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In this paper, we introduce a novel time-frequency technique for the retrieval of the modes of multicomponent signals based on linear chirp approximation. The key idea to this new technique is to design the retrieval procedure by using only information extracted in the vicinity of the ridges made by the components in the time-frequency plane. Compared with state-of-the-art methods based on timefrequency representations, the proposed approach will prove to improve the reconstruction results when applied to a monocomponent signal and to circumvent the mode-mixing issue when the modes of a multicomponent signal are close in the time-frequency plane.

In this context, mode retrieval is basically carried out by determining the specific TF region associated with each mode. For that purpose, different non parametric techniques were developed either inspired by hard-thresholding approaches [START_REF] Donoho | Ideal spatial adaptation via wavelet shrinkage[END_REF], as for instance in [START_REF] Meignen | Retrieval of the modes of multicomponent signals from downsampled short-time fourier transform[END_REF] and more recently in [START_REF] Pham | A novel thresholding technique for the denoising of multicomponent signals[END_REF], or based on synchrosqueezing transform [START_REF] Thakur | Synchrosqueezing-based recovery of instantaneous frequency from nonuniform samples[END_REF], [START_REF] Oberlin | Second-order synchrosqueezing transform or invertible reassignment? Towards ideal time-frequency representations[END_REF]. As we will recall, these techniques basically consist of cleverly summing the coefficients of the STFT belonging to the TF region associated with each mode, but when some modes exhibit interference in the TF plane, these regions overlap, leading to mode-mixing.

Remarking that these interference have a smaller impact at TF locations corresponding to high STFT modulus, we propose to design a new mode retrieval technique from the estimation of the STFT using only information extracted in the vicinity of the ridges associated with the modes. We will show, on different types of simulated signals, that the proposed approach considerably reduces mode-mixing compared with the above mentioned state-of-the-art TF based methods. At this point, it is important to note that there exist a series of other techniques that intend to retrieve the modes without considering TFRs, like the chirplet transform [START_REF] Mann | The chirplet transform: Physical considerations[END_REF] or ridgelet transform [START_REF] Candes | Ridglets: the key to high-dimensional intermittency[END_REF] which fundamentally differ from the above mentioned techniques in that they are parametric and non local, therefore we will stick to TF-based methods in terms of comparisons.

After having recalled basic notations and definitions in Section II, we introduce our new approach for mode retrieval in Section III, then recall briefly alternative techniques based either on hard-thresholding and variants [START_REF] Donoho | Ideal spatial adaptation via wavelet shrinkage[END_REF] [9], or second order synchrosqueezing transform [START_REF] Oberlin | Second-order synchrosqueezing transform or invertible reassignment? Towards ideal time-frequency representations[END_REF] in Section IV. These are finally compared to our new approach in Section V.

II. DEFINITIONS AND NOTATIONS

The short-time Fourier transform (STFT) is defined for f ∈ L 1 (R), g ∈ L ∞ (R) as [START_REF] Cohen | Time-frequency Analysis: Theory and Applications[END_REF]:

V g f (t, η) = R f (τ )g(τ -t)e -2iπη(τ -t) dτ. (1) 
Assuming g is real such that g(0) = 0, then the signal f can be retrieved through:

f (t) = 1 g(0) R V g f (t, η)dη. (2) 
Assuming f and g ∈ L 2 (R) such that g 2 = 1, one has the alternative reconstruction formula:

f (t) = R 2 V g f (u, η)g(t -u)e i2πη(t-u) dudη. (3) 
In this paper we will make extensive use of MCSs corresponding to the superimposition of P modes defined as:

f (t) = P p=1 f p (t), (4) 
with f p (t) = A p (t)e 2iπφp(t) , in which the instantaneous amplitude (IA) A p (t) > 0 varies slowly and the instantaneous frequency (IF) φ p (t) > 0 for all p, and such that φ p+1 (t) -φ p (t) > 0. We further assume the modes are separated in frequency with resolution ∆:

∀1 ≤ p ≤ P -1, φ p+1 (t) -φ p (t) > 2∆. (5) 
In the TF plane, the different modes are associated with so-called ridges, which we denote (ϕ p ) p=1,••• ,P , that are estimates of the IFs (φ p ) p=1,••• ,P of the modes. Since, ridge extraction is not the scope of the present paper, we will not focus on this issue and refer the reader to the vast literature on the subject [START_REF] Meignen | Retrieval of the modes of multicomponent signals from downsampled short-time fourier transform[END_REF], [START_REF] Carmona | Multiridge detection and time-frequency reconstruction[END_REF]- [START_REF] Daubechies | Synchrosqueezed wavelet transforms: an empirical mode decomposition-like tool[END_REF], and adopt, in the present paper, the approach of [START_REF] Meignen | Retrieval of the modes of multicomponent signals from downsampled short-time fourier transform[END_REF] .

III. MODE RETRIEVAL USING STFT ESTIMATION BASED ON LINEAR CHIRP APPROXIMATION

Our goal is now to introduce a novel technique to retrieve the modes of a MCS using a local approximation of its STFT assuming a mode locally behaves like a linear chirp. This is done in Section III-A. Section III-B then focuses on the practical implementation of the proposed technique.

A. Principles of the Novel Mode Retrieval Technique

Let us assume that g in ( 1) is the Gaussian window g(t) = e -π t 2 σ 2 , the parameter σ being chosen so as to minimize the Rényi entropy associated with the STFT modulus, as is done in [START_REF] Meignen | Retrieval of the modes of multicomponent signals from downsampled short-time fourier transform[END_REF], [START_REF] Meignen | On demodulation, ridge detection, and synchrosqueezing for multicomponent signals[END_REF]. Then, as shown for instance in [START_REF] Behera | Theoretical analysis of the second-order synchrosqueezing transform[END_REF], the STFT of the linear chirp f (t) = Ae 2iπ(at+b t 2 2 ) can be expressed as:

V g f (t, η) = Ar -1 2 e -i θ 2 e -πσ 2 (1+ibσ 2 ) 1+(bσ 2 ) 2 (η-a-bt) 2 = V g f (t, a + bt)e -πσ 2 (1+ibσ 2 ) 1+(bσ 2 ) 2 (η-a-bt) 2 = V g f (t, φ (t))e -πσ 2 (1+iφ (t)σ 2 ) 1+(φ (t)σ 2 ) 2 (η-φ (t)) 2 , (6) 
with r = 1 σ 4 + φ (t) 2 and θ = tan -1 (-φ (t)σ 2 ). If the monocomponent signal f departs from a linear chirp, the above equalities become approximations, which are furthermore only valid for η in the vicinity of φ (t). Applying this approximation to f p , we obtain for η in the vicinity of φ p (t):

V g fp (t, η) ≈ V g fp (t, φ p (t))e -πσ 2 (1+iφ p (t)σ 2 ) 1+(φ p (t)σ 2 ) 2 (η-φ p (t)) 2 ≈ V g f (t, φ p (t))e -πσ 2 (1+iφ p (t)σ 2 ) 1+(φ p (t)σ 2 ) 2 (η-φ p (t)) 2 . ( 7 
)
In the last equation we have replaced V g fp (t, φ p (t)) by V g f (t, φ p (t)), remarking that at TF location (t, φ p (t)), the STFT of the mode f q , q = p is close to 0.

In practice, the IF φ p (t) and the chirp rate (CR) φ p (t) are to be estimated. For that purpose, we use the estimates involved in the definition of the second order synchrosqueezing transform (SST2) [START_REF] Behera | Theoretical analysis of the second-order synchrosqueezing transform[END_REF]. For CR estimation, the following complex modulation operator was introduced:

qf (t, η) = 1 2iπ V g f (t, η)V g f (t, η) -V g f (t, η) 2 V tg f (t, η)V g f (t, η) -V tg f (t, η)V g f (t, η) , (8) 
which is such that q f (t, η) = {q f (t, η)} = φ (t) when f is a linear chirp. In the context of a MCS, t) where η is close to φ p (t), therefore we consider q f (t, ϕ p (t)) to estimate φ p (t), bearing in mind that (t, ϕ p (t)) corresponds to the ridge associated with f p and thus ϕ p is an estimate of its IF.

q f (t, η) ≈ φ p (
Then, introducing ωf (t, η) = η -1 2iπ V g f (t,η) V g f (t,η) and τ (t, η) = - V tg f (t,η) V g f (t,η) , ω [2] f (t, η) = {ω f (t, η) -qf (t, η)τ (t, η)} , (9) 
was defined and equals φ (t) when f is a linear chirp [START_REF] Oberlin | Second-order synchrosqueezing transform or invertible reassignment? Towards ideal time-frequency representations[END_REF]. In the context of a MCS, ω

f (t, η) ≈ φ p (t) when η is close to φ p (t), therefore we consider ω [START_REF] Malik | Dynamic electrocardiography[END_REF] f (t, ϕ p (t)) to estimate φ p (t). Then, from [START_REF] Donoho | Ideal spatial adaptation via wavelet shrinkage[END_REF] the STFT of f p can be approximated by :

V g fp (t, η) ≈ V g f t, ω [2] f (t, ϕ p (t)) e - πσ 2 (1+i q f (t,ϕp (t))σ 2 ) 1+( q f (t,ϕp (t))σ 2 ) 2 (η-ω [2] f (t,ϕp(t))) 2 . (10) 
Finally, the reconstruction of mode f p is carried out either through (2) or (3) replacing V g f by the approximation of V g fp given by [START_REF] Thakur | Synchrosqueezing-based recovery of instantaneous frequency from nonuniform samples[END_REF]. In noisy cases, the signal f is replaced by f := f + ε, where ε is some noise, and the approximation of V g fp is obtained by replacing f by f in [START_REF] Thakur | Synchrosqueezing-based recovery of instantaneous frequency from nonuniform samples[END_REF], the reconstruction procedures being then the same as in the noise-free case.

It is important to remark here that the approximation of V g fp uses only STFTs of f evaluated in the vicinity of the ridge associated with f p , which will prove to be the very reason why the just described approach for mode retrieval is well adapted to handle the mode-mixing issue. However, up to now, we have only presented the approach for continuous time signals, and it needs to be adapted to discrete time signals to be of practical use, as explained hereafter.

B. Practical Implementation

To implement the just described mode retrieval technique, one considers that the signal f is a discrete and q f can be computed and are denoted by ω [START_REF] Malik | Dynamic electrocardiography[END_REF] f [m, k] and q f [m, k] in the sequel, enabling us to define

sequence of length L such that f [n] = f ( n L ), for n = 0, • • • , L -1,
V g f [m, k] = n∈Z f [n]g[n -m]e -2iπ k(n-m) N = n=M n=-M f [m + n]g[n]e -2iπ kn N , (11) 
ψ p [m] := ω [2] f [m, ϕ p [m]] and ψ p [m] := q f [m, ϕ p [m]] approximating φ p ( m L
) and φ p ( m L ) respectively. Remarking, using rectangular integration, that

V g f ( m L , k L N ) ≈ V g f [m,k] L
, and using (7), we may write:

V g fp [m, k] ≈ LV g fp ( m L , k L N ) ≈ LV g f m L , φ p ( m L ) e - πσ 2 (1+iφ p ( m L )σ 2 ) 1+(φ p ( m L )σ 2 ) 2 ( kL N -φ p ( m L )) 2 ≈ LV g f m L , ψ p [m] e - πσ 2 (1+iψ p [m]σ 2 ) 1+(ψ p [m]σ 2 ) 2 ( kL N -ψ p [m])) 2 , (12) 
for which an approximation of V g f m L , ψ p [m] from values of the discrete STFT is needed. For that purpose, let us consider k 0 := ψ p [m] N L , where x denotes the closest integer to x, we may write using (10):

V g f m L , ψ p [m] ≈ V g fp m L , ψ p [m] ≈ V g f ( m L , k 0 L N )e πσ 2 (1+iψ p [m]σ 2 ) 1+(ψ p [m]σ 2 ) 2 (k0 L N -ψ p [m]) 2 ≈ 1 L V g f [m, k 0 ]e πσ 2 (1+iψ p [m]σ 2 ) 1+(ψ p [m]σ 2 ) 2 (k0 L N -ψ p [m]) 2 . ( 13 
)
From ( 12) and ( 13) we get that:

V g fp [m, k] ≈V g f [m, k 0 ]e πσ 2 (1+iψ p [m]σ 2 ) 1+(ψ p [m]σ 2 ) 2 [( k 0 L N -ψ p [m]) 2 -( kL N -ψ p [m]) 2 ] ≈V g f [m, k 0 ]e πσ 2 (1+iψ p [m]σ 2 ) 1+(ψ p [m]σ 2 ) 2 [ L(k 0 -k) N ( L(k 0 +k) N -2ψ p [m])] . (14) 
If we denote Ṽg fp the estimation of V g fp given by ( 14), the retrieval of f p can be carried out either through:

f p [m] ≈ 1 g(0)N N -1 k=0 Ṽg fp [m, k], (15) 
or through, assuming f is L-periodic:

f p [m] ≈ m+M q=m-M N -1 k=0 Ṽg fp [q mod L, k]g[m -q] e i2π k(m-q) N N q=m+M q=m-M g[m -q] 2 . ( 16 
)
In a noisy context, all the above expressions can be used replacing f by its noisy version f . These new techniques to retrieve the different modes are called Linear Chirp based Retrieval (LCR).

IV. ALTERNATIVE TECHNIQUES FOR MODE RERIEVAL: HT, SSR-HT [START_REF] Pham | A novel thresholding technique for the denoising of multicomponent signals[END_REF], AND SYNHROSQUEEZING TRANSFORMS [START_REF] Oberlin | Second-order synchrosqueezing transform or invertible reassignment? Towards ideal time-frequency representations[END_REF] The Hard Thresholding (HT) technique when used for the retrieval of the mode f p of a MCS [START_REF] Meignen | Retrieval of the modes of multicomponent signals from downsampled short-time fourier transform[END_REF] consists of considering in the reconstruction process only the coefficients of V g f in the vicinity of φp , the ridge associated with fp the noisy version of f p . For that purpose, one defines for each time indexed by m, an interval

J p [m] = η - p [m], η + p [m] such that: η - p [m] := argmax k kL N < φp [m], |V g f [m, k]| < 3σ g 2 η + p [m] := argmin k kL N > φp [m], |V g f [m, k]| < 3σ g 2 , (17) 
which depends on an estimate of γ := σ g 2 , for which a median absolute deviation approach [START_REF] Sachs | Applied Statistics: A Handbook of Techniques[END_REF] is used:

γ := median | V g f [m, k] m,k | 0.6745 . ( 18 
)
The reconstruction of the modes is carried out using only, in [START_REF] Carmona | Multiridge detection and time-frequency reconstruction[END_REF] or ( 16), the frequency indices in

J p [m]
for each m.

For the sake of comparison, we also briefly recall the principles of a denoising technique called Shifted-Symmetrized-Regularized Hard-Thresholding (SSR-HT), and introduced in [START_REF] Pham | A novel thresholding technique for the denoising of multicomponent signals[END_REF], which consists of an improvement of HT technique based on a linear chirp approximation for the mode, that uses symmetry properties of the STFT with respect to the location of the local maxima of its modulus and also the hypothesis that the STFT is regular.

We would like to compare also LCR to the second-order synchrosqueezing transform (SST2) with accuracy α which was defined in [START_REF] Oberlin | Second-order synchrosqueezing transform or invertible reassignment? Towards ideal time-frequency representations[END_REF], in the continuous time context, as:

T V g f (t, ω) = |V g f (t,η)|≥α V g f (t, η)δ ω -ω [2] f (t, η) dη, (19) 
in which ω [START_REF] Malik | Dynamic electrocardiography[END_REF] f (t, η) = {ω [START_REF] Malik | Dynamic electrocardiography[END_REF] f (t, η)}, and δ the Dirac distribution. The reconstruction of mode p being then achieved through:

f p (t) ≈ 1 g(0) |ω-ϕp(t)|≤d T V g f (t, ω) dω, (20) 
where d is a parameter to account for errors in evaluating the IF of f p with the ridge ϕ p . Note that in SST2, the ridges are computed on the modulus of the synchrosqueezed transform T V g f and not on the modulus of STFT. Of course we will compare LCR with a discrete time version of SST2, which we do not detail here due to format constraints (see [START_REF] Oberlin | Second-order synchrosqueezing transform or invertible reassignment? Towards ideal time-frequency representations[END_REF] for details).

V. RESULTS

The objectives of the simulations we carry out are two-fold. The first one is to compare LCR with other types of mode retrieval techniques based on TFR recalled above, namely HT, SSR-HT and SST2, on monocomponent signals. The second one is to investigate the ability offered by the different methods to accurately separate two close modes in a MCS (the code to reproduce the figures is available at https://github.com/Nils-Laurent/LCR). 

A. Comparison of Mode Retrieval Techniques on a Monocomponent Signal

Before we start the comparison of the different mode retrieval techniques, we numerically checked that the quality of IF estimate ω [START_REF] Malik | Dynamic electrocardiography[END_REF] f does not depend on the chirp rate for a linear chirp, whatever the noise level, and that this IF estimate is always more relevant than ω f := {ω f } used in the original synchrosqueezing transform [START_REF] Thakur | Synchrosqueezing-based recovery of instantaneous frequency from nonuniform samples[END_REF]. Then, we investigate the behavior of the different mode retrieval techniques for the modes depicted in Fig. 1. For that purpose, we compute the output SNR, i.e. SN R(f, f rec ) = 20 log 10 ( f / f rec -f ), with respect to input SNR, i.e. SN R(f, f ) and where f rec corresponds to signal reconstruction with either [START_REF] Carmona | Multiridge detection and time-frequency reconstruction[END_REF] or [START_REF] Colominas | Time-frequency filtering based on model fitting in the time-frequency plane[END_REF]. In Fig. 2, the results corresponding to the first (resp. second) reconstruction technique are denoted by M 1 (resp. M 2 ). We notice that LCR behaves better than HT, SSR-HT and SST2 in each case, whatever the noise level. We also note that LCR is only slightly sensitive to the technique used for mode reconstruction (M 2 seems a little bit better than M 1 , but the latter is much faster than the former). On the contrary, SSR-HT behaves worse when the modulation decreases, since the quality of reconstruction is hampered by frequency resolution when M 2 is used. Finally, comparing the results of Fig. 2 (b) and (c), we notice that LCR is performant for a wide range of frequency modulation for the mode.

B. Mode Mixing Issue

To tackle the mode mixing issue, we consider the two mode signal whose STFT is depicted in Fig. 3 (a), for which mode separation is challenging. In particular, we notice that at a low noise level and when using HT or SSR-HT, the threshold used for the determination of intervals J p is lower, at many time instants, than the minimum value of the modulus of STFT between the two ridges associated with the modes. This results in mode mixing with these two techniques. In Fig. the modes are either used in the reconstruction of f 1 or f 2 while these coefficients contain information on both f 1 f 2 . is reason why when the noise level decreases the quality of reconstruction reaches a plateau with SST2. Note that, to change the value for d would lead to the same conclusion. On the contrary, the separation of the two modes with LCR remains satisfactory whatever the noise level.

It is worth mentioning here that the reconstruction formula used with HT, SSR-HT, and LCR is [START_REF] Carmona | Multiridge detection and time-frequency reconstruction[END_REF] because it is the closest to the one used in SST2. To use [START_REF] Colominas | Time-frequency filtering based on model fitting in the time-frequency plane[END_REF] instead would not change the conclusions.

VI. CONCLUSION

In this paper, we have introduced a new technique for the reconstruction of the modes of multicomponent signals based on linear chirp approximation. We have shown that the proposed technique behaves better than commonly used hard-thresholding techniques or second order synchrosqueezing transform on a single mode signal and that it is much more performant than these techniques for separating two close modes. Future work should involve the extension of such a technique to the analysis of crossing modes or modes with highly oscillating phase, using higher order instantaneous frequency estimators. In another direction, we will investigate how to improve even more the robustness of the CR estimate used in the method when, in the signal, both the frequency modulation and the noise level are high.

  with k ∈ {0, • • • , N -1}, and m ∈ {0, • • • , L -1}, which can be computed for each m through a discrete Fourier transform of length N . Note that the index k corresponds to a frequency in I L = {0, L N • • • , (N -1) L N }, and the index n to time n L . In that context, the discrete mode (f p [m]) m is associated with a ridge (ϕ p [m]) m corresponding to frequency indices in {0, • • • , N -1}. Discrete versions of ω [2] f

Fig. 1 :

 1 Fig. 1: (a): STFT of (t) = e 2iπ(250t+568 t 2 2 ) ; (b): STFT of f (t) = e 2iπ(1200t+60 cos(3πt)) ; (c): STFT of f (t) = e 2iπ(2000t+238 cos(2πt)) .

Fig. 2 :

 2 Fig. 2: (a): Signal reconstruction results for the signal of Fig. 1 (a) using HT, SSR-HT, SST2 (with d = 5) and LCR. the mode is reconstructed using either (15) or (16) ; (b): Same as (a) but for the signal depicted in Fig. 1 (b); (c): Same as (a) but for the signal depicted in Fig. 1 (c).

Fig. 3 :

 3 Fig. 3: (a): STFT of signal made of two close chirps; (b): Reconstruction results using (15) for each of the two modes depicted in (a)

  ≤ N , where N is the number of frequency bins. In that context, the discrete STFT of f is defined by[START_REF] Quatieri | Discrete-time speech signal processing: principles and practice[END_REF] 

and that (g

[n]

) n∈Z are the samples at n L of the Gaussian window, which is further truncated to be supported on {-M, • • • , M } such that 2M + 1
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