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Several challenges arise when trading renewable production on short-term
electricity markets:

@ Decisions are affected by multiple sources of uncertainty (renewable
production, market prices).

@ Need to develop and deploy multiple analytics tools, which leads to a
complex model chain.

@ Impact of data on decision becomes unclear.

This motivates an alternative paradigm of tackling decision uncertainty,
from a prescriptive analytics point of view.
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@ Develop an alternative paradigm based on prescriptive methods,
which simplifies the model chain.

@ Develop a framework to evaluate impact of data on decisions and
relative optimization performance.

Data for renewable production and market

Forecast renewable production at all
horizons in scope
(e.g. day-ahead, intraday)

Data-driven tool
Forecast market quantities for all
markets in scope * Approximate decisions based on similar
(e.g. day-ahead and imbalance price for instances of the past.
energy market) *  Uncertainty in renewable production and
market quantities is implicitly considered.

Optimization Problem
(e.g. risk-aversion, temporal constraints,
technical limits)

Optimized on markets
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Renewable producer offering energy in a day-ahead (DA) market, subject
to imbalance costs (dual-price balancing market).

Objective: Maximize revenue p, or equivalently minimize imbalance costs:

p=mDAEW [—AT(EW — ES)T + AHEV — ESYH,

Imbalance Cost

where E€ the contracted energy (decision variable), E" the stochastic
production, AT+ > 0 the marginal cost for upward /downward

regulation [PCKO7]. Standard newsvendor problem with analytical solution
(optimal quantile).
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Given a set of N sampled scenarios of uncertain production EYW, the
stochastic optimization problem is formulated as:

ce 1 N STt el
minimize — ) (=X E/ +XE}")
E°.E E} ’V;
subject to EC+ET+E¢ EV, i=1,...,N,
El,—E' <0, i=1,...,N,
0< ES<1,

where XTN the in-sample average of regulation costs and E,-T, Ef the

amount of energy shortage/ surplus at each /.
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Consider a conditional stochastic optimization problem with uncertainty Y
(e.g. renewable production) and feature data X (e.g. weather conditions):

minEq[c(z; V)X = x] = minEy.q:[c(z: Y]],

with z € R? the decision variables, Z a convex set, c(-) a cost function,
and Qx the true conditional marginal distribution of Y. Our goal is to
approximate the problem using D" = {(y1,x1), -, (yn, Xn)}-
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Sample Average Approximation (SAA)

Given training data on uncertainty y, the decision is approximated as

Good theoretical properties, but ignores information encoded in x
(" climatology decision™).

N

Forecast-Optimize (FO): Deterministic Forecasts

Estimate conditional expectation y, solve deterministic optimization

2BY — argminc(z; 7).

zeZ

Ignores uncertainty in predictions.

v
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FO: Probabilistic Forecasts

Infer conditional distribution of Y, solve stochastic optimization

~FO .
27 =argminE 5 [c(z;y)]
eminE, g [¢(ziy)]

Requires modeling all variables and their dependencies.

.

Predictions to Prescriptions (PP)
Apply a weighted SAA of the original problem [BK20]

2(x) = argmln Zw,\/, c(z; yi),
ieN

with wy j(x) derived from local learning algorithms, e.g. Nearest
Neighbors, Decision Trees. Considers uncertainty in decisions,
asymptotically optimal decisions.
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Applying the weighted SAA on the stochastic problem:
N
minimize Z <J.1/\/7,-(x)(—XTE,.T + XiE,-i)
ESEl Ef =
subject to EC%—ET—i-Ei EV, i=1,...,N,

El,—Ef<0, i=1,...,N,
0<E°<1,

where N is the number of historical observations in the training set.
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Non-parametric local learning algorithms to estimate wy ;j(x):
o k Nearest Neighbors (kNN): +1[x; € kNN], for k neighbors.

o Kernel Regression (KR): W( %=l li=x)) where W/(") kernel
function and h(t) the kernel bandwidth. Here we consider tri-cube

kernel and adaptive bandwidth.

o Random Forest (RF): & Z ZH[)E’[G'ZR[,] where B the number of trees

in the ensemble and R a tree Ieaf
Workflow:
@ Train local learning algorithms for prediction.
e For new query x, retrieve wy ;j(x) and solve the weighted SAA.
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Prescriptiveness: Impact on efficacy of decisions (forecast value).
Permutation Feature Importance: Adapt the permutation
importance [Bre01] to measure prescriptiveness.
e Estimate prescriptions, find out-of-sample expected cost (base score).
o lterate through features, permutate each one, and derive new
prescriptions. Repeat process K times.
@ Permutation importance measured as the expected cost increase.

Coefficient of Prescriptiveness P: Unitless metric of relative
optimization performance [BK20]. For a method i compare the revenue p;
against the perfect foresight solution p* and the SAA solution psaa:

po_1__Pi=p

Psaa — p*
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The following approaches are compared:

o Forecast-Optimize with Random Forest (FO-RF): Probabilistic energy
forecasting coupled with stochastic optimization (equivalent to
quantile regression). Quantile Regression Forests as forecasting
model.

e Predictive Prescriptions with {kNN, KR, RF} (PP-{kNN, KR, RF}):
Comparison of prescriptions derived from the different local learning
algorithms.

For the coefficient of prescriptiveness P we also estimate the SAA and
Perfect Foresight solution.
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An aggregation of renewable plants participating in a DA market with a
dual-price balancing price mechanism as price-taker.

@ 49MW capacity, 3 Wind power plants (WP) + 1 PV power plant
(SP) (16% PV share).

e Training period: from 01/2019 to 01/2020 (approximately N = 17000
observations). Testing period: from 01/2020 to 05/2020.

@ Feature data includes weather forecasts for the WP and SP locations.

@ Market Data from French electricity market.
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Predictive accuracy of the local learning algorithms (kNN, KR, RF) on
forecasting renewable production. Models are tuned with cross validation.
The RF algorithm shows the best overall performance.

Model [ MAE (MW) | RMSE (MW) |

kNN 5.09 6.70
KR 6.24 7.81
RF 4.02 5.52
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Predictive prescriptions with RF weights achieve similar trading
performance as the standard FO approach. Also, while kNN outperforms
KR for prediction, it shows worse prescriptive performance.

Model Aggregated Cost | Expected Cost | Coefficient
(EUR) (EUR/MWh) P
PP-kNN 187219 1.32 0.04
PP-KR 108270 0.76 0.45
PP-RF 60969 0.43 0.69
FO-RF 61067 0.43 0.69
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Testing the effect of sample size. Convergence for N = 5000.
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Feature importance for prescription (left) and prediction (right). Wind
Speed forecast at the WP site has the greatest impact on decisions with
approximately 0.90 EUR/MWh increase in cost (> 200% increase).
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@ This work examined a prescriptive analytics approach for short-term
trading of wind production. We tested different local learning
algorithms and examined the impact of data on the efficacy of
decisions.

@ The prescriptive approach with Random Forest weights led to similar
results with the full stochastic solution, without the need to explicitly
model distributional uncertainty.

@ Future work will examine the joint impact of production and price
uncertainty.

This research was carried in the frame of the European X
project Smart4RES (Grant No. 864337) supported by the s
Horizon 2020 Framework Program. Smorf» I_‘\)ES
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