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Abstract
The main focus of this article is to provide a mathematical study of the algorithm proposed in [6]

where the authors proposed a variance reduction technique for the computation of parameter-dependent
expectations using a reduced basis paradigm. We study the effect of Monte-Carlo sampling on the the-
oretical properties of greedy algorithms. In particular, using concentration inequalities for the empirical
measure in Wasserstein distance proved in [14], we provide sufficient conditions on the number of samples
used for the computation of empirical variances at each iteration of the greedy procedure to guarantee
that the resulting method algorithm is a weak greedy algorithm with high probability. These theoretical
results are not fully practical and we therefore propose a heuristic procedure to choose the number of
Monte-Carlo samples at each iteration, inspired from this theoretical study, which provides satisfactory
results on several numerical test cases.

1 Introduction
The aim of this article is to provide a mathematical study of the algorithm proposed in [6] where the authors
proposed a variance reduction technique for the computation of parameter-dependent expectations using a
reduced basis paradigm.

More precisely, the problematic we are considering here is the following: let us denote by P ⊂ Rm a
set of parameter values. In several applications, it is of significant interest to be able to rapidly compute
the expectation of a random variable of the form fµ(Z) for a large numbers of values of the parameter
µ ∈ P, where Z is a random vector and where for all µ ∈ P, fµ is a real-valued function. In practice, such
expectations may not be computable analytically and are approximated using empirical means involving a
large number of random samples of the random vector Z. Variance reduction methods are commonly used
in such contexts in order to reduce the computational cost of approximating these expectations by means
of standard Monte-Carlo algorithms. Among these, control variates, which are chosen as approximations
of the random variable fµ(Z) the expectation of which can be easily computed, can yield to interesting
gains in terms of computational cost, provided that the variance of the difference between fµ(Z) and
its approximation is small. The construction of efficient control variates for a given application is thus
fundamental for the variance reduction technique to yield significant computational gains.

In [6], the authors proposed a general algorithm in order to construct a control variate for fµ(Z) using a
reduced basis paradim. More precisely, the approximation of fµ(Z) is constructed as a linear combination of
fµ1

(Z), · · · , fµn(Z) for some small integer n ∈ N∗ and well-chosen values µ1, · · · , µn ∈ P of the parameters.
The choice of n and of the values of the parameters stems from an iterative procedure, called a greedy
algorithm, which consists at iteration n ∈ N to compute

µn+1 ∈ argmax
µ∈P

inf
Zn∈Vn

Var [fµ(Z)− Zn] ,

where Vn := Span {fµ1
(Z), · · · , fµn(Z)}. In the ideal (unpractical) case where variances can be exactly

computed, the procedure boils down to a standard greedy algorithm in a Hilbert space [10]. It is now
well-known [10] that such a greedy procedure provides a quasi-optimal set of parameters µ1, · · · , µn in the
sense that the error

sup
µ∈P

inf
Zn∈Vn

Var [fµ(Z)− Zn] = inf
Zn∈Vn

Var
[
fµn+1

(Z)− Zn
]

is comparable to the so-called Kolmogorov n-width of the set {fµ(Z), µ ∈ P}, defined by

sup
µ∈P

inf
Wn vectorial subspace

dimWn = n

inf
Zn∈Wn

Var [fµ(Z)− Zn] .
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In other words, the subspace Vn is a quasi-optimal subspace of dimension n for the approximation of random
variables fµ(Z) for µ ∈ P in an L2 norm sense.

However, in practice, variances cannot be computed exactly and have to be approximated by empirical
means involving a finite number of samples of the random vector Z, which may be different from one iteration
of the greedy algorithm to another. The main result of this article is to give theoretical lower bounds on the
number of samples which have to be taken at each iteration of the greedy algorithm in order to guarantee
that the resulting Monte-Carlo greedy algorithm enjoys quasi-optimality properties close to those of an ideal
greedy algorithm with high probability.

The mathematical analysis of algorithms which combine randomness and greedy procedures is a quite
recent and active field of research among the model-order reduction community. Let us mention here a few
works in this direction in which different settings than the one we focus on here are considered. In [9],
the authors consider the effect of randomly sampling the set of parameters in order to define random trial
sets at each iteration of the greedy algorithm and prove that the obtained procedure enjoys remarkable
approximation properties which remain very close to the approximation properties of a greedy algorithm
where minimization problems at each iteration are defined over the whole set of parameters. In [18, 17, 1, 2],
the authors propose randomized residual-based error estimators for parametrized equations, with a view to
using them for the acceleration of greedy algorithms for reduced basis techniques. Let us finally mention
that significant research efforts are devoted by many different groups to the improvement of randomized
algorithms for Singular Value Decompositions [8], which plays a fundamental role for model-order reduction.

The outline of the article is the following. In Section 2, we motivate the interest of greedy algorithms
for the construction of control variates for variance reduction methods and recall some results of [7, 4, 10]
on the mathematical analysis of greedy algorithms in Hilbert spaces. In Section 3, we present the Monte-
Carlo greedy algorithm, which is the main focus of this article, our main theoretical result and its proof.
This theoretical result does not yield a fully practical algorithm. To alleviate this difficulty, we propose in
Section 4 a heuristic algorithm, inspired from the theoretical result, which provides satisfactory results on
several test cases.

2 Motivation: greedy algorithms for reduced bases and variance
reduction

2.1 Motivation: reduced basis control variate
The aim of this section is to present the motivation of our work, which aims at constructing control variates
for reducing the variance of a Monte-Carlo estimator of the mean of parameter-dependent functions of
random vectors.

Let us begin by introducing some notation. Let d ∈ N∗, (Ω,F ,P) be a probability space and Z a
Rd-valued random vector with associated probability measure ν. For all q ∈ N∗, we denote by

Lqν(Rd) :=

{
f : Rd → R,

∫
Rd
|f(x)|q dν(x) < +∞

}
.

Let C(Rd) denote the set of continuous real-valued functions defined on Rd. Let p ∈ N∗, P ⊂ Rp be a set of
parameter values, and for all µ ∈ P, let fµ be an element of C(Rd) ∩ L2

ν(Rd).

For all f, g ∈ C(Rd), any M ∈ N∗ and any collection Z := (Zk)1≤k≤M of random vectors of Rd, we define
the empirical averages:

EZ(f) :=
1

M

M∑
k=1

f (Zk) ,

CovZ(f, g) := EZ(fg)− EZ(f)EZ(g),

VarZ(f) := CovZ(f, f).

The aim of our work is to propose and analyse from a mathematical point of view a numerical method in
order to efficiently construct control variates to reduce the variance of a Monte-Carlo estimator of E [fµ(Z)]
for all µ ∈ P using a Reduced Basis paradigm [15, 3, 16, 12], which was originally proposed in [6].
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More precisely, let Msmall,Mref ∈ N∗ and assume that Mref � Msmall. Let Z
ref

:=
(
Zref
k

)
1≤k≤Mref

and

Z
small

:=
(
Zsmall
k

)
1≤k≤Msmall

be two independent collections of iid random vectors distributed according to
the law of Z and independent of Z.

Let us assume that we have selected N values of parameters (µ1, µ2, ..., µN ) ∈ PN for some N ∈ N∗ and
assume that the empirical means (E

Z
ref (fµi))1≤i≤N have been computed in an offline phase.

In an online phase, for all µ ∈ P, we can build an approximation of E [fµ(Z)], using a control variate
which reads as fµ(Z) for some function fµ : Rd → R:

E [fµ(Z)] ≈ E
Z

ref (fµ) + E
Z

small

(
fµ − fµ

)
. (1)

Remark 2.1. Let us point out that the statistical error between E
Z

ref (fµ) and E
[
fµ(Z)

]
is close to√

Var
[
fµ(Z)

]
Mref

,

whereas the error between E
Z

small

(
fµ − fµ

)
and E

[
(fµ − fµ)(Z)

]
is of the order of√

Var
[(
fµ − fµ

)
(Z)
]

Msmall
.

The aim of the Monte-Carlo greedy algorithm studied in this article is to give an approximation of E [fµ(Z)]

with an error close to
√

Var[fµ(Z)]
Mref

within a much smaller computational time than the one required by the
computation of E

Z
ref (fµ).

In the method studied here, the control variate function fµ is constructed as follows:

fµ =

N∑
i=1

λµi fµi

where λµ := (λµi )1≤i≤N ∈ RN is a solution of the linear system

Aλµ = bµ (2)

where A := (Aij)1≤i,j≤N ∈ RN×N and bµ := (bµi )1≤i≤N ∈ RN are defined as follows: for all 1 ≤ i, j ≤ N ,

Aij = Cov
Z

small(fµi , fµj ) and bµi = Cov
Z

small(fµ, fµi). (3)

Equivalently, the vector λµ is a solution of the minimization problem

λµ ∈ argmin
λ:=(λi)1≤i≤N∈RN

Var
Z

small

(
fµ −

N∑
i=1

λifµi

)
.

Let us point out that λµ is a random vector which can be written as a deterministic function of Z
small

. In
other words, λµ is measurable with respect to Z

small
. Remarking that E

Z
ref (fµ) =

∑N
i=1 λ

µ
i EZref (fµi), the

computation of the approximation (1) of E [fµ(Z)] thus requires the following steps:

• offline phase: Compute (E
Z

ref (fµi))1≤i≤N (N empirical means withMref samples), (E
Z

small(fµi))1≤i≤N
(N empirical means with Msmall samples) and the matrix A (N2 empirical covariances with Msmall

samples).

• online phase: For all µ ∈ P, compute bµ (N empirical covariances with Msmall samples) and solve
the linear system (2) to obtain λµ. Then, compute the approximation (1) of E [fµ(Z)] as

E [fµ(Z)] ≈
N∑
i=1

λµi EZref (fµi) + E
Z

small (fµ)−
N∑
i=1

λµi EZsmall (fµi) , (4)
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which requires O(N) elementary operations and the computation of one empirical mean withMsmall samples.

Naturally, the approximation of E [fµ(Z)] given by (1) can be interesting from a computational point
of view in terms of variance reduction only if Var

[
fµ(Z)− fµ(Z)

]
is much smaller than Var [fµ(Z)]. The

following question thus naturally arises: how can the set of parameters (µ1, µ2, .., µN ) ∈ PN be chosen in
the offline phase in order to ensure that Var

[
fµ(Z)− fµ(Z)

]
is as small as possible for any value of µ ∈ P?

Greedy algorithms stand as the state-of-the-art technique to construct such sets of snapshot parameters,
enjoy very nice mathematical properties and are the backbone of the method proposed in [6] which we wish
to analyze here. We present this family of algorithms and related existing theoretical convergence results in
the next section.

2.2 Greedy algorithms for reduced basis
Let us recall here the results of [7, 4, 10] on the convergence rates of greedy algorithms for reduced bases,
adapted to our context. Let us define

L2
ν,0(Rd) :=

{
g ∈ L2

ν(Rd),
∫
Rd
g dν = 0

}
.

It holds that L2
ν,0(Rd) is a Hilbert space, equipped with the scalar product 〈·, ·〉 defined by

∀g1, g2 ∈ L2
ν,0(Rd), 〈g1, g2〉 =

∫
Rd
g1g2 dν = Cov [g1(Z), g2(Z)] .

The associated norm is denoted by ‖ · ‖ and is given by

∀g ∈ L2
ν,0(Rd), ‖g‖ =

(∫
Rd
|g|2 dν

)1/2

=
√

Var [g(Z)].

For all µ ∈ P, let us define
gµ := fµ − E [fµ(Z)] (5)

and let us denote by
M := {gµ, µ ∈ P} (6)

so thatM⊂ L2
ν,0(Rd). Let us assume thatM is a compact subset of L2

ν,0(Rd). For all n ∈ N∗, we introduce
the Kolmogorov n-width of the setM in L2

ν,0(Rd), defined by

dn(M) := inf
Vn ⊂ L2

ν,0(Rd) subspace,
dim Vn = n

sup
µ∈P

inf
gn∈Vn

√
Var [gµ(Z)− gn(Z)]

= inf
Vn ⊂ L2

ν,0(Rd) subspace,
dim Vn = n

sup
µ∈P

inf
gn∈Vn

‖gµ − gn‖ .

Let 0 < γ < 1 and consider the following weak greedy algorithm with parameter γ.

Weak-Greedy Algorithm:

Initialization: Find µ1 ∈ P such that

‖gµ1
‖2 ≥ γ2 max

µ∈P
‖gµ‖2 . (7)

Set V1 := Span{gµ1
} and set n = 2.

Iteration n ≥ 2: Find µn ∈ P such that

inf
(λi)1≤i≤n−1∈Rn−1

∥∥∥∥∥gµn −
n−1∑
i=1

λigµi

∥∥∥∥∥
2

≥ γ2 max
µ∈P

inf
(λi)1≤i≤n−1∈Rn−1

∥∥∥∥∥gµ −
n−1∑
i=1

λigµi

∥∥∥∥∥
2

, (8)

Set Vn := Vn−1 + Span{gµn} = Span{gµ1 , · · · , gµn}.
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For all n ∈ N∗, the error associated with the n-dimensional subspace Vn given by the weak greedy
algorithm is defined by

σn(M) := max
µ∈P

inf
(λi)1≤i≤n∈Rn

∥∥∥∥∥gµ −
n∑
i=1

λigµi

∥∥∥∥∥ .
The following result is then a direct corollary of the results proved in [10, Corollary 3.3].

Theorem 2.2. For all n ∈ N∗, σn (M) ≤
√

2γ−1 min
0≤m<n

(dm(M))
n−m
n . In particular, for all n ∈ N∗,

σ2n (M) ≤
√

2γ−1
√
dn(M).

This result indicates that the weak greedy algorithm provides a practical way to construct a quasi-optimal
sequence (Vn)n∈N∗ of finite dimensional subspaces of L2

ν,0(Rd).

Of course, the weak greedy algorithm introduced above cannot be implemented in practice since it
requires at the nth iteration of the algorithm the computation of the exact variances of gµ(Z)−

∑n−1
i=1 λigµi(Z)

for µ, µ1, · · · , µn−1 ∈ P and λ1, · · · , λn−1 ∈ R, which is out of reach in our context. In practice, these
quantities have to be approximated by Monte-Carlo estimators involving a finite number of samples of the
random vector Z. The resulting greedy algorithm with Monte Carlo sampling is presented in Section 3. The
mathematical analysis of this algorithm is the main purpose of the present article.

For the sake of simplicity, in the rest of the article, we assume that for all n ∈ N∗, dn(M) > 0.

3 Greedy algorithm with Monte-Carlo sampling

3.1 Presentation of the algorithm
Let us begin by presenting the greedy algorithm with Monte Carlo sampling.

Let (Mn)n∈N∗ be a sequence of integers, which represents the number of samples used at iteration n.
For all n ∈ N∗, let Zn := (Znk )1≤k≤Mn be a collection of random vectors such that (Znk )n≥1, 1≤k≤Mn are
independent and identically distributed according to the law of Z, and independent of Z. Let Z

1:n
:=(

Z
m
)
1≤m≤n

and Z
1:∞

:=
(
Z
n
)
n∈N∗

.

For any random functions g1, g2 with values in L2
ν,0(Rd), we define

〈g1, g2〉Z1:∞ := Cov
[
g1(Z), g2(Z)

∣∣∣Z1:∞ ]
and ‖g1‖Z1:∞ :=

√
Var

[
g1(Z)

∣∣∣Z1:∞ ]
.

Let us make here an important remark. Since Z
1:∞

is a collection of random vectors which are all
independent of Z, it holds that, for all f, g ∈ L2

ν,0(Rd), almost surely,

〈f, g〉
Z

1:∞ = Cov
[
f(Z), g(Z)

∣∣∣Z1:∞ ]
= Cov [f(Z), g(Z)] = 〈f, g〉,

‖g‖2
Z

1:∞ = Var
[
g(Z)

∣∣∣Z1:∞ ]
= Var[g(Z)] = ‖g‖2.

Hence, almost surely, 〈·, ·〉
Z

1:∞ defines a scalar product on L2
ν,0(Rd), which is a Hilbert space when equipped

with this scalar product, and ‖ · ‖
Z

1:∞ is the associated norm.

The greedy algorithm with Monte-Carlo sampling reads as follows:

MC-Greedy Algorithm:

Initialization: Find µ1 ∈ P such that, almost surely,

µ1 ∈ argmax
µ∈P

Var
Z

1 (gµ) and gµ1
6= 0. (9)

Set V 1 := Span{gµ1
} and set n = 2.
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Iteration n ≥ 2: Find µn ∈ P such that, almost surely,

µn ∈ argmax
µ∈P

inf
(λi)1≤i≤n−1∈Rn−1

VarZn

(
gµ −

n−1∑
i=1

λigµi

)
and gµn /∈ V n−1. (10)

Set V n := V n−1 + Span{gµn} = Span{gµ1
, · · · , gµn}.

Naturally, for all n ∈ N∗, the parameter µn and thus the finite-dimensional space V n are Z
1:n

-measurable.

Let us first prove an auxiliary lemma.

Lemma 3.1. Almost surely, all the iterations of the MC-Greedy Algorithm are well-defined, in the sense
that, for all n ∈ N∗, there always exists at least one element µn ∈ P such that (9) (when n = 1) or (10)
(when n ≥ 2) is satisfied.

Proof of Lemma 3.1. Let us first consider the initialization step corresponding to n = 1. Two situations
may a priori occur : either max

µ∈P
Var

Z
1 (gµ) > 0 or max

µ∈P
Var

Z
1 (gµ) = 0. In the first case, choosing µ1 ∈

argmax
µ∈P

Var
Z

1 (gµ) is sufficient to guarantee that gµ1
6= 0. Indeed, since M ⊂ C(Rd) (remember that fµ

is continuous for all µ ∈ P, and hence so is gµ), the fact that Var
Z

1

(
gµ1

)
> 0 necessarily implies that

Var
[
gµ1

(Z)
∣∣∣Z1:∞ ]

> 0 almost surely. Since Z
1:∞

is independent of Z and µ1 is a Z
1:∞

measurable random
variable, this implies that almost surely gµ1

6= 0.

In the second case, it then holds that Var
Z

1 (gµ) = 0 for all µ ∈ P. Then, the assumption d1(M) > 0
implies that, almost surely, there exists at least one element µ1 ∈ P such that gµ1

6= 0. In addition,
µ1 ∈ argmaxµ∈P Var

Z
1 (gµ).

Using similar arguments and the fact that dn(M) > 0 for all n ∈ N∗, it is easy to see that, almost surely,
all the iterations of the MC-Greedy algorithm are well-defined, in particular for n ≥ 2.

Remark 3.2. We stress on the fact that the practical implementation of the MC-greedy algorithm does not
require the knowledge of the value of E[fµ(Z)], even if gµ = fµ − E[fµ(Z)] for all µ ∈ P. Indeed, it holds
that for all g ∈ C(Rd), all n ∈ N∗ and all C ∈ R, VarZn (g) = VarZn (g + C). Thus, for all µ ∈ P, n ∈ N∗
and λ := (λi)1≤i≤n−1 ∈ Rn−1,

Var
Z

1 (gµ) = Var
Z

1 (fµ) and VarZn

(
gµ −

n−1∑
i=1

λigµi

)
= VarZn

(
fµ −

n−1∑
i=1

λifµi

)
.

Thus, the MC-greedy algorithm naturally makes sense with a view to the construction of a reduced basis
control variate for variance reduction as explained in Section 2.1.

Remark 3.3. In practice, a discrete subset Ptrial ⊂ P has to be introduced. The optimization problems (9)
and (10) have to be replaced respectively by

µ1 ∈ argmax
µ∈Ptrial

Var
Z

1 (gµ) and gµ1
6= 0,

and

µn ∈ argmax
µ∈Ptrial

inf
(λi)1≤i≤n−1∈Rn−1

VarZn

(
gµ −

n−1∑
i=1

λigµi

)
and gµn /∈ V n−1.

The influence of the choice of the set Ptrial on the mathematical properties of the MC-greedy algorithm is an
important question which we do not address in our analysis for the sake of simplicity. For related discussion,
we refer the reader to the work [9], where the authors study the mathematical properties of a greedy algorithm
where the set Ptrial depends on the iteration n of the greedy algorithm and is randomly chosen according to
appropriate probability distributions defined on the set of parameters P.

For all n ∈ N∗, we also define

σ̂n−1(M) := max
µ∈P

inf
(λi)1≤i≤n−1∈Rn−1

√√√√Var

[
gµ(Z)−

n−1∑
i=1

λigµi(Z)

∣∣∣∣∣Z1:∞
]
, (11)

σn−1(M) := inf
(λi)1≤i≤n−1∈Rn−1

√√√√Var

[
gµn(Z)−

n−1∑
i=1

λigµi(Z)

∣∣∣∣∣Z1:∞
]

(12)
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Let us point out here that σ̂n−1(M) is a random variable which is measurable with respect to Z
1:(n−1)

whereas µn and σn−1(M) are measurable with respect to Z
1:n

.

3.2 Main theoretical result
The aim of this section is to study the effect of Monte-Carlo sampling on the convergence of such a greedy
algorithm. We consider here the probability space (Ω,A(Z

1:∞
),P) the probabilty space where A(Z

1:∞
)

denotes the set of events that are measurable with respect to Z
1:∞

. We prove, under appropriate assumptions
on the probability density ν and on the set of functions M = {gµ, µ ∈ P}, that for all 0 < γ < 1, there
exist explicit conditions on the sequence (Mn)n∈N∗ so that, with high probability, the MC-greedy algorithm
is actually a weak greedy algorithm with parameter γ. More precisely, under this set of assumptions, we
prove that, with high probability, it holds that for all n ∈ N∗,

σn−1(M) ≥ γσ̂n−1(M).

Let us now present the set of assumptions we make on ν and on the setM = {gµ, µ ∈ P} for our main
result to hold.

From now on, we make the following assumption on the probability distribution ν.

Assumption (A): The probability law ν is such that there exist α > 1 and β > 0 such that∫
R
eβ|x|

α

dν(x) < +∞.

Let us denote by L the set of Lipschitz functions of Rd and for all f ∈ L, let us denote by ‖f‖L its
Lipschitz constant. In the sequel, we denote by φ : R∗+ → R∗+ the function defined by

∀κ ∈ R∗+, φ(κ) :=

 κ21κ≤1 + κα1κ>1 if d = 1,
(κ/ log(2 + 1/κ)2)1κ≤1 + κα1κ>1 if d = 2,
κd1κ≤1 + κα1κ>1 if d ≥ 3.

(13)

A key ingredient in our analysis is the use of concentration inequalities in the Wasserstein-1 distance
between a probability distribution and its empirical measure proved in [5, 14]. Let us recall here a direct
corollary of Theorem 2 of [14], which is the backbone of our analysis.

Corollary 3.4. Let us assume that ν satisfies assumption (A). Then, there exist positive constants c, C
depending only on ν, d, α and β, such that, for all M ∈ N∗, all Z := (Zk)1≤k≤M iid random vectors
distributed according to ν and all κ > 0, it holds that

P
[
T1
(
Z
)
≥ κ

]
≤ Ce−cMφ(κ),

where
T1
(
Z
)

:= sup
f∈L;‖f‖L≤1

|E[f(Z)]− EZ(f)| .

Remark 3.5. We would like to mention here that other concentration inequalities are stated in Theorem 2
of [14] under different sets of assumptions than (A) on the probability law ν. In particular, weaker concen-
tration inequalities may be obtained when ν only has some finite polynomial moments. Our analysis can then
be easily adapted to these different settings but we restrict ourselves here to a framework where ν satisfies
Assumption (A) for the sake of clarity.

We finally make the following set of assumptions onM defined in (6).

Assumption (B): The setM satisfies the four conditions:

(B1) M is a compact subset of L2
ν,0(Rd) and let K2 := supµ∈P ‖gµ‖ <∞;

(B2) M⊂ L and KL := supµ∈P ‖gµ‖L < +∞;

(B3) M⊂ L∞(Rd) and K∞ := supµ∈P ‖gµ‖L∞ < +∞;

(B4) for all n ∈ N∗, dn(M) > 0.

7



Before presenting our main result, we need to introduce some additional notation. Using Lemma 3.1,
we can almost surely define the sequence (gn)n∈N∗ as the orthonormal family of L2

ν,0(Rd) obtained by a
Gram-Schmidt orthonormalization procedure (for ‖ · ‖

Z
1:∞) from the family (gµn)n∈N∗ . More precisely, we

define
g1 :=

gµ1√
Var

[
gµ1

(Z)
∣∣∣Z1:∞ ] .

Moreover, for all n ≥ 2, et λ
n

:=
(
λ
n

i

)
1≤i≤n−1

∈ Rn−1 be a solution to the minimization problem

λ
n ∈ argmin

λ:=(λi)1≤i≤n−1∈Rn−1

Var

[
gµn(Z)−

n−1∑
i=1

λigi(Z)

∣∣∣∣∣Z1:∞
]
.

Then it holds that

gn :=
gµn −

∑n−1
i=1 λ

n

i gi√
Var

[
gµn(Z)−

∑n−1
i=1 λ

n

i gi(Z)
∣∣∣Z1:∞] .

As a consequence, it always holds that V n = Span
{
gµ1

, · · · , gµn
}

= Span {g1, · · · , gn}. Moreover, gn is
Z

1:n
-measurable.

We are now in position to state our main result, the proof of which is postponed to Section 3.3.

Theorem 3.6. Let 0 < δ < 1 and (δn)n∈N∗ ⊂ (0, 1)N
∗
be a sequence of numbers satisfying Πn∈N∗ (1− δn) ≥

1− δ. Let us assume that M satisfies assumption (B) and that ν satisfies assumption (A). Let C, c > 0 be
the constants defined in Corollary 3.4.

For all n ∈ N∗, let

Kn
∞ := max (K∞, ‖g1‖L∞ , · · · , ‖gn‖L∞) and Kn

L := max (KL, ‖g1‖L, · · · , ‖gn‖L) . (14)

Let us assume that there exists 0 < γ < 1 such that for all n ∈ N∗, Mn ∈ N∗ is a Z
1:(n−1)

measurable
random variable which satisfies almost surely the following condition:

∀n ≥ 1, Mn ≥ − ln

(
δn
C

)
1

cφ (κn−1)
, (15)

where κn−1 is a deterministic function of Z
1:(n−1)

, defined by

κ0 :=

(
1− γ2

)
σ̂0(M)2

8K∞KL
; (16)

and

∀n ≥ 2, κn−1 :=

min

(
1

2(n−1) ,
(1−γ2)σ̂n−1(M)2

n(9K2
2+4)

)
6Kn−1
∞ Kn−1

L
. (17)

Then, for all n ∈ N∗, it holds that

P
[
σn−1(M) ≥ γσ̂n−1(M)

∣∣∣Z1:(n−1) ] ≥ 1− δn. (18)

As a consequence, denoting by Gn the event σn−1(M) ≥ γσ̂n−1(M) for all n ∈ N∗, it holds that

P

[ ⋂
n∈N∗

Gn

]
≥ 1− δ. (19)

Thus, it then holds that the MC-greedy algorithm is a weak greedy algorithm with parameter γ and norm
‖ · ‖

Z
1:∞ with probability at least 1− δ.

We state here a direct corollary of Theorem 3.6, the proof of which is given below.
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Corollary 3.7. Under the assumptions of Theorem 3.6, with probability 1− δ, it holds that for all n ∈ N∗,

σ̂n(M) ≤
√

2γ−1 min
1≤m<n

(dm(M))
n−m
n . (20)

In particular, with probability 1− δ, it holds that

∀n ∈ N∗, σ̂2n(M) ≤
√

2γ−1
√
dn(M). (21)

Proof. With probability 1− δ, the MC-greedy algorithm is a weak greedy algorithm with parameter γ and
norm ‖ · ‖

Z
1:∞ . Thus, since for all n ∈ N∗, µn is a Z

1:∞
measurable random variable, if such an event is

realized, using Theorem 2.2, it holds that for all n ∈ N∗

σ̂n(M) ≤
√

2γ−1 min
1≤m<n

(
dZ

1:∞

m (M)
)n−m

n

,

where for all n ∈ N∗,

dZ
1:∞

n (M) := inf
Vn ⊂ L2

ν,0(Rd) subspace,
dim Vn = n

sup
µ∈P

inf
gn∈Vn

√
Var

[
gµ(Z)− gn(Z)

∣∣∣Z1:∞ ]

= inf
Vn ⊂ L2

ν,0(Rd) subspace,
dim Vn = n

sup
µ∈P

inf
gn∈Vn

√
Var [gµ(Z)− gn(Z)]

= dn(M).

Hence, we obtain (20), and (21) as a consequence.

Some remarks are in order here.

Remark 3.8. Note that, since the random variables Kn−1
∞ , Kn−1

L and σ̂n−1(M) are measurable with respect
to Z

1:(n−1)
, κn−1 is also measurable with respect to Z

1:(n−1)
.

Remark 3.9. A natural question is then the following: can Theorem 3.6 be used (at least in principle) to
design a constructive strategy to choose a number of samples Mn, so that the MC-greedy algorithm can be
guaranteed to be a weak greedy algorithm with parameter γ? This can indeed be done in principle using the
following remark: for all n ∈ N∗, the quantity σ̂n−1(M) defined by (11) cannot be computed in practice
since variances cannot be computed exactly for any parameter µ ∈ P. However, almost surely, it holds
that σn−1(M) defined by (12) satisfies σn−1(M) ≤ σ̂n−1(M). Let us recall that σn−1(M) depends on
Z

1:n
, whereas σ̂n−1(M) only depends on Z

1:(n−1)
. Since φ is an increasing function, this implies that, if

the sequence (Mn)n∈N∗ satisfies condition (15) where σ̂0(M) is replaced by σ0(M) in (16) and σ̂n−1(M)
is replaced by σn−1(M) in (17), the assumptions of Theorem 3.6 are satisfied. Besides, it is reasonable
to expect in this case that σn−1(M) should provide a reasonable approximation of σ̂n−1(M) since, from
Theorem 3.6, σn−1(M) ≥ γσ̂n−1(M) with high probability.

Unfortunately, we will see that such an approach is not viable in practice, because it leads to much too
large values of Mn for small values of n for the MC-greedy algorithm to be interesting with a view to the
variance reduction method explained in Section 2.1. That is why in Section 4, we will present numerical
results with heuristic ways to choose values of (Mn)n∈N∗ which are not theoretically guaranteeed, but which
nevertheless yield satisfactory numerical results in several test cases.

3.3 Proof of Theorem 3.6
The aim of this section is to prove Theorem 3.6. For all n ∈ N∗, we denote by Gn the event σn(M) ≥ γσ̂n(M).

Let us begin by proving some intermediate results which will be used later. We first need the following
auxiliary lemma.

Lemma 3.10. Let n ∈ N∗. Then, almost surely,

sup

f Z
1:∞

-measurable random function
such that ‖f‖L ≤ 1 almost surely

∣∣∣E [f(Z)|Z1:∞]− EZn(f)
∣∣∣ = sup

f∈L;‖f‖L≤1
|E [f(Z)]− EZn(f)| .

9



Proof. On the one hand, it is obvious to check that

sup
f∈L;‖f‖L≤1

|E [f(Z)]− EZn(f)| ≤ sup

f Z
1:∞

-measurable random function
such that ‖f‖L ≤ 1 almost surely

∣∣∣E [f(Z)|Z1:∞]− EZn(f)
∣∣∣ .

On the other hand, for any Z
1:∞

-measurable random function f such that ‖f‖L ≤ 1 almost surely, it
holds that, almost surely, since Z

1:∞
is independent of Z, E[f(Z)|Z1:∞

] = EZ [f(Z)] where the index Z in
EZ indicates that the expectation is only taken with respect to Z, and thus∣∣∣E [f(Z)|Z1:∞]− EZn(f)

∣∣∣ ≤ sup
f∈L;‖f‖L≤1

|E [f(Z)]− EZn(f)| .

Hence the result.

We start by considering the case of the initialization of the MC-greedy algorithm.

Lemma 3.11. Let 0 < γ < 1. Then, it holds that almost surely,

P
[
Var

[
gµ1

(Z)
∣∣∣Z1:∞ ] ≥ γ2 max

µ∈P
Var

[
gµ(Z)

∣∣∣Z1:∞ ]] ≥ 1− δ1. (22)

As a consequence, P [G1] ≥ 1− δ1 and (18) holds for n = 1.

Proof. Let µ̂1 ∈ P such that

σ̂0(M)2 = max
µ∈P

Var
[
gµ(Z)

∣∣∣Z1:∞ ]
= Var

[
gµ̂1

(Z)|Z1:∞]
.

Inequality (22) holds provided that

P
[(

Var
[
gµ̂1

(Z)|Z1:∞]−Var
[
gµ1

(Z)
∣∣∣Z1:∞ ])

> εσ̂0(M)2
]
≤ δ1,

with ε :=
(
1− γ2

)
. Almost surely, since µ1 ∈ argmaxµ∈P Var

Z
1(gµ), it holds that

Var
[
gµ̂1

(Z)|Z1:∞]−Var
[
gµ1

(Z)
∣∣∣Z1:∞ ]

= Var
[
gµ̂1

(Z)|Z1:∞]−Var
Z

1 (gµ̂1
) + Var

Z
1 (gµ̂1

)−Var
Z

1

(
gµ1

)
+ Var

Z
1

(
gµ1

)
−Var

[
gµ1

(Z)
∣∣∣Z1:∞ ]

≤ Var
[
gµ̂1

(Z)|Z1:∞]−Var
Z

1 (gµ̂1
) + Var

Z
1

(
gµ1

)
−Var

[
gµ1

(Z)
∣∣∣Z1:∞ ]

= E
[
|gµ̂1
|2(Z)|Z1:∞]− E

Z
1

(
|gµ̂1
|2
)

+ E
Z

1 (gµ̂1
)
2 − E

[
gµ̂1

(Z)
∣∣∣Z1:∞ ]2

− E
[
|gµ1
|2(Z)|Z1:∞]

+ E
Z

1

(
|gµ1
|2
)
− E

Z
1

(
gµ1

)2
+ E

[
gµ1

(Z)|Z1:∞]2
≤
∣∣∣E [|gµ̂1

|2(Z)|Z1:∞]− E
Z

1

(
|gµ̂1
|2
)∣∣∣+ 2K∞

∣∣E
Z

1 (gµ̂1
)− E [gµ̂1

(Z)]
∣∣

+
∣∣∣E [|gµ1

|2(Z)|Z1:∞]− E
Z

1

(
|gµ1
|2
)∣∣∣+ 2K∞

∣∣∣EZ1

(
gµ1

)
− E

[
gµ1

(Z)|Z1:∞]∣∣∣ ,
≤ 2K∞KL

×
(∣∣∣∣E [ |gµ̂1

|2

2K∞KL
(Z)|Z1:∞

]
− E

Z
1

(
|gµ̂1
|2

2K∞KL

)∣∣∣∣+

∣∣∣∣E [ |gµ1
|2

2K∞KL
(Z)|Z1:∞

]
− E

Z
1

(
|gµ1
|2

2K∞KL

)∣∣∣∣
+

∣∣∣∣EZ1

(
gµ1

KL

)
− E

[
gµ1

KL
(Z)|Z1:∞

]∣∣∣∣+

∣∣∣∣EZ1

(
gµ̂1

KL

)
− E

[
gµ̂1

KL
(Z)|Z1:∞

]∣∣∣∣) .
It holds that for all µ ∈ P, ‖|gµ|2‖L ≤ 2K∞KL. Indeed, for all x, y ∈ Rd, we have

||gµ|2(x)− |gµ|2(y)| = |(gµ(x) + gµ(y))(gµ(x)− gµ(y))| ≤ 2K∞KL|x− y|.

Thus, almost surely, it holds that

Var
[
gµ̂1

(Z)|Z1:∞]−Var
[
gµ1

(Z)
∣∣∣Z1:∞ ] ≤ 8K∞KL sup

f∈L;‖f‖L≤1

∣∣∣E [f(Z)|Z1:∞]− E
Z

1 (f)
∣∣∣ .
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Then, using Lemma 3.10, we obtain that, almost surely,

Var
[
gµ̂1

(Z)|Z1:∞]−Var
[
gµ1

(Z)
∣∣∣Z1:∞ ] ≤ 8K∞KL sup

f∈L;‖f‖L≤1

∣∣E [f(Z)]− E
Z

1 (f)
∣∣ .

Thus, using Theorem 3.4, the assumption on M1 and the definition of κ0, we obtain that

P

[
sup

f∈L;‖f‖L≤1

∣∣E [f(Z)]− E
Z

1 (f)
∣∣ ≥ κ0] ≤ Ce−cφ(κ0) ≤ δ1.

Hence the desired result.

We now turn to the case of the nth iteration of the algorithm, with n ≥ 2, that we analyze in the next
two lemmas.

Lemma 3.12. Let n ≥ 2. Let us denote by

Mn−1 :=M∪ {g1, · · · , gn−1}. (23)

Then, for all ε > 0, it holds that, almost surely,

P

[
sup

g,h∈Mn−1

∣∣∣Cov
[
g(Z), h(Z)

∣∣∣Z1:∞ ]− CovZn (g, h)
∣∣∣ ≥ ε∣∣∣∣∣Z1:(n−1)

]
≤ Ce

−cMnφ

(
ε

6K
n−1
∞ K

n−1
L

)
,

where Kn−1
L and Kn−1

∞ are defined by (14).

Proof. For all g, h ∈Mn−1, it holds that, almost surely,∣∣∣Cov
[
g(Z), h(Z)

∣∣∣Z1:∞ ]− CovZn (g, h)
∣∣∣

≤
∣∣∣E [g(Z)h(Z)

∣∣∣Z1:∞ ]− EZn (gh)
∣∣∣

+Kn−1
∞

(∣∣∣E [g(Z)
∣∣∣Z1:∞ ]− EZn (g)

∣∣∣+
∣∣∣E [h(Z)

∣∣∣Z1:∞ ]− EZn (h)
∣∣∣)

≤ 2Kn−1
∞ Kn−1

L

(∣∣∣∣E [ gh

2Kn−1
∞ Kn−1

L
(Z)

∣∣∣Z1:∞
]
− EZn

(
gh

2Kn−1
∞ Kn−1

L

)∣∣∣∣
+

∣∣∣∣E [ g

2Kn−1
L

(Z)
∣∣∣Z1:∞

]
− EZn

(
g

2Kn−1
L

)∣∣∣∣+

∣∣∣∣E [ h

2Kn−1
L

(Z)
∣∣∣Z1:∞

]
− EZn

(
h

2Kn−1
L

)∣∣∣∣) .
For all g, h ∈Mn−1, it holds that∥∥∥∥ gh

2Kn−1
∞ Kn−1

L

∥∥∥∥
L
≤ 1 and

∥∥∥∥ g

2Kn−1
L

∥∥∥∥
L
≤ 1.

This implies that, almost surely,

sup
g,h∈Mn−1

∣∣∣Cov
[
g(Z), h(Z)

∣∣∣Z1:∞ ]− CovZn (g, h)
∣∣∣ ≤ 6Kn−1

∞ Kn−1
L sup

f∈L, ‖f‖L≤1

∣∣∣E [f(Z)
∣∣∣Z1:∞ ]− EZn (f)

∣∣∣ .
Using Lemma 3.10, this yields that, almost surely,

sup
g,h∈Mn−1

∣∣∣Cov
[
g(Z), h(Z)

∣∣∣Z1:∞ ]− CovZn (g, h)
∣∣∣ ≤ 6Kn−1

∞ Kn−1
L sup

f∈L, ‖f‖L≤1
|E [f(Z)]− EZn (f)| .

We finally obtain, using Corollary 3.4, that

P

[
sup

g,h∈Mn−1

∣∣∣Cov
[
g(Z), h(Z)

∣∣∣Z1:∞ ]− CovZn (g, h)
∣∣∣ > ε

∣∣∣∣∣Z1:(n−1)
]

≤ P

[
sup

f∈L, ‖f‖L≤1
|E [f(Z)]− EZn (f)| > ε

6Kn−1
∞ Kn−1

L

∣∣∣∣∣Z1:(n−1)
]

≤ P

[
sup

f∈L, ‖f‖L≤1
|E [f(Z)]− EZn (f)| > ε

6Kn−1
∞ Kn−1

L

∣∣∣∣∣Z1:(n−1)
]

≤ Ce
−cMnφ

(
ε

6K
n−1
∞ K

n−1
L

)
.

Hence the result.
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Lemma 3.13. Let 0 < γ < 1 and n ≥ 2. Then, it holds that almost surely

P
[
Gn|Z

1:(n−1)] ≥ 1− δn.

Proof. Since (g1, · · · , gn) forms a basis of V n−1, for all µ ∈ P, there exists one unique minimizer to

min
(λi)1≤i≤n−1∈Rn−1

Var

[
gµ(Z)−

n−1∑
i=1

λigi(Z)

∣∣∣∣∣Z1:∞
]
.

Let λ
n

:=
(
λ
n

i

)
1≤i≤n−1

∈ Rn−1 be the unique minimizer of

λ
n

:= argmin
λ:=(λi)1≤i≤n−1

Var

[
gµn(Z)−

n−1∑
i=1

λigi(Z)

∣∣∣∣∣Z1:∞
]
. (24)

As a consequence, it holds that

σn−1(M) = Var

[
gµn(Z)−

n−1∑
i=1

λ
n

i gi(Z)

∣∣∣∣∣Z1:∞
]

where σn−1(M) is defined by (12).
Let µ̂n ∈ P such that

µ̂n ∈ argmax
µ∈P

min
(λi)1≤i≤n−1∈Rn−1

Var

[
gµ(Z)−

n−1∑
i=1

λigi(Z)

∣∣∣∣∣Z1:∞
]
,

so that

σ̂n−1(M) = min
(λi)1≤i≤n−1∈Rn−1

Var

[
gµ̂n(Z)−

n−1∑
i=1

λigi(Z)

∣∣∣∣∣Z1:∞
]
,

where σ̂n−1(M) is defined in (11).

Let λ̂n :=
(
λ̂ni

)
1≤i≤n−1

∈ Rn−1 the unique minimizer of

λ̂n := argmin
λ:=(λi)1≤i≤n−1

Var

[
gµ̂n(Z)−

n−1∑
i=1

λigi(Z)

∣∣∣∣∣Z1:∞
]
, (25)

so that

σ̂n−1(M) = Var

[
gµ̂n(Z)−

n−1∑
i=1

λ̂ni gi(Z)

∣∣∣∣∣Z1:∞
]
.

The event Gn holds if and only if

Var

[
gµn(Z)−

n−1∑
i=1

λ
n

i gi(Z)

∣∣∣∣∣Z1:∞
]
≥ γ2Var

[
gµ̂n(Z)−

n−1∑
i=1

λ̂ni gi(Z)

∣∣∣∣∣Z1:∞
]
. (26)

Let us begin by pointing out that, since

Var

[
gµ̂n(Z)−

n−1∑
i=1

λ̂ni gi(Z)

∣∣∣∣∣Z1:∞
]
≥ Var

[
gµn(Z)−

n−1∑
i=1

λ
n

i gi(Z)

∣∣∣∣∣Z1:∞
]
,

if the inequality

Var

[
gµ̂n(Z)−

n−1∑
i=1

λ̂ni gi(Z)

∣∣∣∣∣Z1:∞
]
−Var

[
gµn(Z)−

n−1∑
i=1

λ
n

i gi(Z)

∣∣∣∣∣Z1:∞
]

≤ (1− γ2)Var

[
gµ̂n(Z)−

n−1∑
i=1

λ̂ni gi(Z)

∣∣∣∣∣Z1:∞
]

(27)
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holds, then (26) is necessarily statisfied. The rest of the proof consists in estimating the probability that
(27) is realized.

To this aim, as a first step, we are going to prove an upper bound on

Var

[
gµ̂n(Z)−

n−1∑
i=1

λ̂ni gi(Z)

∣∣∣∣∣Z1:∞
]
−Var

[
gµn(Z)−

n−1∑
i=1

λ
n

i gi(Z)

∣∣∣∣∣Z1:∞
]

as a function of
η := sup

g,h∈Mn−1

∣∣∣Cov
[
g(Z), h(Z)|Z1:∞]− CovZn (g, h)

∣∣∣ , (28)

which is the quantity estimated in Lemma 3.12. More precisely, let us now prove that

Var

[
gµ̂n(Z)−

n−1∑
i=1

λ̂ni gi(Z)

∣∣∣∣∣Z1:∞
]
−Var

[
gµn(Z)−

n−1∑
i=1

λ
n

i gi(Z)

∣∣∣∣∣Z1:∞
]

≤ n

(
2 +

(
K2 +

√
n− 1η

1− (n− 1)η

)2

+K2
2

)
η. (29)

It holds that for all 1 ≤ i ≤ n− 1, from (24) and (25),

λ̂ni = Cov
[
gµ̂n(Z), gi(Z)|Z1:∞]

and λ
n

i = Cov
[
gµn(Z), gi(Z)|Z1:∞]

,

and it then holds that, almost surely,

max
(
‖λ̂n‖`2 , ‖λ

n‖`2
)
≤ max

(
‖gµ̂n‖, ‖gµn‖

)
≤ K2, (30)

where ‖ · ‖`2 denotes the Euclidean norm of Rn−1. Let now λ̂n,n :=
(
λ̂n,ni

)
1≤i≤n−1

∈ Rn−1 be a minimizer

of

λ̂n,n := argmin
λ:=(λi)1≤i≤n−1∈Rn−1

VarZn

(
gµ̂n −

n−1∑
i=1

λigi

)
,

and λ
n,n

:=
(
λ
n,n

i

)
1≤i≤n−1

∈ Rn−1 be a minimizer of

λ
n,n

:= argmin
λ:=(λi)1≤i≤n−1∈Rn−1

VarZn

(
gµn −

n−1∑
i=1

λigi

)

It then holds that for all 1 ≤ i ≤ n− 1, λ̂n,n and λ
n,n

are solution to the linear systems

Anλ̂n,n = b̂n and Anλ
n,n

= b
n
,

where An :=
(
Anij
)
1≤i,j≤n−1 ∈ R(n−1)×(n−1), b̂n :=

(
b̂ni

)
1≤i≤n−1

, b
n

:=
(
b
n

i

)
1≤i≤n−1

∈ Rn−1 are defined as

follows: for all 1 ≤ i, j ≤ n− 1,

Anij = CovZn
(
gi, gj

)
, b̂ni = CovZn (gµ̂n , gi) and b

n

i = CovZn
(
gµn , gi

)
.

Then, it holds that, almost surely,

max
1≤i≤n−1

(∣∣∣̂bni − λ̂ni ∣∣∣ , ∣∣∣bni − λni ∣∣∣) ≤ η,
which implies that

max
(
‖b̂n‖`2 , ‖bn‖`2

)
≤ K2 +

√
n− 1η.

Moreover, we have
max

1≤i,j≤n−1

∣∣Anij − δij∣∣ ≤ η,
which yields that for all ξ ∈ Rn−1,

(1− (n− 1)η)‖ξ‖2`2 ≤ ξTAnξ ≤ (1 + (n− 1)η)‖ξ‖2`2 .
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Assume for now that η(n− 1) < 1, this implies that, for all ξ ∈ Rn−1,

‖(An)−1ξ‖`2 ≤
1

1− (n− 1)η
‖ξ‖`2 . (31)

Using (31), we obtain that

max
(
‖λn,n‖`2 , ‖λ̂n,n‖`2

)
≤ K2 +

√
n− 1η

1− (n− 1)η
. (32)

We then have,

Var

[
gµ̂n(Z)−

n−1∑
i=1

λ̂ni gi(Z)

∣∣∣∣∣Z1:∞
]
−Var

[
gµn(Z)−

n−1∑
i=1

λ
n

i gi(Z)

∣∣∣∣∣Z1:∞
]

= Var

[
gµ̂n(Z)−

n−1∑
i=1

λ̂ni gi(Z)

∣∣∣∣∣Z1:∞
]
−Var

[
gµ̂n(Z)−

n−1∑
i=1

λ̂n,ni gi(Z)

∣∣∣∣∣Z1:∞
]

+ Var

[
gµ̂n(Z)−

n−1∑
i=1

λ̂n,ni gi(Z)

∣∣∣∣∣Z1:∞
]
−VarZn

(
gµ̂n −

n−1∑
i=1

λ̂n,ni gi

)

+ VarZn

(
gµ̂n −

n−1∑
i=1

λ̂n,ni gi

)
−VarZn

(
gµn −

n−1∑
i=1

λ
n,n

i gi

)

+ VarZn

(
gµn −

n−1∑
i=1

λ
n,n

i gi

)
−VarZn

(
gµn −

n−1∑
i=1

λ
n

i gi

)

+ VarZn

(
gµn −

n−1∑
i=1

λ
n

i gi

)
−Var

[
gµn(Z)−

n−1∑
i=1

λ
n

i gi(Z)

∣∣∣∣∣Z1:∞
]
.

Using the fact that

Var

[
gµ̂n(Z)−

n−1∑
i=1

λ̂ni gi(Z)

∣∣∣∣∣Z1:∞
]
−Var

[
gµ̂n(Z)−

n−1∑
i=1

λ̂n,ni gi(Z)

∣∣∣∣∣Z1:∞
]
≤ 0,

VarZn

(
gµ̂n −

n−1∑
i=1

λ̂n,ni gi

)
−VarZn

(
gµn −

n−1∑
i=1

λ
n,n

i gi

)
≤ 0,

VarZn

(
gµn −

n−1∑
i=1

λ
n,n

i gi

)
−VarZn

(
gµn −

n−1∑
i=1

λ
n

i gi

)
≤ 0,

14



from the definition of λ̂n, λ̂n,n, λ
n,n

, µn, we obtain that

Var

[
gµ̂n(Z)−

n−1∑
i=1

λ̂ni gi(Z)

∣∣∣∣∣Z1:∞
]
−Var

[
gµn(Z)−

n−1∑
i=1

λ
n

i gi(Z)

∣∣∣∣∣Z1:∞
]

≤ Var

[
gµ̂n(Z)−

n−1∑
i=1

λ̂n,ni gi(Z)

∣∣∣∣∣Z1:∞
]
−VarZn

(
gµ̂n −

n−1∑
i=1

λ̂n,ni gi

)

+ VarZn

(
gµn −

n−1∑
i=1

λ
n

i gi

)
−Var

[
gµn(Z)−

n−1∑
i=1

λ
n

i gi(Z)

∣∣∣∣∣Z1:∞
]
,

= Var
[
gµ̂n(Z)|Z1:∞]−VarZn (gµ̂n)− 2

n−1∑
i=1

λ̂n,ni

(
Cov

[
gµ̂n(Z), gi(Z)|Z1:∞]− CovZn (gµ̂n , gi)

)
+

n−1∑
i,j=1

λ̂n,ni λ̂n,nj

(
Cov

[
gi(Z), gj(Z)

∣∣Z1:∞]− CovZn
(
gi, gj

))

+ VarZn
(
gµn
)
−Var

[
gµn(Z)

∣∣Z1:∞]− 2

n−1∑
i=1

λ
n

i

(
CovZn

(
gµn , gi

)
− Cov

[
gi(Z), gj(Z)

∣∣Z1:∞])
+

n−1∑
i,j=1

λ
n

i λ
n

j

(
CovZn

(
gi, gj

)
− Cov

[
gµn(Z), gi(Z)

∣∣Z1:∞])
.

Now, using the definition ofMn−1 given in (23), we obtain that

Var

[
gµ̂n(Z)−

n−1∑
i=1

λ̂ni gi(Z)

∣∣∣∣∣Z1:∞
]
−Var

[
gµn(Z)−

n−1∑
i=1

λ
n

i gi(Z)

∣∣∣∣∣Z1:∞
]

≤

1 + 2

n−1∑
i=1

|λ̂n,ni |+
n−1∑
i,j=1

|λ̂n,ni ||λ̂
n,n
j |+ 1 + 2

n−1∑
i=1

|λni |+
n−1∑
i,j=1

|λni ||λ
n

j |


× sup
g,h∈Mn−1

∣∣∣Cov
[
g(Z), h(Z)|Z1:∞]− CovZn (g, h)

∣∣∣ .

Since sup
g,h∈Mn−1

∣∣∣Cov
[
g(Z), h(Z)|Z1:∞]− CovZn (g, h)

∣∣∣ = η, we then have, almost surely,

Var

[
gµ̂n(Z)−

n−1∑
i=1

λ̂ni gi(Z)

∣∣∣∣∣Z1:∞
]
−Var

[
gµn(Z)−

n−1∑
i=1

λ
n

i gi(Z)

∣∣∣∣∣Z1:∞
]

≤

(1 +

n−1∑
i=1

|λ̂n,ni |

)2

+

(
1 +

n−1∑
i=1

|λni |

)2
 sup
g,h∈Mn−1

∣∣∣Cov
[
g(Z), h(Z)|Z1:∞]− CovZn (g, h)

∣∣∣
≤ n

(
2 +

n−1∑
i=1

|λ̂n,ni |
2 +

n−1∑
i=1

|λni |2
)
η

≤ n
(

2 + ‖λ̂n,n‖2`2 + ‖λn‖2`2
)
η.

Finally, using (30) and (32), we obtain (29), i.e.

σ̂n−1(M)− σn−1(M) ≤ n

(
2 +

(
K2 +

√
n− 1η

1− (n− 1)η

)2

+K2
2

)
η.

Let us now evaluate the probability, conditioned to the knowledge of Z
1:∞

, that

n

(
2 +

(
K2 +

√
n− 1η

1− (n− 1)η

)2

+K2
2

)
η ≤ (1− γ2)σ̂n−1(M). (33)
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If η is chosen to be smaller that 1
2(n−1) , then it holds that

2 +

(
K2 +

√
n− 1η

1− (n− 1)η

)2

+K2
2 ≤ 2 + (2K2 + 1)

2
+K2

2 ≤ 9K2
2 + 4.

A sufficient condition for (33) to hold is then to ensure that η ≤ ε with

ε := min

(
1

2(n− 1)
,

(1− γ2)σ̂2
n−1(M)

n (9K2
2 + 4)

)
,

Then, it holds that

P
[
Gn
∣∣∣Z1:∞ ]

= P
[
σn−1(M)2 ≥ γ2σ̂n−1(M)2

∣∣∣Z1:∞ ]
= P

[
σ̂n−1(M)2 − σn−1(M)2 ≤ (1− γ2)σ̂n−1(M)2

∣∣∣Z1:∞ ]
≥ P

[
n

(
2 +

(
K2 +

√
n− 1η

1− (n− 1)η

)2

+K2
2

)
η ≤ (1− γ2)σ̂n−1(M)

∣∣∣Z1:∞
]

≥ P
[
η ≤ ε

∣∣∣Z1:∞ ]
.

Thus, using the definition of η given by (28) and applying Lemma 3.12, we then obtain that

P
[
Gn|Z

1:(n−1)] ≥ P
[
η ≤ ε

∣∣∣Z1:∞ ]
= P

[
sup

g,h∈Mn−1

∣∣∣Cov
[
g(Z), h(Z)

∣∣∣Z1:∞ ]− CovZn (g, h)
∣∣∣ ≤ ε∣∣∣∣∣Z1:(n−1)

]
≥ 1− δn,

since
Ce−cMnφ(κn−1) ≤ δn,

with

κn−1 :=

min

(
1

2(n−1) ,
(1−γ2)σ̂2

n−1(M)

n(9K2
2+4)

)
6Kn−1
∞ Kn−1

L
,

which yields the desired result.

We are now in position to end the proof of Theorem 3.6.

Proof of Theorem 3.6. Collecting Lemma 3.11 and Lemma 3.13, we obtain (18) for all n ∈ N∗. Let us now
prove (19).

Let us first prove by recursion that for all n ∈ N∗,

P

[
n⋂
k=1

Gk

]
≥ Πn

k=1(1− δk). (34)

Using Lemma 3.11, it holds that (34) is true for n = 1. Now we turn to the proof of the recursion. Let
n ∈ N∗. For any event Z, we denote by 1Z the random variable which is equal to 1 if Z is realized and 0 if
not. Using the fact that

⋂n
k=1 Gk is measurable with respect to Z

1:n
, it holds that

P

[
n+1⋂
k=1

Gk

]
= E

[
1⋂n+1

k=1 Gk

]
= E

[
E
[
1Gn+11

⋂n
k=1 Gk

∣∣∣Z1:n
]]

= E
[
E
[
1Gn+1

∣∣∣Z1:n
]
1⋂n

k=1 Gk

]
= E

[
P
[
Gn+1

∣∣∣Z1:n
]
1⋂n

k=1 Gk

]
.
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Now using Lemma 3.13, it holds that almost surely P
[
Gn+1

∣∣∣Z1:n
]
≥ 1− δn+1. Hence, it holds that

P

[
n+1⋂
k=1

Gk

]
≥ (1− δn+1)E

[
1⋂n

k=1 Gk
]

= (1− δn+1)P

[
n⋂
k=1

Gk

]
.

The recursion is thus proved, together with (34), which implies (19).

If
⋂
n∈N Gn is realised, it then holds that the MC-greedy algorithm is a weak greedy algorithm with

parameter γ and norm ‖ · ‖
Z

1:∞ =

√
Var

[
·|Z1:∞]

.

4 Numerical results
The aim of this section is to compare several procedures to choose the value of the sequence (Mn)n∈N∗ in
the MC-greedy algorithm presented in Section 3.1.

4.1 Three numerical procedures
As mentioned in Remark 3.9, it is possible to design a constructive way to define a sequence of numbers
of samples (Mn)n∈N∗ which satisfies assumptions of Theorem 3.6, and thus which guarantees that the
corresponding MC-greedy algorithm is a weak-greedy algorithm with high probability. Unfortunately, it
appears that such a procedure cannot be used in practice to design a variance reduction method since the
values of the sequence (Mn)n∈N∗ increases too sharply. The objective of this section is to propose a heuristic
procedure to choose a sequence (Mn)n∈N∗ for an MC-greedy algorithm. This heuristic procedure appears to
yield a reduced basis approximation fµ of fµ which provides very satisfactory results in terms of variance
reduction, at least on the different test cases presented below.

We use here the same notation as in Section 2.1 and consider Mref ∈ N∗ such that Mref � 1. The idea
of this heuristic method is the following: assume that the sequence (Mn)n∈N∗ can be chosen so that for all
n ∈ N∗, the inequality∣∣∣∣∣ inf

(λi)1≤i≤n−1∈Rn−1
Var

[
gµ(Z)−

n−1∑
i=1

λigi(Z)

∣∣∣∣∣Z1:∞
]
− inf

(λi)1≤i≤n−1∈Rn−1
VarZn

(
gµ −

n−1∑
i=1

λigi

)∣∣∣∣∣
≤ (1− γ2) inf

(λi)1≤i≤n−1∈Rn−1
Var

[
gµ(Z)−

n−1∑
i=1

λigi(Z)

∣∣∣∣∣Z1:∞
]

(35)

holds for all µ ∈ P. Then, it can easily be checked that such an MC-greedy algorithm is a weak greedy
algorithm with parameter γ. Of course, such an algorithm could not be of any use for variance reduction since

it would imply the computation of inf
(λi)1≤i≤n−1∈Rn−1

Var

[
gµ(Z)−

n−1∑
i=1

λigi(Z)

∣∣∣∣∣Z1:∞
]
(or an approximation

of this quantity of the form inf
(λi)1≤i≤n−1∈Rn−1

Var
Z

ref

(
gµ −

n−1∑
i=1

λigi

)
with Z

ref
=
(
Zref
k

)
1≤k≤Mref a collection

of iid random variables with the same law as Z and independent of Z) for all µ ∈ P.

The idea of the heuristic procedure is then to check if the inequality (35) holds, only for the value µ = µn.
If the inequality holds, the value of Mn+1 is chosen to be equal to Mn for the next iteration. Otherwise, the
value of Mn is increased and the nth iteration of the MC-greedy algorithm is performed again.

This heuristic procedure leads to the Heuristic MC-greedy algorithm (or HMC-greedy algorithm), see
Algorithm 1. Notice that we introduce here Ptrial a finite subset of P, which is classically called the trial
set of parameters in reduced basis methods.

For the sake of comparison, we introduce two other algorithms, which cannot be implemented in practice,
but which will allow us to compare the performance of the HMC-greedy algorithm with ideal procedures.
The first method, called SHMC-greedy algorithm and also presented in Algorithm 1 as a variant, consists
in designing the sequence (Mn)n∈N∗ in order to ensure that the inequality (35) is satisfied for all µ ∈ Ptrial

(and not only for µn). The second one consists in performing an ideal MC-greedy algorithm, called herefater
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IMC-greedy algorithm, see Algorithm 2, where all the variances and expectations are evaluated using Mref

number of samples of the random variable Z at each iteration of the MC-greedy algorithm.

Let us comment on the termination criterion

Var
Z

ref

(
f
µ
(S)H
n−1

)
Mref

>
Var

Z
ref

(
f
µ
(S)H
n−1
− f

µ
(S)H
n−1

)
Mn−1

introduced in line 11 of the (S)HMC-greedy algorithm. Recall that, for µ = µ
(S)H
n−1 , the expectation

E
[
f
µ
(S)H
n−1

(Z)
]
is approximated after n − 1 iterations of the greedy algorithm by the control variate for-

mula (see (1))
E
Z

ref (f
µ
(S)H
n−1

) + E
Z
n−1

(
f
µ
(S)H
n−1
− f

µ
(S)H
n−1

)
. (36)

This criterion ensures that the iterative scheme ends when the statistical error associated with the second
term in (36) becomes smaller than the statistical error of the first term (see Remark 2.1).

4.2 Definitions of quantities of interest
For each of the test cases presented below, we plot different quantities of interest which we define here.

For all n ∈ N∗, we denote by µH1 , · · · , µHn (respectively µSH1 , · · · , µSHn and µI1, · · · , µIn) the set of
parameter values selected after n iterations of the HMC-greedy (respectively SHMC-greedy and IMC-
greedy) algorithm. We also denote by V

H

n := Span
{
gµH1 , · · · , gµHn

}
, V

SH

n := Span
{
gµSH1

, · · · , gµSHn
}

and

V
I

n := Span
{
gµI1 , · · · , gµIn

}
.

For all µ ∈ P and n ∈ N∗, we define for the three algorithms presented in Section 4.1,

θn(µ) := inf
(λi)1≤i≤n−1∈Rn−1

√√√√Var
Z

ref

(
gµ −

n−1∑
i=1

λigi

)
(37)

and
θn := sup

µ∈Ptrial

θn(µ). (38)

In what follows, we denote by θHn (µ) and θHn (respectively by θSHn (µ), θSHn , θIn(µ) and θIn) the quantities
defined by (37) and (38) obtained with the HMC-greedy (respectively the SHMC-greedy and IMC-greedy)
algorithm. Note that, by definition of the IMC-greedy algorithm, θIn = θIn(µIn).

A second quantity of interest for the HMC-greedy and the SHMC-greedy algorithms is given, for all
n ∈ N∗ and µ ∈ P, by

βn(µ) := inf
(λi)1≤i≤n−1∈Rn−1

√√√√VarZn

(
gµ −

n−1∑
i=1

λigi

)
. (39)

and
βn := sup

µ∈Ptrial

βn(µ). (40)

In the sequel, we denote by βHn (respectively by βSHn ) the quantity defined by (40) obtained with the
HMC-greedy (respectively the SHMC-greedy) algorithm.

Let us point out that when Ptrial = P and when Mref =∞, it holds that θn = σ̂n−1(M) and θn(µn) =
σn−1(M) where σ̂n−1(M) and σn−1(M) are defined respectively in (11) and (12).

We finally wish to evaluate the error made on the approximation of E[fµ(Z)] obtained by using the
variance reduction method based on these MC-greedy algorithm. More precisely, this approximation is
computed as

n−1∑
i=1

λn,µi E
Z

ref (fµi) + EZn
(
fµ −

n−1∑
i=1

λn,µi fµi

)
where

(λn,µi )1≤i≤n−1 = argmin
(λi)1≤i≤n−1∈Rn−1

VarZn

(
fµ −

n−1∑
i=1

λifµi

)
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Algorithm 1: (S)HMC-greedy algorithm
input : γ > 0, ε > 0, M1 ∈ N∗, Ptrial trial set of parameters (finite subset of P), Mref ∈ N∗ (high fidelity sampling number,

which has a vocation to satisfy Mref �M1.

output: N ∈ N∗ size of the reduced basis, µ(S)H
1 , µ

(S)H
2 , · · · , µ(S)H

N ∈ Ptrial,
(
E
Zref (f

µ
(S)H
n

)

)
1≤n≤N

.

1 Let Zref
:=
(
Zref
k

)
1≤k≤Mref

be a collection of Mref iid random variables with the same law as Z and independent of Z.

2 Set R1 = 1.
3 while R1 ≥ 1− γ2 do
4 Let Z1

:=
(
Z1
k

)
1≤k≤M1

be a collection of M1 iid random variables with the same law as Z and independent of Z and Zref .

5 Compute µ(S)H
1 ∈ argmax

µ∈Ptrial

Var
Z1 (fµ).

6 Compute f
µ
(S)H
1

= 0.

7 Compute E
Zref (f

µ
(S)H
1

).

8

• HMC case: Set θH1 (µH1 ) =

√
Var

Zref

(
f
µH1

)
and βH1 (µH1 ) =

√
Var

Z1

(
f
µH1

)
. Set R1 =

∣∣∣θH1 (µH1 )2−βH1 (µH1 )2
∣∣∣

θH1 (µH1 )2
.

• SHMC case: Set θSH1 (µ) =
√

Var
Zref (fµ) and βSH1 (µ) =

√
Var

Z1 (fµ) for all µ ∈ Ptrial. Set

R1 = supµ∈Ptrial

∣∣∣θSH1 (µ)2−βSH1 (µ)2
∣∣∣

θSH1 (µ)2
.

9 if R1 ≥ 1− γ2 then
Set b1 := 1.1 and M1 = db1M1 + 1e.

end
end

10 Compute g1 =

f
µ
(S)H
1

−E
Zref

f
µ
(S)H
1


θ
(S)H
1 (µ

(S)H
1 )

. Set n = 2 and Mn = M1.

11 while
Var

Zref

f
µ
(S)H
n−1


Mref

≤
Var

Zref

f
µ
(S)H
n−1

−f
µ
(S)H
n−1


Mn−1

do
12
13 Set Rn = 1.
14 while Rn ≥ 1− γ2 do
15 Let Zn := (Znk )1≤k≤Mn

be a collection of Mn iid random variables with the same law as Z and independent of Z and

Z
ref .

16 Compute µ(S)H
n ∈ argmax

µ∈Ptrial

min
(λi)1≤i≤n−1∈Rn−1

VarZn

(
fµ −

n−1∑
i=1

λigi

)

17 Compute (λ
n
i )1≤i≤n−1 = argmin(λi)1≤i≤n−1∈Rn−1

√
Var

Zref

(
f
µ
(S)H
n

−
∑n−1
i=1 λigi

)
.

18 Compute f
µ
(S)H
n

=
∑n−1
i=1 λ

n
i gi.

• HMC case: Compute θHn (µ
H
n ) = min

(λi)1≤i≤n−1∈Rn−1

√√√√Var
Zref

(
f
µ
(S)H
n

−
n−1∑
i=1

λigi

)
=

√
Var

Zref

(
f
µ
(S)H
n

− f
µ
(S)H
n

)
and

β
H
n (µ

H
n ) = min

(λi)1≤i≤n−1∈Rn−1

√√√√VarZn

(
fµHn

−
n−1∑
i=1

λigi

)
. Set Rn =

∣∣∣∣∣ θHn (µHn )2 − βHn (µHn )2

θHn (µHn )2

∣∣∣∣∣ .

• SHMC case: For all µ ∈ Ptrial, compute θSHn (µ) = min
(λi)1≤i≤n−1∈Rn−1

√√√√Var
Zref

(
fµ −

n−1∑
i=1

λigi

)
and

β
SH
n (µ) = min

(λi)1≤i≤n−1∈Rn−1

√√√√VarZn

(
fµ −

n−1∑
i=1

λigi

)
. Set Rn = sup

µ∈Ptrial

∣∣∣∣∣ θSHn (µ)2 − βSHn (µ)2

θSHn (µ)2

∣∣∣∣∣ .
19 if Rn ≥ 1− γ2 then

Compute rn :=
φ(θ

(S)H
n−1

(µ
(S)H
n−1

)2)

φ

(
θ
(S)H
n (µ

(S)H
n )2

) , bn := max(1.1, rn) and set Mn = dbnMn + 1e.

end
end

20 Compute gn =
f
µ
(S)H
n

−
∑n−1
i=1 λ

n
i gi

θ
(S)H
n (µ

(S)H
n )

=
f
µ
(S)H
n

− f
µ
(S)H
n

θ
(S)H
n (µ

(S)H
n )

and E
Zref (f

µ
(S)H
n

).

21 Set Mn+1 = Mn and n = n+ 1.
end
Set N = n, MN = Mn.
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Algorithm 2: IMC-greedy algorithm
input : ε > 0, Ptrial trial set of parameters (finite subset of P), Mref ∈ N∗ (high fidelity sampling

number).
output: N ∈ N∗ size of the reduced basis, µI1, µI2, · · · , µIN ∈ Ptrial,

(
E
Z

ref (fµIn)
)
1≤n≤N .

1 Let Z
ref

:=
(
Zref
k

)
1≤k≤Mref

be a collection of Mref iid random variables with the same law as Z and
independent of Z.

2 Compute µI1 ∈ argmax
µ∈Ptrial

Var
Z

ref (fµ).

3 Set θI1(µI1) := Var
Z

ref

(
fµI1

)
and compute E

Z
ref

(
fµI1

)
.

4 Set n = 2, Mn = M1, g1 =
f
µI1√

Var
Zref

(
f
µI1

)
5 while θIn−1(µIn−1) ≥ ε do

6 Compute µIn ∈ argmax
µ∈Ptrial

min
(λi)1≤i≤n−1∈Rn−1

Var
Z

ref

(
fµ −

n−1∑
i=1

λigi

)
7 Compute θIn(µIn) = min(λi)1≤i≤n−1∈Rn−1

√
Var

Z
ref

(
fµIn −

∑n−1
i=1 λigi

)
8 Compute (λ

n

i )1≤i≤n−1 = argmin
(λi)1≤i≤n−1∈Rn−1

Var
Z

ref

(
fµIn −

n−1∑
i=1

λigi

)

9 Compute gn =
fµIn −

∑n−1
i=1 λ

n

i gi
θIn(µIn)

and E
Z

ref (fµIn). Set n = n+ 1.

end
Set N = n.

and µi is equal to µHi , µSHi or µIi depending on the chosen algorithm (remember formula (1)). This quantity
has to be compared with the approximation obtained with a standard Monte-Carlo with Mref samples, i.e.
E
Z

ref (fµ). To this aim, for all n ∈ N∗ and µ ∈ P, we define

en(µ) :=

∣∣∣E
Z

ref (fµ)−
[∑n−1

i=1 λ
n,µ
i E

Z
ref (fµi) + EZn

(
fµ −

∑n−1
i=1 λ

n,µ
i fµi

)]∣∣∣∣∣E
Z

ref (fµ)
∣∣ . (41)

In what follows, we denote by eHn (µ) (respectively eSHn (µ)) the quantity defined by (41) obtained by the
HMC-greedy (respectively the SHMC-greedy) algorithm.

4.3 Explicit one-dimensional functions
We consider in this section two sets of one-dimensional explicit functions. The motivation for considering
these two simple test cases is that the decays of the Kolmogorov n-widths of the associated sets M are
known.

4.3.1 First test case

Let f : R→ R be the function defined such that

∀x ∈ R, f(x) :=


2x if 0 ≤ x ≤ 0.5,

1 if 0.5 ≤ x ≤ 1.5,

4− 2x if 1.5 ≤ x ≤ 2,

0 otherwise.

(42)

Let P = [0, 3] be the set of parameter values. We consider in this first test case the family of functions
(fµ)µ∈P such that fµ(x) = f(x− µ) for all µ in P and x ∈ R. Let Z be a real-valued random variable with
probability measure ν = U(0, 5). In this case, it is known [11] that there exists a constant c > 0 such that
dn(M) ≥ cn−1/2 for all n ∈ N∗.

In this example, M1 = 10, Mref = 105, γ = 0.9 and the trial set Ptrial is chosen to be a set of 300 random
parameter values which were uniformly sampled in P.
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Figure 1 illustrates the evolution of the values of Mn as a function of n for the HMC and SHMC
algorithms.
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Figure 1: Evolution of Mn as a function of n for the HMC and SHMC-greedy algorithms in test case 1.
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Figure 2: Evolution of θHn (µHn ), θSHn (µSHn ), θHn , θSHn as a function of n in test case 1.

Figure 2 illustrates the fact that at each iteration n ∈ N∗, for the (S)HMC-algorithm, the value of
the selected parameter µ(S)H

n is relevant since we observe numerically that θ(S)H(µ
(S)H
n ) is very close to

θ
(S)H
n = supµ∈Ptrial

θ
(S)H
n (µ). In addition, we observe that the resulting reduced spaces V

(S)H

n have very
good approximability properties with respect to the set M, in the sense that the values of θ(S)Hn and
θ
(S)H
n (µ

(S)H
n ) are very close to θIn, which is computed with the reference IMC algorithm.
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Figure 3: Evolution of βHn , βSHn , θHn , θSHn , θIn as a function of n in test case 1.

Figure 3 illustrates the fact that the value of the number of samples Mn chosen at each iteration n ∈ N∗

enables to compute empirical variances that are close to exact variances since the values of β(S)H
n are very

close to the θ(S)Hn for the (S)HMC-algorithm.

0 0.5 1 1.5 2 2.5 3 3.5 4
10

-5

10
-4

10
-3

10
-2

10
-1

10
0

30

SH
( )

30

H
( )

30

H
( )

30

SH
( )

20

SH
( )

20

H
( )

20

H
( )

20

SH
( )

10

SH
( )

10

H
( )

10

H
( )

10

SH
( )

5

SH
( )

5

H
( )

5

H
( )

5

SH
( )

H

0
( )

Figure 4: θHn (µ), θSHn (µ), βHn (µ), βSHn (µ) as a function of µ for n = 0, 5, 10, 20, 30 on Ptest = [0, 4].

In Figure 4, the values of θ(S)Hn (µ) and β
(S)H
n (µ) are plotted as a function of µ ∈ Ptest = [0, 4] for

different values of n (n = 0, 5, 10, 20, 30).
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In comparison, in Figure 5, the relative error e(S)Hn (µ) is plotted as a function of µ for n = 0, 5, 10, 20, 30.
In particular, we observe that this error remains lower than 1% as soon as n ≥ 10 on P. Naturally, this
error is larger for µ ∈ Ptest \ P.
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Figure 6: MMC(µ) as a function of µ ∈ Ptest = [0, 4].

Finally, to illustrate the gain of our proposed method in terms of variance reduction, we plot on Figure 6
the value of the number of random Monte-Carlo samples MMC(µ) that would have been necessary to
compute an approximation of the mean of fµ(Z) with a standard Monte-Carlo method with the same level
of accuracy than the one given by the HMC-algorithm after n = 30 iterations. In this case, let us point out
that Mn = 349. More precisely, we compute MMC(µ) by the follwoing formula:

MMC(µ) =
Var

Z
ref (fµ)×Mn

VarZn
(
fµ −

∑n
i=1 λ

µ
i fµi

) . (43)

Figure 6 illustrates that, for all µ ∈ P, the classical Monte Carlo method would have required a number
of samples MMC(µ) in the range 106 ≤ MMC(µ) ≤ 1012 in order to obtain the same level of statistical
error. Thus, we see that the HMC-algorithm significantly improves the efficiency of the computation of the
expectation of fµ(Z) with respect to a standard Monte-Carlo algorithm.

4.3.2 Second test case

In this example, we consider a second family of one-dimensional functions where P = [0, 1] is the set of
parameter values. More precisely, we consider the family of functions (fµ)µ∈P such that, for all µ in P:

∀x ∈ [0, 1], fµ(x) :=


√
x+ 0.1 if x ∈ [0, µ]

1

2
(µ+ 0.1)−

1
2x− 1

2
(µ+ 0.1)−

1
2µ+ (µ+ 0.1)

1
2 if x ∈ [µ, 1]

(44)

Let us point out that for all µ ∈ P, fµ is a C1 function on [0, 1]. In this case, it is known [13] that there
exists a constant c > 0 such that dn(M) ≤ cn−2 for all n ∈ N∗.

Let Z be a random variable with probability measure ν = U(0, 1).
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In this example, M1 = 10, Mref = 105, γ = 0.9 and the trial set Ptrial is chosen to be a set of 300 random
parameter values which were uniformly sampled in P. In this test case, we osbserve a similar behaviour of
the (S)HMC-algorithm as in the first test case.

Figure 11 illustrates the computational gain brought by the HMC algorithm after n = 70 iterations (so
that Mn = 3109) with respect to the classical Monte Carlo method. Indeed, the quantity MMC(µ) defined
in (43) is observed to vary in this case between 1012 and 1018.
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Figure 7: Evolution of Mn as a function of n for the HMC and SHMC-greedy algorithms.
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Figure 11: MMC(µ) as a function of µ ∈ Ptest = [0, 1].
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Figure 12: eHN (µ) and eSHN (µ) as a function of µ for n = 0, 10, 20, 40 on Ptest = [0, 1].

4.4 Two-dimensional heat equation
Let Z1 and Z2 be two independent real-valued random varibales with probability laws respectively U(0.5, 2)
and N (0, 1)) and let Z = (Z1, Z2). Let D = (0, 2)2, P := [0, 10]. The trial set Ptrial is constructed by
selecting 50 random values uniformly distributed in P.

For all µ ∈ P and z := (z1, z2) ∈ (0, 5, 2)× R, we introduce

Dµ,z :

 D → R2×2

(x, y) 7→
[
Dµ,z

11 (x, y) 0
0 Dµ,z

22 (x, y)

]
where

∀(x, y) ∈ D, Dµ,z
11 (x, y) = 13 + µ sin(2πx/z1) + 0.5z2 and Dµ,z

22 (x, y) = 13 + µ sin(2πy/z1) + 0.5z2.
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We introduce a conform triangular mesh T of the domain D as represented on the left-hand side plot of
Figure 13 and denote by

Vh := {u ∈ C (D) , u|T ∈ P1 ∀T ∈ T , u|∂D = 0} ,

the standard P1 finite element space associated to this mesh.
For µ ∈ P and z ∈ (0.5, 2)× R, we define uµ,zh ∈ Vh the unique solution to

aµ,z (uµ,zh , v) = b(v), ∀v ∈ Vh, (45)

where
∀v, w ∈ H1

0 (D), aµ,z =

∫
D
∇v ·Dµ,z∇w, b(v) =

∫
D
rv,

and where r ∈ L2(D) is defined by

r(x, y) = exp (−(x− 1)2 − (y − 1)2), ∀(x, y) ∈ D.

The function uµ,zh is thus the standard P1 finite element approximation of the unique solution uµ,z ∈ H1
0 (D)

to {
−div (Dµ,z∇uµ,z) = r, in D,
uµ,z = 0 on ∂D. (46)

Let T1 ∈ T be the triangle colored in red in the left-hand side plot of Figure 13. For all µ ∈ P and
z ∈ (0, 5, 2)× R, we define by

fµ(z) :=
1

|T1|

∫
T1

uµ,zh .
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Figure 13: Left: mesh T (the triangle T1 is highlighted in red color); Center: uµ,zh for µ = 9 and z = (1, 0);
Right: uµ,zh for µ = 9 and z = (1.777, 0.2062).

In this example, Mref = 105, M1 = 800 and γ = 0.9. Figure 14 illustrates the evolution of the values of
Mn as a function of n for the HMC and SHMC algorithms.
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Figure 14: Evolution of Mn as a function of n for the HMC and SHMC-greedy algorithms in test case 3.

It is to be noted here that the quantities θHn , θSHn and θIn are very close: the quality of approximation of
the reduced spaces V Hn or V SHn is very close to the quality of approximation of the reduced space V In given
by an ideal greedy algorithm.
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Figure 17: MMC(µ) as a function of µ ∈ Ptest = [0, 12].

Figure 17 shows the value of MMC(µ) given by (43), knowing that Mn = 12800 after n = 7 iterations
of the HMC algorithm. We observe that in this case 1014 ≤ MMC(µ) ≤ 1020, which shows the huge
computational gain brought by the HMC algorithm with respect to a standard Monte-Carlo method in this
test case.
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Figure 18: θHn (µ), θSHn (µ), θIn(µ), βHn (µ), βSHn (µ) as a function of µ for n = 5 in test case 3.
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