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ON ARITHMETICAL FUNCTIONS HAVING
CONSTANT VALUES IN SOME DOMAIN

JAY MEHTA

Dedicated to Professor Imre Kátai on the occasion of his 75th
birthday.

Abstract. This paper shows that any completely additive com-
plex valued function over a principal configuration in complex
plane, having constant values in some discs is identically zero func-
tion. In other words, there exists no non-trivial completely additive
complex valued function over a principal configuration in C which
assumes constant values in some domain.

1. Introduction

Paul Erdős initiated the study of arithmetical functions with cer-
tain properties. He studied (completely) additive and multiplicative
functions satisfying some specific properties. I. Kátai also studied such
additive and multiplicative functions and has contributed in the same
area (for example [5], [6], etc.). I. Kátai together with Paul Erdős has
proved many interesting results in this field (for example see [3], [4],
etc.). In this paper, we talk about one such example of completely
additive and completely multiplicative function having constant values
in some domain in the complex plane.

In 1969, I. Kátai proved in [5] that any completely additive real
valued function on the set of positive integers assuming constant values
in some intervals of real line is identically zero function. In 1991, M.
Amer generalized this result for complex valued functions on the set of
non-zero Gaussian integers. Amer proved that a completely additive
complex valued functions defined on non-zero Gaussian integers having
constant values in some discs of the complex plane is identically zero
(Theorem 1 in [1]).

The aim is to generalize the result of M. Amer for completely addi-
tive complex valued functions over non-zero lattice points in complex
plane. In general an arbitrary lattice (say Λ1) may not be closed under

2010 Mathematics Subject Classification. 11A25,11N64.
Key words and phrases. multiplicative functions, Gaussian integers, additive

functions, lattices, principal configuration.
1



2 JAY MEHTA

multiplication. The proof of the result proved here uses the ‘closed un-
der multiplication’ property of the system of lattice points which may
not be the case always. So in order to make our domain closed un-
der multiplication we supplement the lattice Λ1 with some additional
points in such a way that this larger collection of points (which may
no longer be a lattice), is still discrete and is closed under multipli-
cation. Such a system of points is called ‘principal configuration’ (see
[2], page 89-90). These additional points form finitely many lattices
Λ2,Λ3, . . .Λh having only the origin O in common with the lattice Λ1

and with each other lattices. Let us denote the principal configuration
by Γ. Then we have,

Γ = Λ1 ∪ Λ2 ∪ . . . ∪ Λh.

Though each lattices Λi are closed under addition, Γ may not be closed
under addition but it is closed under multiplication. The supplemen-
tary points (i.e. the points of Λi, i = 2, 3, . . . , h) are called auxiliary
or non-principal. Also, the fundamental parallelepiped of these lattices
have the same complex volume as Λ1. The geometric picture of above
described situation in 2-dimensional case was first given by Klein in
1896 but it can be considered in any dimension.

We consider completely additive complex valued functions over non-
zero points of the principal configuration Γ and prove our result (see
Theorem 1 in Section 2) which generalizes the result of M. Amer. A
similar result for completely multiplicative functions, can be proved in
the same way, is stated at the end of this paper (see Theorem 2).

In case the given lattice Λ1 is already closed under multiplication, we
have h = 1 and our principal configuration Γ will be the lattice Λ1 itself.
Thus, as a particular case of our result, we have the result of M. Amer
as the set of non-zero Gaussian integers is closed under multiplication.
As another corollary, one can consider the case of arithmetical functions
over the ring of integers of imaginary quadratic fields.

2. Preliminaries and the Result

Let Γ be the principal configuration and let Λi = Λi(ωi, ω
′
i) where

ωi, ω
′
i ∈ C, i = 1, 2, . . . , h be the lattices in the principal configuration

Γ. That is we have

Γ = Λ1 ∪ Λ2 ∪ . . . ∪ Λh.

Throughout this paper, without loss of generality, we assume that
|ω′i| ≤ |ωi| for all i = 1, 2, . . . h. Let Γ∗ denote the set of all non-
zero points of Γ. We denote the set of all completely additive functions
and completely multiplicative complex valued functions over Γ∗ by A∗Γ
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and M∗
Γ respectively. Let S(a, r)(⊆ C) be the closed disc with center

a and radius r, i.e.,

S(a, r) = {z ∈ C | |z − a| ≤ r}.

Let ω′ = ω′j and ω = ωk for some j and k such that

|ω′| =|ω′j| = min
1≤i≤h

{|ω′i|}; |ω| =|ωk| = max
1≤i≤h

{|ωi|}.

i.e., ω′ is one of the ω′i’s which has the minimum absolute value while
ω is one of the ωi’ s which has maximum absolute value. We keep the
same notation throughout the paper.
We prove the following:

Theorem 1. Let f ∈ A∗Γ. Assume that there exists a sequence of
complex numbers z1, z2, . . . such that |zj| → ∞ (j →∞) and that

f(α) = Aj(constant) for all α ∈ S
(
zj, (2 + ε)

√
|zj|
)

for some positive constant ε depending on the principal configuration
Γ. Then f ≡ 0.

3. Proof of Theorem 1

Theorem 1 follows easily from the following three lemmas:

Lemma 1. Let f ∈ A∗Γ, z ∈ Γ∗ with |z| = M(≥ |ωj| + |ω′j|). Assume
that f(α) = A (constant) in the annulus R = {α ∈ Γ∗ | M ≤ |α| ≤
|ωj + ω′j|M}. Then f vanishes in the whole disc with radius same as
the outer radius of the annulus R. i.e., f(α) = 0 for every α ∈ Γ∗ with
|α| ≤ |ωj + ω′j|M .

NOTE: In Lemma 1, the construction of our annulus R depends on
ωj and ω′j of the lattice Λj(ω

′
j, ωj). Note that, we can use any lattice

Λi of Γ in the construction of R but we have used Λj as ω′j has the
minimum absolute value and we use this fact in the proof of Lemma 2
on page 6 line number 8.

Proof. Let λ = ωj + ω′j ∈ Λj. Then |λz| = |λ||z| = |ωj + ω′j|M .
Therefore, z, λz ∈ R. As f is completely additive function, we have

f(λ) = f(λz)− f(z) = 0.

Let k ∈ N such that λk ∈ R. It is clear from the construction of R that
such k exists. Then

A = f(λk) = kf(λ) = 0.
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Now, let α ∈ Γ∗ with |α| < M . Choose suitable m ∈ N such that
αλm ∈ R. Consequently,

0 = A = f(αλm) = f(α) +mf(λ) = f(α).

Hence the lemma. �

Let
[r]Γ = max

α∈Γ∗,|α|≤r
|α|,

for r ∈ R, (r > 1). It is clear that, [r]Γ ≤ r.

Lemma 2. Let δ be an arbitrary number such that 0 < δ < 1. Then
there exists a constant N0, depending on δ and Γ, with the following
property:
If f ∈ A∗Γ and N ∈ R, N > N0, f(α) = A for α ∈ RN = {α ∈
Γ∗ | N ≤ |α| ≤ (1 + δ)N}, then f(α) = 0 for each α ∈ Γ∗ with

|α| ≤
[
δN

2|ω′| − |ω|
]

Γ
.

Proof. Let β ∈ Γ∗, |β| < N . Then β ∈ Λ∗i ⊂ Γ∗ for some i. Let
Ei = {±ωi,±ω′i, 0} and θ ∈ Ei. Suppose

(1)
N(1 + δ)

|β|+ |ω|
− N

|β| − |ω|
≥ |ω′|

holds.
Our aim is to show that f is constant for all β ∈ Γ∗ for which (1) holds.
For this we will show that f is constant for all β ∈ Λ∗i for which (1)
holds for all i = 1, . . . , h.
Suppose

N(1 + δ)

|β|+ |ωi|
− N

|β| − |ωi|
≥ |ω′i| (A)

holds. Then there exists some µ ∈ Γ∗ such that

N

|β| − |ωi|
≤ |µ| ≤ N(1 + δ)

|β|+ |ωi|
.

But then
N

|β + θ|
≤ |µ| ≤ N(1 + δ)

|β + θ|
,

and so
N ≤ |(β + θ)µ| ≤ N(1 + δ).

This implies (β + θ)µ ∈ RN . Since θ = 0 ∈ E we have A = f(µβ) =
f
(
(β + θ)µ

)
. As f is completely additive function, we have

f(β) = f(β + θ).
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This is true for all i = 1, 2, . . . , h provided that equation (A) holds for
all i. Clearly, (by definition of ω and ω′) we have,

N(1 + δ)

|β|+ |ωi|
− N

|β| − |ωi|
≥ N(1 + δ)

|β|+ |ω|
− N

|β| − |ω|
≥ |ω′| ≥ |ω′i|

Hence, we can say that equation (A) holds for all i if (1) holds. Thus,
we have proved that f is constant for all such β ∈ Γ∗ for which (1)
holds.
Now we determine for what β, equation (1) holds. Equation (1) implies

(2) |ω′||β|2 −Nδ|β|+Nδ|ω|+ 2N |ω| − |ω′||ω|2 ≤ 0

We shall prove that inequality (1) holds for β if

|β| ∈ L :=

[
|ω|
(

4

δ
+ 1

)
,
δN

2|ω′|
− |ω|

]
.

As (2) is a quadratic equation in |β|, it suffices to show that (1) holds
for the end-points on the interval L.
First let |β| = |ω|

(
4
δ

+ 1
)
. Substituting this value of |β| in (1), the left

hand side of (1) will be
δ2N

|ω|(4δ + 8)

which is clearly ≥ |ω′| if

N ≥ |ω||ω′|
(

4

δ
+

8

δ2

)
.

Now, let |β| = δN
2|ω′| − |ω|. Substituting this value of |β| in (1), the left

hand side of (1) will be

2δ2N |ω′| − 8δ|ω||ω′|2 − 8|ω||ω′|2

δ2N − 4δ|ω||ω′|
and this is ≥ |ω′| if

N ≥ |ω||ω′|
(

4

δ
+

8

δ2

)
.

Let

N0 = |ω||ω′|
(

4

δ
+

8

δ2

)
be the constant. We have proved that f(β) = f(β + θ), whenever
|β| ∈ L, β ∈ Γ∗ and N ≥ N0. This means that f is constant in the
annulus |β| ∈ L. Now, clearly we have[

δN

2|ω′|
− |ω|

]
Γ

≥ |ω|+ |ω′|
[
|ω|
(

4

δ
+ 1

)]
Γ
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for sufficiently large N (as right hand side contains N and left hand
side is independent of N). Then we can find some z ∈ Γ∗ such that(

|z|, (|ω|+ |ω′|)|z|
)
⊆ L.

But clearly,

(|z|, |ωj + ω′j||z|) ⊆
(
|z|, (|ωj|+ |ω′j|)|z|

)
⊆
(
|z|, (|ω|+ |ω′|)|z|

)
as |ω′j| = |ω′| and |ωj| ≤ |ω|.
So we have,

(|z|, |ωj + ω′j||z|) ⊆
(
|z|, (|ω|+ |ω′|)|z|

)
⊆ L.

Applying Lemma 1 for |z| in place of M , we get f(α) = 0 whenever
|α| ≤ (|ω|+|ω′|)|z| and hence for |α| ≤ |ωj+ω′j||z|. But f(α) is constant
whenever |α| ∈ L and hence f(α) = 0 for the whole disc stated in the
lemma 2. �

Lemma 3. Let ε > 0 be some fixed constant depending on Γ. Then
there exists positive numbers N1 and c, depending on ε and the principal
configuration Γ, with the following properties:
If f ∈ A∗Γ, a ∈ C satisfying |a| > N1, r = (2 + ε)

√
|a| and f(α) = A

(constant) in the disc S(a, r), then f(α) = 0 for each α ∈ Γ∗ such that

|α| ≤ c
√
|a|.

Proof. For each α ∈ C, the disc S (α, |ω|) contains at least one element
of Γ. Let β ∈ Γ∗ (say β ∈ Λ∗i for some i) with |β| ≤ r

|ω| . Then there

exists some µ ∈ Γ∗ such that

(3)

∣∣∣∣µ− a

β

∣∣∣∣ ≤ |ω| ≤ r

|β|
.

Let Ei = {±ωi,±ω′i} and θ ∈ Ei and assume that β is so chosen that
the following equation holds:

(4) |ω|+ |a||θ|
|β||β + θ|

≤ r

|β + θ|
.

Then ∣∣∣∣µ− a

β + θ

∣∣∣∣ ≤ ∣∣∣∣µ− a

β

∣∣∣∣+

∣∣∣∣aβ − a

β + θ

∣∣∣∣
≤ |ω|+ |a||θ|

|β||β + θ|
≤ r

|β + θ|
(5)

As a consequence of (3) and (5), we have µβ and µ(β+θ) ∈ S(a, r). By
hypothesis, we have f(µβ) = A = f

(
µ(β+θ)

)
. Now, as f is completely

additive function, we have f(β) = f(β + θ), provided that (4) holds.
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This is true for all i = 1, 2, . . . , h. Thus, we have proved that f is
constant for all β ∈ Γ∗ for which (4) holds.
By simple computation, we see that (4) holds for each θ ∈ Ei for each
i if

|β||ω|(|β|+ |ω|)− r|β|+ |a||ω| ≤ 0.

The above inequality holds in the interval |β| ∈ (x1, x2) where x1 and
x2 are the roots of the following quadratic equation:

|ω|x2 − (r − |ω|2)x+ |a||ω| = 0

where |a| is sufficiently large and

ε ≥ 2(|ω| − 1).

Then,

x1 =
(r − |ω|2)−

√
(r − |ω|2)2 − 4|a||ω|2
2|ω|

and

x2 =
(r − |ω|2) +

√
(r − |ω|2)2 − 4|a||ω|2
2|ω|

.

We note that x1(|a|)→∞ as |a| → ∞ and that

2|ω|x1

r
= 1−

√(
1− |ω|

2

r

)2

− 4|a||ω|2
r2

− |ω|
r

= 1−

√
1−

(
2|ω|
2 + ε

)2

+O

(
1

r

)
.

Similarly,

2|ω|x2

r
= 1 +

√
1−

(
2|ω|
2 + ε

)2

+O

(
1

r

)
.

So, we have

x2

x1

→
1 +

√
1−

(
2|ω|
2+ε

)2

1−
√

1−
(

2|ω|
2+ε

)2
= b (say) as |a| → ∞.

Clearly b > 1 and so we take δ < b− 1. Then we have

x2(|a|)
x1(|a|)

> 1 + δ

when |a| is sufficiently large enough. Choosing N = x1(|a|), the con-
ditions of Lemma 2 are satisfied. Noticing that x1(|a|) has the same

order as
√
|a|, the lemma follows immediately. �
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Proof of Theorem 1. The proof follows easily from Lemma 3. As-
sume that f ∈ A∗Γ and that there exists a sequence z1, z2, . . . of complex
numbers such that |zj| → ∞ and

f(α) = Aj(constant) for all α ∈ S
(
zj, (2 + ε)

√
|zj|
)

for some arbitrary positive constant ε. Applying Lemma 3 here, we get

f(α) = 0 for each α with |α| ≤ cj

√
|zj|

for some positive constants cj. Note that |zj| → ∞ (j → ∞). As a
consequence, we have f ≡ 0. �

Similarly, we can prove the following assertion for completely multi-
plicative complex valued functions over Γ∗.

Theorem 2. Let f ∈ M∗
Γ, which does not vanish anywhere. Assume

that there exists a sequence z1, z2, . . . of complex numbers such that
|zj| → ∞ and that

f(α) = Aj(constant) for all α ∈ S
(
zj, (2 + ε)

√
|zj|
)

for some arbitrary positive constant ε. Then f ≡ 1.

Corollary 1. Taking Γ = Z[i], we have Amer’s result.

Corollary 2. Take Γ = OK, the ring of integers of imaginary quadratic
field K = Q[

√
d], we have a more general version of Amer’s result.

Remark 1. In the proof of Lemma 1 and hence in the proof of Theo-
rem 1, we use the ‘closure under multiplication’ property of the system
of points (domain). So we use principal configuration Γ in place of
any arbitrary lattice over C as the lattice may not be closed under mul-
tiplication. It would be interesting to see if the result can be proved
in general for any arbitrary lattice in C, without using the principal
configuration Γ.
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