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Challenge and Motivation

Several challenges arise when trading renewable production on short-term
electricity markets:

Decisions are affected by multiple sources of uncertainty (renewable
production, market prices).

Need to develop and deploy multiple analytics tools, which leads to a
complex model chain.

Impact of data on decision becomes unclear.

This motivates an alternative paradigm of tackling decision uncertainty,
from a prescriptive analytics point of view.
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Objectives

1 Develop an alternative paradigm based on prescriptive methods,
which simplifies the model chain.

2 Develop a framework to evaluate impact of data on decisions and
relative optimization performance.

A. Stratigakos (MINES ParisTech) May 25, 2021 4 / 21



Trading Wind Production

Renewable producer offering energy in a day-ahead (DA) market, subject
to imbalance costs (dual-price balancing market).
Objective: Maximize revenue ρ, or equivalently minimize imbalance costs:

ρ = πDAEW −
[
−λ↑(EW − E c)− + λ↓(EW − E c)+

]
︸ ︷︷ ︸

Imbalance Cost

,

where E c the contracted energy (decision variable), EW the stochastic
production, λ↑/↓ ≥ 0 the marginal cost for upward/downward
regulation [PCK07]. Standard newsvendor problem with analytical solution
(optimal quantile).
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Trading Wind Production

Given a set of N sampled scenarios of uncertain production EW , the
stochastic optimization problem is formulated as:

minimize
E c ,E ↑i ,E

↓
i

1

N

N∑
i=1

(−λ↑E ↑i + λ
↓
E ↓i )

subject to E c + E ↑i + E ↓i = EW
i , i = 1, . . . ,N,

E ↑i ,−E
↓
i ≤ 0, i = 1, . . . ,N,

0 ≤ E c ≤ 1,

where λ
↑/↓

the in-sample average of regulation costs and E ↑i ,E
↓
i the

amount of energy shortage/ surplus at each i .
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Prescriptive Analytics Problem

Consider a conditional stochastic optimization problem with uncertainty Y
(e.g. renewable production) and feature data X (e.g. weather conditions):

min
z∈Z

EQ[c(z ;Y )|X = x ] = min
z∈Z

EY∼Qx̄ [c(z ;Y )],

with z ∈ Rd the decision variables, Z a convex set, c(·) a cost function,
and Qx̄ the true conditional marginal distribution of Y . Our goal is to
approximate the problem using Dtrain = {(y1, x1), · · · , (yN , xN)}.
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Approaches

Sample Average Approximation (SAA)

Given training data on uncertainty y , the decision is approximated as

zSAA = argmin
z∈Z

∑
i∈N

1

N
c(z ; yi ). (1)

Good theoretical properties, but ignores information encoded in x
(”climatology decision”).

Forecast-Optimize (FO): Deterministic Forecasts

Estimate conditional expectation ŷ , solve deterministic optimization

ẑEV = argmin
z∈Z

c(z ; ŷ).

Ignores uncertainty in predictions.
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Approaches

FO: Probabilistic Forecasts

Infer conditional distribution of Y , solve stochastic optimization

ẑFO = argmin
z∈Z

E
y∼Q̂x̄

[c(z ; y)].

Requires modeling all variables and their dependencies.

Predictions to Prescriptions (PP)

Apply a weighted SAA of the original problem [BK20]

ẑ(x) = argmin
z∈Z

∑
i∈N

ωN,i (x)c(z ; yi ),

with ωN,i (x) derived from local learning algorithms, e.g. Nearest
Neighbors, Decision Trees. Considers uncertainty in decisions,
asymptotically optimal decisions.
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Revisiting the trading problem

Applying the weighted SAA on the stochastic problem:

minimize
E c ,E ↑i ,E

↓
i

N∑
i=1

ωN,i (x)(−λ↑E ↑i + λ
↓
E ↓i )

subject to E c + E ↑i + E ↓i = EW
i , i = 1, . . . ,N,

E ↑i ,−E
↓
i ≤ 0, i = 1, . . . ,N,

0 ≤ E c ≤ 1,

where N is the number of historical observations in the training set.
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Local Weights

Non-parametric local learning algorithms to estimate ωN,i (x):

k Nearest Neighbors (kNN): 1
k I[xi ∈ kNN], for k neighbors.

Kernel Regression (KR): W ( (xi−xt)T (xi−xt)
h(t) ), where W (·) kernel

function and h(t) the kernel bandwidth. Here we consider tri-cube
kernel and adaptive bandwidth.

Random Forest (RF): 1
B

∑
b∈B

I[xi∈Rb
l ]∑

j∈N
I[xj∈Rb

l ]
, where B the number of trees

in the ensemble and R a tree leaf.

Workflow:

Train local learning algorithms for prediction.

For new query x , retrieve ωN,i (x) and solve the weighted SAA.
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Measuring the Prescriptiveness

Prescriptiveness: Impact on efficacy of decisions (forecast value).
Permutation Feature Importance: Adapt the permutation
importance [Bre01] to measure prescriptiveness.

Estimate prescriptions, find out-of-sample expected cost (base score).

Iterate through features, permutate each one, and derive new
prescriptions. Repeat process K times.

Permutation importance measured as the expected cost increase.

Coefficient of Prescriptiveness P: Unitless metric of relative
optimization performance [BK20]. For a method i compare the revenue ρ̂i
against the perfect foresight solution ρ∗ and the SAA solution ρ̂SAA:

Pi = 1− ρ̂i − ρ∗

ρ̂SAA − ρ∗
.
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Experimental Design

The following approaches are compared:

Forecast-Optimize with Random Forest (FO-RF): Probabilistic energy
forecasting coupled with stochastic optimization (equivalent to
quantile regression). Quantile Regression Forests as forecasting
model.

Predictive Prescriptions with {kNN, KR, RF} (PP-{kNN, KR, RF}):
Comparison of prescriptions derived from the different local learning
algorithms.

For the coefficient of prescriptiveness P we also estimate the SAA and
Perfect Foresight solution.
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Experimental Design

An aggregation of renewable plants participating in a DA market with a
dual-price balancing price mechanism as price-taker.

49MW capacity, 3 Wind power plants (WP) + 1 PV power plant
(SP) (16% PV share).

Training period: from 01/2019 to 01/2020 (approximately N = 17000
observations). Testing period: from 01/2020 to 05/2020.

Feature data includes weather forecasts for the WP and SP locations.

Market Data from French electricity market.
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Results: Predictive Accuracy

Predictive accuracy of the local learning algorithms (kNN, KR, RF) on
forecasting renewable production. Models are tuned with cross validation.
The RF algorithm shows the best overall performance.

Model MAE (MW) RMSE (MW)

kNN 5.09 6.70

KR 6.24 7.81

RF 4.02 5.52
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Results: Trading Results

Example of derived offers for a single day.
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Results: Trading Results

Predictive prescriptions with RF weights achieve similar trading
performance as the standard FO approach. Also, while kNN outperforms
KR for prediction, it shows worse prescriptive performance.

Model
Aggregated Cost

(EUR)
Expected Cost
(EUR/MWh)

Coefficient
P

PP-kNN 187 219 1.32 0.04

PP-KR 108 270 0.76 0.45

PP-RF 60 969 0.43 0.69

FO-RF 61 067 0.43 0.69
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Results: Sensitivity to Sample Size

Testing the effect of sample size. Convergence for N = 5000.
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Feature importance

Feature importance for prescription (left) and prediction (right). Wind
Speed forecast at the WP site has the greatest impact on decisions with
approximately 0.90 EUR/MWh increase in cost (> 200% increase).
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Conclusions

This work examined a prescriptive analytics approach for short-term
trading of wind production. We tested different local learning
algorithms and examined the impact of data on the efficacy of
decisions.

The prescriptive approach with Random Forest weights led to similar
results with the full stochastic solution, without the need to explicitly
model distributional uncertainty.

Future work will examine the joint impact of production and price
uncertainty.

This research was carried in the frame of the European
project Smart4RES (Grant No. 864337) supported by the
Horizon 2020 Framework Program.
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