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A Novel Time-Frequency Technique for Mode

Retrieval Based on Linear Chirp

Approximation
Nils Laurent, Sylvain Meignen

Abstract

In this paper, we introduce a novel time-frequency technique for the retrieval of the modes of

multicomponent signals based on linear chirp approximation. The key idea to this new technique is to

design the retrieval procedure by using only information extracted in the vicinity of the ridges made

by the components in the time-frequency plane. Compared with state-of-the-art methods based on time-

frequency representations, the proposed approach will prove to improve the reconstruction results when

applied to a monocomponent signal and to circumvent the mode-mixing issue when the modes of a

multicomponent signal are close in the time-frequency plane.

Index Terms

Time-frequency, AM/FM multicomponent signal, mode retrieval, linear chirp approximation.

I. INTRODUCTION

Multicomponent signals (MCSs) have received a lot of interest in the last decades since they enable

to accurately represent non-stationary signals encountered in many different fields such as for instance

pathology diagnosis [1], [2], structural damage [3], [4] or physiological signals [5]. The short-time Fourier

transform (STFT) is a time-frequency representation (TFR) very commonly used to analyze this type of

signals because the modes making up MCSs are associated with specific regions in the time-frequency

(TF) plane, centered around so-called ridges [6].
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In this context, mode retrieval is basically carried out by determining the specific TF region associated

with each mode. For that purpose, different non parametric techniques were developed either inspired

by hard-thresholding approaches [7], as for instance in [8] and more recently in [9], or based on

synchrosqueezing transform [10], [11]. As we will recall, these techniques basically consist of cleverly

summing the coefficients of the STFT belonging to the TF region associated with each mode, but

when some modes exhibit interference in the TF plane, these regions overlap, leading to mode-mixing.

Remarking that these interference have a smaller impact at TF locations corresponding to high STFT

modulus, we propose to design a new mode retrieval technique from the estimation of the STFT using only

information extracted in the vicinity of the ridges associated with the modes. We will show, on different

types of simulated signals, that the proposed approach considerably reduces mode-mixing compared with

the above mentioned state-of-the-art TF based methods. At this point, it is important to note that there

exist a series of other techniques that intend to retrieve the modes without considering TFRs, like the

chirplet transform [12] or ridgelet transform [13] which fundamentally differ from the above mentioned

techniques in that they are parametric and non local, therefore we will stick to TF-based methods in

terms of comparisons.

After having recalled basic notations and definitions in Section II, we introduce our new approach for

mode retrieval in Section III, then recall briefly alternative techniques based either on hard-thresholding

and variants [7] [9], or second order synchrosqueezing transform [11] in Section IV. These are finally

compared to our new approach in Section V.

II. DEFINITIONS AND NOTATIONS

The short-time Fourier transform (STFT) is defined for f ∈ L1(R), g ∈ L∞(R) as [14]:

V g
f (t, η) =

∫
R
f(τ)g(τ − t)e−2iπη(τ−t)dτ. (1)

Assuming g is real such that g(0) 6= 0, then the signal f can be retrieved through:

f(t) =
1

g(0)

∫
R
V g
f (t, η)dη. (2)

Assuming f and g ∈ L2(R) such that ‖g‖2 = 1, one has the alternative reconstruction formula:

f(t) =

∫ ∫
R2

V g
f (u, η)g(t− u)ei2πη(t−u)dudη. (3)

In this paper we will make extensive use of MCSs corresponding to the superimposition of P modes

defined as:

f(t) =

P∑
p=1

fp(t), (4)
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with fp(t) = Ap(t)e
2iπφp(t), in which the instantaneous amplitude (IA) Ap(t) > 0 varies slowly and the

instantaneous frequency (IF) φ′p(t) > 0 for all p, and such that φ′p+1(t)− φ′p(t) > 0. We further assume

the modes are separated in frequency with resolution ∆:

∀1 ≤ p ≤ P − 1, φ′p+1(t)− φ′p(t) > 2∆. (5)

In the TF plane, the different modes are associated with so-called ridges, which we denote (ϕp)p=1,··· ,P ,

that are estimates of the IFs (φ′p)p=1,··· ,P of the modes. Since, ridge extraction is not the scope of the

present paper, we will not focus on this issue and refer the reader to the vast literature on the subject

[8], [15]–[17], and adopt, in the present paper, the approach of [8] .

III. MODE RETRIEVAL USING STFT ESTIMATION BASED ON LINEAR CHIRP APPROXIMATION

Our goal is now to introduce a novel technique to retrieve the modes of a MCS using a local

approximation of its STFT assuming a mode locally behaves like a linear chirp. This is done in Section

III-A. Section III-B then focuses on the practical implementation of the proposed technique.

A. Principles of the Novel Mode Retrieval Technique

Let us assume that g in (1) is the Gaussian window g(t) = e−π
t2

σ2 , the parameter σ being chosen so

as to minimize the Rényi entropy associated with the STFT modulus, as is done in [8], [18]. Then, as

shown for instance in [19], the STFT of the linear chirp f(t) = Ae2iπ(at+b
t2

2
) can be expressed as:

V g
f (t, η) = Ar−

1

2 e−i
θ

2 e
−πσ

2(1+ibσ2)

1+(bσ2)2
(η−a−bt)2

= V g
f (t, a+ bt)e

−πσ2(1+ibσ2)

1+(bσ2)2
(η−a−bt)2

= V g
f (t, φ′(t))e

−πσ2(1+iφ′′(t)σ2)

1+(φ′′(t)σ2)2
(η−φ′(t))2

,

(6)

with r =
√

1
σ4 + φ′′(t)2 and θ = tan−1(−φ′′(t)σ2). If the monocomponent signal f departs from a linear

chirp, the above equalities become approximations, which are furthermore only valid for η in the vicinity

of φ′(t). Applying this approximation to fp, we obtain for η in the vicinity of φ′p(t):

V g
fp

(t, η) ≈ V g
fp

(t, φ′p(t))e
−πσ2(1+iφ′′p (t)σ2)

1+(φ′′p (t)σ2)2
(η−φ′p(t))2

≈ V g
f (t, φ′p(t))e

−πσ2(1+iφ′′p (t)σ2)

1+(φ′′p (t)σ2)2
(η−φ′p(t))2 .

(7)

In the last equation we have replaced V g
fp

(t, φ′p(t)) by V g
f (t, φ′p(t)), remarking that at TF location

(t, φ′p(t)), the STFT of the mode fq, q 6= p is close to 0.
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In practice, the IF φ′p(t) and the chirp rate (CR) φ′′p(t) are to be estimated. For that purpose, we use

the estimates involved in the definition of the second order synchrosqueezing transform (SST2) [19]. For

CR estimation, the following complex modulation operator was introduced:

q̃f (t, η) =
1

2iπ

V g′′

f (t, η)V g
f (t, η)−

(
V g′

f (t, η)
)2

V tg
f (t, η)V g′

f (t, η)− V tg′

f (t, η)V g
f (t, η)

, (8)

which is such that q̂f (t, η) = <{q̃f (t, η)} = φ′′(t) when f is a linear chirp. In the context of a MCS,

q̂f (t, η) ≈ φ′′p(t) where η is close to φ′p(t), therefore we consider q̂f (t, ϕp(t)) to estimate φ′′p(t), bearing

in mind that (t, ϕp(t)) corresponds to the ridge associated with fp and thus ϕp is an estimate of its IF.

Then, introducing ω̃f (t, η) = η − 1
2iπ

V g
′

f (t,η)

V gf (t,η)
and τ(t, η) = −V tgf (t,η)

V gf (t,η)
,

ω̂
[2]
f (t, η) = <{ω̃f (t, η)− q̃f (t, η)τ(t, η)} , (9)

was defined and equals φ′(t) when f is a linear chirp [11]. In the context of a MCS, ω̂[2]
f (t, η) ≈ φ′p(t)

when η is close to φ′p(t), therefore we consider ω̂[2]
f (t, ϕp(t)) to estimate φ′p(t). Then, from (7) the STFT

of fp can be approximated by :

V g
fp

(t, η) ≈

V g
f

(
t, ω̂

[2]
f (t, ϕp(t))

)
e
−πσ

2(1+iq̂f (t,ϕp(t))σ
2)

1+(q̂f (t,ϕp(t))σ2)2 (η−ω̂[2]
f (t,ϕp(t)))

2

.

(10)

Finally, the reconstruction of mode fp is carried out either through (2) or (3) replacing V g
f by the

approximation of V g
fp

given by (10). In noisy cases, the signal f is replaced by f̃ := f + ε, where ε is

some noise, and the approximation of V g
fp

is obtained by replacing f by f̃ in (10), the reconstruction

procedures being then the same as in the noise-free case.

It is important to remark here that the approximation of V g
fp

uses only STFTs of f evaluated in the

vicinity of the ridge associated with fp, which will prove to be the very reason why the just described

approach for mode retrieval is well adapted to handle the mode-mixing issue. However, up to now, we

have only presented the approach for continuous time signals, and it needs to be adapted to discrete time

signals to be of practical use, as explained hereafter.

B. Practical Implementation

To implement the just described mode retrieval technique, one considers that the signal f is a discrete

sequence of length L such that f [n] = f(nL), for n = 0, · · · , L− 1, and that (g[n])n∈Z are the samples

at n
L of the Gaussian window, which is further truncated to be supported on {−M, · · · ,M} such that
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2M + 1 ≤ N , where N is the number of frequency bins. In that context, the discrete STFT of f is

defined by [20]
Vg
f [m, k] =

∑
n∈Z

f [n]g[n−m]e−2iπ
k(n−m)

N

=

n=M∑
n=−M

f [m+ n]g[n]e−2iπ
kn

N ,

(11)

with k ∈ {0, · · · , N − 1}, and m ∈ {0, · · · , L − 1}, which can be computed for each m through

a discrete Fourier transform of length N . Note that the index k corresponds to a frequency in IL =

{0, LN · · · , (N−1) LN }, and the index n to time n
L . In that context, the discrete mode (fp[m])m is associated

with a ridge (ϕp[m])m corresponding to frequency indices in {0, · · · , N − 1}. Discrete versions of ω̂[2]
f

and q̂f can be computed and are denoted by ω̂[2]
f [m, k] and q̂f [m, k] in the sequel, enabling us to define

ψ′p[m] := ω̂
[2]
f [m,ϕp[m]] and ψ′′p [m] := q̂f [m,ϕp[m]] approximating φ′p(

m
L ) and φ′′p(

m
L ) respectively.

Remarking, using rectangular integration, that V g
f (mL , k

L
N ) ≈ Vg

f [m,k]

L , and using (7), we may write:

Vg
fp

[m, k] ≈ LV gfp(
m

L
, k
L

N
)

≈ LV gf
(m
L
,φ′p(

m

L
)
)
e
−
πσ2(1+iφ′′p (m

L
)σ2)

1+(φ′′p (m
L

)σ2)2
( kLN −φ

′
p(
m
L ))

2

≈ LV gf
(m
L
,ψ′p[m]

)
e
−
πσ2(1+iψ′′p [m]σ2)

1+(ψ′′p [m]σ2)2
( kLN −ψ

′
p[m]))

2

,

(12)

for which an approximation of V g
f

(
m
L , ψ

′
p[m]

)
from values of the discrete STFT is needed. For that

purpose, let us consider k0 := bψ′p[m]NL e, where bxe denotes the closest integer to x, we may write

using (10):
V gf

(m
L
,ψ′p[m]

)
≈ V gfp

(m
L
,ψ′p[m]

)
≈ V gf (

m

L
, k0

L

N
)e

πσ2(1+iψ′′p [m]σ2)

1+(ψ′′p [m]σ2)2
(k0

L
N−ψ

′
p[m])2

≈ 1

L
Vg
f [m, k0]e

πσ2(1+iψ′′p [m]σ2)

1+(ψ′′p [m]σ2)2
(k0

L
N−ψ

′
p[m])2

.

(13)

From (12) and (13) we get that:

Vg
fp

[m, k]

≈Vg
f [m, k0]e

πσ2(1+iψ′′p [m]σ2)

1+(ψ′′p [m]σ2)2 [( k0LN −ψ
′
p[m])2−( kL

N
−ψ′p[m])2]

≈Vg
f [m, k0]e

πσ2(1+iψ′′p [m]σ2)

1+(ψ′′p [m]σ2)2 [L(k0−k)
N

(
L(k0+k)

N
−2ψ′p[m])]

.

(14)

If we denote Ṽg
fp

the estimation of Vg
fp

given by (14), the retrieval of fp can be carried out either

through:

fp[m] ≈ 1

g(0)N

N−1∑
k=0

Ṽg
fp

[m, k], (15)
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or through, assuming f is L-periodic:

fp[m] ≈

m+M∑
q=m−M

N−1∑
k=0

Ṽg
fp

[q mod L, k]g[m− q] e
i2π

k(m−q)
N

N

q=m+M∑
q=m−M

g[m− q]2
. (16)

In a noisy context, all the above expressions can be used replacing f by its noisy version f̃ . These new

techniques to retrieve the different modes are called Linear Chirp based Retrieval (LCR).

IV. ALTERNATIVE TECHNIQUES FOR MODE RERIEVAL: HT, SSR-HT [9], AND SYNHROSQUEEZING

TRANSFORMS [11]

The Hard Thresholding (HT) technique when used for the retrieval of the mode fp of a MCS [8]

consists of considering in the reconstruction process only the coefficients of Vg

f̃
in the vicinity of ϕ̃p,

the ridge associated with f̃p the noisy version of fp. For that purpose, one defines for each time indexed

by m, an interval Jp[m] =
[
η−p [m], η+p [m]

]
such that:

η−p [m] := argmax
k

{
kL

N
< ϕ̃p[m], |Vg

f̃
[m, k]| < 3σ‖g‖2

}
η+p [m] := argmin

k

{
kL

N
> ϕ̃p[m], |Vg

f̃
[m, k]| < 3σ‖g‖2

}
,

(17)

which depends on an estimate of γ := σ‖g‖2, for which a median absolute deviation approach [21] is

used:

γ̂ :=
median |<

{
Vg

f̃
[m, k]

}
m,k
|

0.6745
. (18)

The reconstruction of the modes is carried out using only, in (15) or (16), the frequency indices in Jp[m]

for each m.

For the sake of comparison, we also briefly recall the principles of a denoising technique called

Shifted-Symmetrized-Regularized Hard-Thresholding (SSR-HT), and introduced in [9], which consists

of an improvement of HT technique based on a linear chirp approximation for the mode, that uses

symmetry properties of the STFT with respect to the location of the local maxima of its modulus and

also the hypothesis that the STFT is regular.

We would like to compare also LCR to the second-order synchrosqueezing transform (SST2) with

accuracy α which was defined in [11], in the continuous time context, as:

TV g
f (t, ω) =

∫
|V gf (t,η)|≥α

V g
f (t, η)δ

(
ω − ω̂[2]

f (t, η)
)
dη, (19)

May 27, 2021 DRAFT
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in which ω̂
[2]
f (t, η) = <{ω̃[2]

f (t, η)}, and δ the Dirac distribution. The reconstruction of mode p being

then achieved through:

fp(t) ≈
1

g(0)

∫
|ω−ϕp(t)|≤d

TV g
f (t, ω) dω, (20)

where d is a parameter to account for errors in evaluating the IF of fp with the ridge ϕp. Note that in

SST2, the ridges are computed on the modulus of the synchrosqueezed transform TV g
f and not on the

modulus of STFT. Of course we will compare LCR with a discrete time version of SST2, which we do

not detail here due to format constraints (see [11] for details).

V. RESULTS

The objectives of the simulations we carry out are two-fold. The first one is to compare LCR with

other types of mode retrieval techniques based on TFR recalled above, namely HT, SSR-HT and SST2,

on monocomponent signals. The second one is to investigate the ability offered by the different methods

to accurately separate two close modes in a MCS (the code to reproduce the figures is available at

https://github.com/Nils-Laurent/LCR).
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Fig. 1: (a): STFT of f(t) = e2iπ(250t+568 t
2

2
); (b): STFT of f(t) = e2iπ(1200t+60 cos(3πt)); (c): STFT of

f(t) = e2iπ(2000t+238 cos(2πt)).

A. Comparison of Mode Retrieval Techniques on a Monocomponent Signal

Before we start the comparison of the different mode retrieval techniques, we numerically checked

that the quality of IF estimate ω̂
[2]

f̃
does not depend on the chirp rate for a linear chirp, whatever

the noise level, and that this IF estimate is always more relevant than ω̂f̃ := <{ω̃f̃} used in the

original synchrosqueezing transform [10]. Then, we investigate the behavior of the different mode re-

trieval techniques for the modes depicted in Fig. 1. For that purpose, we compute the output SNR, i.e.
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Fig. 2: (a): Signal reconstruction results for the signal of Fig. 1 (a) using HT, SSR-HT, SST2 (with

d = 5) and LCR. the mode is reconstructed using either (15) or (16) ; (b): Same as (a) but for the signal

depicted in Fig. 1 (b); (c): Same as (a) but for the signal depicted in Fig. 1 (c).

SNR(f, frec) = 20 log10(‖f‖/‖frec − f‖), with respect to input SNR, i.e. SNR(f, f̃) and where frec

corresponds to signal reconstruction with either (15) or (16). In Fig. 2, the results corresponding to the

first (resp. second) reconstruction technique are denoted by M1 (resp. M2). We notice that LCR behaves

better than HT, SSR-HT and SST2 in each case, whatever the noise level. We also note that LCR is

only slightly sensitive to the technique used for mode reconstruction (M2 seems a little bit better than

M1, but the latter is much faster than the former). On the contrary, SSR-HT behaves worse when the

modulation decreases, since the quality of reconstruction is hampered by frequency resolution when M2

is used. Finally, comparing the results of Fig. 2 (b) and (c), we notice that LCR is performant for a wide

range of frequency modulation for the mode.

B. Mode Mixing Issue

To tackle the mode mixing issue, we consider the two mode signal whose STFT is depicted in Fig.

3 (a), for which mode separation is challenging. In particular, we notice that at a low noise level and

when using HT or SSR-HT, the threshold used for the determination of intervals Jp is lower, at many

time instants, than the minimum value of the modulus of STFT between the two ridges associated with

the modes. This results in mode mixing with these two techniques. In Fig. 3 (b), we display the results

corresponding to the retrieval of the modes f1 and f2. With HT and SSR-HT techniques, when the noise

level is low, we get that for many time index m, J1[m] = J2[m], hence the poor results. For SST2, with

d = 5, the quality of reconstruction is the same for the two studied modes, but the coefficients between
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Fig. 3: (a): STFT of signal made of two close chirps; (b): Reconstruction results using (15) for each of

the two modes depicted in (a)

the modes are either used in the reconstruction of f1 or f2 while these coefficients contain information

on both f1 and f2. This is the reason why when the noise level decreases the quality of reconstruction

reaches a plateau with SST2. Note that, to change the value for d would lead to the same conclusion. On

the contrary, the separation of the two modes with LCR remains satisfactory whatever the noise level.

It is worth mentioning here that the reconstruction formula used with HT, SSR-HT, and LCR is (15)

because it is the closest to the one used in SST2. To use (16) instead would not change the conclusions.

VI. CONCLUSION

In this paper, we have introduced a new technique for the reconstruction of the modes of multicom-

ponent signals based on linear chirp approximation. We have shown that the proposed technique behaves

better than commonly used hard-thresholding techniques or second order synchrosqueezing transform on

a single mode signal and that it is much more performant than these techniques for separating two close

modes. Future work should involve the extension of such a technique to the analysis of crossing modes

or modes with highly oscillating phase, using higher order instantaneous frequency estimators. In another

direction, we will investigate how to improve even more the robustness of the CR estimate used in the

method when, in the signal, both the frequency modulation and the noise level are high.
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