
effect [25]. In another work, Chang et al. compared nanodendrites and nanowires of Pt-Pd-Cu
hierarchical morphologies in which, copper metal was used for improving CO,4 tolerance and
ensuring a high utilization of Pt by creating tip-cracked defects. The nanodendrite morphology of
Pt-Pd-Cu catalyst showed an improved electrocatalytic activity and stability for methanol oxidation

with respect to the nanowire morphology [27].



Regarding the effect of the catalyst support, multiple roles have been discussed, for instance: (i)
increasing the stability of the catalyst, (ii) offering a high active surface area for the deposited catalyst,
(iii) contribution in the mass transfer and the oxidation reaction and (iv) reducing the poisoning of
the catalyst surface. Moreover, it can increase the number of the catalytic site and improve their
intrinsic activity [28-30]. Due to both high electronic conductivity and high surface area offered,
carbon materials are the most commonly used catalyst supports [12,20,31,32]. Carbon nanofibers-
supported catalyst exhibited enhanced catalytic performance than other carbon-supports thanks to
their unique structure combining chemical and physical properties. Calderon et al. studied the
performance of Pt-Ru supported on CNFs as anode material for DMFC. The results showed that Pt-
Ru/CNF revealed a higher catalytic performance compared to the commercial Pt-Ru/C catalyst, and
the CNF improved the CO tolerance during MOR [33]. In another work, Mu et al. discussed the
possible use of graphene-embedded carbon fiber as support for Pt nanoparticles (PtNPs) for both
methanol oxidation and oxygen reduction reactions. Promising electrochemical properties were
obtained, which were attributed to the fact that graphene-embedded carbon fiber (RGO/CF)
support offers abundant graphitic-N and oxygen functions for a good dispersion of active Pt NPs
and promotes their catalytic performance [34]. Accordingly, carbon support plays an important role
in enhancing the dispersion and the performance of the catalyst by providing an underlying
framework for facile electron conduction. However, carbon support suffers from corrosion and
dissolution, which decrease its stability. Lately, the hybrid conducting polymer-carbon materials have
been considered as novel promising support with special properties that cannot be attained by the
individual components [29]. The deposition of conducting polymer (CP) on carbon support

improves the electrochemical and mechanical stability of the catalyst and could exhibit a good



tolerance to CO poisoning during the methanol electrooxidation [30,35,36]. Poly(para-
phenylenediamine) (PpPD) is an aromatic CP that provides a large number of amine groups. The
latter can improve the deposition conditions of the catalyst and thus, its electronic properties for
higher catalytic performance [37,38]. PpPD has been used to functionalize CNTs and rGO supports
[39,40]. It has been demonstrated that the carbon-PpPD nanocomposites were formed by the 1
stacking interaction, providing helpful supports for an effective attachment and dispersion of catalyst
nanoparticles. Besides, PpPD prevents the agglomeration and the migration of nanoparticles by

coordination with the amine groups.

In this study, a new, inexpensive and effective anode material based on copper dendrites (CuDs)
supported on carbon nanofibers/poly(para-phenylenediamine) (CNF/PpPD) nanocomposite is
reported. CNF/PpPD was formed by a dispersion of CNFs on carbon paste electrode followed by an
electropolymerization of PpPD. Then, CuDs were prepared on CNF/PpPD nanocomposite through
a potentiostatic method. The morphological and compositional characterizations of the electrodes
was analyzed by TEM, FEG-SEM, EDX, XRD and XPS methods. In order to investigate the
optimized CNEF/PpPD/CuDs composition, the effect of different constituents on the
electrochemical properties of the nanocomposite were evaluated by CV and EIS. The results show
that the CuDs consist of Cu;O and Cu(OH), phases. Further, the catalytic performance of
CNE/PpPD/CuDs for MOR and the effect of the CNF/PpPD support were evaluated in alkaline
media. The results of the present work revealed that CNF/PpPD,/CuDs nanocomposite presents a
high electrocatalytic activity and stability, which could increase its potential use as a promising anode

material for alkaline DMFCs and other electrochemical systems.



2. EXPERIMENTAL PART

2.1. Materials

Carbon nanofibers were synthesised at Applied Sciences Inc. and were from the Pyrograf III family.
Graphite powder (<20 pm; synthetic 100 %), para-phenylenediamine monomer (pPD) (1,4-
diaminobenzene), mineral oil heavy, copper chloride (CuCly; 99.99 wt %), sodium hydroxide
(NaOH; > 98 %), sodium sulfate (Na;SO4 > 99 %), potassium ferrocyanideAferricyanide
(K5Fe(CN)s/KyFe(CN)6.3H,0; > 99 %), potassium chloride (KCI; 99 %), methanol (MeOH; 99.8 wt
%), sulfuric acid (H:SOs4; 98 wt %), nitric acid (HNOs; 70 wt %), and dimethylformamide (DMF;

99.5 %) were purchased from Sigma-Aldrich.

2.2. Preparation of the CNF/PpPD catalyst support

CNFs were initially treated with a mixture of sulfuric and nitric acids to create carboxylic (COOH),
carbonyl (-CO), and hydroxyl ((COH) groups on the surface according to reported work [38]. After
the dispersion of the functionalized CNFs in DMF (2 mg CNF in 1 mL DMF) by ultrasonic
treatment, 10 uL portion of the prepared dispersion was drop-cast on the surface of carbon paste
electrode (CPE with diameter of about 3 mm) and dried for 10 min at 80 °C, this electrode is called
CNF modified electrode. The preparation of PpPD film was performed on CNF modified electrode
using three-electrode configuration, in which, a CNF modified electrode as working electrode, a
saturated calomel electrode (SCE) as reference electrode, and a platinum rod as counter electrode
were used. The CNF modified electrode was immersed in a 0.1 M of sulfuric acid solution containing

5 mM of pPD monomer, then the PpPD film was produced by cyclic voltammetry (CV) for 10 cycles



between -0.1 V and 0.9 V at 50 mV s” (Fig. 1). CNF and PpPD were also prepared separately on

CPE using the same process described above to evaluate the reactivity of the individual component.

2.3. Preparation of dendritic copper electrocatalyst on CNF, PpPD, and CNF/PpPD supports

Dendritic copper (CuDs) electrocatalyst was electrodeposited on CNF, PpPD, and CNF/PpPD
modified electrodes by applying a fixed potential of 0.5 V wvs. SCE for 45 s, unless otherwise stated,
in a 0.1 M of Na;SOj solution containing 0.1 M CuCl; using three-electrode configuration. Fig. 1

presents the synthesis strategy of the CNFE/PpPD/CuDs nanocomposite on CPE electrode.

1 min
= H
Deposition of CNFs Electropolymerization Electrodeposition
on the CPE surface of pPD of Cubs

Fig. 1. Schematic description of the fabrication strategy of CNE/PpPD,/CuDs on CPE.

2.4. Morphological and structural characterizations

The surface morphology and composition of the modified electrodes were investigated by a field

emission gun scanning electron microscope (FEG-SEM, Zeiss, Supra 55), transmission electron



microscopy (TEM, JEOL, JEM-1011 electron microscope), and energy dispersive X-ray spectrometer
(EDX). Xray photoelectron spectroscopy (XPS) analyses were performed using a Kalpha
spectrometer (Thermo Scientific) equipped with a monochromatized Al anode (1486.6 eV) and
using a pass energy of 100 eV and 20 eV, for acquisition of the survey and high-resolution spectra,
respectively. The atomic concentration of the surface (= 10 nm) of the samples was calculated after
subtraction of the background using Shirley method [41]. X-ray diffraction (XRD) measurements
were performed by a Panalytical Empyrean diffractometer equipped with a Cu-Ka as a radiation

source (Ka = 1.54 []).

2.5. Electrochemical measurements

Cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and chronoamperometry
measurements were carried out using a three-electrode configuration, in which a saturated calomel
electrode (SCE) was used as a reference electrode, a modified CPE was used as a working electrode,
and a platinum (Pt) rod as a counter electrode. The electrochemical explorations were performed by
PalmSens electrochemical interface, controlled with PSTrace software (version 4.6). All experiments

were carried out at room temperature.

3. RESULTS AND DISCUSSION

3.1. Preparation of CNF/PpPD/CuDs on carbon paste electrode

3.1.1. pPD preparation

Fig. 2. (a) and (b) show the 1* and the 10™ cycles of the electropolymerization of pPD, respectively.

The results obtained on two types of substrates are shown here, i.e. CPE and CPE previously



modified with CNFs. The voltammograms of both electrodes display the presence of two redox
peaks, the first redox peak is attributed to the oxidation and the reduction of pPD monomer, and
the second redox peak corresponds to the electrochemical behaviour of the electroactive PpPD film
[42-44]. The electrochemical parameters of both redox peaks are reported in Table SI.1. Contrary
to the current of the first redox peak, that of the second one increases during cycling, indicating the
formation of a thin electroactive film on the electrode surface. The electropolymerization of pPD on
CNF modified electrode presents a higher current density and reduced peak-to-peak potential
separation values compared to CPE, which could be explained by the high surface area and the

enhanced electrical properties of CNFs [45].
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Fig. 2. Cyclic voltammograms of the 1 cycle (a) and the 10" cycle (b) of the electropolymerization of pPD on

the CPE and on the CPE-CNF in 0.1 M H,SOy containing 5 mM of pPD monomer for 10 cycles, at a scan
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rate of V=50 mV's”, and chronoamperometric curve of the electrodeposition of CuDs on CNE/PpPD

electrode at a fixed potential of -0.5 V for 45 s in 0.1M Na;SO; containing 0.1 M CuCl; (c).

3.1.2. CuD:s electrogeneration

After the formation of the PpPD film on CNFs, CuDs were electrodeposited on the modified
electrode through potentiostatic method at a potential of -0.5 V vs. SCE for 45 s. Fig. 2. (c) shows
the electrodeposition curve of CuDs on CNFE/PpPD nanocomposite. In the beginning, the current
decreases rapidly due to a fast nucleation-growth process [46,47]. After 30 s, the current density
stabilizes at about -2.12 mA.cm?, which could be related to the depletion of the copper ion

concentration near to the electrode surface [46].

3.2. Morphological and structural characterizations

3.2.1. FEG-SEM, TEM and EDX analyses

The FEG-SEM image of CNE/PpPD (Fig. 3. (a)) shows that the CNFs with an average diameter of
about 150 nm, were uniformly dispersed on the electrode surface forming a CNF network, which
offered a larger surface area compared to that of the bare CPE (see Fig. SI.1) [44]. Moreover, the
image displays a very thin-film of PpPD polymer deposited on CNFs network which connected all
the nanofibers [38]. TEM image of CNFE/PpPD nanocomposite (Fig. 3. (b)) shows that CNFs present
a smooth surface and a uniform deposition of thin polymer film on the CNFs, in agreement with
the FEG-SEM image in Fig. 3. (a). Regarding the morphology of CNE/PpPD/CuDs, FEG-SEM
image (Fig. 3. (c)) shows the formation of a three-dimensional copper dendritic structure on

CNE/PpPD nanocomposite. The deposited copper dendrites present a hierarchical structure
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constituted by multiple symmetrical branches attached to a pronounced central backbone. TEM
image of the ternary nanocomposite (Fig. 3. (d)) confirms the formation of a three-dimensional

copper dendritic structure on CNF/PpPD nanocomposite support.

Fig. 3. FEGSEM image of CNE/PpPD (a), TEM image of CNE/PpPD (b), FEG-SEM image of

CNE/PpPD/CuDs (c), and TEM image of CNE/PpPD/CuDs (d).

The surface composition of CNE/PpPD/CuDs electrode was analysed by Energy-dispersive X-ray
(EDX) detector coupled to FEG-SEM. EDX spectrum depicted in Fig. 4. (a) demonstrates the
presence of N, O, C and Cu elements. N element is related to the PpPD polymer, whereas C and O
principally originate from CNFs. The EDX mapping was performed to study the elemental
distribution on the surface of CNF/PpPD/CuDs electrode. As shown in Fig. 4. (b), carbon and
oxygen elements display a distribution related to CNFs. The nitrogen shows a good distribution on
the surface which certifies the formation of PpPD thin film on the CNFs. In addition, oxygen has a
similar distribution as copper, indicating the formation of a copper oxide and/or copper hydroxide
phases. The distribution of nitrogen presents similar areas to the that of copper. This observation
confirms that the presence of amine groups offered by PpPD polymer, on the surface, facilitates the

12



nucleation and growth of the copper dendrites, which could improve their electrocatalytic
performance [39,48-51]. In order to determine the crystalline structure of the deposited CuDs and
surface composition of the resulting films, further characterization was performed by XRD and XPS

analyses, respectively.
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Fig. 4. EDX spectrum of CNF/PpPD/CuDs (a), Elemental mapping analysis of CNF/PpPD/CuD:s (b).

3.2.2. XRD and XPS analyses
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The X-ray diffraction (XRD) was used to characterize the crystalline phase of CNE/PpPD/CuDs
nanocomposite deposited on CPE as reported in Fig. 5. (a). The XRD pattern shows the presence
of two crystalline phases of copper. The diffraction peaks at 16.7°, 23.8°, 39.8°, 47°, 53.2°, 77.7°,
and 83.5° correspond respectively to the (022), (021), (130), (112), (150), (153), and (242) planes of
Cu(OH);, which match well to the orthorhombic Cu(OH), (JCPDS 01-072-0140) [52]. The peaks
appearing at 36.4°, 42.3°, 61.3°, and 73.5° are related to (111), (200), (220), and (311) planes of the
cubic Cu,O (JCPDS 01-077-0199) [53]. In addition, the XRD spectrum shows the presence of a peak
at 20=26° attributed to the hexagonal structure of the CNFs and the crystalline peaks of CPE

substrate.
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Fig. 5. XRD pattern (a), XPS high-resolution Cu 2p spectrum (b), and high-resolution Cu LMM spectrum (b)

of CNE/PpPD/CuDs deposited on CPE substrate.
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Further characterization by X-ray photoelectron spectroscopy (XPS) was investigated to analyze the
chemical composition and the state of nanocrystal of the CNF/PpPD/CuDs nanocomposite surface
within = 10 nm. The surface chemical composition of the nanocomposite was determined, the
presence of C, N, O, and Cu elements was detected with an atomic percentage of 62.65, 4.8, 25.6,

and 6.95, respectively.

Fig. 5. (b) presents the high-resolution spectrum of Cu2p level. This spectrum is resolved into several
peaks: two peaks at around 934.7 eV and 954.5 eV ascribed to Cu2ps/; and Cu2py,s, respectively,
which are related to Cu(Il) in Cu(OH),. Additionally, the shake-up satellite peaks at around 942.2
eV and 962.7 eV for Cu 2ps» and Cu 2puy, respectively, indicate the presence of an unfilled Cu3d’
shell, which confirm the existence of Cu(ll) at the nanocomposite surface [54,55]. The two
contributions situated at 932.4 and 952.5 eV correspond to Cu2ps/;, and Cu2pys, respectively, which
are corresponded to Cu(I) or Cu(0). The shape of the Cu LMM Auger peak (Fig. 5. (c)) and its
location at 570.6 €V, are characteristic of the presence of Cu(I) [56]. Finally, the low intensity of the
contribution due to Cu;O and the high intensity of the one due to Cu(OH); could indicate the

formation of a thin protection layer of Cu(OH), on Cu,O [54].

3.3. Electrochemical characterizations

Electrochemical characterizations were conducted to evaluate the effect of each component on the
electrochemical properties of the CNFE/PpPD/CuDs modified electrode. Therefore, CVs of bare
CPE, CNF, PpPD, CNE/PpPD, and CNE/PpPD/CuDs electrodes were recorded in 0.1 M KCl
solution containing 5 mM of Fe(CN)s’/Fe(CN)s*". As shown in Fig. 6. (a), CV curves of the four

electrodes present a pair of redox peak corresponding to the reversible reaction of Fe(CN)¢~
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/Fe(CN)s*. The electrochemical parameters of different electrodes recorded from CV curves (Fig.
6. (a)) are reported in Table SI.2. The bare CPE shows a small redox peak and a high peak-to-peak
potential separation (AE,) of about 580 mV due to the relatively small surface area and the poor
electron transfer. For PpPD modified electrode, the current densities of the anodic and cathodic
peaks were increased and AE,value was decreased to 500 mV compared to bare CPE, indicating that
the PpPD film improved the conductivity of the electrode surface [44]. In the case of CNF modified
electrode, the current density was increased significantly by about 60 % than that of the bare CPE,
and the AE,value was reduced to 250 mV. The manifested behaviour could be attributed to the high
surface area and the high electrical properties of CNFs, which promote the electron transfer on the
electrode surface. After modification of CPE surface by CNF/PpPD nanocomposite, an obvious
increase in the current density of the redox peak was observed by about 115 % compared to the bare
CPE, and sharp decrease in AE, value was noticed, indicating a positive synergistic effect between
CNFs and PpPD which increases the surface area and enhances the electron transfer at the electrode
surface [38]. In addition when copper dendrites were electrodeposited on the surface of CNE/PpPD
modified electrode, a well-defined redox peak was observed with a higher current density (about 240
% larger than that of bare CPE), illustrating that CuDs increases the surface area and catalyzes the
redox reaction of Fe(CN)s’"/Fe(CN)s*, moreover, the high conductivity of Cu(OH), might further
accelerate the electron transfer, despite the low conductivity of Cu;O [26]. Furthermore, the
electrochemical active surface areas (EASA) were estimated by Randles-Sevcik equation (Eq. 1) for

different electrodes, which assumes mass transport by only diffusion process [57,58]:

ip = 2.69 x 10° n3/2 A D2 C v*/2 (Eq.1)
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where i), is the peak current (A); n is the electron transfer number (n=1), A is the electroactive surface

area (cm?), D is the diffusion coefficient (6.7x10° cm?®.s") [59], C is the concentration (mol.cm™), and

v is the san rate (V.s'). The electroactive surface area of bare CPE, CPE-PpPD, CPE-CNF, CPE-

CNF/PpPD, and CPE/CNE/PpPD/CuDs was calculated to be 0.05, 0.07, 0.09, 0.12, and 0.19 cm?,

respectively. To confirm these results, electrochemical impedance spectroscopy (EIS) measurements

were performed in the same solution at 0.4 V vs. SCE with a small amplitude of 10 mV. The Nyquist

plots are reported in Fig. 6. (b).
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Fig. 6. Cyclic voltammograms at a scan rate of v=50 mV s" (a) and EIS spectra measured at E=0.4 V vs

SCE, with amplitude of 10 mV (b) of bare CPE, PpPD, CNF, CNE-PpPD, and CNE/PpPD/CuDs

electrodes in 0.1 M KClI solution containing 5 mM of Fe(CN)s*/Fe(CN)e*.

The CPE substrate presents a large semicircle in the region of high to low frequency, followed by a

sloped line at low frequency. The electropolymerization of PpPD thin film on the CPE surface

reduces the electron transfer resistance (Re) from 20 kQ to 12 kQ. These values are obtained from
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an extrapolation of the high frequency loop to the real axis of the diagram. Indeed, the presence of
PpPD thin film increases the electron transfer at the electrode surface by improving the electronic
properties. The CPE substrate contains the non-conductive paraffin oil which reduces the active
surface area and then, the electron transfer capability. The deposition of CNFs on CPE decreased
the R to 7 k€, owing to its good electronic properties and high surface area. In the case of
CNE/PpPD and CNF/PpPD/CuDs modified electrodes, the R, is significantly lower as compared
to that of CNF, PpPD and bare CPE electrodes. According to these results, the electropolymerization
of PpPD on CNFs can generate a synergistic effect and presents enhanced electrical properties, which
leads to the promotion of the electron transfer at the electrode. In addition, the incorporation of
copper dendrites on CNF/PpPD offers a large number of active sites which could catalyse the
reaction at the electrode surface. The EIS results are in good agreement with the CV results reported

in Fig. 6. (c).

3.4. Electrocatalytic performances of the prepared nanocomposites for methanol oxidation

reaction

The catalytic performance of different nanocomposites was evaluated using CV and
chronoamperometry techniques. Fig. 7. (a) reports the CV curves of CNF/PpPD/CuDs catalyst in
0.1 M NaOH solution with and without addition of methanol (1.5 M). In the presence of MeOH
the voltammogram shows a large anodic peak around 0.9 V vs. SCE, indicating the electrooxidation

of methanol at the electrode surface.

The catalytic effect of CNF/PpPD/CuDs on the electrooxidation of methanol was compared to that

of CNFE/CuDs and of PpPD/CuDs (Fig. 7. (b)). CNE/PpPD/CuDs displays superior catalytic activity
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towards MOR with a current density of about 50 mA.cm?, while, CNF/CuDs and PpPD/CuDs
exhibit 40 mA.cm? and 36 mA.cm?, respectively. The increased catalytic activity of
CNE/PpPD/CuDs could be related to the good synergistic effect between CNF/PpPD support and
the CuDs catalyst. CNFs present a high adsorption capability of methanol on the surface thanks to
their high surface area, while PpPD presents a large number of amine groups on the surface, which

play a significant role in increasing the catalytic performance of CuDs catalyst [48,60].

Concerning the mechanism of oxidation of methanol on copper-based catalyst, many reports stated
that the CuOOH species play an important role in MOR [45,61]. In alkaline media, Cu(OH), layer
is converted to CuOOH by the entry of OH™ species at about 0.3 V according to Eq.2 [61].
Thereafter, methanol is oxidized on the active CuOOH layer and forms Cu(OH), and CO;(Eq. 3),

which causes a sharp increase in the current density [61,62].
Cu(OH), + OH™ & CuOOH + H,0 + e~ (Eq.2)
CuOOH + CH;0H + 5/4 0, - Cu(0OH), + CO, + 3/2 H,0 (Eq.3)

The effect of CuDs content on the electrocatalytic activity of CNF/PpPD,/CuDs was studied using
CV measurements. Fig. SI.2 shows different CV curves in 0.1 M NaOH solution containing 1.5 M
methanol with different CuDs amount, varied by adjusting the CuDs electrodeposition time. The
electrocatalytic effect increases with the increase of the deposition time of CuDs until 45 s. However,
a further increase of the deposition time resulted in decreasing the electrocatalytic effect of CuDs
catalyst supported by CNF/PpPD. Normally, the increase of the CuDs content increases the catalytic
sites on the surface, leading to an improvement of the catalytic performance. However, the excess of

the CuDs negatively affects the performance of the catalyst by shortening the electron transfer path
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[38,63]. Throughout this study, the optimal mass of CuDs obtained by a deposition time of 45 s was

maintained.

The catalytic effect of CNF/PpPD,/CuDs towards MOR was studied with a gradual increase of the
concentration of methanol. Fig. 7. (c) shows the CV curves of CNF/PpPD/CuDs in 0.1 M NaOH
solution with different methanol concentrations. The current density of the methanol oxidation
peak increases with the increase of the methanol concentration until 3 M. In comparison with other

reported catalysts [64-67], CNF/PpPD/CuDs shows a higher efficiency for MOR.
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Fig. 7. Cyclic voltammograms of CNF/PpPD/CuDs in 0.1 M NaOH solution with and without 1.5 M
methanol (a), cyclic voltammograms of PpPD/CuDs, CNE/CuDs, and CNE/PpPD/CuDs in 0.1 M

NaOH solution containing 1.5 M methanol (b), cyclic voltammograms of CNE/PpPD/CuDs in 0.1 M
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NaOH solution with various concentrations of methanol, at a scan rate of =50 mV s (c) and
chronoamperograms of CNE/CuDs, PpPD/CuDs, CNE/PpPD/CuDs and Pt in 0.1 M NaOH solution

containing 1.5 M of methanol at 0.9 V vs. SCE for 6 h (d).

The long-term stability of the catalysts was evaluated by chronoamperometric measurements in 0.1
M NaOH solution containing 1.5 M methanol. Fig. 7. (d) shows the chronoamperometric curves of
CNE/CuDs, PpPD/CuDs, CNE/PpPD/CuDs and Pt measured over 6 h. Comparing the responses
of CuDs deposited on the individual CNF and PpPD supports, PpPD/CuDs showed a better stability
during 6 h, confirming that PpPD improves the stability of the CuDs. It is due to the appropriate
coordination with the amine groups as already indicated [39], while, CNF/CuDs presents a high
current density, which could be explained by the high surface area and the good electrical properties
of the CNFs [34,45]. In the case of CuDs supported on the hybrid CNF/PpPD nanocomposite, the
current density is much higher than that of CNE/CuDs, PpPD/CuDs, and Pt, presenting a good
stability over 6 h, indicating that the combination of CNF and PpPD as support for CuDs creates a
good synergistic effect leading to a further improvement of the activity, stability, and durability of
the CuDs. The chronoamperometry results are in good agreement with the CV results reported in
Fig. 7. (b). In order to highlight the catalytic performance of the prepared catalyst material with
respect to previous works on similar material combinations and commercial catalyst, the catalytic
activity of the prepared catalyst toward MOR was compared with that of other materials previously
reported in the literature (Table SI.3). It is important to point out that our catalyst shows an
improved catalytic activity compared to that of other previous reported catalysts based on expensive
or inexpensive metals, and of commercial catalyst. Moreover, our catalyst presents a remarkable

stability toward MOR, and was tested for 6 h to provide a concrete information about the long-term
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stability (Fig. 7. (d)). While, the stability of the catalyst reported in Table SI.3, was tested for less

than 2 h. It is also noteworthy that the CNE/PpPD/CuDs was prepared by a rapid and simple way.

4. CONCLUSIONS

In this study, a new, inexpensive, and highly-efficient catalyst for methanol electrooxidation based
on CuDs supported on CNFE/PpPD, prepared by a simple and rapid process, was explored. PpPD
was electropolymerized on a CNF modified electrode using CV. Then, the CuDs were
electrodeposited at a constant potential. Various spectroscopic and microscopic techniques such as
MEB, TEM, EDX, XRD and XPS were used to characterize the structure and the morphology of the
prepared nanocomposites. The results show that the nanocomposite was successfully prepared and
a three-dimensional dendritic structure consisting of Cu;O and Cu(OH); formed on the CNF/PpPD
support. The electrochemical characterization by CV and EIS suggested that the CNF/PpPD/CuDs
nanocomposite exhibited positive synergistic activity, which improved the electronic properties of
the electrode compared to the individual components. The catalytic performance of the resulting
catalyst for methanol electrooxidation was compared with that of PpPD/CuDs, CNF/CuDs, and Pt
using CV and chronoamperometry in alkaline medium. The CNF/PpPD/CuDs catalyst showed
higher catalytic activity and a good stability over 6 hours. This catalyst material is highly promising
and can be a good alternative to the noble metal-based catalysts and contribute to the development
of DMFC operating in alkaline media. Furthermore, it demonstrates the potential uses of hybrid

carbon material/conducting polymer nanocomposite support for metal catalysts.
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