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 where the authors proposed a variance reduction technique for the computation of parameter-dependent expectations using a reduced basis paradigm. We study the effect of Monte-Carlo sampling on the theoretical properties of greedy algorithms. In particular, using concentration inequalities for the empirical measure in Wasserstein distance proved in [14], we provide sufficient conditions on the number of samples used for the computation of empirical variances at each iteration of the greedy procedure to guarantee that the resulting method algorithm is a weak greedy algorithm with high probability. These theoretical results are not fully practical and we therefore propose a heuristic procedure to choose the number of Monte-Carlo samples at each iteration, inspired from this theoretical study, which provides satisfactory results on several numerical test cases.

In other words, the subspace V n is a quasi-optimal subspace of dimension n for the approximation of random variables f µ (Z) for µ ∈ P in an L 2 norm sense.

However, in practice, variances cannot be computed exactly and have to be approximated by empirical means involving a finite number of samples of the random vector Z, which may be different from one iteration of the greedy algorithm to another. The main result of this article is to give theoretical lower bounds on the number of samples which have to be taken at each iteration of the greedy algorithm in order to guarantee that the resulting Monte-Carlo greedy algorithm enjoys quasi-optimality properties close to those of an ideal greedy algorithm with high probability.

, which plays a fundamental role for model-order reduction.

 on the mathematical analysis of greedy algorithms in Hilbert spaces. In Section 3, we present the Monte-Carlo greedy algorithm, which is the main focus of this article, our main theoretical result and its proof. This theoretical result does not yield a fully practical algorithm. To alleviate this difficulty, we propose in Section 4 a heuristic algorithm, inspired from the theoretical result, which provides satisfactory results on several test cases.

Introduction

The aim of this article is to provide a mathematical study of the algorithm proposed in [START_REF] Boyaval | A variance reduction method for parametrized stochastic differential equations using the reduced basis paradigm[END_REF] where the authors proposed a variance reduction technique for the computation of parameter-dependent expectations using a reduced basis paradigm.

More precisely, the problematic we are considering here is the following: let us denote by P ⊂ R m a set of parameter values. In several applications, it is of significant interest to be able to rapidly compute the expectation of a random variable of the form f µ (Z) for a large numbers of values of the parameter µ ∈ P, where Z is a random vector and where for all µ ∈ P, f µ is a real-valued function. In practice, such expectations may not be computable analytically and are approximated using empirical means involving a large number of random samples of the random vector Z. Variance reduction methods are commonly used in such contexts in order to reduce the computational cost of approximating these expectations by means of standard Monte-Carlo algorithms. Among these, control variates, which are chosen as approximations of the random variable f µ (Z) the expectation of which can be easily computed, can yield to interesting gains in terms of computational cost, provided that the variance of the difference between f µ (Z) and its approximation is small. The construction of efficient control variates for a given application is thus fundamental for the variance reduction technique to yield significant computational gains.

In [START_REF] Boyaval | A variance reduction method for parametrized stochastic differential equations using the reduced basis paradigm[END_REF], the authors proposed a general algorithm in order to construct a control variate for f µ (Z) using a reduced basis paradim. More precisely, the approximation of f µ (Z) is constructed as a linear combination of f µ1 (Z), • • • , f µn (Z) for some small integer n ∈ N * and well-chosen values µ 1 , • • • , µ n ∈ P of the parameters. The choice of n and of the values of the parameters stems from an iterative procedure, called a greedy algorithm, which consists at iteration n ∈ N to compute

µ n+1 ∈ argmax µ∈P inf Zn∈Vn Var [f µ (Z) -Z n ] ,
where V n := Span {f µ1 (Z), • • • , f µn (Z)}. In the ideal (unpractical) case where variances can be exactly computed, the procedure boils down to a standard greedy algorithm in a Hilbert space [START_REF] Devore | Greedy algorithms for reduced bases in banach spaces[END_REF]. It is now well-known [START_REF] Devore | Greedy algorithms for reduced bases in banach spaces[END_REF] that such a greedy procedure provides a quasi-optimal set of parameters µ 1 , • • • , µ n in the sense that the error sup

µ∈P inf Zn∈Vn Var [f µ (Z) -Z n ] = inf Zn∈Vn Var f µn+1 (Z) -Z n
is comparable to the so-called Kolmogorov n-width of the set {f µ (Z), µ ∈ P}, defined by

sup µ∈P inf W n vectorial subspace dimW n = n inf Zn∈Wn Var [f µ (Z) -Z n ] .
2 Motivation: greedy algorithms for reduced bases and variance reduction

Motivation: reduced basis control variate

The aim of this section is to present the motivation of our work, which aims at constructing control variates for reducing the variance of a Monte-Carlo estimator of the mean of parameter-dependent functions of random vectors.

Let us begin by introducing some notation. Let d ∈ N * , (Ω, F, P) be a probability space and Z a R d -valued random vector with associated probability measure ν. For all q ∈ N * , we denote by

L q ν (R d ) := f : R d → R, R d |f (x)| q dν(x) < +∞ .
Let C(R d ) denote the set of continuous real-valued functions defined on R d . Let p ∈ N * , P ⊂ R p be a set of parameter values, and for all µ ∈ P, let f µ be an element of C(R d ) ∩ L 2 ν (R d ). For all f, g ∈ C(R d ), any M ∈ N * and any collection Z := (Z k ) 1≤k≤M of random vectors of R d , we define the empirical averages:

E Z (f ) := 1 M M k=1 f (Z k ) , Cov Z (f, g) := E Z (f g) -E Z (f )E Z (g), Var Z (f ) := Cov Z (f, f ).
The aim of our work is to propose and analyse from a mathematical point of view a numerical method in order to efficiently construct control variates to reduce the variance of a Monte-Carlo estimator of E [f µ (Z)] for all µ ∈ P using a Reduced Basis paradigm [START_REF] Jan S Hesthaven | Certified reduced basis methods for parametrized partial differential equations[END_REF][START_REF] Barrault | An 'empirical interpolation'method: application to efficient reduced-basis discretization of partial differential equations[END_REF][START_REF] Quarteroni | Reduced basis methods for partial differential equations: an introduction[END_REF][START_REF] Devore | The theoretical foundation of reduced basis methods. Model Reduction and approximation: Theory and Algorithms[END_REF], which was originally proposed in [START_REF] Boyaval | A variance reduction method for parametrized stochastic differential equations using the reduced basis paradigm[END_REF]. be two independent collections of iid random vectors distributed according to the law of Z and independent of Z.

Let us assume that we have selected N values of parameters (µ 1 , µ 2 , ..., µ N ) ∈ P N for some N ∈ N * and assume that the empirical means (E Z ref (f µi )) 1≤i≤N have been computed in an offline phase.

In an online phase, for all µ ∈ P, we can build an approximation of E [f µ (Z)], using a control variate which reads as f µ (Z) for some function f µ : R d → R:

E [f µ (Z)] ≈ E Z ref (f µ ) + E Z small f µ -f µ . (1) 
Remark 2.1. Let us point out that the statistical error between

E Z ref (f µ ) and E f µ (Z) is close to Var f µ (Z) M ref ,
whereas the error between

E Z small f µ -f µ and E (f µ -f µ )(Z) is of the order of Var f µ -f µ (Z) M small .
The aim of the Monte-Carlo greedy algorithm studied in this article is to give an approximation of

E [f µ (Z)]
with an error close to

Var[fµ(Z)] M ref
within a much smaller computational time than the one required by the computation of

E Z ref (f µ ).
In the method studied here, the control variate function f µ is constructed as follows:

f µ = N i=1 λ µ i f µi
where λ µ := (λ µ i ) 1≤i≤N ∈ R N is a solution of the linear system

Aλ µ = b µ (2) 
where

A := (A ij ) 1≤i,j≤N ∈ R N ×N and b µ := (b µ i ) 1≤i≤N ∈ R N are defined as follows: for all 1 ≤ i, j ≤ N , A ij = Cov Z small (f µi , f µj ) and b µ i = Cov Z small (f µ , f µi ). (3) 
Equivalently, the vector λ µ is a solution of the minimization problem

λ µ ∈ argmin λ:=(λi) 1≤i≤N ∈R N Var Z small f µ - N i=1 λ i f µi .
Let us point out that λ µ is a random vector which can be written as a deterministic function of Z small . In other words, λ µ is measurable with respect to Z small . Remarking that

E Z ref (f µ ) = N i=1 λ µ i E Z ref (f µi ), the computation of the approximation (1) of E [f µ (Z)
] thus requires the following steps:

• offline phase: Compute (E Z ref (f µi )) 1≤i≤N (N empirical means with M ref samples), (E Z small (f µi )) 1≤i≤N
(N empirical means with M small samples) and the matrix A (N 2 empirical covariances with M small samples).

• online phase: For all µ ∈ P, compute b µ (N empirical covariances with M small samples) and solve the linear system (2) to obtain λ µ . Then, compute the approximation (1

) of E [f µ (Z)] as E [f µ (Z)] ≈ N i=1 λ µ i E Z ref (f µi ) + E Z small (f µ ) - N i=1 λ µ i E Z small (f µi ) , (4) 
which requires O(N ) elementary operations and the computation of one empirical mean with M small samples.

Naturally, the approximation of E [f µ (Z)] given by (1) can be interesting from a computational point of view in terms of variance reduction only if Var f µ (Z) -f µ (Z) is much smaller than Var [f µ (Z)]. The following question thus naturally arises: how can the set of parameters (µ 1 , µ 2 , .., µ N ) ∈ P N be chosen in the offline phase in order to ensure that Var f µ (Z) -f µ (Z) is as small as possible for any value of µ ∈ P?

Greedy algorithms stand as the state-of-the-art technique to construct such sets of snapshot parameters, enjoy very nice mathematical properties and are the backbone of the method proposed in [START_REF] Boyaval | A variance reduction method for parametrized stochastic differential equations using the reduced basis paradigm[END_REF] which we wish to analyze here. We present this family of algorithms and related existing theoretical convergence results in the next section.

Greedy algorithms for reduced basis

Let us recall here the results of [START_REF] Buffa | A priori convergence of the greedy algorithm for the parametrized reduced basis method[END_REF][START_REF] Binev | Convergence rates for greedy algorithms in reduced basis methods[END_REF][START_REF] Devore | Greedy algorithms for reduced bases in banach spaces[END_REF] on the convergence rates of greedy algorithms for reduced bases, adapted to our context. Let us define

L 2 ν,0 (R d ) := g ∈ L 2 ν (R d ), R d g dν = 0 . It holds that L 2 ν,0 (R d
) is a Hilbert space, equipped with the scalar product •, • defined by

∀g 1 , g 2 ∈ L 2 ν,0 (R d ), g 1 , g 2 = R d g 1 g 2 dν = Cov [g 1 (Z), g 2 (Z)] .
The associated norm is denoted by • and is given by

∀g ∈ L 2 ν,0 (R d ), g = R d |g| 2 dν 1/2 = Var [g(Z)].
For all µ ∈ P, let us define

g µ := f µ -E [f µ (Z)] (5) 
and let us denote by M := {g µ , µ ∈ P} [START_REF] Boyaval | A variance reduction method for parametrized stochastic differential equations using the reduced basis paradigm[END_REF] so that M ⊂ L 2 ν,0 (R d ). Let us assume that M is a compact subset of L 2 ν,0 (R d ). For all n ∈ N * , we introduce the Kolmogorov n-width of the set M in L 2 ν,0 (R d ), defined by

d n (M) := inf V n ⊂ L 2 ν,0 (R d ) subspace, dim V n = n sup µ∈P inf gn∈Vn Var [g µ (Z) -g n (Z)] = inf V n ⊂ L 2 ν,0 (R d ) subspace, dim V n = n sup µ∈P inf gn∈Vn g µ -g n .
Let 0 < γ < 1 and consider the following weak greedy algorithm with parameter γ.

Weak-Greedy Algorithm:

Initialization: Find µ 1 ∈ P such that g µ1 2 ≥ γ 2 max µ∈P g µ 2 . ( 7 
) Set V 1 := Span{g µ1 } and set n = 2. Iteration n ≥ 2: Find µ n ∈ P such that inf (λi) 1≤i≤n-1 ∈R n-1 g µn - n-1 i=1 λ i g µi 2 ≥ γ 2 max µ∈P inf (λi) 1≤i≤n-1 ∈R n-1 g µ - n-1 i=1 λ i g µi 2 , (8) 
Set V n := V n-1 + Span{g µn } = Span{g µ1 , • • • , g µn }.
For all n ∈ N * , the error associated with the n-dimensional subspace V n given by the weak greedy algorithm is defined by

σ n (M) := max µ∈P inf (λi) 1≤i≤n ∈R n g µ - n i=1 λ i g µi .
The following result is then a direct corollary of the results proved in [START_REF] Devore | Greedy algorithms for reduced bases in banach spaces[END_REF]Corollary 3.3].

Theorem 2.2. For all n ∈ N * , σ n (M) ≤ √ 2γ -1 min 0≤m<n (d m (M))
n-m n . In particular, for all n ∈ N * ,

σ 2n (M) ≤ √ 2γ -1 d n (M).
This result indicates that the weak greedy algorithm provides a practical way to construct a quasi-optimal sequence (V n ) n∈N * of finite dimensional subspaces of L 2 ν,0 (R d ). Of course, the weak greedy algorithm introduced above cannot be implemented in practice since it requires at the n th iteration of the algorithm the computation of the exact variances of g µ (Z)-

n-1 i=1 λ i g µi (Z) for µ, µ 1 , • • • , µ n-1 ∈ P and λ 1 , • • • , λ n-1 ∈ R,
which is out of reach in our context. In practice, these quantities have to be approximated by Monte-Carlo estimators involving a finite number of samples of the random vector Z. The resulting greedy algorithm with Monte Carlo sampling is presented in Section 3. The mathematical analysis of this algorithm is the main purpose of the present article.

For the sake of simplicity, in the rest of the article, we assume that for all n ∈ N * , d n (M) > 0.

3 Greedy algorithm with Monte-Carlo sampling

Presentation of the algorithm

Let us begin by presenting the greedy algorithm with Monte Carlo sampling.

Let (M n ) n∈N * be a sequence of integers, which represents the number of samples used at iteration n. For all n ∈ N * , let Z n := (Z n k ) 1≤k≤Mn be a collection of random vectors such that (Z n k ) n≥1, 1≤k≤Mn are independent and identically distributed according to the law of Z, and independent of Z. Let ν,0 (R d ), we define

g 1 , g 2 Z 1:∞ := Cov g 1 (Z), g 2 (Z) Z 1:∞ and g 1 Z 1:∞ := Var g 1 (Z) Z 1:∞ .
Let us make here an important remark. Since Z 1:∞ is a collection of random vectors which are all independent of Z, it holds that, for all f, g ∈ L 2 ν,0 (R d ), almost surely,

f, g Z 1:∞ = Cov f (Z), g(Z) Z 1:∞ = Cov [f (Z), g(Z)] = f, g , g 2 Z 1:∞ = Var g(Z) Z 1:∞ = Var[g(Z)] = g 2 .
Hence, almost surely, •, • Z 1:∞ defines a scalar product on L 2 ν,0 (R d ), which is a Hilbert space when equipped with this scalar product, and • Z 1:∞ is the associated norm.

The greedy algorithm with Monte-Carlo sampling reads as follows:

MC-Greedy Algorithm: Initialization: Find µ 1 ∈ P such that, almost surely,

µ 1 ∈ argmax µ∈P Var Z 1 (g µ ) and g µ 1 = 0. (9) Set V 1 := Span{g µ 1 } and set n = 2.
Iteration n ≥ 2: Find µ n ∈ P such that, almost surely,

µ n ∈ argmax µ∈P inf (λi) 1≤i≤n-1 ∈R n-1 Var Z n g µ - n-1 i=1 λ i g µ i and g µ n / ∈ V n-1 . ( 10 
) Set V n := V n-1 + Span{g µ n } = Span{g µ 1 , • • • , g µ n }.
Naturally, for all n ∈ N * , the parameter µ n and thus the finite-dimensional space V n are Z 1:n -measurable.

Let us first prove an auxiliary lemma.

Lemma 3.1. Almost surely, all the iterations of the MC-Greedy Algorithm are well-defined, in the sense that, for all n ∈ N * , there always exists at least one element µ n ∈ P such that (9) (when n = 1) or (10) (when n ≥ 2) is satisfied.

Proof of Lemma 3.1. Let us first consider the initialization step corresponding to n = 1. Two situations may a priori occur : either

max µ∈P Var Z 1 (g µ ) > 0 or max µ∈P Var Z 1 (g µ ) = 0. In the first case, choosing µ 1 ∈ argmax µ∈P Var Z 1 (g µ ) is sufficient to guarantee that g µ 1 = 0. Indeed, since M ⊂ C(R d ) (remember that f µ
is continuous for all µ ∈ P, and hence so is g µ ), the fact that Var Z 1 g µ 1 > 0 necessarily implies that

Var g µ 1 (Z) Z 1:∞ > 0 almost surely. Since Z 1:∞ is independent of Z and µ 1 is a Z 1:∞ measurable random
variable, this implies that almost surely g µ 1 = 0.

In the second case, it then holds that Var Z 1 (g µ ) = 0 for all µ ∈ P. Then, the assumption d 1 (M) > 0 implies that, almost surely, there exists at least one element µ 1 ∈ P such that g µ 1 = 0. In addition,

µ 1 ∈ argmax µ∈P Var Z 1 (g µ ).
Using similar arguments and the fact that d n (M) > 0 for all n ∈ N * , it is easy to see that, almost surely, all the iterations of the MC-Greedy algorithm are well-defined, in particular for n ≥ 2.

Remark 3.2. We stress on the fact that the practical implementation of the MC-greedy algorithm does not require the knowledge of the value of

E[f µ (Z)], even if g µ = f µ -E[f µ (Z)] for all µ ∈ P. Indeed, it holds that for all g ∈ C(R d ), all n ∈ N * and all C ∈ R, Var Z n (g) = Var Z n (g + C). Thus, for all µ ∈ P, n ∈ N * and λ := (λ i ) 1≤i≤n-1 ∈ R n-1 , Var Z 1 (g µ ) = Var Z 1 (f µ )
and

Var Z n g µ - n-1 i=1 λ i g µ i = Var Z n f µ - n-1 i=1 λ i f µ i .
Thus, the MC-greedy algorithm naturally makes sense with a view to the construction of a reduced basis control variate for variance reduction as explained in Section 2.1.

Remark 3.3. In practice, a discrete subset P trial ⊂ P has to be introduced. The optimization problems [START_REF] Cohen | Reduced basis greedy selection using random training sets[END_REF] and [START_REF] Devore | Greedy algorithms for reduced bases in banach spaces[END_REF] have to be replaced respectively by

µ 1 ∈ argmax µ∈P trial Var Z 1 (g µ ) and g µ 1 = 0, and 
µ n ∈ argmax µ∈P trial inf (λi) 1≤i≤n-1 ∈R n-1 Var Z n g µ - n-1 i=1 λ i g µ i and g µ n / ∈ V n-1 .
The influence of the choice of the set P trial on the mathematical properties of the MC-greedy algorithm is an important question which we do not address in our analysis for the sake of simplicity. For related discussion, we refer the reader to the work [START_REF] Cohen | Reduced basis greedy selection using random training sets[END_REF], where the authors study the mathematical properties of a greedy algorithm where the set P trial depends on the iteration n of the greedy algorithm and is randomly chosen according to appropriate probability distributions defined on the set of parameters P.

For all n ∈ N * , we also define

σ n-1 (M) := max µ∈P inf (λi) 1≤i≤n-1 ∈R n-1 Var g µ (Z) - n-1 i=1 λ i g µ i (Z) Z 1:∞ , (11) 
σ n-1 (M) := inf (λi) 1≤i≤n-1 ∈R n-1 Var g µ n (Z) - n-1 i=1 λ i g µ i (Z) Z 1:∞ (12) 
Let us point out here that σ n-1 (M) is a random variable which is measurable with respect to Z

1:(n-1)
whereas µ n and σ n-1 (M) are measurable with respect to Z 1:n .

Main theoretical result

The aim of this section is to study the effect of Monte-Carlo sampling on the convergence of such a greedy algorithm. We consider here the probability space (Ω, A(Z 1:∞ ), P) the probabilty space where A(Z 1:∞ ) denotes the set of events that are measurable with respect to Z 1:∞ . We prove, under appropriate assumptions on the probability density ν and on the set of functions M = {g µ , µ ∈ P}, that for all 0 < γ < 1, there exist explicit conditions on the sequence (M n ) n∈N * so that, with high probability, the MC-greedy algorithm is actually a weak greedy algorithm with parameter γ. More precisely, under this set of assumptions, we prove that, with high probability, it holds that for all n ∈ N * ,

σ n-1 (M) ≥ γ σ n-1 (M).
Let us now present the set of assumptions we make on ν and on the set M = {g µ , µ ∈ P} for our main result to hold.

From now on, we make the following assumption on the probability distribution ν.

Assumption (A):

The probability law ν is such that there exist α > 1 and β > 0 such that R e β|x| α dν(x) < +∞.

Let us denote by L the set of Lipschitz functions of R d and for all f ∈ L, let us denote by f L its Lipschitz constant. In the sequel, we denote by φ : R * + → R * + the function defined by

∀κ ∈ R * + , φ(κ) :=    κ 2 1 κ≤1 + κ α 1 κ>1 if d = 1, (κ/ log(2 + 1/κ) 2 )1 κ≤1 + κ α 1 κ>1 if d = 2, κ d 1 κ≤1 + κ α 1 κ>1 if d ≥ 3. (13) 
A key ingredient in our analysis is the use of concentration inequalities in the Wasserstein-1 distance between a probability distribution and its empirical measure proved in [START_REF] Bolley | Quantitative concentration inequalities for empirical measures on non-compact spaces[END_REF][START_REF] Fournier | On the rate of convergence in wasserstein distance of the empirical measure[END_REF]. Let us recall here a direct corollary of Theorem 2 of [START_REF] Fournier | On the rate of convergence in wasserstein distance of the empirical measure[END_REF], which is the backbone of our analysis.

Corollary 3.4. Let us assume that ν satisfies assumption (A). Then, there exist positive constants c, C depending only on ν, d, α and β, such that, for all M ∈ N * , all Z := (Z k ) 1≤k≤M iid random vectors distributed according to ν and all κ > 0, it holds that

P T 1 Z ≥ κ ≤ Ce -cM φ(κ) ,
where

T 1 Z := sup f ∈L; f L ≤1 |E[f (Z)] -E Z (f )| .
Remark 3.5. We would like to mention here that other concentration inequalities are stated in Theorem 2 of [START_REF] Fournier | On the rate of convergence in wasserstein distance of the empirical measure[END_REF] under different sets of assumptions than (A) on the probability law ν. In particular, weaker concentration inequalities may be obtained when ν only has some finite polynomial moments. Our analysis can then be easily adapted to these different settings but we restrict ourselves here to a framework where ν satisfies Assumption (A) for the sake of clarity.

We finally make the following set of assumptions on M defined in [START_REF] Boyaval | A variance reduction method for parametrized stochastic differential equations using the reduced basis paradigm[END_REF].

Assumption (B):

The set M satisfies the four conditions:

(B1) M is a compact subset of L 2 ν,0 (R d ) and let K 2 := sup µ∈P g µ < ∞;

(B2) M ⊂ L and K L := sup µ∈P g µ L < +∞;

(B3) M ⊂ L ∞ (R d ) and K ∞ := sup µ∈P g µ L ∞ < +∞; (B4) for all n ∈ N * , d n (M) > 0.
Before presenting our main result, we need to introduce some additional notation. Using Lemma 3.1, we can almost surely define the sequence (g n ) n∈N * as the orthonormal family of L 2 ν,0 (R d ) obtained by a Gram-Schmidt orthonormalization procedure (for • Z 1:∞ ) from the family (g µ n ) n∈N * . More precisely, we define

g 1 := g µ 1 Var g µ 1 (Z) Z 1:∞ . Moreover, for all n ≥ 2, et λ n := λ n i 1≤i≤n-1
∈ R n-1 be a solution to the minimization problem

λ n ∈ argmin λ:=(λi) 1≤i≤n-1 ∈R n-1 Var g µ n (Z) - n-1 i=1 λ i g i (Z) Z 1:∞ .
Then it holds that

g n := g µ n - n-1 i=1 λ n i g i Var g µ n (Z) - n-1 i=1 λ n i g i (Z) Z 1:∞ .
As a consequence, it always holds that

V n = Span g µ 1 , • • • , g µ n = Span {g 1 , • • • , g n }. Moreover, g n is Z 1:n -measurable.
We are now in position to state our main result, the proof of which is postponed to Section 3.3.

Theorem 3.6. Let 0 < δ < 1 and (δ n ) n∈N * ⊂ (0, 1) N * be a sequence of numbers satisfying

Π n∈N * (1 -δ n ) ≥ 1 -δ.
Let us assume that M satisfies assumption (B) and that ν satisfies assumption (A). Let C, c > 0 be the constants defined in Corollary 3.4. For all n ∈ N * , let

K n ∞ := max (K ∞ , g 1 L ∞ , • • • , g n L ∞ ) and K n L := max (K L , g 1 L , • • • , g n L ) . (14) 
Let us assume that there exists 0 < γ < 1 such that for all n ∈ N * , M n ∈ N * is a Z 1:(n-1) measurable random variable which satisfies almost surely the following condition:

∀n ≥ 1, M n ≥ -ln δ n C 1 cφ (κ n-1 ) , ( 15 
)
where κ n-1 is a deterministic function of Z 1:(n-1) , defined by

κ 0 := 1 -γ 2 σ 0 (M) 2 8K ∞ K L ; (16) 
and

∀n ≥ 2, κ n-1 := min 1 2(n-1) , (1-γ 2 ) σn-1(M) 2 n(9K 2 2 +4) 6K n-1 ∞ K n-1 L . ( 17 
)
Then, for all n ∈ N * , it holds that

P σ n-1 (M) ≥ γ σ n-1 (M) Z 1:(n-1) ≥ 1 -δ n . ( 18 
)
As a consequence, denoting by G n the event σ n-1 (M) ≥ γ σ n-1 (M) for all n ∈ N * , it holds that

P n∈N * G n ≥ 1 -δ. (19) 
Thus, it then holds that the MC-greedy algorithm is a weak greedy algorithm with parameter γ and norm • Z 1:∞ with probability at least 1 -δ.

We state here a direct corollary of Theorem 3.6, the proof of which is given below.

Corollary 3.7. Under the assumptions of Theorem 3.6, with probability 1 -δ, it holds that for all n ∈ N * ,

σ n (M) ≤ √ 2γ -1 min 1≤m<n (d m (M)) n-m n . ( 20 
)
In particular, with probability 1 -δ, it holds that

∀n ∈ N * , σ 2n (M) ≤ √ 2γ -1 d n (M). (21) 
Proof. With probability 1 -δ, the MC-greedy algorithm is a weak greedy algorithm with parameter γ and norm • Z 1:∞ . Thus, since for all n ∈ N * , µ n is a Z 1:∞ measurable random variable, if such an event is realized, using Theorem 2.2, it holds that for all n ∈ N *

σ n (M) ≤ √ 2γ -1 min 1≤m<n d Z 1:∞ m (M) n-m n
, where for all n ∈ N * ,

d Z 1:∞ n (M) := inf V n ⊂ L 2 ν,0 (R d ) subspace, dim V n = n sup µ∈P inf gn∈Vn Var g µ (Z) -g n (Z) Z 1:∞ = inf V n ⊂ L 2 ν,0 (R d ) subspace, dim V n = n sup µ∈P inf gn∈Vn Var [g µ (Z) -g n (Z)] = d n (M).
Hence, we obtain (20), and (21) as a consequence.

Some remarks are in order here.

Remark 3.8. Note that, since the random variables

K n-1 ∞ , K n-1
L and σ n-1 (M) are measurable with respect to Z 1:(n-1) , κ n-1 is also measurable with respect to Z 1:(n-1) .

Remark 3.9. A natural question is then the following: can Theorem 3.6 be used (at least in principle) to design a constructive strategy to choose a number of samples M n , so that the MC-greedy algorithm can be guaranteed to be a weak greedy algorithm with parameter γ? This can indeed be done in principle using the following remark: for all n ∈ N * , the quantity σ n-1 (M) defined by ( 11) cannot be computed in practice since variances cannot be computed exactly for any parameter µ ∈ P. However, almost surely, it holds that σ n-1 (M) defined by ( 12) satisfies σ n-1 (M) ≤ σ n-1 (M). Let us recall that σ n-1 (M) depends on Z 1:n , whereas σ n-1 (M) only depends on Z 1:(n-1) . Since φ is an increasing function, this implies that, if the sequence (M n ) n∈N * satisfies condition [START_REF] Jan S Hesthaven | Certified reduced basis methods for parametrized partial differential equations[END_REF] where σ 0 (M) is replaced by σ 0 (M) in ( 16) and σ n-1 (M) is replaced by σ n-1 (M) in [START_REF] Smetana | Randomized residual-based error estimators for the proper generalized decomposition approximation of parametrized problems[END_REF], the assumptions of Theorem 3.6 are satisfied. Besides, it is reasonable to expect in this case that σ n-1 (M) should provide a reasonable approximation of σ n-1 (M) since, from Theorem 3.6, σ n-1 (M) ≥ γ σ n-1 (M) with high probability.

Unfortunately, we will see that such an approach is not viable in practice, because it leads to much too large values of M n for small values of n for the MC-greedy algorithm to be interesting with a view to the variance reduction method explained in Section 2.1. That is why in Section 4, we will present numerical results with heuristic ways to choose values of (M n ) n∈N * which are not theoretically guaranteeed, but which nevertheless yield satisfactory numerical results in several test cases.

Proof of Theorem 3.6

The aim of this section is to prove Theorem 3.6. For all n ∈ N * , we denote by G n the event σ n (M) ≥ γ σ n (M).

Let us begin by proving some intermediate results which will be used later. We first need the following auxiliary lemma. Lemma 3.10. Let n ∈ N * . Then, almost surely,

sup f Z 1:∞ -measurable random function such that f L ≤ 1 almost surely E f (Z)|Z 1:∞ -E Z n (f ) = sup f ∈L; f L ≤1 |E [f (Z)] -E Z n (f )| .
Proof. On the one hand, it is obvious to check that

sup f ∈L; f L ≤1 |E [f (Z)] -E Z n (f )| ≤ sup f Z 1:∞ -measurable random function such that f L ≤ 1 almost surely E f (Z)|Z 1:∞ -E Z n (f ) .
On the other hand, for any Z 1:∞ -measurable random function f such that f L ≤ 1 almost surely, it holds that, almost surely, since Z

1:∞ is independent of Z, E[f (Z)|Z 1:∞ ] = E Z [f (Z)]
where the index Z in E Z indicates that the expectation is only taken with respect to Z, and thus

E f (Z)|Z 1:∞ -E Z n (f ) ≤ sup f ∈L; f L ≤1 |E [f (Z)] -E Z n (f )| .
Hence the result.

We start by considering the case of the initialization of the MC-greedy algorithm.

Lemma 3.11. Let 0 < γ < 1. Then, it holds that almost surely,

P Var g µ 1 (Z) Z 1:∞ ≥ γ 2 max µ∈P Var g µ (Z) Z 1:∞ ≥ 1 -δ 1 . ( 22 
)
As a consequence, P [G 1 ] ≥ 1 -δ 1 and ( 18) holds for n = 1.

Proof. Let µ 1 ∈ P such that

σ 0 (M) 2 = max µ∈P Var g µ (Z) Z 1:∞ = Var g µ1 (Z)|Z 1:∞ .
Inequality (22) holds provided that

P Var g µ1 (Z)|Z 1:∞ -Var g µ 1 (Z) Z 1:∞ > σ 0 (M) 2 ≤ δ 1 , with := 1 -γ 2 . Almost surely, since µ 1 ∈ argmax µ∈P Var Z 1 (g µ ), it holds that Var g µ1 (Z)|Z 1:∞ -Var g µ 1 (Z) Z 1:∞ = Var g µ1 (Z)|Z 1:∞ -Var Z 1 (g µ1 ) + Var Z 1 (g µ1 ) -Var Z 1 g µ 1 + Var Z 1 g µ 1 -Var g µ 1 (Z) Z 1:∞ ≤ Var g µ1 (Z)|Z 1:∞ -Var Z 1 (g µ1 ) + Var Z 1 g µ 1 -Var g µ 1 (Z) Z 1:∞ = E |g µ1 | 2 (Z)|Z 1:∞ -E Z 1 |g µ1 | 2 + E Z 1 (g µ1 ) 2 -E g µ1 (Z) Z 1:∞ 2 -E |g µ 1 | 2 (Z)|Z 1:∞ + E Z 1 |g µ 1 | 2 -E Z 1 g µ 1 2 + E g µ 1 (Z)|Z 1:∞ 2 ≤ E |g µ1 | 2 (Z)|Z 1:∞ -E Z 1 |g µ1 | 2 + 2K ∞ E Z 1 (g µ1 ) -E [g µ1 (Z)] + E |g µ 1 | 2 (Z)|Z 1:∞ -E Z 1 |g µ 1 | 2 + 2K ∞ E Z 1 g µ 1 -E g µ 1 (Z)|Z 1:∞ , ≤ 2K ∞ K L × E |g µ1 | 2 2K ∞ K L (Z)|Z 1:∞ -E Z 1 |g µ1 | 2 2K ∞ K L + E |g µ 1 | 2 2K ∞ K L (Z)|Z 1:∞ -E Z 1 |g µ 1 | 2 2K ∞ K L + E Z 1 g µ 1 K L -E g µ 1 K L (Z)|Z 1:∞ + E Z 1 g µ1 K L -E g µ1 K L (Z)|Z 1:∞ . It holds that for all µ ∈ P, |g µ | 2 L ≤ 2K ∞ K L .
Indeed, for all x, y ∈ R d , we have

||g µ | 2 (x) -|g µ | 2 (y)| = |(g µ (x) + g µ (y))(g µ (x) -g µ (y))| ≤ 2K ∞ K L |x -y|.
Thus, almost surely, it holds that

Var g µ1 (Z)|Z 1:∞ -Var g µ 1 (Z) Z 1:∞ ≤ 8K ∞ K L sup f ∈L; f L ≤1 E f (Z)|Z 1:∞ -E Z 1 (f ) .
Then, using Lemma 3.10, we obtain that, almost surely,

Var g µ1 (Z)|Z 1:∞ -Var g µ 1 (Z) Z 1:∞ ≤ 8K ∞ K L sup f ∈L; f L ≤1 E [f (Z)] -E Z 1 (f ) .
Thus, using Theorem 3.4, the assumption on M 1 and the definition of κ 0 , we obtain that

P sup f ∈L; f L ≤1 E [f (Z)] -E Z 1 (f ) ≥ κ 0 ≤ Ce -cφ(κ0) ≤ δ 1 .
Hence the desired result.

We now turn to the case of the n th iteration of the algorithm, with n ≥ 2, that we analyze in the next two lemmas. Lemma 3.12. Let n ≥ 2. Let us denote by

M n-1 := M ∪ {g 1 , • • • , g n-1 }. ( 23 
)
Then, for all > 0, it holds that, almost surely,

P sup g,h∈M n-1 Cov g(Z), h(Z) Z 1:∞ -Cov Z n (g, h) ≥ Z 1:(n-1) ≤ Ce -cMnφ 6K n-1 ∞ K n-1 L , where K n-1 L and K n-1
∞ are defined by [START_REF] Fournier | On the rate of convergence in wasserstein distance of the empirical measure[END_REF].

Proof. For all g, h ∈ M n-1 , it holds that, almost surely,

Cov g(Z), h(Z) Z 1:∞ -Cov Z n (g, h) ≤ E g(Z)h(Z) Z 1:∞ -E Z n (gh) + K n-1 ∞ E g(Z) Z 1:∞ -E Z n (g) + E h(Z) Z 1:∞ -E Z n (h) ≤ 2K n-1 ∞ K n-1 L E gh 2K n-1 ∞ K n-1 L (Z) Z 1:∞ -E Z n gh 2K n-1 ∞ K n-1 L + E g 2K n-1 L (Z) Z 1:∞ -E Z n g 2K n-1 L + E h 2K n-1 L (Z) Z 1:∞ -E Z n h 2K n-1 L . For all g, h ∈ M n-1 , it holds that gh 2K n-1 ∞ K n-1 L L ≤ 1 and g 2K n-1 L L ≤ 1.
This implies that, almost surely,

sup g,h∈M n-1 Cov g(Z), h(Z) Z 1:∞ -Cov Z n (g, h) ≤ 6K n-1 ∞ K n-1 L sup f ∈L, f L ≤1 E f (Z) Z 1:∞ -E Z n (f ) .
Using Lemma 3.10, this yields that, almost surely,

sup g,h∈M n-1 Cov g(Z), h(Z) Z 1:∞ -Cov Z n (g, h) ≤ 6K n-1 ∞ K n-1 L sup f ∈L, f L ≤1 |E [f (Z)] -E Z n (f )| .
We finally obtain, using Corollary 3.4, that

P sup g,h∈M n-1 Cov g(Z), h(Z) Z 1:∞ -Cov Z n (g, h) > Z 1:(n-1) ≤ P sup f ∈L, f L ≤1 |E [f (Z)] -E Z n (f )| > 6K n-1 ∞ K n-1 L Z 1:(n-1) ≤ P sup f ∈L, f L ≤1 |E [f (Z)] -E Z n (f )| > 6K n-1 ∞ K n-1 L Z 1:(n-1) ≤ Ce -cMnφ 6K n-1 ∞ K n-1 L .
Hence the result.

Lemma 3.13. Let 0 < γ < 1 and n ≥ 2. Then, it holds that almost surely

P G n |Z 1:(n-1) ≥ 1 -δ n .
Proof. Since (g 1 , • • • , g n ) forms a basis of V n-1 , for all µ ∈ P, there exists one unique minimizer to

min (λi) 1≤i≤n-1 ∈R n-1 Var g µ (Z) - n-1 i=1 λ i g i (Z) Z 1:∞ . Let λ n := λ n i 1≤i≤n-1
∈ R n-1 be the unique minimizer of

λ n := argmin λ:=(λi) 1≤i≤n-1 Var g µ n (Z) - n-1 i=1 λ i g i (Z) Z 1:∞ . ( 24 
)
As a consequence, it holds that

σ n-1 (M) = Var g µ n (Z) - n-1 i=1 λ n i g i (Z) Z 1:∞
where σ n-1 (M) is defined by [START_REF] Devore | The theoretical foundation of reduced basis methods. Model Reduction and approximation: Theory and Algorithms[END_REF]. Let µ n ∈ P such that

µ n ∈ argmax µ∈P min (λi) 1≤i≤n-1 ∈R n-1 Var g µ (Z) - n-1 i=1 λ i g i (Z) Z 1:∞ , so that σ n-1 (M) = min (λi) 1≤i≤n-1 ∈R n-1 Var g µn (Z) - n-1 i=1 λ i g i (Z) Z 1:∞ ,
where σ n-1 (M) is defined in [START_REF] Devore | Nonlinear approximation[END_REF].

Let λ n := λ n i 1≤i≤n-1 ∈ R n-1 the unique minimizer of

λ n := argmin λ:=(λi) 1≤i≤n-1 Var g µn (Z) - n-1 i=1 λ i g i (Z) Z 1:∞ , (25) 
so that

σ n-1 (M) = Var g µn (Z) - n-1 i=1 λ n i g i (Z) Z 1:∞ .
The event G n holds if and only if

Var g µ n (Z) - n-1 i=1 λ n i g i (Z) Z 1:∞ ≥ γ 2 Var g µn (Z) - n-1 i=1 λ n i g i (Z) Z 1:∞ . ( 26 
)
Let us begin by pointing out that, since

Var g µn (Z) - n-1 i=1 λ n i g i (Z) Z 1:∞ ≥ Var g µ n (Z) - n-1 i=1 λ n i g i (Z) Z 1:∞ , if the inequality Var g µn (Z) - n-1 i=1 λ n i g i (Z) Z 1:∞ -Var g µ n (Z) - n-1 i=1 λ n i g i (Z) Z 1:∞ ≤ (1 -γ 2 )Var g µn (Z) - n-1 i=1 λ n i g i (Z) Z 1:∞ (27) 
holds, then ( 26) is necessarily statisfied. The rest of the proof consists in estimating the probability that ( 27) is realized. To this aim, as a first step, we are going to prove an upper bound on

Var g µn (Z) - n-1 i=1 λ n i g i (Z) Z 1:∞ -Var g µ n (Z) - n-1 i=1 λ n i g i (Z) Z 1:∞ as a function of η := sup g,h∈Mn-1 Cov g(Z), h(Z)| Z 1:∞ -Cov Z n (g, h) , (28) 
which is the quantity estimated in Lemma 3.12. More precisely, let us now prove that

Var g µn (Z) - n-1 i=1 λ n i g i (Z) Z 1:∞ -Var g µ n (Z) - n-1 i=1 λ n i g i (Z) Z 1:∞ ≤ n 2 + K 2 + √ n -1η 1 -(n -1)η 2 + K 2 2 η. ( 29 
)
It holds that for all 1 ≤ i ≤ n -1, from ( 24) and ( 25),

λ n i = Cov g µn (Z), g i (Z)|Z 1:∞ and λ n i = Cov g µ n (Z), g i (Z)|Z 1:∞ ,
and it then holds that, almost surely,

max λ n 2 , λ n 2 ≤ max g µn , g µ n ≤ K 2 , (30) 
where

• 2 denotes the Euclidean norm of R n-1 . Let now λ n,n := λ n,n i 1≤i≤n-1 ∈ R n-1 be a minimizer of λ n,n := argmin λ:=(λi) 1≤i≤n-1 ∈R n-1 Var Z n g µn - n-1 i=1 λ i g i , and λ n,n := λ n,n i 1≤i≤n-1 ∈ R n-1 be a minimizer of λ n,n := argmin λ:=(λi) 1≤i≤n-1 ∈R n-1 Var Z n g µ n - n-1 i=1 λ i g i
It then holds that for all 1 ≤ i ≤ n -1, λ n,n and λ n,n are solution to the linear systems

A n λ n,n = b n and A n λ n,n = b n ,
where

A n := A n ij 1≤i,j≤n-1 ∈ R (n-1)×(n-1) , b n := b n i 1≤i≤n-1 , b n := b n i 1≤i≤n-1 ∈ R n-1 are defined as follows: for all 1 ≤ i, j ≤ n -1, A n ij = Cov Z n g i , g j , b n i = Cov Z n (g µn , g i ) and b n i = Cov Z n g µ n , g i .
Then, it holds that, almost surely,

max 1≤i≤n-1 b n i -λ n i , b n i -λ n i ≤ η, which implies that max b n 2 , b n 2 ≤ K 2 + √ n -1η.
Moreover, we have max 1≤i,j≤n-1

A n ij -δ ij ≤ η, which yields that for all ξ ∈ R n-1 , ( 1 
-(n -1)η) ξ 2 2 ≤ ξ T A n ξ ≤ (1 + (n -1)η) ξ 2 2 .
Assume for now that η(n -1) < 1, this implies that, for all ξ ∈ R n-1 ,

(A n ) -1 ξ 2 ≤ 1 1 -(n -1)η ξ 2 . ( 31 
)
Using (31), we obtain that

max λ n,n 2 , λ n,n 2 ≤ K 2 + √ n -1η 1 -(n -1)η . ( 32 
)
We then have,

Var g µn (Z) - n-1 i=1 λ n i g i (Z) Z 1:∞ -Var g µ n (Z) - n-1 i=1 λ n i g i (Z) Z 1:∞ = Var g µn (Z) - n-1 i=1 λ n i g i (Z) Z 1:∞ -Var g µn (Z) - n-1 i=1 λ n,n i g i (Z) Z 1:∞ + Var g µn (Z) - n-1 i=1 λ n,n i g i (Z) Z 1:∞ -Var Z n g µn - n-1 i=1 λ n,n i g i + Var Z n g µn - n-1 i=1 λ n,n i g i -Var Z n g µ n - n-1 i=1 λ n,n i g i + Var Z n g µ n - n-1 i=1 λ n,n i g i -Var Z n g µ n - n-1 i=1 λ n i g i + Var Z n g µ n - n-1 i=1 λ n i g i -Var g µ n (Z) - n-1 i=1 λ n i g i (Z) Z 1:∞ .
Using the fact that

Var g µn (Z) - n-1 i=1 λ n i g i (Z) Z 1:∞ -Var g µn (Z) - n-1 i=1 λ n,n i g i (Z) Z 1:∞ ≤ 0, Var Z n g µn - n-1 i=1 λ n,n i g i -Var Z n g µ n - n-1 i=1 λ n,n i g i ≤ 0, Var Z n g µ n - n-1 i=1 λ n,n i g i -Var Z n g µ n - n-1 i=1 λ n i g i ≤ 0,
from the definition of λ n , λ n,n , λ n,n , µ n , we obtain that

Var g µn (Z) - n-1 i=1 λ n i g i (Z) Z 1:∞ -Var g µ n (Z) - n-1 i=1 λ n i g i (Z) Z 1:∞ ≤ Var g µn (Z) - n-1 i=1 λ n,n i g i (Z) Z 1:∞ -Var Z n g µn - n-1 i=1 λ n,n i g i + Var Z n g µ n - n-1 i=1 λ n i g i -Var g µ n (Z) - n-1 i=1 λ n i g i (Z) Z 1:∞ , = Var g µn (Z)| Z 1:∞ -Var Z n (g µn ) -2 n-1 i=1 λ n,n i Cov g µn (Z), g i (Z)| Z 1:∞ -Cov Z n (g µn , g i ) + n-1 i,j=1 λ n,n i λ n,n j Cov g i (Z), g j (Z) Z 1:∞ -Cov Z n g i , g j + Var Z n g µ n -Var g µ n (Z) Z 1:∞ -2 n-1 i=1 λ n i Cov Z n g µ n , g i -Cov g i (Z), g j (Z) Z 1:∞ + n-1 i,j=1 λ n i λ n j Cov Z n g i , g j -Cov g µ n (Z), g i (Z) Z 1:∞ .
Now, using the definition of M n-1 given in (23), we obtain that

Var g µn (Z) - n-1 i=1 λ n i g i (Z) Z 1:∞ -Var g µ n (Z) - n-1 i=1 λ n i g i (Z) Z 1:∞ ≤   1 + 2 n-1 i=1 | λ n,n i | + n-1 i,j=1 | λ n,n i || λ n,n j | + 1 + 2 n-1 i=1 |λ n i | + n-1 i,j=1 |λ n i ||λ n j |   × sup g,h∈Mn-1 Cov g(Z), h(Z)| Z 1:∞ -Cov Z n (g, h) .
Since sup

g,h∈Mn-1 Cov g(Z), h(Z)| Z 1:∞ -Cov Z n (g, h) = η, we then have, almost surely, Var g µn (Z) - n-1 i=1 λ n i g i (Z) Z 1:∞ -Var g µ n (Z) - n-1 i=1 λ n i g i (Z) Z 1:∞ ≤   1 + n-1 i=1 | λ n,n i | 2 + 1 + n-1 i=1 |λ n i | 2   sup g,h∈Mn-1 Cov g(Z), h(Z)| Z 1:∞ -Cov Z n (g, h) ≤ n 2 + n-1 i=1 | λ n,n i | 2 + n-1 i=1 |λ n i | 2 η ≤ n 2 + λ n,n 2 2 + λ n 2 2 η.
Finally, using (30) and (32), we obtain (29), i.e.

σ n-1 (M) -σ n-1 (M) ≤ n 2 + K 2 + √ n -1η 1 -(n -1)η 2 + K 2 2 η.
Let us now evaluate the probability, conditioned to the knowledge of Z 1:∞ , that

n 2 + K 2 + √ n -1η 1 -(n -1)η 2 + K 2 2 η ≤ (1 -γ 2 ) σ n-1 (M). ( 33 
)
If η is chosen to be smaller that 1 2(n-1) , then it holds that

2 + K 2 + √ n -1η 1 -(n -1)η 2 + K 2 2 ≤ 2 + (2K 2 + 1) 2 + K 2 2 ≤ 9K 2 2 + 4.
A sufficient condition for (33) to hold is then to ensure that η ≤ with

:= min 1 2(n -1) , (1 -γ 2 ) σ 2 n-1 (M) n (9K 2 2 + 4)
, Then, it holds that

P G n Z 1:∞ = P σ n-1 (M) 2 ≥ γ 2 σ n-1 (M) 2 Z 1:∞ = P σ n-1 (M) 2 -σ n-1 (M) 2 ≤ (1 -γ 2 ) σ n-1 (M) 2 Z 1:∞ ≥ P n 2 + K 2 + √ n -1η 1 -(n -1)η 2 + K 2 2 η ≤ (1 -γ 2 ) σ n-1 (M) Z 1:∞ ≥ P η ≤ Z 1:∞ .
Thus, using the definition of η given by (28) and applying Lemma 3.12, we then obtain that

P G n |Z 1:(n-1) ≥ P η ≤ Z 1:∞ = P sup g,h∈M n-1 Cov g(Z), h(Z) Z 1:∞ -Cov Z n (g, h) ≤ Z 1:(n-1) ≥ 1 -δ n , since Ce -cMnφ(κn-1) ≤ δ n , with κ n-1 := min 1 2(n-1) , (1-γ 2 ) σ 2 n-1 (M) n(9K 2 2 +4) 6K n-1 ∞ K n-1 L ,
which yields the desired result.

We are now in position to end the proof of Theorem 3.6.

Proof of Theorem 3.6. Collecting Lemma 3.11 and Lemma 3.13, we obtain (18) for all n ∈ N * . Let us now prove (19). Let us first prove by recursion that for all n ∈ N * ,

P n k=1 G k ≥ Π n k=1 (1 -δ k ). (34) 
Using Lemma 3.11, it holds that (34) is true for n = 1. Now we turn to the proof of the recursion. Let n ∈ N * . For any event Z, we denote by 1 Z the random variable which is equal to 1 if Z is realized and 0 if not. Using the fact that n k=1 G k is measurable with respect to Z 1:n , it holds that

P n+1 k=1 G k = E 1 n+1 k=1 G k = E E 1 Gn+1 1 n k=1 G k Z 1:n = E E 1 Gn+1 Z 1:n 1 n k=1 G k = E P G n+1 Z 1:n 1 n k=1 G k .
Now using Lemma 3.13, it holds that almost surely P G n+1 Z 1:n ≥ 1 -δ n+1 . Hence, it holds that

P n+1 k=1 G k ≥ (1 -δ n+1 )E 1 n k=1 G k = (1 -δ n+1 )P n k=1 G k .
The recursion is thus proved, together with (34), which implies (19).

If n∈N G n is realised, it then holds that the MC-greedy algorithm is a weak greedy algorithm with parameter γ and norm

• Z 1:∞ = Var •|Z 1:∞ .

Numerical results

The aim of this section is to compare several procedures to choose the value of the sequence (M n ) n∈N * in the MC-greedy algorithm presented in Section 3.1.

Three numerical procedures

As mentioned in Remark 3.9, it is possible to design a constructive way to define a sequence of numbers of samples (M n ) n∈N * which satisfies assumptions of Theorem 3.6, and thus which guarantees that the corresponding MC-greedy algorithm is a weak-greedy algorithm with high probability. Unfortunately, it appears that such a procedure cannot be used in practice to design a variance reduction method since the values of the sequence (M n ) n∈N * increases too sharply. The objective of this section is to propose a heuristic procedure to choose a sequence (M n ) n∈N * for an MC-greedy algorithm. This heuristic procedure appears to yield a reduced basis approximation f µ of f µ which provides very satisfactory results in terms of variance reduction, at least on the different test cases presented below.

We use here the same notation as in Section 2.1 and consider

M ref ∈ N * such that M ref 1.
The idea of this heuristic method is the following: assume that the sequence (M n ) n∈N * can be chosen so that for all n ∈ N * , the inequality

inf (λi) 1≤i≤n-1 ∈R n-1 Var g µ (Z) - n-1 i=1 λ i g i (Z) Z 1:∞ - inf (λi) 1≤i≤n-1 ∈R n-1 Var Z n g µ - n-1 i=1 λ i g i ≤ (1 -γ 2 ) inf (λi) 1≤i≤n-1 ∈R n-1 Var g µ (Z) - n-1 i=1 λ i g i (Z) Z 1:∞ (35)
holds for all µ ∈ P. Then, it can easily be checked that such an MC-greedy algorithm is a weak greedy algorithm with parameter γ. Of course, such an algorithm could not be of any use for variance reduction since it would imply the computation of

inf (λi) 1≤i≤n-1 ∈R n-1 Var g µ (Z) - n-1 i=1 λ i g i (Z) Z 1:∞ (or an approximation of this quantity of the form inf (λi) 1≤i≤n-1 ∈R n-1 Var Z ref g µ - n-1 i=1 λ i g i with Z ref = Z ref k 1≤k≤M ref a collection
of iid random variables with the same law as Z and independent of Z) for all µ ∈ P.

The idea of the heuristic procedure is then to check if the inequality (35) holds, only for the value µ = µ n . If the inequality holds, the value of M n+1 is chosen to be equal to M n for the next iteration. Otherwise, the value of M n is increased and the n th iteration of the MC-greedy algorithm is performed again. This heuristic procedure leads to the Heuristic MC-greedy algorithm (or HMC-greedy algorithm), see Algorithm 1. Notice that we introduce here P trial a finite subset of P, which is classically called the trial set of parameters in reduced basis methods.

For the sake of comparison, we introduce two other algorithms, which cannot be implemented in practice, but which will allow us to compare the performance of the HMC-greedy algorithm with ideal procedures. The first method, called SHMC-greedy algorithm and also presented in Algorithm 1 as a variant, consists in designing the sequence (M n ) n∈N * in order to ensure that the inequality (35) is satisfied for all µ ∈ P trial (and not only for µ n ). The second one consists in performing an ideal MC-greedy algorithm, called herefater IMC-greedy algorithm, see Algorithm 2, where all the variances and expectations are evaluated using M ref number of samples of the random variable Z at each iteration of the MC-greedy algorithm.

Let us comment on the termination criterion

Var Z ref f µ (S)H n-1 M ref > Var Z ref f µ (S)H n-1 -f µ (S)H n-1 M n-1
introduced in line 11 of the (S)HMC-greedy algorithm. Recall that, for µ = µ

(S)H n-1 , the expectation E f µ (S)H n-1
(Z) is approximated after n -1 iterations of the greedy algorithm by the control variate formula (see ( 1))

E Z ref (f µ (S)H n-1 ) + E Z n-1 f µ (S)H n-1 -f µ (S)H n-1 . ( 36 
)
This criterion ensures that the iterative scheme ends when the statistical error associated with the second term in (36) becomes smaller than the statistical error of the first term (see Remark 2.1).

Figure 1 illustrates the evolution of the values of M n as a function of n for the HMC and SHMC algorithms. In comparison, in Figure 5, the relative error e (S)H n (µ) is plotted as a function of µ for n = 0, 5, 10, 20, 30. In particular, we observe that this error remains lower than 1% as soon as n ≥ 10 on P. Naturally, this error is larger for µ ∈ P test \ P. Finally, to illustrate the gain of our proposed method in terms of variance reduction, we plot on Figure 6 the value of the number of random Monte-Carlo samples M M C (µ) that would have been necessary to compute an approximation of the mean of f µ (Z) with a standard Monte-Carlo method with the same level of accuracy than the one given by the HMC-algorithm after n = 30 iterations. In this case, let us point out that M n = 349. More precisely, we compute M M C (µ) by the follwoing formula:

M M C (µ) = Var Z ref (f µ ) × M n Var Z n f µ - n i=1 λ µ i f µ i . (43) 
Figure 6 illustrates that, for all µ ∈ P, the classical Monte Carlo method would have required a number of samples M M C (µ) in the range 10 6 ≤ M M C (µ) ≤ 10 12 in order to obtain the same level of statistical error. Thus, we see that the HMC-algorithm significantly improves the efficiency of the computation of the expectation of f µ (Z) with respect to a standard Monte-Carlo algorithm.

Second test case

In this example, we consider a second family of one-dimensional functions where P = [0, 1] is the set of parameter values. More precisely, we consider the family of functions (f µ ) µ∈P such that, for all µ in P:

∀x ∈ [0, 1], f µ (x) :=    √ x + 0.1 if x ∈ [0, µ] 1 2 (µ + 0.1) -1 2 x - 1 2 (µ + 0.1) -1 2 µ + (µ + 0.1) 1 2 if x ∈ [µ, 1] (44) 
Let us point out that for all µ ∈ P, f µ is a C 1 function on [0, 1]. In this case, it is known [START_REF] Ehrlacher | Nonlinear model reduction on metric spaces. application to one-dimensional conservative pdes in wasserstein spaces[END_REF] that there exists a constant c > 0 such that d n (M) ≤ cn -2 for all n ∈ N * .

Let Z be a random variable with probability measure ν = U(0, 1).

In this example, M 1 = 10, M ref = 10 5 , γ = 0.9 and the trial set P trial is chosen to be a set of 300 random parameter values which were uniformly sampled in P. In this test case, we osbserve a similar behaviour of the (S)HMC-algorithm as in the first test case.

Figure 11 illustrates the computational gain brought by the HMC algorithm after n = 70 iterations (so that M n = 3109) with respect to the classical Monte Carlo method. Indeed, the quantity M M C (µ) defined in (43) is observed to vary in this case between 10 12 and 10 18 . 

Two-dimensional heat equation

Let Z 1 and Z 2 be two independent real-valued random varibales with probability laws respectively U(0. We introduce a conform triangular mesh T of the domain D as represented on the left-hand side plot of Figure 13 and denote by V h := {u ∈ C (D) , u| T ∈ P 1 ∀T ∈ T , u| ∂D = 0} , the standard P 1 finite element space associated to this mesh.

For µ ∈ P and z ∈ (0.5, 2) × R, we define u µ,z h ∈ V h the unique solution to In this example, M ref = 10 5 , M 1 = 800 and γ = 0.9. Figure 14 illustrates the evolution of the values of M n as a function of n for the HMC and SHMC algorithms. It is to be noted here that the quantities θ H n , θ SH n and θ I n are very close: the quality of approximation of the reduced spaces V H n or V SH n is very close to the quality of approximation of the reduced space V I n given by an ideal greedy algorithm. Figure 17 shows the value of M M C (µ) given by (43), knowing that M n = 12800 after n = 7 iterations of the HMC algorithm. We observe that in this case 10 14 ≤ M M C (µ) ≤ 10 20 , which shows the huge computational gain brought by the HMC algorithm with respect to a standard Monte-Carlo method in this test case. 

a µ,z (u µ,z h , v) = b(v), ∀v ∈ V h , (45) 

  More precisely, let M small , M ref ∈ N * and assume that M ref M small . Let Z ref := Z ref k 1≤k≤M ref and Z small := Z small k 1≤k≤M small

  For any random functions g 1 , g 2 with values in L 2
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 1 Figure 1: Evolution of M n as a function of n for the HMC and SHMC-greedy algorithms in test case 1.
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 2 Figure 2: Evolution of θ H n (µ H n ), θ SH n (µ SH n ), θ H n , θ SH nas a function of n in test case 1.
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 2 Figure2illustrates the fact that at each iteration n ∈ N * , for the (S)HMC-algorithm, the value of the selected parameter µ (S)H n is relevant since we observe numerically that θ (S)H (µ(S)H n) is very close to
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 3 Figure 3: Evolution of β H n , β SH n , θ H n , θ SH n , θ I n as a function of n in test case 1.

Figure 3

 3 Figure 3 illustrates the fact that the value of the number of samples M n chosen at each iteration n ∈ N * enables to compute empirical variances that are close to exact variances since the values of β (S)H n are very close to the θ (S)H n for the (S)HMC-algorithm.

Figure 4

 4 Figure 4: θ H n (µ), θ SH n (µ), β H n (µ), β SH n (µ) as a function of µ for n = 0, 5, 10, 20, 30 on P test = [0, 4].

Figure 5

 5 Figure 5: e H n (µ) and e SH n (µ) as a function of µ for n = 0, 5, 10, 20, 30 on P test = [0, 4].
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 6 Figure 6: M M C (µ) as a function of µ ∈ P test = [0, 4].
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 7 Figure 7: Evolution of M n as a function of n for the HMC and SHMC-greedy algorithms.

Figure 11 :Figure 12 :

 1112 Figure 11: M M C (µ) as a function of µ ∈ P test = [0, 1].
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 52 and N (0, 1)) and let Z = (Z 1 , Z 2 ). Let D = (0, 2) 2 , P := [0, 10]. The trial set P trial is constructed by selecting 50 random values uniformly distributed in P.For all µ ∈ P and z := (z 1 , z 2 ) ∈ (0, 5, 2) × R, we introduceD µ,z : y) → D µ,z 11 (x, y) 0 0 D µ,z 22 (x, y) where ∀(x, y) ∈ D, D µ,z11 (x, y) = 13 + µ sin(2πx/z 1 ) + 0.5z 2 and D µ,z 22 (x, y) = 13 + µ sin(2πy/z 1 ) + 0.5z 2 .

where ∀v, w ∈ H 1 0Figure 13 :

 113 Figure 13: Left: mesh T (the triangle T 1 is highlighted in red color); Center: u µ,z h for µ = 9 and z = (1, 0); Right: u µ,z h for µ = 9 and z = (1.777, 0.2062).
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 14 Figure 14: Evolution of M n as a function of n for the HMC and SHMC-greedy algorithms in test case 3.

Figure 15 :

 15 Figure 15: Evolution of θ H n(µ H n ), θ SH n (µ SH n ), θ H n , θ SHn as a function of n in test case 3.

Figure 16 :

 16 Figure 16: Evolution of β H n , β SH n , θ H n , θ SH n , θ I n as a function of n in test case 3.

Figure 17 :

 17 Figure 17: M M C (µ) as a function of µ ∈ P test = [0, 12].

Figure 18

 18 Figure 18: θ H n (µ), θ SH n (µ), θ I n (µ), β H n (µ), β SH n (µ) as a function of µ for n = 5 in test case 3.

Figure 19

 19 Figure 19: e H n (µ) and e SH n (µ) as a function of µ for n = 5 and n = 8 in test case 3.
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Definitions of quantities of interest

For each of the test cases presented below, we plot different quantities of interest which we define here.

For all n ∈ N * , we denote by

) the set of parameter values selected after n iterations of the HMC-greedy (respectively SHMC-greedy and IMCgreedy) algorithm. We also denote by V

and

For all µ ∈ P and n ∈ N * , we define for the three algorithms presented in Section 4.1,

and

In what follows, we denote by θ H n (µ) and θ H n (respectively by θ SH n (µ), θ SH n , θ I n (µ) and θ I n ) the quantities defined by (37) and (38) obtained with the HMC-greedy (respectively the SHMC-greedy and IMC-greedy) algorithm. Note that, by definition of the IMC-greedy algorithm, θ I n = θ I n (µ I n ). A second quantity of interest for the HMC-greedy and the SHMC-greedy algorithms is given, for all n ∈ N * and µ ∈ P, by

and

In the sequel, we denote by β H n (respectively by β SH n ) the quantity defined by (40) obtained with the HMC-greedy (respectively the SHMC-greedy) algorithm.

Let us point out that when P trial = P and when M ref = ∞, it holds that θ n = σ n-1 (M) and θ n (µ n ) = σ n-1 (M) where σ n-1 (M) and σ n-1 (M) are defined respectively in [START_REF] Devore | Nonlinear approximation[END_REF] and [START_REF] Devore | The theoretical foundation of reduced basis methods. Model Reduction and approximation: Theory and Algorithms[END_REF].

We finally wish to evaluate the error made on the approximation of E[f µ (Z)] obtained by using the variance reduction method based on these MC-greedy algorithm. More precisely, this approximation is computed as output: N ∈ N * size of the reduced basis, µ

be a collection of M ref iid random variables with the same law as Z and independent of Z.

be a collection of M1 iid random variables with the same law as Z and independent of Z and Z ref .

5

Compute µ

).

8

• HMC case:

. Set n = 2 and Mn = M1.

11 while

Set R n = 1.

Let Z n := (Z n k ) 1≤k≤Mn be a collection of Mn iid random variables with the same law as Z and independent of Z and Z ref .

16

Compute µ

• SHMC case: For all µ ∈ P trial , compute θ SH n (µ) = min

, bn := max(1.1, rn) and set Mn = bnMn + 1 .

Algorithm 2: IMC-greedy algorithm input : > 0, P trial trial set of parameters (finite subset of P), M ref ∈ N * (high fidelity sampling number). output: N ∈ N * size of the reduced basis,

be a collection of M ref iid random variables with the same law as Z and independent of Z.

and µ i is equal to µ H i , µ SH i or µ I i depending on the chosen algorithm (remember formula [START_REF] Balabanov | Randomized linear algebra for model reduction. part i: Galerkin methods and error estimation[END_REF]). This quantity has to be compared with the approximation obtained with a standard Monte-Carlo with M ref samples, i.e. E Z ref (f µ ). To this aim, for all n ∈ N * and µ ∈ P, we define

In what follows, we denote by e H n (µ) (respectively e SH n (µ)) the quantity defined by (41) obtained by the HMC-greedy (respectively the SHMC-greedy) algorithm.

Explicit one-dimensional functions

We consider in this section two sets of one-dimensional explicit functions. The motivation for considering these two simple test cases is that the decays of the Kolmogorov n-widths of the associated sets M are known. Let P = [0, 3] be the set of parameter values. We consider in this first test case the family of functions (f µ ) µ∈P such that f µ (x) = f (x -µ) for all µ in P and x ∈ R. Let Z be a real-valued random variable with probability measure ν = U(0, 5). In this case, it is known [START_REF] Devore | Nonlinear approximation[END_REF] that there exists a constant c > 0 such that d n (M) ≥ cn -1/2 for all n ∈ N * .

First test case

In this example, M 1 = 10, M ref = 10 5 , γ = 0.9 and the trial set P trial is chosen to be a set of 300 random parameter values which were uniformly sampled in P.