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ABSTRACT

Focused Ion Beam milling combined with Scanning Electron
Microscopy (FIB-SEM) technique is an electron microscopy
imaging method that offers the possibility of acquiring 3D
isotropic images of biological structures at the nanometric
scale. Automated image segmentation is required for mor-
phological analysis of huge image stacks and to save time
consuming manual intervention. Current methods are either
specific to data and organelles or lack accuracy. We propose
a robust multi-class semantic segmentation method for FIB-
SEM images, based on deep neural networks. We evaluate
and compare our proposed method on two FIB-SEM images,
for the segmentation of mitochondria, cell membrane and en-
doplasmic reticulum. We achieve results close to inter-expert
variability.

Index Terms— Deep Learning, Segmentation, Convolu-
tional Neural Network, Connected Operators, Mathematical
Morphology, Electron Microscopy, FIB-SEM

1. INTRODUCTION

Focused Ion Beam milling combined with Scanning Electron
Microscopy (FIB-SEM) [1, 2] offers the possibility of imag-
ing 40×40 µm areas with isotropic spatial resolution down to
3 nm (typically 5 nm [3]). The Focused Ion Beam (FIB) mills
away a thin layer at the surface of the sample, while a Scan-
ning Electron Microscope (SEM) images the newly revealed
block face. The iteration of these two processes records a 3D
stack of 2D slices separated by as little as 5 nm.

The FIB-SEM technology can provide whole cell images
of very large size (of the order of 2000 × 1500 × 500, i.e.
1.5 billion pixels), with high spatial resolution and contain-
ing many complex biological objects. The annotation of cell
compartments and organelles is crucial to extract quantitative
information such as size, distribution and morphology. This
information could be useful for medical analysis at the cell
scale. A human expert can annotate these cellular features
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(see Figure 1), but this task is time consuming and not effi-
cient in a context of massive data.

Fig. 1. Example of FIB-SEM image patches of size 256×256
pixels for the considered classes. Left, mitochondria in green,
middle, cell membrane in blue, right, endoplasmic reticulum
in red. First line, FS-1 image, second line, FS-2 image.

Automation of this step is required but remains a major
challenge for several reasons. First, there are multiple com-
plex objects to segment with different characteristics. Sec-
ond, the images have an extremely noisy nature (low signal-
to-noise ratio, low contrast). Third, resolution, staining and
fixation methods vary, resulting in objects with different con-
trast, texture and shape. Last, the drift during image acquisi-
tion may result in shift on the z axis and isotropy defects, and
the contrast may vary from slice to slice.

Few methods have addressed the problem of organelle
segmentation in electron microscopy. Multi-class methods
designed to segment multiple objects simultaneously exist
[4], but lack precision and are mostly focused on mitochon-
dria and membranes. Some methods addressed the segmenta-
tion of endoplasmic reticulum in FIB-SEM images, but they
are either non-automatic, requiring many user interactions
[5], or use class-specific methods [6] which cannot be gen-
eralized to other organelles. Currently, there is no generic
and accurate multi-class segmentation method for FIB-SEM



organelles.
In the context of complex biomedical images, state of the

art methods are currently based on convolutional neural net-
works [7, 8, 9]. These methods have also been used with suc-
cess in electron microscopy [6, 7, 10, 11, 12].

In this paper, we propose a semantic segmentation method
based on deep neural networks and dedicated to cellular FIB-
SEM images. Our method is evaluated quantitatively by com-
parison with two expert annotations on a 3-class segmentation
task.

2. METHOD

We base our method on convolutional networks for seman-
tic segmentation, experimenting two different model archi-
tectures and using or not grain filter dynamic preprocessing.

2.1. Segmentation models

We choose two different U-shaped model architectures:
- First, a UNet [7] like architecture, which is a reference for
biomedical image segmentation, adding batch normalization
after each convolution and 50% dropout after the last convolu-
tion of the deepest block to avoid over fitting. We use padded
convolution to maintain the spatial dimension of the output,
and the softmax activation function to provide a categorical
output.
- Second, an EfficientUNet architecture, based on Efficient-
Net [13] and similar to Eff-UNet [14]. We use an EfficientNet
for the contracting path, U-Net like concatenation and single
convolution followed with a batch normalization for decoding
path. We choose to use an EfficientNet-B4 encoder, resulting
in two models with similar number of parameters (31 million
for our UNet and 33 million for our EfficientUNet).

We train our models using a Dice loss based on weighted

classes: Loss = 1− 1
c

c∑
i=1

αi×Dice(Xi, Yi) with c the number

of classes, αi the weight for class i, Xi the label for class i
and Yi the output for class i.

2.2. Grain filter preprocessing

The grain filter [15] is a non-linear filter based on mathemat-
ical morphology and hierarchical representation. This filter
can simplify an image without altering its contours (i.e. a
contour cannot be created nor shifted), by removing small
connected components (see Figure 2). A threshold value λ
defines the minimum size of components to keep. Qualita-
tively, a grain filter can help humans to distinguish objects in
noisy images.

We propose to feed the network with preprocessed images
using various λ values and concatenate the results in the color
(spectral) channels. The selection of λ values is determined
empirically (more details in 3.2).

Fig. 2. 256× 256 patch (left) and filtered patches using grain
filter with threshold value λ of 650 (middle) and 3200 (right)
on the image FS-1, with all classes annotated.

2.3. Patch extraction and prediction

We use a patch approach with the smallest patch size keep-
ing good classification results, so as to have the best results
in the fastest way. The training data in terms of patches is
much larger than the number of training images. Even if we
only have 40 training slices, we can extract millions of unique
patches. Moreover, smaller inputs give us the possibility to
use our method on less powerful hardware or larger models.

For the training set, we use a patch extraction policy
which oversamples patches containing annotation: 80%
of this set is composed of patches containing at least one
class, the remaining 20% is composed of randomly extracted
patches. We use random 90◦ rotation, horizontal and vertical
flips for data augmentation. We choose not to use deforma-
tions based augmentation due to the nature our data, where
shape is very important in characterizing objects.

We predict a slice using a sliding window with a stride of
one third of the patch size, and keep the center as the result.

3. EXPERIMENTS

3.1. Data

We performed our experimentation on two different FIB-
SEM images. Each image is a stack of 2D slices. Both
images represent HeLa cells, embedded in Lowicryl, and
stained using osmium tetroxide and uranyl acetate.

The FS-1 image (FIB-SEM-1) depicts a cell chemically
fixed at room temperature and was recorded with an x, y, z
resolution of 5 nm × 5 nm × 20 nm, respectively. The man-
ually annotated data is composed of 79 slices. FS-2 has a 7.5
nm × 7.5 nm × 15 nm resolution and represents a high pres-
sure frozen and freeze-substituted cell. The annotated data is
composed of 80 slices, coming from a subsection containing
120 slices, where we have kept the first and last 40 slices of
the subsection.

Each slice has been annotated by an expert using 3 differ-
ent classes: mitochondrion, cell membrane and endoplasmic
reticulum. A default background class is affected to each non-
assigned pixel. We divided each image in 3 sets, training (first
40 slices), validation (next 20 slices) and test (last slices). The
training set is used to train the network, the validation set to



choose hyper-parameters and select models, and the test set to
evaluate our method. One slice from the test set has also been
annotated by another expert, to assess inter-expert variation.

3.2. Methodology

We performed four experiences in the same way on both im-
ages, extracting 256×256 patches and using the two different
models presented in 2.1 with or without grain filtered inputs.

We trained our model using Adam [16] optimizer with
the following parameters: α = 0.001, β1 = 0.9, β2 = 0.999,
ε = 1e−07. We used the following weights for our loss,
background 0.1, mitochondria 0.7, cell membrane 1.0 and en-
doplasmic reticulum 0.9. We trained our models during 100
epochs, composed of 256 mini-batches, with mini-batches of
4 patches. After each epoch, we used 64 mini-batches from
the validation set to evaluate our model and save the best
model using validation loss.

For each experiment, we used either a single input model,
or a 3 input models with 2 filtered versions of the patch as
additional input. We chose filter parameters λ equal to 650
and 3200, which is approximately equal to 1% and 5% of
the patch surface. These parameters have been determined
empirically, keeping the best results after trying several values
between 0.1% and 20% of the patch surface.

For each configuration, we performed 15 independent
trainings. We then evaluated them by calculating F1 score
of each slice for each class and averaging the score for each
class. Based on these results, we selected the 10 best models
using the sum of the 3 scores on the validation set.

3.3. Implementation

All the project is running with Python 3 using TensorFlow
[17], Keras and Higra [18]. Our EfficientUNet model is
based on the EfficientNet implementation from Tensor-
Flow, to which we add a decoder path and concatenations.
Our implementation and all our codes can be found here:
https://github.com/Cyril-Meyer/NeNIST.

3.4. Results

For evaluation, we performed a prediction on the test set. We
compared our results with Ilastik 1.3.3 [19] using the pixel
classification workflow and using all features. The Ilastik
workflow used is based on a random forest classifier. We did
not use the 40 training slices but only 20, keeping one in two
because of performance issues, as Ilastik is not designed to
work with labels as dense as ours. We also compared the an-
notations between the first and second expert.

We computed the F1 score for each class. Results are
shown in Table 1. We compared all the results using a sec-
ond metric, which counts detected connected components
from the labels. A connected component is well detected

if recall > 0.80, undetected if recall < 0.10, and under-
detected if 0.10 ≤ recall ≤ 0.80. These results are shown
in Table 2. The cell membrane class is not included in this
table because the metric is not suitable for few thin linear
structures.

Visual results are shown in Figure 3. For Table 2 and
Figure 3, we choose a single prediction from the best method
in Table 1.

Method F1 Class 1 F1 Class 2 F1 Class 3
FS-1

UNet .937 (.009) .806 (.012) .724 (.010)
UNet+F .939 (.013) .800 (.019) .731 (.012)
EUNet .951 (.008) .764 (.036) .733 (.015)
EUNet+F .947 (.011) .757 (.040) .739 (.011)
Ilastik .185 .672 .112
2nd expert .941 0.751 .740

FS-2
UNet .955 (.002) .754 (.005) .727 (.003)
UNet+F .950 (.002) .742 (.009) .716 (.005)
EUNet .957 (.001) .752 (.009) .739 (.007)
EUNet+F .955 (.002) .748 (.009) .729 (.008)
Ilastik .872 .520 .216
2nd expert .949 .593 .783

Table 1. F1 score on test set, mean (standard deviation when
necessary for comparison). Bold: best score or higher than
second expert. EUNet: EfficientUNet. +F: grain filtered in-
puts

Method TP FN UD
FS-1 Class 1

EUNet+F (/193) 92.7% (179) 4.7% (9) 2.6% (5)
Ilastik (/193) 0.0% (0) 49.2% (95) 50.8% (98)
2nd expert (/10) 100.0% (10) 0.0% (0) 0.0% (0)

FS-1 Class 3
EUNet+F (/1034) 46.9% (485) 19.1% (198) 33.9% (351)
Ilastik (/1034) 0.0% (0) 82.2% (850) 17.8% (184)
2nd expert (/55) 23.6% (13) 9.1% (5) 67.3% (37)

FS-2 Class 1
EUNet (/363) 89.0% (323) 6.1% (22) 5.0% (18)
Ilastik (/363) 62.8% (228) 4.7% (17) 32.5% (118)
2nd expert (/21) 100.0% (21) 0.0% (0) 0.0% (0)

FS-2 Class 3
EUNet (/1468) 56.1% (824) 21.5% (316) 22.3% (328)
Ilastik /1468) 0.0% (0) 60.6% (889) 39.4% (579)
2nd expert (/68) 26.5% (18) 19.1% (13) 54.4% (37)

Table 2. Results on test set, in percentage of component. TP:
true positive, FN: false negative, UD: under detected.

All the variations of our method outperform the results ob-
tained using Ilastik method. The EfficientUNet models give
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Fig. 3. Comparison on 500×500 subsections of image. From
left to right: ground truth (1st expert), 2nd expert, our method
and Ilastik. The 3 first rows are derived from FS-1 and 3 last
rows from FS-2. Notice that in some cases (third row), the
model and the 2nd expert agree on the disagreement with the
first expert.

better results than the UNet ones, especially for the endoplas-
mic reticulum class. The filtered input improves slightly the
results on FS-1 endoplasmic reticulum class, but not on the
FS-2 image.

These results show that our method is robust and efficient.
The UNet models are closer to the expert for the cell mem-
brane class but this class is annotated as a thin linear structure,
and a small variation in the way of annotating results in a large
F1-score drop. Comparing with the 2nd expert, and viewing
the standard deviation for this case, these results are closer to
an over-fitting to the 1st expert than actual better results. We
can notice that, although bringing a visual improvement for
the human expert, the grain filter does not provide significant
improvement in the classification results. This is an interest-
ing result and can be explained by the capacity of the deep
neural network to extract relevant features, even in a noisy
environment. Ilastik performs well on classes with more con-

trast (mitochondria in FS-2 and cell membrane) but not on the
others.

The mitochondria class is well segmented, and less than
5% of the objects are missed. For the endoplasmic reticulum
class, more objects are missed. Using both metrics, we can
conclude from the high F1-score that the missed connected
components are mainly small entities which represent a small
proportion of pixels in the images. This issue probably comes
from the loss function used, which penalized less small miss-
ing components than large components. The variability be-
tween the results of the images shows that our method is ro-
bust and works with more or less contrasted images.

4. CONCLUSION

In this paper, we focused on the multi-class organelle seman-
tic segmentation problem for biomedical FIB-SEM images.
We proposed a deep learning based method, experimented a
grain filter preprocessing and two different model architec-
tures. Our method achieves results close to inter-expert vari-
ability, and we provided a comparison with another method.
Our method has the advantage of being generic to multi-class
organelles segmentation, allowing the addition of new classes
easily.

False negative detection could be improved by using mor-
phological aware loss or 2.5D approaches.

Adding more organelles to the segmentation task, such as
the golgi apparatus, endosome, and the nucleus with its het-
erochromatin and euchromatin or nucleolar compartments or
the nuclear envelope will be an interesting challenge. Our
method still requires a large amount of annotated data, but
we expect that interactive segmentation methods based on
our current results may result in faster data annotation pro-
cess with less human intervention. Experimenting with the
use of our current models on different images, and exploring
the possibility of transfer learning between models is likely to
provide a general model which can segment efficiently several
organelles on multiple images.
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contract, Université de Strasbourg. Conflict of Interest: The
authors declare that they have no conflict of interest.

6. COMPLIANCE WITH ETHICAL STANDARDS

The authors declare that the study does not involve human-
or animal-derived samples that require ethical approval. This
article does not contain any studies involving human partici-
pants performed by any of the authors.



7. REFERENCES

[1] J. A. W. Heymann, M. Hayles, I. Gestmann, L. A. Gian-
nuzzi, B. Lich, and S. Subramaniam, “Site-specific 3D
imaging of cells and tissues with a dual beam micro-
scope,” J. Struct. Biol., vol. 155, no. 1, pp. 63–73, Jul.
2006.

[2] G. Knott, H. Marchman, D. Wall, and B. Lich, “Serial
Section Scanning Electron Microscopy of Adult Brain
Tissue Using Focused Ion Beam Milling,” J. Neurosci.,
vol. 28, no. 12, pp. 2959–2964, Mar. 2008.

[3] K. L. Briggman and D. D. Bock, “Volume electron
microscopy for neuronal circuit reconstruction,” Curr.
Opin. Neurobiol., vol. 22, no. 1, pp. 154–161, Feb. 2012.

[4] K. Cetina, J. M. Buenaposada, and L. Baumela, “Multi-
class segmentation of neuronal structures in electron mi-
croscopy images,” BMC Bioinformatics, vol. 19, no. 1,
p. 298, Aug. 2018.

[5] S. Machado, V. Mercier, and N. Chiaruttini, “LimeSeg:
A coarse-grained lipid membrane simulation for 3D im-
age segmentation,” BMC Bioinformatics, vol. 20, no. 1,
p. 2, Jan. 2019.

[6] J. Liu, L. Li, Y. Yang, B. Hong, X. Chen, Q. Xie, and
H. Han, “Automatic Reconstruction of Mitochondria
and Endoplasmic Reticulum in Electron Microscopy
Volumes by Deep Learning,” Front. Neurosci., vol. 14,
2020.

[7] O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Con-
volutional Networks for Biomedical Image Segmenta-
tion,” in Med. Image Comput. Comput. Assist. Interv. –
MICCAI 2015, ser. Lecture Notes in Computer Science,
N. Navab, J. Hornegger, W. M. Wells, and A. F. Frangi,
Eds. Cham: Springer International Publishing, 2015,
pp. 234–241.

[8] E. Gibson, W. Li, C. Sudre, L. Fidon, D. I. Shakir,
G. Wang, Z. Eaton-Rosen, R. Gray, T. Doel, Y. Hu,
T. Whyntie, P. Nachev, M. Modat, D. C. Barratt,
S. Ourselin, M. J. Cardoso, and T. Vercauteren,
“NiftyNet: A deep-learning platform for medical imag-
ing,” Comput. Methods Programs Biomed., vol. 158, pp.
113–122, May 2018.

[9] E. Moen, D. Bannon, T. Kudo, W. Graf, M. Covert, and
D. Van Valen, “Deep learning for cellular image analy-
sis,” Nat Methods, vol. 16, no. 12, pp. 1233–1246, Dec.
2019.

[10] T. Zeng, B. Wu, and S. Ji, “DeepEM3D: Approach-
ing human-level performance on 3D anisotropic EM im-
age segmentation,” Bioinformatics, vol. 33, no. 16, pp.
2555–2562, Aug. 2017.

[11] M. G. Haberl, C. Churas, L. Tindall, D. Boassa, S. Phan,
E. A. Bushong, M. Madany, R. Akay, T. J. Deerinck,
S. T. Peltier, and M. H. Ellisman, “CDeep3M—Plug-
and-Play cloud-based deep learning for image segmen-
tation,” Nat Methods, vol. 15, no. 9, pp. 677–680, Sep.
2018.

[12] C. Xiao, X. Chen, W. Li, L. Li, L. Wang, Q. Xie, and
H. Han, “Automatic Mitochondria Segmentation for EM
Data Using a 3D Supervised Convolutional Network,”
Front. Neuroanat., vol. 12, 2018.

[13] M. Tan and Q. Le, “EfficientNet: Rethinking model
scaling for convolutional neural networks,” ser. Proc.
Mach. Learn. Res., K. Chaudhuri and R. Salakhutdinov,
Eds., vol. 97. Long Beach, California, USA: PMLR,
Jun. 2019, pp. 6105–6114.

[14] B. Baheti, S. Innani, S. Gajre, and S. Talbar, “Eff-UNet:
A Novel Architecture for Semantic Segmentation in Un-
structured Environment,” in 2020 IEEE/CVF Conf. on
Comput. Vis. Pattern Recognit. Workshops (CVPRW),
Jun. 2020, pp. 1473–1481.

[15] V. Caselles and P. Monasse, “Grain Filters,” J. Math.
Imaging Vis., vol. 17, no. 3, pp. 249–270, Nov. 2002.

[16] D. P. Kingma and J. Ba, “Adam: A method for stochastic
optimization,” in 3rd Int. Conf. Learn. Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Con-
ference Track Proceedings, Y. Bengio and Y. LeCun,
Eds., 2015.

[17] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis,
J. Dean, M. Devin, S. Ghemawat, G. Irving, M. Isard,
M. Kudlur, J. Levenberg, R. Monga, S. Moore, D. G.
Murray, B. Steiner, P. Tucker, V. Vasudevan, P. Warden,
M. Wicke, Y. Yu, and X. Zheng, “TensorFlow: A sys-
tem for large-scale machine learning,” in Proceedings
of the 12th USENIX Conf. Oper. Syst. Des. Implement.,
ser. OSDI’16. USA: USENIX Association, Nov. 2016,
pp. 265–283.

[18] B. Perret, G. Chierchia, J. Cousty, S. J. F. Guimarães,
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