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Abstract: The term LOHC stands for Liquid Organic Hydrogen Carriers. The term has been so well
accepted by the scientific community that the studies published before the existence of this name
are not very visible. In this mini-review, we have tried to rehabilitate various studies that deserve
to be put back in the spotlight in the present context. Studies indeed began in the early 1980s and
many publications have compared the use of various organic carriers, various catalysts and reactors.
Recent reviews also include the economic aspects of this concept.
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1. Introduction

The term LOHC (Liquid Organic hydrogen carriers) appeared less than 10 years
ago [1], with only 135 references up to now, 2/3 of them in the three last years (source:
webofknowledge). However, studies dedicated to the storage of hydrogen in organic
molecules have been published for more than 40 years. Simultaneous studies in the 1980s
appeared in Canada (Quebec) [2], in Switzerland [3] and in Italy [4] and the term “Liquid
organic hydride” was often used. Since the adoption of the term LOHC, these pioneering
studies are much less cited just because they are not referenced under this term, but some
of them really deserve being considered. The objective of this article is not to make an nth
review of the work conducted in recent years on LOHC systems but to retrace the history
that led to the development of this system and to give another point of view on the storage
of hydrogen in organic liquids.

Hydrogen storage in liquid organic compounds is illustrated in Figure 1. When
hydrogen is produced and not used immediately, it has to be stored and potentially trans-
ported. To gain in safety and ease of transportation, hydrogen can be used to hydrogenate a
hydrogen-lean molecule, producing a hydrogen-rich molecule wherein hydrogen is safely
stored. Later and in another place, hydrogen can be released by a dehydrogenation re-
action. Both hydrogenation and dehydrogenation reactions are catalyzed; the former is
exothermic and the latter is endothermic. Whereas catalytic hydrogenations are common,
dehydrogenation, and especially when carried out on-board of a vehicle, requires in-depth
studies of the appropriate catalyst, reaction conditions and reactor.
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Figure 1. General picture illustrating the hydrogen storage in liquid organic molecules.

2. 40 Years History

The idea of storing hydrogen in organic liquid molecules first appeared in a technical
report from Exxon studies [5]. Note that previous studies about dehydrogenation reactions
exist (e.g., [6]), but the formation of hydrogen was not the objective. Several studies were
then conducted quasisimultaneously in three main research groups: one in Italy, one in
Switzerland and one in Quebec, Canada. The latter group filled a Canadian patent in 1981
and studied the dehydrogenation of cyclohexane [2,7]. Studies continued until the mid
1990s, with some collaborative contribution from Institut Français du Pétrole concerning
the catalyst deactivation studies [8–10].

In Switzerland, at the Paul Scherrer Institut, the use of a liquid organic carrier of
hydrogen as a fuel for automobiles was proposed in 1981 [3]. The so-called MTH system
(Methylcyclohexane—Toluene—Hydrogen) was used. The team studied the complete
economic and technical feasibility of using H2 combustion engines and proposed prototype
trucks [11–13]. One of the main difficulties encountered was due to the catalyst stability.
The last publications of the group in the late 1990s, also with ETH-Zurich, concerned the
use of a coated reactor to improve heat-transfer and the development of a predictive model
to take into account the catalyst deactivation [14,15]. A technicoeconomic study was also
published [16].

Extensive studies were also conducted in Italy with the objective of hydrogen storage
and long-distance transportation [4,17–19]. Kinetic studies, as well as studies to understand
the deactivation of the catalyst were performed [20–22]. The studies also concerned the
benzene/cyclohexane and the toluene/methylcyclohexane couples.

At the beginning of year 2000, several groups published some contributions on the
topic of hydrogen storage in organic liquids. Air Products proposed to extend the use of
organic hydrogen carriers to heterocycles, including in particular N-ethylcarbazole [23,24].
Briefly, the main advantage was the possibility to dehydrogenate the molecule at a lower
temperature due to a lower reaction enthalpy. The system was then studied by many
researchers. A recent publication cites the history of the catalysts used for N-heterocycles
(among which N-ethylcarbazole prevails) [25]. However, studies not using the keyword
LOHC are not cited (e.g., [26])

In the 2010s, the term LOHC appeared, together with the use of the pair dibenzyl-
toluene/perhydrodibenzyltoluene [1]. The studies concerning this family of compounds
extended to other benzyltoluene compounds and are made easily accessible thanks to the
use of the keyword LOHC, having become very popular and inescapable. Thus, on the
other hand, older studies, and also those that do not use this keyword are totally invisible
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and seem to be erased from the history. It is the purpose of this paper to gather both groups
of publications (those with and those without the LOHC keyword).

3. Literature Overview

Excellent recent reviews detail the contributions from several groups to the knowledge
of hydrogen storage in LOHC, sorted by the chosen hydrogen carrier (e.g., [27,28]). The
reader is advised to consult these papers to have an overview of the present situation.
Newly considered LOHC couples, like e.g., n-(methylbenzyl)pyridine and methylindole ap-
pear in even more recent reviews [29]. The review of Modisha et al. [30] gathers some useful
informations concerning catalysts and reactors but mostly in the case of dibenzyltoluene.
For a complete review of catalysts and reactors used for the organic liquid hydrogen car-
riers, namely in the case of methylcyclohexane/toluene and cyclohexane/benzene, it is
useful to also consider studies (older or not) not mentioning the term LOHC. A recent
paper concerning the couple MCH/TOL, which does not use the term LOHC but the
term organic hydride, gives some references to many important papers that are never
mentioned in all the LOHC-labeled works [31]. It cites all the kinetic studies carried out
for the dehydrogenation of methylcyclohexane, including the Canadian, Swiss and Italian
pioneering studies. Since (methyl)cyclohexane dehydrogenation is an important model
reaction in reforming of naphtha, many publications have been written for that specific
process but can still be very useful in the case of hydrogen release (e.g., [32–36] and other
references cited in [31]).

3.1. Hydrogen-Rich/Hydrogen-Lean Pairs

Apart from the well-known pairs that were already presented, new couples appeared
in the very recent literature. Among the most promising molecules that can store hydrogen
appears n-(methylbenzyl)pyridine, liquid in the range of use and less viscous than DBT [37].
A list of alkyl-indoles was also evaluated in the Sustainable Energy Laboratory of Wuhan
with several papers that are reported in the review written by Rao et al. [29]. Among
the products that could be obtained from natural products, trisphaeridine, present in
amaryllidaceae alkaloids, also seems promising with a low reaction enthalpy [38]. The
pair γ-butyrolactone/butane-diol is also envisioned [39], and this publication presenting a
promising and cheap hydrogen carrier does not use the keyword “LOHC”. Verevkin et al.
propose the use of diphenylether derivatives and furfuryl alcohol [40,41]. The use of
methanol is also gaining some importance and can be used in different ways. Combined
with urea, it can reversibly form ethylenediamine and hydrogen [42]. Produced from
atmospheric carbon dioxide, methanol is called a “circular” hydrogen carrier [27] and is
considered as the cheapest hydrogen storage solution [43]. Note that formic acid is also a
circular hydrogen carrier [44]. Other promising molecules exist (1,2-dihydro-1,2-azaborine,
phenazine) and can be found in the cited reviews [44]. Note that a recent paper also lists
possible new H2-rich/H2-lean pairs based on a computational study [45].

3.2. Catalysts

A table of most used catalysts for the five most popular LOHC is presented in the
review done by Modisha et al. [30]. The most studied system is methylcyclohexane/toluene
(or cyclohexane/benzene), briefly presented here, with 40 years of experience. Initially, the
catalysts used for the dehydrogenation reaction were those traditionally used for gasoline
reforming, that is Pt/alumina catalysts with a second element, metal or modifier. More
recently, a diversification of the catalysts is proposed even if the active metals are still
mostly Pt and Pd (see e.g., the review of Aakko-Saksa et al. [27]). Many bimetallic catalysts
are proposed both to decrease the amount of noble metal and/or improve the activity and
selectivity of the reaction [46–49]. The role of the support was also investigated. Whereas
most of the studied concern alumina, some composite supports, e.g., Al2O3−TiO2 [50]
have proved to be interesting thanks to the partial reducibility of TiO2 and electron transfer
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from support to the metal facilitating the desorption of products and thus accelerating the
reaction. Carbon is also considered as a potential metal support [51].

The problem of catalyst deactivation due to coke formation is regularly highlighted
and has been extensively studied and modeled in the case of MCH/TOL. Very early on,
modifiers were added to avoid secondary reactions of cracking and isomerization leading
to the formation of coke [10]. It has also been established that the presence of hydrogen in
the gas phase prevents the deactivation of Pd nanoparticles by suppressing coke formation,
in contrast to what has been observed in the absence of hydrogen [52–54]. In a study
of toluene hydrogenation on Pt/Al2O3, Taimoor and Pitault [55] observed a slow and
reversible deactivation even in the presence of hydrogen and demonstrated that this was
due to a strong adsorption of toluene on alumina. In this context, interesting studies
on the application of an electric field to a fixed bed of Pt/CeO2 or Pt/TiO2 are worth
mentioning [56,57]. The electric field allows the dehydrogenation of MCH to be carried
out at low temperature (423K) and the desorption of toluene is rapid, avoiding both the
formation of coke (or a strong adsorption) and limiting the reverse reaction.

It is also worth mentioning a few publications using non-noble metal catalysts for the
dehydrogenation of methylcyclohexane and cyclohexane [50,58–60].

Concerning N-ethylcarbazole, a list of screened mono and bimetallic catalysts is
proposed in the review of Zhou et al. with the following elements: Pd, Pt, Ru, Rh, Ni, Au,
Ir [61].

Besides heterogeneous catalysts, organometallic complexes can also be used for the
dehydrogenation reactions, typically iridium [39] and ruthenium [42]. A review gathers
many recent developments in that field but without ever using the word LOHC [62].

3.3. Reactors

Regarding the reactor design, many developments were proposed in the case of
the most studied systems: MCH/TOL, H0-DBT/H18-DBT and N-Ethylcarbazole. The
most classical reactors are summarized in the review from Modisha et al. [30]: spray-
pulsed, fixed-bed, CSTR batch-type, structured monolith reactor, tubular and pressure
swing reactors.

Apart from these reactors, studies often set aside (without the keyword “LOHC”)
concern for the implementation of heat exchanger reactors to compensate the heat required
by the dehydrogenation reaction [52,63]. It should be noted that the same coupling of MCH
dehydrogenation and H2 or toluene combustion has recently been reconsidered to generate
power [64].

To handle pure hydrogen recovery (without LOHC vapors), membrane reactors [53,65–69]
and integrated adsorption columns [70,71] were proposed.

It is worth mentioning that the global system was also studied at microreactor scale
since this information seems to be lost [65,72,73].

3.4. Economical Studies

Recently, many studies concern the comparison of the economical aspects of storing
hydrogen in LOHC compared to compresses gas or liquefied H2 [74,75]. Some recent
studies [43,76] conclude that if the heat needed for dehydrogenation is sustainably man-
aged (e.g., waste heat), dibenzyltoluene or toluene are systems of choice both in terms of
efficiency and costs. Nevertheless, thanks to a lower cost and a higher hydrogen transport
capacity than other LOHC, methanol is the most economic solution [43,44]. However, in
that case, an appropriate management of carbon dioxide and water has to be foreseen.

4. Conclusions

For an exhaustive review of the studies carried out in the framework of liquid organic
hydrogen carriers, using the unique keyword “LOHC” is dangerous because it excludes all
the studies carried out 30 years before the invention of this keyword, but also some recent
exploratory studies from groups who are not familiar with this name. The missing informa-
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tion when searching by the term “LOHC” ranges from molecules (e.g., [39,77]) to reactors
(e.g., [52]) through catalysts (e.g., [26,48,50,62]) and kinetics (e.g., [31,36]). Important studies
were namely conducted with the so-called MCH/TOL system, either for the development
of more stable catalysts for a comprehensive kinetic analysis or for the design of the most
appropriate reactor to cope with the high endothermicity of the dehydrogenation reaction.

In future studies, it is expected that an important place is given to the development of
catalytic systems but also to processes allowing a better heat integration.
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