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We prove an inequality of Hölder type traducing the unique continuation property at one time for the heat equation with a potential and Neumann boundary condition. The main feature of the proof is to overcome the propagation of smallness by a global approach using a refined parabolic frequency function method. It relies with a Carleman commutator estimate to obtain the logarithmic convexity property of the frequency function.

Introduction and main result

In this paper, we establish the observation inequality at one time for the heat equation with a potential and Neumann boundary condition. The analysis is based on the parabolic frequency function method [K] adjusted for a global approach.

Let Ω ⊂ R n be a bounded connected open set with boundary ∂Ω of class C ∞ . Consider in {(x, t) ∈ Ω × (0, T )} the heat equation with a potential and Neumann boundary condition

   ∂ t u -∆u + au = 0 ,
in Ω × (0, T ) , ∂ n u = 0 , on ∂Ω × (0, T ) , u (•, 0) ∈ L 2 (Ω) .

Here, T > 0, a ∈ L ∞ (Ω × (0, T )) and n is the unit outward normal vector to ∂Ω.

We propose the following result.

Theorem 1 .-Let ω be a non-empty open subset of Ω. For any t ∈ (0, T ],

u (•, t) L 2 (Ω) ≤ e K 1+ 1 t +t a L ∞ (Ω×(0,t)) + a 2/3 L ∞ (Ω×(0,t)) u (•, t) L 2 (ω) β u (•, 0) 1-β L 2 (Ω) .
Here K > 0 and β ∈ (0, 1) only depend on (Ω, ω).

Such observation estimate traduces the unique continuation property at one point in time saying that if u = 0 in ω × {t}, then u is identically null. Applications to bang-bang control and finite time stabilization are described in [PWZ] and [BuP]. Our result is an interpolation estimate which is more often used in a local way with a propagation of smallness procedure ( [AEWZ], [FV]). Here the way we choose to establish our main theorem is based on a global approach.

Recall that Theorem 1 implies the observability estimate for the heat equations with a potential and Neumann boundary condition [PW]. It is well-known that the observability estimate for the heat equations can be obtained from Carleman inequalities. In the literature, at least two approaches allow to derive Carleman inequalities for parabolic equations: A local one based on the Garding inequality and interpolation estimates for the elliptic equations ( [LR], [LRL], [BM]); A global one based on Morse functions and integrations by parts over Ω × (0, T ) ( [FI], [FGGP]). Besides, unique continuation results can be deduced either by Carleman techniques or by logarithmic convexity of a frequency function [EFV]. Here we construct a new frequency function adapted to the global approach. Further, we explicitly give the dependence of the constants with respect to a L ∞ as in [FGGP], [DZZ].

Preliminaries

In this section we derive three propositions on which our later results will be based. 

* , (p 1 , p 2 , ••, p d ) ∈ ω d and (ψ 1 , ψ 2 , ••, ψ d ) ∈ C ∞ Ω d such that for all i ∈ {1, ••, d} (i) ψ i > 0 in Ω, ψ i = 0 on ∂Ω , (ii) the critical points of ψ i are nondegenerate, (iii) {x ∈ Ω; |∇ψ i (x)| = 0} = {p j ; j = 1, ••, d}, (iv) p i is the unique global maximum of ψ i , (v) for any j ∈ {1, ••, d}, max Ω ψ j = max Ω ψ i .
Remark .-(i) implies that ∂ n ψ i ≤ 0; (iii) says that the criticals points of ψ i are isolated and form a discrete set; (iii) 

implies that d = {x ∈ Ω; |∇ψ i (x)| = 0} and {x ∈ Ω; |∇ψ i (x)| = 0} ⊂ ω.
Proof .-The existence of Morse functions (that is C ∞ functions whose critical points are nondegenerate) which are positive in Ω and null on the boundary ∂Ω can be proved by virtue of the theorem on the density of Morse functions ( [START_REF] Fursikov | Controllability of evolution equations[END_REF]page 20], [C, page 80], [START_REF] Tucsnak | Observation and control for operator semigroups[END_REF]Chapter 14], [START_REF] Wang | The Carleman inequality and its application to periodic optimal control governed by semilinear parabolic differential equations[END_REF]page 433]). Next, by a small perturbation in a small neighborhood of each critical points, no two critical points share the same function value [START_REF] Matsumoto | An introduction to Morse Theory[END_REF]Theorem 2.34]. Denote by ψ such a smooth function and let a

1 , ••, a d be its crit- ical points such that {x ∈ Ω; |∇ψ (x)| = 0} = {a j ; j = 1, ••, d} ⊂ Ω and ψ (a 1 ) > ψ (a 2 ) > •• > ψ (a d
). Now we will move the critical points following the procedure in [START_REF] Coron | Control and Nonlinearity[END_REF]Lemma 2.68

]. Introduce p 1 , ••, p d d points in ω such that for each i = 1, ••, d, there exists γ i,j ∈ C ∞ ([0, 1]; Ω) be such that • γ i,j is one to one for every j ∈ {1, ••, d}, • γ i,j ([0, 1]) ∩ γ i,l ([0, 1]) = ∅, ∀ (j, l) ∈ {1, ••, d} such that j = l, • γ i,j (0) = a j , ∀j ∈ {1, ••, d}, • γ i,j (1) = τ i-1 (p j ), ∀j ∈ {1, ••, d}. Here τ is d-cycle, that is τ (p j ) = p j+1 if j < d and τ (p d ) = p 1 , τ 0 = id, τ i = τ i-1 • τ . Introduce a vector field V i ∈ C ∞ (R n ; R n ) such that {x ∈ R n ; V i (x) = 0} ⊂ Ω and V i (γ i,j (t)) = γ i,j (t), ∀j ∈ {1, ••, d}. Let Λ i denote the flow associated to V i , that is ∂ t Λ i (t, x) = V i (Λ i (t, x)) and Λ i (0, x) = x. One has Λ i (0, a j ) = a j , Λ i (t, a j ) = γ i,j (t) and Λ i (1, a j ) = τ i-1 (p j ). Further, for every t ∈ R, Λ i (t, •) is a diffeomorphism on Ω and Λ i (t, •) | ∂Ω = Id. In particular, (Λ i (1, •)) -1 τ i-1 (p j ) = a j .
It remains to check that ψ i : Ω → R given by ψ i (x) = ψ (Λ i (1, •))

-1 (x) satisfies all the required properties. Clearly, ψ i > 0 in Ω, ψ i = 0 on ∂Ω and ψ i only have nondegenerate critical points given by {x ∈ Ω;

|∇ψ i (x)| = 0} = {p j ; j = 1, ••, d}. Finally, max Ω ψ i = max Ω ψ and ψ (a 1 ) = ψ (Λ i (1, •)) -1 τ i-1 (p 1 ) = ψ (Λ i (1, •)) -1 (p i ) = ψ i (p i
) allow to conclude that p i is the unique global maximum of ψ i and max Ω ψ j = max Ω ψ i ∀i, j. This completes the proof.

Our next result resume some identities linked to the Carleman commutator (see [P] and references therein).

Proposition 2 .-Let Φ (x, t) = sϕ (x) Γ (t) , s > 0, Γ (t) = T -t + h, h > 0 and ϕ ∈ C ∞ Ω .
Define for any f ∈ H 2 (Ω)

   A ϕ f = -∇Φ • ∇f -1 2 ∆Φf , S ϕ f = -∆f -ηf where η = 1 2 ∂ t Φ + 1 4 |∇Φ| 2 , S ϕ f = -∂ t ηf .
Then we have

(i) Ω A ϕ f f = - 1 2 ∂Ω ∂ n Φ |f | 2 (ii) Ω S ϕ f f = Ω |∇f | 2 - Ω η |f | 2 - ∂Ω ∂ n f f (iii) Ω S ϕ f f + 2 Ω S ϕ f A ϕ f = -2 Ω ∇f ∇ 2 Φ∇f - Ω ∇f ∆∇Φf - 2 Γ Ω η + 1 4 |∇Φ| 2 + s 4 ∇Φ∇ 2 ϕ∇Φ |f | 2 +Boundary terms where Boundary terms = 2 ∂Ω ∂ n f ∇Φ • ∇f - ∂Ω ∂ n Φ |∇f | 2 + ∂Ω ∂ n f ∆Φf + ∂Ω η∂ n Φ |f | 2 .
Proof .-The proof of Ω A ϕ f f and Ω S ϕ f f is quite clear by integrations by parts. Now we compute the bracket 2 S ϕ f, A ϕ f : We have from the definition of S ϕ f and

A ϕ f , 2 S ϕ f, A ϕ f = 2 Ω (∆f + ηf ) ∇Φ • ∇f + 1 2 ∆Φf
and four integrations by parts give

2 S ϕ f, A ϕ f = -2 Ω ∇f ∇ 2 Φ∇f - Ω ∇f ∆∇Φf - Ω ∇η • ∇Φ |f | 2 + Boundary terms . Indeed, Ω ∆f ∇Φ • ∇f = ∂Ω ∂ n f ∇Φ • ∇f - Ω ∇f ∇ 2 Φ∇f - Ω ∇f ∇ 2 f ∇Φ , but Ω ∇f ∇ 2 f ∇Φ = 1 2 ∂Ω ∂ n Φ |∇f | 2 - 1 2 Ω ∆Φ |∇f | 2 .
Second,

Ω ∆f ∆Φf = ∂Ω ∂ n f ∆Φf - Ω ∇f ∆∇Φf - Ω ∆Φ |∇f | 2 . Third, 2 Ω ηf ∇Φ • ∇f = ∂Ω η∂ n Φ |f | 2 - Ω ∇η • ∇Φ |f | 2 - Ω η∆Φ |f | 2 .
This concludes to the identity

2 Ω S ϕ f A ϕ f - Ω ∂ t η |f | 2 = -2 Ω ∇f ∇ 2 Φ∇f - Ω ∇f ∆∇Φf +Boundary terms + Ω (-∂ t η -∇η • ∇Φ) |f | 2 .
Finally, using

∂ t Φ = 1 Γ Φ and ∂ 2 t Φ = 2 Γ ∂ t Φ, we obtain -∂ t η -∇η • ∇Φ = -1 2 ∂ 2 t Φ -∇Φ • ∇∂ t Φ -1 2 ∇Φ∇ 2 Φ∇Φ = -1 Γ ∂ t Φ -1 Γ |∇Φ| 2 -s 2Γ ∇Φ∇ 2 ϕ∇Φ = -2 Γ η -1 2Γ |∇Φ| 2 -s 2Γ ∇Φ∇ 2 ϕ∇Φ .
This completes the proof of (iii).

Recall the following result which is a variant of [START_REF] Bardos | Observation estimate for kinetic transport equations by diffusion approximation[END_REF]Lemma 4.3].

Proposition 3 .-Let h > 0, T > 0 and F 1 , F 2 ≥ 0. Consider two positive functions y, N ∈ C 1 ([0, T ]) such that      1 2 y (t) + N (t) y (t) ≤ F 1 y (t) , N (t) ≤ 1 + C 0 T -t + h N (t) + F 2 , (2.1)
where C 0 ≥ 0. Then for any 0 ≤ t 1 < t 2 < t 3 ≤ T , one has

y (t 2 ) 1+M ≤ y (t 3 ) y (t 1 ) M e D with M = t3 t2 1 (T -t + h) 1+C0 dt t2 t1 1 (T -t + h) 1+C0 dt and D = 2M F 2 (t 3 -t 1 ) 2 + F 1 (t 3 -t 1 ) . Proof .-Set Γ (t) = T -t + h.
From the second inequality of (2.1), we have

Γ 1+C0 N ≤ F 2 Γ 1+C0 . (2.2) Integrating (2.2) over (t, t 2 ) with t ∈ (t 1 , t 2 ) gives Γ (t 2 ) Γ (t) 1+C0 N (t 2 ) ≤ N (t) + F 2 (t 2 -t 1 ) .
By the first inequality of (2.1),

y (t) + 2N (t)y(t) ≤ 2F 1 y(t)
and we derive that

y + 2 Γ (t 2 ) Γ (t) 1+C0 N (t 2 ) -2F 2 (t 2 -t 1 ) -2F 1 y ≤ 0 for t ∈ (t 1 , t 2 ) .
Integrating over (t 1 , t 2 ), we obtain

y(t 2 )e 2N (t2) t2 t1 Γ (t 2 ) Γ (t) 1+C0 dt ≤ y (t 1 ) e 2F2(t2-t1) 2 +2F1(t2-t1) . (2.3)
On the other hand, integrating (2.2) over (t 2 , t) with t ∈ (t 2 , t 3 ), one has

N (t) ≤ Γ (t 2 ) Γ (t) 1+C0 (N (t 2 ) + F 2 (t 3 -t 2 )) .
By the first inequality of (2.1),

-y (t) -2N (t)y(t) ≤ 2F 1 y(t)
and it follows that

0 ≤ y + 2 Γ (t 2 ) Γ (t) 1+C0 (N (t 2 ) + F 2 (t 3 -t 2 )) + 2F 1 y for t ∈ (t 2 , t 3 ) .
Integrating over (t 2 , t 3 ) yields -t2) .

y (t 2 ) ≤ e 2(N (t2)+F2(t3-t2)) t3 t2 Γ (t 2 ) Γ (t) 1+C0 dt y (t 3 ) e 2F1(t3
(2.4) Combining (2.3) and (2.4), one has

y (t 2 ) ≤ y (t 3 ) y (t 1 ) y (t 2 ) e 2F2(t2-t1) 2 e 2F1(t2-t1) M e 2F1(t3-t2) e 2F2(t3-t2) t3 t2 Γ (t 2 ) Γ (t) 1+C0 dt which gives y (t 2 ) ≤ y (t 3 ) y (t 1 ) y (t 2 ) M e 2F2(t2-t1) 2 M e 2F1(t2-t1)M e 2F1(t3-t2) e 2F2(t3-t2)(t2-t1)M
which implies the desired estimate since M > 1.

3 Proof of Theorem 1

The plan of the proof of Theorem 1 is as follows. We divide it into seven steps. In Step 1, we derive some estimates on the Morse functions given in Proposition 1. In Step 2, we introduce the weight functions and establish the key properties linked to the Morse functions. In Step 3, we perform a change of function and introduce the operators described in Proposition 2. In Step 4, we construct a new frequency function adapted to our global approach. In Step 5, key estimates for the Carleman operator is provided. In Step 6, we solve a system of ordinary differential inequalities thanks to Proposition 3. In Step 7, we conclude the proof by making appear the control domain ω × {T }.

Step 1: The Morse functions

We have by Proposition 1, the existence of Morse functions ψ i associated to a critical point p i which is its unique global maximum in Ω. By Morse Lemma, there exists a neighborhood of p i and a diffeomorphism U such that U (p i ) = 0 and locally

ψ i U -1 (x) = ψ i (p i ) -|x| 2 which implies 1 4 JacU -1 (x) ∇ψ i U -1 (x) 2 = |x| 2 = ψ i (p i ) -ψ i U -1 (x)
and consequently, there are c 1 , c 2 > 0 such that for any

i ∈ {1, ••, d}, in a neighborhood of p i c 1 |∇ψ i | 2 ≤ max Ω ψ i -ψ i ≤ c 2 |∇ψ i | 2 . (3.1.1) Let B i be a neighborhood of x ∈ Ω; |∇ψ i (x)| = 0 and max Ω ψ i -ψ i (x) = 0 in which (3.1.1) holds , C i be a neighborhood of x ∈ Ω; |∇ψ i (x)| = 0 and max Ω ψ i -ψ i (x) > 0 with B i ∩ C i = ∅ in which ψ i -ψ j < 0 for some j = i. This is possible because ψ i (p j ) < ψ j (p j ) using Proposition 1 (iv) and (v) with {p j ; j = 1, ••, d} = {x ∈ Ω; |∇ψ i (x)| = 0} and C i = j =i
Θ pj where Θ pj is a sufficiently small neighborhood of p j . And finally let

D i = Ω \(B i ∪ C i ) be such that Ω = B i ∪ C i ∪ D i .
Proposition 4 .-There are c 1 > 0 and c 2 > 0 such that for any i ∈ {1, ••, d}

(i) In D i , c 1 |∇ψ i | 2 ≤ max Ω ψ i -ψ i ≤ c 2 |∇ψ i | 2 . (ii) In B i , c 1 |∇ψ i | 2 ≤ max Ω ψ i -ψ i ≤ c 2 |∇ψ i | 2 . (iii) In C i , c 1 |∇ψ i | 2 ≤ max Ω ψ i -ψ i .
Proof .-The inequality (ii) holds by definition of B i . In C i , we use max

Ω ψ i -ψ i ≥ c > 0 and |∇ψ i | 2 ≤ max Ω |∇ψ i | 2 ≤ max Ω |∇ψi| 2 c max Ω ψ i -ψ i . In D i , |∇ψ i | > 0 and max Ω ψ i -ψ i > 0 imply the desired estimates.

Step 2: The weight functions

Introduce for any

i ∈ {1, ••, d}    ϕ i,1 = ψ i -max Ω ψ i , ϕ i,2 = -ψ i -max Ω ψ i . Notice that ϕ i,1 = ϕ i,2 on ∂Ω and ∂ n ϕ i,1 + ∂ n ϕ i,2 = 0 on ∂Ω . (3.2.1)
Further, the link between ϕ i,1 and ψ i is described as follows:

|ϕ i,1 | = max Ω ψ i -ψ i and |∇ϕ i,1 | 2 = |∇ψ i | 2 .
Now, we are able to state the properties of ϕ i,1 and ϕ i,2 .

Proposition 5 .-There are c 1 , ••, c 6 > 0 all positive constants such that for any i ∈ {1, ••, d}

(i) In D i , c 1 |∇ϕ i,1 | 2 ≤ |ϕ i,1 | ≤ c 2 |∇ϕ i,1 | 2 . (ii) In B i , c 1 |∇ϕ i,1 | 2 ≤ |ϕ i,1 | ≤ c 2 |∇ϕ i,1 | 2 . (iii) In C i , c 1 |∇ϕ i,1 | 2 ≤ |ϕ i,1 | . (iv) There is j ∈ {1, ••, d} with j = i such that ϕ i,1 -ϕ j,1 ≤ -c 3 in C i . (v) c 4 |∇ϕ i,2 | 2 ≤ |ϕ i,2 | in Ω and |ϕ i,2 | ≤ c 5 |∇ϕ i,2 | 2 in a neighborhood of ∂Ω .
(vi) ϕ i,2 -ϕ i,1 ≤ -c 6 outside a neighborhood of ∂Ω .

Proof .-By the properties of the Morse functions described in Proposition 4, we deduce (i) -(ii) and (iii). The inequality (iv) holds from the definition of C i and Proposition 1 (v). Next, we start to prove (v) by seeing that

|∇ϕ i,2 | 2 ≤ c ≤ c max Ω ψi |ϕ i,2 |. Since |∇ϕ i,2 | = |∇ψ i | > 0 in a neighborhood of ∂Ω, we have |ϕ i,2 | ≤ c ≤ c 5 |∇ϕ i,2 | 2 .
This completes the proof of (v). Finally, since ψ i > 0 outside a neighborhood of ∂Ω, we get 0 < c ≤ ψ i and ϕ i,2 -ϕ i,1 = -2ψ i ≤ -2c = -c 6 , that is (vi).

Step 3: Change of functions

Introduce for any (x, t) ∈ Ω × [0, T ] and any i ∈ {1, ••, d}

     Φ i (x, t) = s Γ (t) ϕ i,1 (x) , Φ d+i (x, t) = s Γ (t) ϕ i,2 (x) .
with s ∈ (0, 1] and Γ (t

) = T -t + h, h ∈ (0, 1]. Let f = (f i ) 1≤i≤2d
where f i = ue Φi/2 . We look for the equation solved by f i by computing e Φi/2 (∂ t -∆) e -Φi/2 f i . Introduce

A ϕi f i = -∇Φ i • ∇f i -1 2 ∆Φ i f i , S ϕi f i = -∆f i -η i f i where η i = 1 2 ∂ t Φ i + 1 4 |∇Φ i | 2 .
Let Sf = (S ϕi f i ) 1≤i≤2d , Af = (A ϕi f i ) 1≤i≤2d , and = (-af i ) 1≤i≤2d . We find that

∂ t f + Sf = Af + , ∂ n f i -1 2 ∂ n Φ i f i = 0 on ∂Ω × (0, T ) .
(3.3.1) Let •, • denote the usual scalar product in L 2 (Ω) 2d and let • be its corresponding norm. Now, we claim that

             Af , f = 0 , Sf , f = i=1,..,2d Ω |∇f i | 2 - Ω η i |f i | 2 , d dt Sf , f = - i=1,..,2d Ω ∂ t η i |f i | 2 + 2 Sf , ∂ t f := S f , f + 2 Sf , ∂ t f . (3.3.2)
Indeed, applying Proposition 2 (i)-(ii) and using the Robin boundary condition for f i , all the boundary terms appearing in the integrations by parts can be dropped since for any i ∈ {1, ••, d}

Φ i = Φ d+i and ∂ n Φ i + ∂ n Φ d+i = 0 on ∂Ω × (0, T ) , (3.3.3)
by (3.2.1). To establish the last identity in (3.3.2), we compute d dt Sf , f as follows:

d dt Sf , f = d dt   i=1,..,2d Ω |∇f i | 2 - Ω η i |f i | 2   = 2 Sf , ∂ t f - i=1,..,2d Ω ∂ t η i |f i | 2 + 2 i=1,..,2d ∂Ω ∂ n f i ∂ t f i
by an integration by parts. But, by using the Robin boundary condition for f i = ue Φi/2 in (3.3.1), we have i=1,..,2d ∂Ω

∂ n f i ∂ t f i = i=1,..,2d ∂Ω 1 2 ∂ n Φ i u∂ t u + |u| 2 1 2 ∂ t Φ i e Φi = 0
since for any i ∈ {1, ••, d}, Φ d+i = Φ i and ∂ n Φ i + ∂ n Φ d+i = 0 on ∂Ω × (0, T ).

Step 4: Energy estimates

By a standard energy method, we have 1 2

d dt f 2 + Sf , f = , f ,
and by introducing the frequency function

N (t) = Sf , f f 2 it holds N (t) f 2 ≤ S f , f + 2 Sf , Af + 2 .
Indeed, for the energy identity we use the first equality of (3.3.1) and Af , f = 0. For the inequality of the derivative of the frequency function, we use

d dt Sf , f = S f , f + 2 Sf , ∂ t f (see (3.3.2)
) and replace ∂ t f by Af -Sf + in order to get

N (t) f 4 = ( S f , f + 2 Sf , ∂ t f ) f 2 -Sf , f (-2 Sf , f + 2 , f ) = ( S f , f + 2 Sf , Af ) f 2 -2 Sf 2 f 2 + 2 Sf , f 2 +2 Sf , f 2 -2 Sf , f , f = ( S f , f + 2 Sf , Af ) f 2 -2 Sf -1 2 2 f 2 + 1 2 2 f 2 +2 Sf -1 2 , f 2 -1 2 , f 2 .
By Cauchy-Schwarz, we obtain the desired estimate for N (t).

Since 2 ≤ a 2 ∞ f 2
where a ∞ = a L ∞ (Ω×(0,T )) , we obtain the following system of ordinary differential inequalities

       1 2 d dt f 2 + N (t) f 2 ≤ a ∞ f 2 , N (t) ≤ S f , f + 2 Sf , Af f 2 + a 2 ∞ .
(3.4.1)

Step 5: Carleman commutator estimates

We claim that for some s ∈ (0, 1] sufficiently small, η i ≤ 0 and Sf , f ≥ 0 and

S f , f + 2 Sf , Af ≤ 1 + C 0 Γ Sf , f + C h 2 f 2 ,
where C 0 ∈ (0, 1) and C > 0 do not depend on h ∈ (0, 1]. Indeed, observe that

η i = 1 2 ∂ t Φ i + 1 4 |∇Φ i | 2 = s 4Γ 2 -2 |ϕ i,1 | + s |∇ϕ i,1 | 2 if i ∈ {1, ••, d} s 4Γ 2 -2 |ϕ i-d,2 | + s |∇ϕ i-d,2 | 2 if i ∈ {d + 1, ••, 2d} ≤ 0
for s ∈ (0, 1] sufficiently small since |∇ϕ i,j | 2 ≤ c |ϕ i,j | for any i ∈ {1, ••, d}, any j ∈ {1, 2} by Proposition 5 (i) -(iii) and (v). This concludes the proof that Sf , f ≥ 0 for s small. By Proposition 2 (iii),

S f , f + 2 Sf , Af = -2 i=1,..,2d Ω ∇f i ∇ 2 Φ i ∇f i - i=1,..,2d Ω ∇f i ∆∇Φ i f i - 2 Γ i=1,..,2d Ω η i + 1 4 |∇Φ i | 2 + s 4 ∇Φ i ∇ 2 ϕ i ∇Φ i |f i | 2 +Boundary terms (3.5.1)
where

ϕ i = ϕ i,1 for i ∈ {1, ••, d}, ϕ i = ϕ i-d,2 for i ∈ {d + 1, ••, 2d}, and 
Boundary terms = 2 i=1,..,2d ∂Ω ∂ n f i ∇Φ i • ∇f i - i=1,..,2d ∂Ω ∂ n Φ i |∇f i | 2 + i=1,..,2d ∂Ω ∂ n f i ∆Φ i f i + i=1,..,2d ∂Ω η i ∂ n Φ i |f i | 2 . (3.5.2)
First we estimate the contribution of the gradient terms:

i=1,..,2d
-2

Ω ∇f i ∇ 2 Φ i ∇f i - Ω ∇f i ∆∇Φ i f i ≤ cs Γ i=1,..,2d Ω |∇f i | 2 + cs Γ f 2 ≤ cs Γ i=1,..,2d Ω |∇f i | 2 + c h f 2 (3.5.3) for s ∈ (0, 1], using Cauchy-Schwarz, 2∇ 2 Φ i ≤ cs Γ , and |∆∇Φ i | ≤ cs Γ ≤ 1 h .
Next we check the contribution of the boundary terms. We claim that i=1,..,2d ∂Ω

η i ∂ n Φ i |f i | 2 = 0 . Indeed, η i = 1 2 ∂ t Φ i + 1 4 |∇Φ i | 2 implies i=1,..,2d ∂Ω η i ∂ n Φ i |f i | 2 = i=1,..,d ∂Ω 1 2 ∂ t Φ i + 1 4 |∇Φ i | 2 ∂ n Φ i |u| 2 e Φi + i=1,..,d ∂Ω 1 2 ∂ t Φ i + 1 4 |∇Φ i | 2 ∂ n Φ d+i |u| 2 e Φi
where we used Φ d+i = Φ i on ∂Ω × (0, T ) and

|∇Φ d+i | = |∇Φ i | on ∂Ω × (0, T ). Since ∂ n Φ i + ∂ n Φ d+i = 0 on ∂Ω × (0, T ), this completes the claim. We also have 2 i=1,..,2d ∂Ω ∂ n f i ∇Φ i • ∇f i - i=1,..,2d ∂Ω ∂ n Φ i |∇f i | 2 = 0 . Indeed, since ∇Φ i = ∂ n Φ i - → n on ∂Ω × (0, T ) and ∂ n f i = 1 2 ∂ n Φ i f i , 2 i=1,..,2d ∂Ω ∂ n f i ∇Φ i • ∇f i = 2 i=1,..,2d ∂Ω ∂ n Φ i 1 2 ∂ n Φ i f i 2 = 2 i=1,..,d ∂Ω (∂ n Φ i + ∂ n Φ d+i ) 1 2 ∂ n Φ i f i 2 = 0
where we used (3.3.3). For the second contribution, it holds

|∇f i | 2 = ∇u + u 1 2 ∇Φ i 2 e Φi = ∂ τ u - → τ + u 1 2 ∂ n Φ i - → n 2 e Φi = |∂ τ u| 2 + 1 2 u∂ n Φ i 2 e Φi
on ∂Ω × (0, T ). We then conclude that -i=1,..,2d ∂Ω

∂ n Φ i |∇f i | 2 = 0 using (3.3.3). The last boundary term is treated as follows. Using ∂ n f i = 1 2 ∂ n Φ i f i , |∆Φ i | ≤ cs Γ and (3.3.3), we have i=1,..,2d ∂Ω ∂ n f i ∆Φ i f i = i=1,..,2d ∂Ω 1 2 ∂ n Φ i ∆Φ i |f i | 2 ≤ cs Γ i=1,..,d ∂Ω |∂ n Φ i | |f i | 2 = cs Γ i=1,..,d ∂Ω (-∂ n Φ i ) |f i | 2 since ∂ n ψ i ≤ 0 and
, by an integration by parts

∂Ω (-∂ n Φ i ) |f i | 2 = -2 Ω ∇f i • ∇Φ i f i - Ω ∆Φ i |f i | 2 ≤ Ω |∇f i | 2 + Ω |∇Φ i | 2 |f i | 2 + cs h f 2 using Cauchy-Schwarz and |∆Φ i | ≤ cs Γ ≤ cs h , which implies that i=1,..,2d ∂Ω ∂ n f i ∆Φ i f i ≤ cs Γ i=1,..,d Ω |∇f i | 2 + c 2 s 2 h 2 f 2 + cs Γ i=1,..,d Ω |∇Φ i | 2 |f i | 2 .
One can conclude for the contribution of the boundary terms that for any s ∈ (0, 1]

Boundary terms ≤ cs Γ i=1,..,d Ω |∇f i | 2 + c 2 h 2 f 2 + cs Γ i=1,..,d Ω |∇Φ i | 2 |f i | 2 . (3.5.4)
Consequently, from (3.5.1)-(3.5.2)-(3.5.3)-(3.5.4), we obtain that for any h ∈ (0, 1] and any s ∈ (0, 1]

S f , f + 2 Sf , Af ≤ cs Γ i=1,..,2d Ω |∇f i | 2 + c 2 h 2 f 2 - 2 Γ i=1,..,2d Ω η i + 1 4 |∇Φ i | 2 + s 4 ∇Φ i ∇ 2 ϕ i ∇Φ i |f i | 2 + cs Γ i=1,..,d Ω |∇Φ i | 2 |f i | 2
which gives that for any s ∈ (0, 1] sufficiently small,

S f , f + 2 Sf , Af ≤ Cs Γ i=1,..,2d Ω |∇f i | 2 + C h 2 f 2 - 2 Γ i=1,..,2d Ω η i + 1 8 |∇Φ i | 2 |f i | 2 . (3.5.5) Indeed, -s 4 ∇Φ i ∇ 2 ϕ i ∇Φ i ≤ s 4 ∇ 2 ϕ i |∇Φ i | 2 ≤ cs |∇Φ i | 2 .
It remains to prove that

- 2 Γ i=1,..,2d Ω η i + 1 8 |∇Φ i | 2 |f i | 2 ≤ C f 2 + 2 -s/c Γ i=1,..,2d Ω (-η i ) |f i | 2 . (3.5.6) By Proposition 5 (i) and (ii), |ϕ i,1 | ≤ c 2 |∇ϕ i,1 | 2 in B i ∪ D i . This implies that for any i ∈ {1, ••, d} -|∇Φ i | 2 = - s 2 Γ 2 |∇ϕ i,1 | 2 ≤ - 2s 2 cΓ 2 |ϕ i,1 | = 4s c - s 2Γ 2 |ϕ i,1 | ≤ 4s c η i .
Therefore, we get that for any i ∈ {1, ••, d}

- 1 4 Bi∪Di |∇Φ i | 2 |f i | 2 ≤ s c Bi∪Di η i |f i | 2 which yields - 2 Γ i=1,..,d Bi∪Di η i + 1 8 |∇Φ i | 2 |f i | 2 ≤ 2 -s/c Γ i=1,..,d Bi∪Di (-η i ) |f i | 2 .
By Proposition 5 (iv), there is c 3 > 0 such that ϕ i,1 -ϕ j,1 ≤ -c 3 in C i for some j = i. Therefore,

using η i + 1 8 |∇Φ i | 2 ≤ c Γ 2 and |f i | 2 = e s(ϕi,1-ϕj,1) 1 Γ |f j | 2 , it holds - 2 Γ i=1,..,d Ci η i + 1 8 |∇Φ i | 2 |f i | 2 ≤ 2c Γ 3 e -c3 s Γ    i=1,..,d j =i Θp j |f j | 2    ≤ C s f 2 .
By Proposition 5 (v), |ϕ i,2 | ≤ c 5 |∇ϕ i,2 | 2 in a neighborhood ϑ of ∂Ω and similarly one can deduce that,

- 2 Γ i=d+1,..,2d ϑ η i + 1 8 |∇Φ i | 2 |f i | 2 ≤ 2 -s/c Γ i=d+1,..,2d ϑ (-η i ) |f i | 2 .
By Proposition 5 (vi), there is c 6 > 0 such that ϕ i,2 -ϕ i,1 ≤ -c 6 outside the neighborhood ϑ of ∂Ω which implies

- 2 Γ i=d+1,..,2d Ω\ϑ η i + 1 8 |∇Φ i | 2 |f i | 2 ≤ 2c Γ 3 e -c6 s Γ i=1,..,d Ω\ϑ |f i | 2 ≤ C s f 2 .
This completes the proof of (3.5.6).

Consequently, by (3.5.5) and (3.5.6) one can conclude that for any h ∈ (0, 1] and any s ∈ (0, 1] sufficiently small,

S f , f + 2 Sf , Af ≤ Cs Γ i=1,..,2d Ω |∇f i | 2 + C s h 2 f 2 + 2 -s/c Γ i=1,..,2d Ω (-η i ) |f i | 2 which implies S f , f + 2 Sf , Af ≤ 1 + C 0 Γ Sf , f + C h 2 f 2
with C 0 ∈ (0, 1) and C > 0. Finally, the system (3.4.1) of ordinary differential inequalities becomes

     1 2 d dt f 2 + N (t) f 2 ≤ a ∞ f 2 , N (t) ≤ 1 + C 0 Γ N (t) + a 2 ∞ + C h 2 .

Step 6: Solve ODE

Let h ∈ (0, 1] and > 1 such that h <min(1/2, T /4). Applying Proposition 3 with t 3 = T , t 2 = T -h, and t 1 = T -2 h, we obtain that

y (T -h) 1+M ≤ y (T ) y (T -2 h) M e D where D = 2M F 2 (2 h) 2 + F 1 (2 h) , M = ( +1) C 0 -1 1-( +1 2 +1 ) C 0 ≤ ( +1) C 0 1-( 2 3 ) C 0 if C 0 > 0. From now, y (t) = f (•, t) 2 , N is the frequency function N, F 1 = a ∞ and F 2 = a 2 ∞ + C h 2 :
We have by the above Proposition 3 and Step 5,

f (•, T -h) 2 1+M ≤ f (•, T ) 2 f (•, T -2 h) 2 M K (3.6.1) where K = e D with D = 2M a 2 ∞ + C h 2 (2 h) 2 + a ∞ (2 h) . Notice that when a 2/3 ∞ h < 1, then the following upper bound for K holds K ≤ e C (1+ a 2/3 ∞ ) . (3.6.2) Indeed, D ≤ 2M 1 + 4C 2 + 2 a 2 ∞ (2 h) 2 and h 2 a 2 ∞ = a 2/3 ∞ a 2/3 ∞ h 2 ≤ a 2/3 ∞ .

Step 7: Make appear ω

It is well-known that for any 0

≤ t 1 ≤ t 2 ≤ T , u (•, t 2 ) L 2 (Ω) ≤ e (t2-t1) a ∞ u (•, t 1 ) L 2 (Ω) (3.7.1)
where a ∞ = a L ∞ (Ω×(0,T )) .

Observe that

f 1 2 L 2 (Ω) ≤ f 2 ≤ 2 i=1,..,d f i 2 L 2 (Ω)
since ϕ i,2 ≤ ϕ i,1 on Ω. Therefore, (3.6.1) becomes

f 1 (•, T -h) 2 L 2 (Ω) 1+M ≤ 2 i=1,..,d f i (•, T ) 2 L 2 (Ω) ×   2 i=1,..,d f i (•, T -2 h) 2 L 2 (Ω)   M K .
(3.7.2)

First, notice that from (3.7.1), using Φ i ≤ 0,

f i (•, T -2 h) 2 L 2 (Ω) ≤ e 2T a ∞ Ω |u (•, 0)| 2 . (3.7.3) Second, we make appear ω i,r = {x; |x -p i | < r} ⊂ ω from f i (•, T ) 2 L 2 (Ω)
as follows:

f i (•, T ) 2 L 2 (Ω) = ωi,r |u (•, T )| 2 e s h ϕi,1 + Ω\ωi,r |u (•, T )| 2 e s h ϕi,1 ≤ ω |u (•, T )| 2 + e -sµ h e 2T a ∞ Ω |u (•, 0)| 2 (3.7.4)
because on Ω \ω i,r , ϕ i,1 ≤ -µ for some µ > 0 and we used (3.7.1). Third, from (3.7.1) with h <min(1/2, T /4) and -ϕ 1,1 ≤ c it holds We will choose > 1 large enough in order that sc(1+M ) ( +1)h -sµ h ≤ -sµ 2h that is c(1+M ) ( +1) ≤ µ 2 . This is possible because M ≤ ( +1) C 0 1-( 23 )

C 0 with C 0 ∈ (0, 1). Therefore, combining with the upper bound for K (see (3.6.2)), there are M > 0 and c > 0, such that for any h > 0 satisfying h <min(1/2, T /4) and a This completes the proof.

  Proposition 1 .-Let Ω ⊂ R n be a bounded connected open set of class C ∞ , and let ω be a non-empty open subset of Ω. Then there exist d ∈ N

  h e T a ∞ (1+M ) f 1 (•, T -h)

∞Ω

  h < 1, we have Ω |u (•, T )| 2 1+M ≤ e c(1+T a ∞ + a 2/3 ∞ ) h > 0 such that e -1 h e c(1+ 1 T +T a ∞ + a 2/3∞ ) e 2T a ∞ desired estimate for some M 1 > 1 and c 1 > 0