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Abstract: The Besicovitch and Weyl pseudo-distances are shift-invariant pseudo-
metrics on the set of infinite sequences, that enjoy interesting properties and are
suitable to study the dynamics of cellular automata. They correspond to the asymptotic
behavior of the Hamming distance of longer and longer prefixes or factors. In
this paper, we replace Hamming distance by that of Levenshtein, with the aim
of studying symbolic dynamical systems in their associated quotient space. We
prove that every cellular automaton is Lipschitz with respect to this new distance,
moreover, the shift-map is exactly the identity over those spaces. In addition,
we show that, in the Besicovitch and Weyl spaces, substitutions are well-defined
essentially only when they are uniform. However, we prove that in the new spaces
associated to the Levenshtein distance, all substitutions are well-defined, and furthermore
Lipschitz. Finally, we propose a general definitions of pseudo-metrics depending
on the distance.

1 Introduction

In [BFK97] were studied the dynamics of cellular automata in the spaces of sequences
endowed with the Besicovitch or Weyl pseudo-metrics, which are defined as asymptotics
of the Hamming distance over prefixes or factors of the sequences. This corresponds
to the d̄-metric defined for ergodic purposes in [Orn74]. [Fel76], and independently
[Kat77], proposed to replace the Hamming distance by the Levenshtein (or edit)
distance from [Lev66], and get the f̄ -metric, which is useful in Kakutani equivalence
theory. One can read some properties of the metric in [ORW82, Chapter 2], and a
nice history of this notion in [KL17].

In this paper we will use some basic vocabulary of symbolic dynamical systems,
for that we can cite [Kůr03] as a good reference for this theory.
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We call an alphabet every finite set of symbols (or letters) it will be denoted A, a
finite word over A is a finite sequence of letters in A, it is convenient to write a word
as u = u0 . . .u|u|−1 to express u as the concatenation of the letters u0,u1, . . . ,u|u|−1
with |u| representing the length of u, that is, the number of letters appearing in u.
The unique word of length 0 is the empty word denoted by λ . An infinite word over
an alphabet A is the concatenation of infinite letters and we write x = x0x1x2 . . ..

The set of all finite (resp. infinite) words over A is denoted by A∗ (resp. AN)
and for n ∈N, An is the set of words of length n over A. We use the notation Ji, jJ
for the set of integers {i, i+1, . . . , j−1}.

The shift map denoted σ is a function over AN, such that for x ∈ AN we
have σ(x)i = xi+1 for all i ∈ N. A distance d over a set of finite words A∗ is
a function over A∗×A∗ to R+ satisfying: separation, symmetry, and the triangle
inequality. A pseudo-metric is an apllication satisfying the distance property except
the separation property, distincts words can have zero distance. We are interested
in distances defined between pairs of words of the same length. The prototypical
example is the Hamming distance denoted by dH , which counts the number of
differences between two words, dH(u,v) = |{ i ∈N|ui 6= vi}|.

2 Besicovitch and Weyl spaces

In this section we recall the definition and topological properties of Besicovitch and
Weyl spaces, then we introduce cellular automata in those spaces which are studied
in several works. Finally we prove that not every substitution is well defined over
those spaces.

2.1 Definitions and Topological properties

Definition 2.1 The Besicovitch and Weyl pseudo-metrics, denoted here by CdH and
SdH respectively, were defined in [CFMM97] as follows:

• CdH (x,y) = limsupl→∞

dH(xJ0,lJ,yJ0,lJ)

l
, ∀x,y ∈ AN.

• SdH (x,y) = limsupl→∞ maxk∈N
dH(xJk,k+lJ,yJk,k+lJ)

l
,∀x,y ∈ AN.

With a simple calculation, one can find that, for all x,y∈AN: CdH (x,y)≤SdH (x,y),
and both of Besicovitch and Weyl pseudo-metrics are σ -invariant.

Since those two functions are pseudo-metrics and they are not distances, we
factor the space of infinite words by the equivalence of zero distance, as mentioned
in the following definitions:

Definitions 2.2 Let A be an alphabet, and, let X = AN. The relation x∼CdH
y⇐⇒

CdH (x,y) = 0, (resp. x∼SdH
y⇐⇒SdH (x,y) = 0 ) is an equivalence relation. The

quotient space X/∼CdH
(resp. X/∼SdH

) is a topological space called the Besicovitch
(resp. Weyl) space denoted by XCdH

(resp. XSdH
).
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We denote by x̃ the equivalence calss of x ∈ X in the quotient space.
According to [BFK97], the Besicovitch space is pathwise-connected, infinite-

dimension and complete topological space, but, it is neither separable nor locally
compact. The Weyl space shares many properties with the Besicovitch space; one
of the main differences is that it is not complete, according to [DI88].

2.2 Cellular automata

First of all, we recall that a cellular automaton of radius r is a map F : AN→ AN,
such that there exists a map f : Ar→ A, for all x ∈ AN, i ∈N: F(x)i = f (xJi,i+rJ).

Necessary and sufficient conditions depending of the metric Cantor space, so
that a function F is a cellular automaton, was given by Hedlund in [Hed69]. More
precisely, a function F : AN → AN is a cellular automaton if and only if it is a
continous function with respect to the metric Cantor space and shift-invariant (i.e.
F(σ(x)) = σ(F(x)), ∀x ∈ AN). In [BFK97], every cellular automaton induces a
(well-defined) Lipshitz function over Besicovitch and Weyl spaces.

Definition 2.3 A function F̃ is a cellular automaton on the Besicovitch (resp. Weyl)
space if there exists a cellular automaton G : AN→ AN such that G ∈ F̃ (i.e. ∀x ∈
AN,∀y ∈ F̃(x̃), CdH (G(x),y) = 0, (resp. SdH (G(x),y) = 0)).

[MS09, Theorem 13] gives a characterization to the Curtis-Hedlund-Lyndon of
cellular automata in by three conditions: shift invariance, a condition in terms of
uniform continuity and a condition in terms of periodic configurations.

2.3 Substitution

In the first place, we recall some definitions used in the study of substitutions. For
more details on substitutions we can refer [Fog02] and [BR10].

Definition 2.4 Let A be an alphabet.

1. A substitution τ is a non-erasing morphism over A∗, i.e. τ replaces the letters
of an alphabet A with non-empty finite words.

2. The function associated to a substitution τ is denoted τ and defined on AN

by τ(z) = τ(z0)τ(z1) . . ., ∀z ∈ AN.

Definition 2.5 A substitution τ is called uniform if for all a,b ∈ A, |τ(a)|= |τ(b)|.
The length of a uniform substitution is |τ(a)| with a ∈ A.

Now, we prove that the function associated to uniform substitutions induces a
Lipschitz function on Besicovitch (resp. Weyl) space.

Proposition 2.6 For every uniform substitution τ with length L ∈ N \ {0}, τ is
L-Lipschitz, in particular it is well-defined over XB (resp. XW )
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Proof: Let τ be a uniform substitution with length L. Let x,y ∈ AN and k ∈N.
If τ(x)k 6= τ(y)k then τ(xbk/Lc) 6= τ(ybk/Lc), hence xbk/Lc 6= ybk/Lc.
Then, for l ∈N we have:

|{k ∈ J0, lJ | τ(x)k 6= τ(y)k}| ≤ L · |
{

k ∈
s

0,
⌊

l
L

⌋s ∣∣∣∣ xk 6= yk

}
|

≤ L · |{k ∈ J0, lJ | xk 6= yk}|.

Therefore: CdH (τ(x),τ(y))≤ L ·CdH (x,y).
In conclusion, τ is well-defined on the Besicovitch space and it is L-Lipschitz. �

The following theorem shows that a non-constant function associated to a non-
uniform substitution could not be induced on the Besicovitch (resp. Weyl) space.

Theorem 2.7 For every non-uniform substitution τ , τ is well-defined on the Besicovitch
space if and only if it is constant.

Proof: If τ is constant then CdH (τ(x),τ(y)) = 0 for all x,y ∈ AN. Hence τ is
well-defined on the Besicovitch space. Furthermore, the induced function is also
constant on the quotient space.

We suppose now that τ induces a function on the Besicovitch space, so, for
all x,y ∈ AN, if CdH (x,y) = 0, then CdH (τ(x),τ(y)) = 0. According to the non-
uniformity of τ , there exists a 6= b∈A such that |τ(a)|= |τ(b)|+k with k∈N\{0}.
In addition, for any z ∈ AN we have CdH (az,bz) = 0, hence:

CdH (τ(az),τ(bz)) = CdH (τ(z),σ
k(τ(z))) = 0.

Furthermore, for z = a∞ we have τ(z) and σ k(τ(z)) are periodic.
Since CdH (τ(z),σ

k(τ(z))) = 0 thus τ(z) = σ k(τ(z)) therefore τ(z) is |τ(a)| and
k-periodic configuration. Hence, according to Fine and Wilf’s theorem [FW65],
there exists v ∈ A∗ such that |v| divide k, j ∈N\{0} and τ(a) = v j. Then, for all
d ∈ A\{a} we take xd ∈ AN periodic starting with ad and we find τ(d) = vm with
m ∈N\{0}. We then deduce that there exists v ∈ A∗ such that for any c ∈ A there
exists m ∈N\{0} such that τ(c) = vm. In conclusion, τ is constant. �

Examples 2.8 Let τ be the substitution defined on A = {0,1} by τ(0) = 01 and
τ(1) = 1. For x= 0∞ and y= 10∞, we can remark that, CdH (x,y) = 0. We have also,
τ(x) = (01)∞ and τ(y) = (10)∞. Then CdH (τ(x),τ(y)) = 1. Hence, τ̃(x) 6= τ̃(y),
despite that x̃ = ỹ.

It is well known now that the Besicovitch (resp. Weyl) pseudo-metric and
cellular automata and uniform substitutions fit very well together. But, we find
that, this is not true in the case of non-uniform substitutions. For that, we introduce
in the next section a new shift-invariant pseudo-metric, and we find that both of
cellular automata and all substitutions are well defined on the metric topology
induced by this pseudo-metric.
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3 Levenshtein distance

Another distance used in symbolic dynamical systems is the Levenshtein distance
[Lev66], it may also be referred to as the edit distance. It used extensively for
information theory, linguistics, word algorithmics, . . . This distance can be considered
as a variant of the Hamming distance. We show in particular that the Hamming
distance is an upper bound for the Levenshtein distance. It depends on the minimum
number of edit operations required to change one word into the other. The edit
operations are defined over A∗ as follows: for u ∈ A∗, a ∈ A and i ∈ J0, |u|J :

• The deletion of a letter: Di(u) = u0u1 . . .ui−1ui+1 . . .u|u|−1

• The substitution of a letter by another one: Sa
i (u)= u0u1 . . .ui−1aui+1 . . .u|u|−1

• The insertion of a letter: Ia
i (u) = u0 . . .ui−1auiui+1 . . .u|u|−1.

Using these notations, We can write the Levenshtein distance as follows:

Definition 3.1 The Levenshtein distance between words u and v, denoted by dL(u,v),
is defined as the minimal n ∈N such that T1 ◦ . . .◦Tn(u) = v for some
Tk ∈ {Di| i}t{Sa

i |a ∈ A, i}t{ Ia
i |a ∈ A, i}, for k ∈ J1,nK.

There are constraints on the sites i where each operation is performed, depending
on the current length of the image of word u, but for readability, we do not write
them explicitly.

The definition is not changed in its symmetric version, that is, allowing to modify
both u and v to get to an equality, as it is sometimes seen in the literature.

Examples 3.2 Let A = {0,1}.

1. For u = 010101 and v = 101010, we have : dL(u,v) = 2.
In fact, D0(u) = 10101 (we delete the letter of index 0 in u), then we add the
letter 0 in the end of the word and we find I0

5 ◦D0(u) = 101010 = v.

2. For u = 0000 and v = 0001, we have : dL(u,v) = 1. In fact, it is enough to
change u3 = 0 by 1 i.e. S1

3(u) = 0001 = v.

Following the idea behind the Besicovitch and Weyl pseudo-metrics, we define two
pseudo-metrics associated to the Levenshtein distance as follows:

Definitions 3.3 Let A be an alphabet.

1. The centred pseudo-metric associated to the Levenshtein distance is:

CdL(x,y) = limsup
l→∞

dL(xJ0,lJ,yJ0,lJ)

l
, ∀x,y ∈ AN.

2. The sliding pseudo-metric associated to the Levenshtein distance is:

SdL(x,y) = limsup
l→∞

max
k∈N

dL(xJk,k+lJ,yJk,k+lJ)

l
, ∀x,y ∈ AN.
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Since those two functions are pseudo-metrics and they are not distances, we quotient
the space of infinite words by the equivalence of zero distance to find two metric
spaces called centred (resp. sliding) space associated to Levenshtein distance denoted
by XCdL

(resp. XSdL
) where X = AN.

Proposition 3.4 The Levenshtein distance satisfies the following properties :

1. dL(u,v)≤ dH(u,v), ∀u,v ∈ A∗.

2. dL(uu′,vv′) ≤ dL(u,v)+ dL(u′,v′), ∀u,v ∈ An, ∀u′,v′ ∈ Am, with n,m ∈ N.
This property is called subadditivity.

3. CdL(x,y)≤ CdH (x,y), ∀x,y ∈ AN and SdL(x,y)≤SdH (x,y), ∀x,y ∈ AN

Proof:

1. Let dH(u,v) = n, then there exists n difference between u and v. If we change
the elements where u and v are different and let them equals, we used then n
substitution to get the word v . So dL(u,v)≤ n = dH(u,v).

2. Let u,v ∈ An, u′,v′ ∈ Am. Denote dL(u,v) = p and dL(u′,v′) = q with p,q ∈
N \ {0}, then the minimum number of operations used to get v from u is p
and the minimum number of operations used to get v′ from u′ is q. Hence
the minimum number of operations used to get vv′ from uu′ is less or equal
to p+q. Therefore : dL(uu′,vv′)≤ p+q = dL(u,v)+dL(u′,v′).

3. Both inequalities are deduced from: ∀l ∈N, ∀u,v ∈ Al , dL(u,v)≤ dH(u,v).

�

Proposition 3.5 The shift map over the centred (resp. sliding) space associated
to the Levenshtein distance is exactly the identity map. In particular the pseudo-
metrics associated to the Levenshtein distance are σ -invariant.

Proof: Let x̃ ∈ XCdL
. If x ∈ x̃, then: dL(xJ0,lJ,σ(x)J0,lJ) = dL(xJ0,lJ,xJ1,1+lJ)≤ 2.

We just delete the first letter of xJ0,lJ (we find xJ1,lJ) and then we insert xl+1 to find
the equality. Hence :

CdL(x,σ(x)) = limsup
l→∞

dL(xJ0,lJ,xJ1,1+lJ)

l
≤ limsup

l→∞

2
l
= 0.

So x ∈ σ̃(x) = σ̃(x̃). And then, x̃⊆ σ̃(x̃).
If z ∈ σ̃(x̃), then CdL(z,x)≤ CdL(z,σ(x))+CdL(σ(x),x) = 0. Hence CdL(z,x) = 0.
So z ∈ x̃, therefore σ̃(x̃)⊆ x̃. In conclusion, for all x ∈ AN we have, σ̃(x̃) = x̃. �

Since every class is invariant by shift, dynamical systems over this space can
be considered as acting on shift orbits.
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3.1 Cellular automata

Now, we aim to prove that every cellular automaton is well defined over this new
quotient space and furthermore Lipschitz.

Definition 3.6 Let F : AN→ AN be a cellular automaton with radius r and a local
function f : Ar→ A. We denote by f ∗ the function defined over A∗ to itself by:

f ∗(u) = f (uJ0,rJ) f (uJ1,1+rJ) . . . f (uJl,l+rJ),

for u such that |u| ≥ r and f ∗(u) = λ if |u|< r.

Lemma 3.7 For all u,v∈A∗ and for all w,w′ ∈A∗ : dL(uwv,uw′v)≤max(|w|, |w′|).

Proof: Let us suppose that |w| ≤ |w′|. We can remark that we can do |w| substitution
for the word uwv to get uw′J0,|w|Jv then we do |w′| − |w| insertion of the elements
of w′J|w|,|w′|J to get uw′v. So we find at least |w′| operations to get uw′v from uwv.
Hence : dL(uwv,uw′v)≤ |w′|= max(|w|, |w′|). �

Lemma 3.8 Let F be a cellular automaton with radius r and local function f .
Then for all u ∈ Ar+1A∗,v ∈ ArA∗, and T ∈ {D} t {Sa|a ∈ A} t { Ia|a ∈ A} we
have: dL( f ∗(Ti(u)), f ∗(v))≤ r+1+dL( f ∗(u), f ∗(v)).

Proof: Let u ∈ Ar+1A∗,v ∈ ArA∗, and let n = dL( f ∗(u), f ∗(v)). By the triangular
inequality, we have : dL( f ∗(Ti(u)), f ∗(v))≤ dL( f ∗(Ti(u)), f ∗(u))+dL( f ∗(u), f ∗(v)).
So it is enough to show that dL( f ∗(Ti(u)), f ∗(u))≤ r+1. Let f ∗(u) = u′wv′, where
u′ = f ∗(uJ0,iJ), w = f ∗(uJp,i+rJ) and v′ = f ∗(uJi+1,|u|−1J), with p = min{i− r,0}.
One can note that :

• f ∗(Sa
i (u)) = u′w′v′ where w′ = f ∗(uJp,iJauJi+1,i+rJ)

• f ∗(Ia
i (u)) = u′w′v′ where w′ = f ∗(uJp,iJauJi,i+rJ)

• f ∗(Di(u)) = u′w′v′ where w′ = f ∗(uJp,iJuJi+1,i+rJ)

In these three cases, we are in the case of the previous lemma, with |w| = r and
r−1≤ |w′| ≤ r+1, which gives the wanted inequality. �

Lemma 3.9 Let F be a cellular automaton with radius r and local function f .
Then for all u,v ∈ ArA∗ such that dL(u,v)≤ |u|− r, we have:

dL( f ∗(u), f ∗(v))≤ (r+1)dL(u,v).

Proof: Let u,v ∈ ArA∗ such that n = dL(u,v) ≤ |u| − r. By definition, we
can write u = T1 ◦ . . . ◦ Tn(v) for some operations Tk ∈ {Di| i} t {Sa

i |a ∈ A, i} t
{ Ia

i |a ∈ A, i}. Since the length decreases by at most 1, note that the assumption
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implies that no word in the sequence of operations has a length smaller than r. We
can prove by induction on k decreasing from n to 0 that:

dL( f ∗(Tk+1 ◦ . . .◦Tn(v)), f ∗(v))≤ (r+1)(n− k).

The case k = n is trivial. Now suppose that dL( f ∗(Tk+1 ◦ . . . ◦ Tn(v)), f ∗(v)) ≤
(r+1)(n− k) for some k. By Lemma 3.8, dL( f ∗(Tk ◦ . . .◦Tn(v)), f ∗(v))≤ r+1+
(r+1)(n− k) = (r+1)(n− k+1), which is exactly the next step if the induction
hypothesis. We obtain (for k = 0) the claimed statement. �

Theorem 3.10 Every cellular automaton F with radius r is (r+1)-Lipschitz with
respect to CdL . In particular it is well defined on the quotient space.

Proof: Let x,y ∈ AN.
Case 1. If CdL(x,y) = 1, then CdL(F(x),F(y)≤ CdL(x,y) = 1.

Case 2. If CdL(x,y)< 1. Then : limsupl→∞

dL(xJ0,lJ,yJ0,lJ)

l
< 1.

Hence, there exists N > 0 such that for all l > N, we have:
dL(xJ0,lJ,yJ0,lJ)

l
< 1− r

l .

Therefore, we find that dL(xJ0,lJ,yJ0,lJ)< l− r. Applying Lemma 3.9, we deduce:

dL( f ∗(xJ0,lJ), f ∗(yJ0,lJ))≤ (r+1)dL(xJ0,lJ,yJ0,lJ).

Deviding by l and getting the upper limit, we find our result. �

3.2 Substitutions

Finally, we prove that, contrariwise the Besicovitch and Weyl spaces, all substitutions
are well-defined on the quotient space with respect to the pseudo-metric associated
to the Levenshtein distance, as mentioned in the following theorem:

Theorem 3.11 For every substitution τ , we have τ is well-defined over XCdL
.

Furthermore it is L-Lipschitz with L = maxa∈A |τ(a)|.
Proof: Let τ be a substitution and L = maxa∈A |τ(a)|. Let x,y ∈ AN and l ∈ N.
We assume that dL(xJ0,lJ,yJ0,lJ) = n. Then there exists a sequence of operations
Tk ∈ {Di| i}t{Sa

i |a ∈ A, i}t{ Ia
i |a ∈ A, i} for 1≤ k ≤ n such that:

T1 ◦ . . .◦Tn(xJ0,lJ) = yJ0,lJ. Hence : τ(T1 ◦ . . .◦Tn(xJ0,lJ)) = τ(yJ0,lJ).
By an argument similar to that of Lemma 3.9, one can show that for every T , there
exists T ′1, ...,T

′
m′ , with m′ ≤ L, such that τ(T (u)) = T ′1 ◦ ...◦T ′m′τ(u).

Hence there exists n′ operations (T ′k )1≤k≤n′ with n′ ≤ nL such that:

T ′1 ◦ . . .◦T ′n′(τ(xJ0,lJ)) = τ(yJ0,lJ).

Therefore : dL(τ(xJ0,lJ),τ(yJ0,lJ))≤ n′ ≤ Ln = L ·dL(xJ0,lJ,yJ0,lJ).
And since: dL(τ(x)J0,lJ,τ(y)J0,lJ)≤ dL(τ(xJ0,lJ),τ(yJ0,lJ)), then:

dL(τ(x)J0,lJ,τ(y)J0,lJ)≤ L ·dL(xJ0,lJ,yJ0,lJ).

We divide by l and pass to the upper limit, we find: CdL(τ(x),τ(y))≤ L ·CdL(x,y).
In conclusion, τ is L-Lipschitz with respect to CdL . �
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4 Conclusion

In this paper, we construct a metric which induces a non trivial topology and makes
the shift map equal to the identity over this space. This topology turns out to be
a suitable playground for the study of the dynamical behavior of substitutions and
cellular automata, since both of them are Lipschitz functions. This construction
was made only by changing the Hamming distance with the Levenshtein distance.
We suggest global definitions for those pseudo-metrics, where we can change the
Hamming distance by any other distance defined on the set of finite words, as
follows :

Definitions 4.1 For a distance d over A∗×A∗, we define the centred pseudo-metric
denoted by Cd and the sliding pseudo-metric denoted by Sd as follows:

• Cd(x,y) = limsupl→∞

d(xJ0,lJ,yJ0,lJ)

maxu,v∈Al d(u,v)
, ∀x,y ∈ AN.

• Sd(x,y) = limsupl→∞ maxk∈N
d(xJk,k+lJ,yJk,k+lJ)

maxu,v∈Al d(u,v)
, ∀x,y ∈ AN.

A relevant question is now the following: Which properties of distance d make CA
or substitutions well-defined in the corresponding pseudometrics?
Generalizations exist of Besicovitch pseudometrics over groups (see for instance
[LS16, CGN20]). An interesting work would be to generalize more of these metrics
to this setting.
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