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Abstract: The Besicovitch and Weyl pseudo-distances are shift-invariant pseudo-
metrics on the set of infinite sequences, that enjoy interesting properties and are
suitable to study the dynamics of cellular automata. They correspond to the asymptotic
behavior of the Hamming distance of longer and longer prefixes or factors. In
this paper we replace Hamming distance by that of Levenshtein, with the aim
of studying symbolic dynamical systems in their associated quotient space. We
prove that every cellular automaton is Lipschitz with respect to this new distance,
moreover, the shift-map is exactly the identity over those spaces. In addition,
we show that, in the Besicovitch and Weyl spaces, substitutions are well-defined
essentially only when they are uniform. However, we prove that in the new spaces
associated to the Levenshtein distance, all substitutions are well-defined, and furthermore
Lipschitz. Finally, we propose a general definitions of pseudo-metrics depending
on the distance.

1 Introduction

In [BEK97] were studied the dynamics of cellular automata in the spaces of sequences
endowed with the Besicovitch or Weyl pseudo-metrics, which are defined as asymptotics
of the Hamming distance over prefixes or factors of the sequences. This corresponds
to the d-metric defined for ergodic purposes in [Orn74]. [Fel76], and independently
[Kat77]], proposed to replace the Hamming distance by the Levenshtein (or edit)
distance from [Lev66]], and get the f-metric, which is useful in Kakutani equivalence
theory. One can read some properties of the metric in [ORWS&2, Chapter 2], and a
nice history of this notion in [KL17].

In this paper we will use some basic vocabulary of symbolic dynamical systems,
for that we can cite [KurQ3] as a good reference for this theory.
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We call an alphabet every finite set of symbols (or letters) it will be denoted A, a
finite word over A is a finite sequence of letters in A, it is convenient to write a word
as u =uo...up 1 to express u as the concatenation of the letters uo, u1, ..., uj,
with |u| representing the length of u, that is, the number of letters appearing in u.
The unique word of length 0 is the empty word denoted by A. An infinite word over
an alphabet A is the concatenation of infinite letters and we write x = xpx1x3.. ..

The set of all finite (resp. infinite) words over A is denoted by A* (resp. AN)
and for n € N, A” is the set of words of length n over A. We use the notation [i, j[
for the set of integers {i,i+1,...,j—1}.

The shift map denoted o is a function over AN, such that for x € AN we
have o(x); = x;; for all i € N. A distance d over a set of finite words A* is
a function over A* x A* to R satisfying: separation, symmetry, and the triangle
inequality. A pseudo-metric is an apllication satisfying the distance property except
the separation property, distincts words can have zero distance. We are interested
in distances defined between pairs of words of the same length. The prototypical
example is the Hamming distance denoted by dy, which counts the number of
differences between two words, dy (u,v) = [{i € N|u; # v;}|.

2 Besicovitch and Weyl spaces

In this section we recall the definition and topological properties of Besicovitch and
Weyl spaces, then we introduce cellular automata in those spaces which are studied
in several works. Finally we prove that not every substitution is well defined over
those spaces.

2.1 Definitions and Topological properties
Definition 2.1 The Besicovitch and Weyl pseudo-metrics, denoted here by €4, and
&y, respectively, were defined in [BFK97/] as follows:

dr (X011, Y]0.1) Vi.y € AN
l ) ) .

o Sy, (x,y) = limsup,_,,, maxgen

° Q:dH ()C,y) =1lim SUP; oo

A (X[ e[ Y[k k1)
l

Vx,y € AN,

With a simple calculation, one can find that, for all x,y € AN: €, (x,y) < &, (x,¥),
and both of Besicovitch and Weyl pseudo-metrics are o-invariant.

Since those two functions are pseudo-metrics and they are not distances, we
factor the space of infinite words by the equivalence of zero distance, as mentioned
in the following definitions:

Definitions 2.2 Let A be an alphabet, and, let X = AN. The relation x ~¢ A

Cay (x,y) =0, (resp. x ~&,, ¥ <= 64y (x,y) =0 ) is an equivalence relation. The

quotient space X [~e, (resp. X/~ o, ) is a topological space called the Besicovitch
H H

(resp. Weyl) space denoted by X¢ i (7esp- X, )



We denote by & the equivalence calss of x € X in the quotient space.

According to [BEK97]], the Besicovitch space is pathwise-connected, infinite-
dimension and complete topological space, but, it is neither separable nor locally
compact. The Weyl space shares many properties with the Besicovitch space; one
of the main differences is that it is not complete, according to [DISS]].

2.2 Cellular automata

First of all, we recall that a cellular automaton of radius  is a map F : AN —
AN such that there exists a map f : A" — A such that for all x € AN e N:
F(x); = f(x[it)- Necessary and sufficient conditions depending of the metric
Cantor space, so that a function F is a cellular automaton, was given by Hedlund
in [Hed69]]. More precisely, a function F : AN — AN is a cellular automaton if and
only if it is a continous function with respect to the metric Cantor space and shift-
invariant (i.e. F(o(x)) = o(F(x)), Vx € AN). In [BFK97], it is shown that every
cellular automaton induces a (well-defined) Lipshitz function over Besicovitch and
Weyl spaces.

Definition 2.3 A function F is a cellular automaton on the Besicovitch (resp. Weyl)
space if there exists a cellular automaton G : AN — AN such that G € F, i.e.
Vx € AN Wy € F(%), €4, (G(x),y) =0 (resp. &4, (G(x),y) =0).

[MS09, Theorem 13] gives a characterization similar to the Curtis-Hedlund-Lyndon
of cellular automata by three conditions: shift invariance, a condition in terms of
uniform continuity and a condition in terms of periodic configurations.

2.3 Substitution

In the first place, we recall some definitions used in the study of substitutions. For
more details on substitutions we can refer [Fog02[] and [BR10].

Definition 2.4 Let A be an alphabet.

1. A substitution 7 is a non-erasing morphism over A*, i.e. T replaces the letters
of an alphabet A with non-empty finite words.

2. The function associated to a substitution T is denoted T and defined on AN
by T(z) = t(20)7(z1) ..., Vz € AN,

Definition 2.5 A substitution T is called uniform if for all a,b € A,
The length of a uniform substitution is |T(a)| with a € A.

t(a)| = |7(b)].

Now, we prove that the function associated to uniform substitutions induces a
Lipschitz function on the Besicovitch (resp. Weyl) spaces.

Proposition 2.6 For every uniform substitution T with length L € N\ {0}, T is
L-Lipschitz, in particular it is well-defined over Xg (resp. Xw)



Proof: Let T be a substitution and L = max,e4 |7(a)|. Let x,y € AN and k € N.

If T(2)i 7 T(y)k then T(z)5/z)) # T(V(k/z))> hence zjx/L) 7 ¥|x/L)-
Then, for [ € N we have:

ket Iz #wont < Lei{ke Jo| 7] | [azn}
< L-[{ke[0I] ]z # i}l

Therefore: €4, (7(z),7(y)) < L-€4,(z,y).
In conclusion, T is well-defined on the Besicovitch space and it is L-Lipschitz.

The following theorem shows that a non-constant function associated to a non-
uniform substition could not be induced on the Besicovitch (resp. Weyl) space.

Theorem 2.7 For every non-uniform substitution T, T is well-defined on the Besicovitch
space if and only if it is constant.

Proof: 1f T is constant then €4, (T(x),7(y)) = 0 for all x,y € AN. Hence 7 is
well-defined on the Besicovitch space. Furthermore, the induced function is also
constant on the quotient space.

We suppose now that T induces a function on the Besicovitch space, so, for all
x,y € AN if €4, (x,y) = 0, then &4, (T(x), T(y)) = 0. We also suppose that T is non-
uniform, so there exists a # b € A such that |t(a)| = |T(b)|+ k with k € N'\ {0}.
It is clear that, for any z € AN we have €4, (az,bz) = 0, hence:

€y (T(az), 7(b2)) = €4, (T(2), 6%(7(2))) = 0.

Furthermore, for z = a* we have 7(a*) and 6*(7(a>)) are periodic.

Since €4, (T(a),0%(T(a))) = 0 thus T(a™) = 6*(T(a”)) due to the fact that
€4, (x,y) > 0 for every periodic x,y € AN according to [CFMM97, Proposition 3].
Therefore T(a™) is | 7(a)|-periodic and k-periodic configuration. Hence, according
to Fine and Wilf’s theorem [FW65]], there exists v € A* and j € N\ {0} such that
|v| divides k and t(a) = v/. Then, for all d € A\ {a} we take x? € AN periodic
starting with ad and we find 7(d) = v" with m € N\ {0}. We then deduce that
there exists v € A*, for any ¢ € A there exists m € N\ {0} such that 7(c) = v".

In conclusion, 7 is constant. |

Examples 2.8 Let T be the substitution defined on A = {0,1} by ©(0) = 01 and
7(1) = 1. Then we get x =0~ and y = 10™.

We can remark that, €4, (x,y) = 0. We have also, T(x) = (01)” and T(y) = (10)".
Then €, (t(x),T(y)) = 5. Hence, T(x) # T(y), despite that % = 3.

It is well known now that the Besicovitch (resp. Weyl) pseudo-metric and
cellular automata and uniform substitutions fit very well together. But, we find
that, this is not true in the case of non-uniform substitutions. For that, we introduce
in the next section a new shift-invariant pseudo-metric, and we find that both of
cellular automata and all substitutions are well defined on the metric topology
induced by this pseudo-metric.



3 Levenshtein distance

Another distance used in symbolic dynamical systems is the Levenshtein distance
[Lev66], it may also be referred to as the edit distance. It used extensively for
information theory, linguistics, word algorithmics, . .. This distance can be considered
as a variant of the Hamming distance. We show in particular that the Hamming
distance is an upper bound for the Levenshtein distance. It depends on the minimum
number of edit operations required to change one word into the other. The edit
operations are defined over A* as follows: foru € A*,a € Aand i € [0, |u|] :

* The deletion of a letter: D;(u) = uou; ... ui— iy - - Uy —1
* The substitution of a letter by another one: S (u) = uou; ... u;i—1auiy 1 ... Uy
* The insertion of a letter: I} (u) = uo ... u;—jauttiyy .. Uy .

Using these notations, We can write the Levenshtein distance as follows:

Definition 3.1 The Levenshtein distance between words u and v, denoted by dr.(u,v),
is defined as the minimal n € N such that Ty o...oT;(u) = v for some T; € { D;|i} U
{$a € A,i}U{I|a € A,i}, fork € [1,1].

There are constraints on the sites i where each operation is performed, depending
on the current length of the image of word u, but for readability, we do not write
them explicitly.

The definition is not changed in its symmetric version, that is, allowing to modify
both u and v to get to an equality, as it is sometimes seen in the literature.

Examples 3.2 Ler A = {0,1}.

1. For u= 010101 and v = 101010, we have : d(u,v) = 2. In fact, Do(u) =
10101 (we delete the letter of index 0 in u), then u became equals to 10101,
now we add the letter 0 in the end of the word u (I2(u) = 101010) and we
find 19 0 Do(u) = 101010 = v,

2. For u= 0000 and v = 0001, we have : dp(u,v) = 1. In fact, it is enough to
change u3 =0 by 1 i.e. Si(u) = 0001 = v.

Following the idea behind the Besicovitch and Weyl pseudo-metrics, we define two
pseudo-metrics associated to the Levenshtein distance as follows:

Definitions 3.3 Let A be an alphabet.

1. The centred pseudo-metric associated to the Levenshtein distance is:

dr (X015
Cq (x,y) = limsupw, Vx,y € AN,

[—oo [



2. The sliding pseudo-metric associated to the Levenshtein distance is:

dr (x ,
Sy, (x,y) = limsup max L [k k+I] }’[[kJH_l[[)

1 max ; . Vx,y e AN,
—»00

Since those two functions are pseudo-metrics and they are not distances, we quotient
the space of infinite words by the equivalence of zero distance to find two metric
spaces called centred (resp. sliding) space associated to Levenshtein distance denoted
by ngL (resp. XGdL) where X = AN.

Proposition 3.4 The Levenshtein distance satisfies the following properties :
1. dp(u,v) <dp(u,v), Yu,v € A*.
2. dp(ud W) <dp(u,v)+dp(u',V), Yu,v € A", Yu' V' € A™, with n,m € N.
This property is called subadditivity.
3. €y (x,y) < €y (u,v), Vx,y € AN and &4, (x,y) < &4, (u,v), Vx,y € AN
Proof:

1. Letdy(u,v) = n, then there exists n difference between u and v. If we change
the elements where u and v are different and let them equals, we used then n
substitution to get the equality between u and v. So di.(u,v) < n =dy(u,v).

2. Letu,v € A", ',V € A™. Denote dy(u,v) = p and di (v ,V') = q with p,q €
N\ {0}, then the minimum number of operations used to let # and v equals
is p and the minimum number of operations used to let «’ and V' equals is g.
Hence the minimum number of operations used to let uu’ and vv' equals is
less or equal to p+ g. Therefore : dp (uu', W) < p+q =d(u,v)+d.(u',V).

3. Both inequalities are deduced from df(u,v) < n=dy(u,v).

Proposition 3.5 The shift map over the centred (resp. sliding) space associated
to the Levenshtein distance is exactly the identity map. In particular the pseudo-
metrics associated to the Levenshtein distance are G-invariant.

Proof: Let ¥ € XCdL‘ If x € X, then: dL(X[[(),[[[, G(x) ﬂoslﬂ) = dL(X[[OJ[[,X[[LlJFIH) <2.
We just delete the first letter of x[o; (we find x; ;p) and then we insert x4 to find
the equality. Hence :

dr(X[o [, X1,1417)

2
€4 (x,0(x)) = limsup <limsup - =0.
[—o0 l [—o0
So x € 6(x) = 6(%). And then, ¥ C & ().
If z € 6(%), then €4, (z,x) < €4, (z,0(x)) + €4 (0(x),x) = 0. Hence €4 (z,x) = 0.
So z € &, therefore & (%) C &. In conclusion, for all x € AN we have, 6(%) =% R

Since every class is invariant by shift, dynamical systems over this space can
be considered as acting on shift orbits.



3.1 Cellular automata

Now, we aim to prove that every cellular automaton is well defined over this new
quotient space and furthermore Lipschitz.

Definition 3.6 Let F : AN — AN be a cellular automaton with radius r and a local
function f: A" — A. We denote by [* the function defined over A* to itself by:

S () = f(ugo, ) f (g 1) - fUp D)
for u such that |u| > r and f*(u) = A if |u| <r.
Lemma 3.7 Forallu,veA* andw,w' € A* we have: di(uwv,uw'v) <max(|w|,|w']).

Proof: Let us suppose that |w| < |w’|. We can remark that we can do |w| substitution

for the word uwv to get uw’[[o wig” then we do |w'| — |w| insertion of the elements

of WE[IWI-\W/I[[ to get uw'v. So we find |w'| operations, to make uwv equals to uw'v.
: =

Hence : dp (uwv,uw'v) < |w'| = max(|w]|, |w']). [ |

Lemma 3.8 Let F be a cellular automaton with radius r and local function f.
Then for allu € A™"1A* v € A"A*, and T € {D;]i} U{S% a € A,i} U{Ia € A,i}.
Proof: Let u € A™A* v € A”A*, and let n = di(f*(u), f*(v)). By the triangular

inequality, we have : di.(f*(Ti(w)), f*(v)) < dp(f*(Ti(w)), f* (u)) +dL(f* (u), f* (V).
So it is enough to show that dy (f*(T;(u)), f*(u)) < r+1. Let f*(u) = u'wv, where

u' = f*(ugo,p), w= f*(uppisrp) and v = f*(ugis1 u—17)> With p = min{i —r,0}.
One can note that :

¢ P2 ) = 'y where W = (upy gaugs 1 s)
o I (u) = u'w'v where w' = f*(u, ijau; i)
* f*(Di(u)) = u'w'v where w' = f*(up, ijtfit1,i4r])
In these three cases, we are in the case of the previous lemma, with |w| = r and

r—1<|w|<r+1, which gives the wanted inequality. [

Lemma 3.9 Let F be a cellular automaton with radius r and local function f.
Then for all u,v € A"A* such that dp(u,v) < |u| —r, we have:

di(f* (), f*(v)) < (r+ 1de(u,v).

Proof: Let u,v € A”A* such that n = dp(u,v) < |u| —r. By definition, we
can write u = Tj o...0 T,(v) for some operations Ty € {D;|i} U {S%acA,i}U
{I?la € A,i}. Since the length decreases by at most 1, note that the assumption
implies that no word in the sequence of operations has a length smaller than r. We
can prove by induction on k decreasing from 7 to O that:

du(f (Tir 0. 0T, (), £(1) < (r+ 1) (n— ).



The case k = n is trivial. Now suppose that di(f*(Tjs10...0T; (v)),f (v)) <
(r41)(n— k) for some k. By Lemma[3.8] d.(f*(Txo...oT;,(v)), f*(v)) < r+1+
(r+1)(n—k) = (r+1)(n—k+ 1), which is exactly the next step if the induction
hypothesis. We obtain (for k = 0) the claimed statement. |

Theorem 3.10 Every cellular automaton F with radius r is (r + 1)-Lipschitz with
respect to &g, . In particular it is well defined on the quotient space.

Proof: Let x,y € AN,
Case 1. If €4, (x,y) = 1, then €, (F(x),F(y) < €4, (x,y) = 1.
dr (X701,
L( [o,i] y[[o,l[[) <1
| o yon)
X )
Hence, there exists N > 0 such that for all / > N, we have: bl CRIRM ORI <1-7.
Therefore, we find that df. (x[[O,l[[7 y[[o,l[[) <l —r. Applying Lemma we deduce:

Case 2. If €4, (x,y) < 1. Then : limsup,_,.,

dr(f* (xpoap)s £~ Opoap)) < (r+ 1D)dr(xpops Ypo)-

Deviding by / and getting the upper limit, we find our result. |

3.2 Substitutions

Finally, we prove that, contrariwise the Besicovitch and Weyl spaces, all substitutions
are well-defined on the quotient space with respect to the pseudo-metric associated
to the Levenshtein distance, as mentioned in the following theorem:

Theorem 3.11 For every substitution T, T is well-defined over X e
Furthermore it is L-Lipschitz with L = maxgea |t(a)|.

Proof: Let T be a substitution and L = max,ca |t(a)|. Let x,y € AN and I € N.
We assume that dL(x[[OJ[[, y[[o,Z[[) = n. Then there exists a sequence of operations
T € {Di|i}U{S¢|a € A,i}U{I|a € A,i} for | <k < n such that:

Tio...o Tn(X[[OJ[[) = Yo, Hence : T(Tl 0...0 Tn(X[[OJ[[)) = ‘C(y[[07l[[).

By an argument similar to that of Lemma[3.9] one can show that for every 7, there
exist 7{,..., T/, with n’ < L, such that ©(T(u)) = T{ o...o T} t(u). Then, a direct
induction gives that there exist n’ operations (7})i<x<, With n’ < nL such that:
T{o...oT;(t(xpo)) = T(¥jouq)- Therefore :

d(t(xgoup), TOjop)) <1 < Ln= L-dp(xqopYo)-
And since: dr(T(x) o T() o) < d(T(xp0a), T(jo))- then:
dr(T(X) o, TO)oap) < L-dr(xpoup o)

Dividing by / and passing to the upper limit, we find: €4, (T(x),7(y)) <L- &4, (x,y).
In conclusion, 7 is L-Lipschitz with respect to €, . |



4 Conclusion

In this paper, we construct a metric which induces a non trivial topology and makes
the shift map equal to the identity over this space. This topology turns out to be
a suitable playground for the study of the dynamical behavior of substitutions and
cellular automata, since both of them are Lipschitz functions. This construction
was made only by changing the Hamming distance with the Levenshtein distance.
We suggest global definitions for those pseudo-metrics, where we can change the
Hamming distance by any other distance defined on the set of finite words, as
follows :

Definitions 4.1 For a distance d over A* X A*, we define the centred pseudo-metric
denoted by €, and the sliding pseudo-metric denoted by S, as follows:

d(xpop,Yo4)

, Vx,y € AN,
max, ,cad(u,v) Y

o Cy(x,y) = limsup, .,
u,ve

d(x Tk k4[> Y ﬂk,k+l[[)
max, ,c1d(u,v)

o Sy(x,y) =limsup,_,,, maxgeN , Vx,y € AN,

A relevant question is now the following: Which properties of distance d make CA
or substitutions well-defined in the corresponding pseudometrics?

Generalizations exist of Besicovitch pseudometrics over groups (see for instance
[LS16,ICGN20]). An interesting work would be to generalize more of these metrics
to this setting.
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