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ARTICLE

Genome-wide bioinformatic analyses predict key
host and viral factors in SARS-CoV-2 pathogenesis
Mariana G. Ferrarini 1,11, Avantika Lal 2,11, Rita Rebollo1, Andreas J. Gruber3, Andrea Guarracino 4,

Itziar Martinez Gonzalez5, Taylor Floyd6, Daniel Siqueira de Oliveira7, Justin Shanklin8, Ethan Beausoleil8,

Taneli Pusa9, Brett E. Pickett 8✉ & Vanessa Aguiar-Pulido 10✉

The novel betacoronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)

caused a worldwide pandemic (COVID-19) after emerging in Wuhan, China. Here we ana-

lyzed public host and viral RNA sequencing data to better understand how SARS-CoV-2

interacts with human respiratory cells. We identified genes, isoforms and transposable ele-

ment families that are specifically altered in SARS-CoV-2-infected respiratory cells. Well-

known immunoregulatory genes including CSF2, IL32, IL-6 and SERPINA3 were differentially

expressed, while immunoregulatory transposable element families were upregulated. We

predicted conserved interactions between the SARS-CoV-2 genome and human RNA-binding

proteins such as the heterogeneous nuclear ribonucleoprotein A1 (hnRNPA1) and eukaryotic

initiation factor 4 (eIF4b). We also identified a viral sequence variant with a statistically

significant skew associated with age of infection, that may contribute to intracellular

host–pathogen interactions. These findings can help identify host mechanisms that can be

targeted by prophylactics and/or therapeutics to reduce the severity of COVID-19.
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In December of 2019, a novel betacoronavirus that was named
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
emerged in Wuhan, China1,2. This virus is responsible for

causing the coronavirus disease of 2019 (COVID-19) and by 24
January 2021, it had already infected more than 95 million people
worldwide, accounting for at least 2 million deaths3. The SARS-
CoV-2 genome is phylogenetically distinct from the SARS-CoV
and Middle East Respiratory Syndrome (MERS-CoV) betacor-
onaviruses that caused human outbreaks in 2002 and 2012,
respectively4,5. Based on its high sequence similarity to a cor-
onavirus isolated from bats6, SARS-CoV-2 is hypothesized to have
originated from bat coronaviruses, potentially using pangolins as
an intermediate host before infecting humans7.

It remains a global priority to develop effective treatments for
COVID-19, including treatments that inhibit viral replication
inside human cells. At the same time, it is critical to control the
hyper-inflammatory state that is frequently caused by this
infection8. It is therefore important to define the biological pro-
cesses that occur early in infection, including the mechanisms of
viral replication, transcription, and translation inside host cells,
which can be targeted by therapeutics9, as well as host immune
responses that can be modulated8. Although many aspects of
SARS-CoV-2 infection may be shared with other respiratory
viruses, it is particularly interesting to identify its specific mole-
cular interactions with host cells, to explain the unique clinical
and epidemiological features of COVID-1910,11. Further, the
observation of heterogeneous immune responses in COVID-19
patients12 emphasizes the importance of identifying molecular
responses to SARS-CoV-2, which are consistent across patients,
and can therefore be targeted to develop widely applicable
treatments.

SARS-CoV-2 enters human cells by binding to the angiotensin-
converting enzyme 2 (ACE2) receptor13. Once inside the infected
cell, components of the virus interact with host cell machinery.
Coronaviruses have been shown to co-opt a diverse range of host
factors for their life cycle, forming both protein–protein inter-
actions and RNA–protein interactions with host factors14,15.
Furthermore, viruses generally trigger a drastic host response
during infection. A subset of these specific changes in gene reg-
ulation are associated with viral replication and, therefore, can be
seen as potential drug targets. In addition, transposable element
(TE) overexpression has been observed upon viral infection16 and
TEs have been actively implicated in gene regulatory networks
related to immunity17.

Recent studies have sought to understand the molecular
interactions between SARS-CoV-2 and infected cells18,19, and
some have quantified gene expression changes in patient samples
or cultured lung-derived cells infected by SARS-CoV-220–22.
However, it remains important to contrast the effects of SARS-
CoV-2 with those of other respiratory viruses. Furthermore, host
factors such as TEs and genetic isoforms remain understudied in
the context of SARS-CoV-2 infection. Here we aim to identify
host factors, pathways, and processes that are altered in response
to SARS-CoV-2 infection in human cells, in particular those that
are unaffected by other respiratory infections. Moreover, although
many previous studies have examined immune cells, we focused
specifically on human airway epithelial cells, as they are the pri-
mary entry points for respiratory viruses and therefore constitute
the first producers of inflammatory signals that, in addition to
their antiviral activity, promote the initiation of the innate and
adaptive immune responses.

We identified a signature of altered gene expression that is
consistent across published datasets of SARS-CoV-2-infected
human lung cells. We present extensive results from functional
analyses (signaling pathway enrichment, biological functions,
transcript isoform usage, and TE overexpression) of the genes

differentially expressed during SARS-CoV-2 infection22, high-
lighting a consistent isoform switch of the IL-6 gene in SARS-
CoV-2-infected cell lines. We also analyzed viral genome
sequences to predict specific interactions between the SARS-CoV-
2 RNA genome and human proteins that may be involved in viral
replication, transcription, or translation, and identified at least
one viral sequence variation that is significantly associated with
patient age in humans. Knowledge of these molecular and genetic
mechanisms is important to understand SARS-CoV-2 patho-
genesis and to improve the future development of effective pro-
phylactic and therapeutic treatments.

Results
We designed a comprehensive bioinformatics workflow to iden-
tify relevant host–pathogen interactions using a complementary
set of computational analyses (Fig. 1). First, we carried out an
exhaustive analysis of differential gene expression in human lung
cells infected by SARS-CoV-2 or other respiratory viruses, iden-
tifying gene-, isoform-, and pathway-level responses, which spe-
cifically characterize SARS-CoV-2 infection. Second, we predicted
putative interactions between the SARS-CoV-2 RNA genome and
human RNA-binding proteins (RBPs). Third, we identified a
subset of these human RBPs, which are also differentially
expressed in response to SARS-CoV-2. Finally, we identified a
viral sequence variant that could play a role in intracellular
host–pathogen interaction.

SARS-CoV-2 infection elicits a specific gene expression and
pathway signature in human cells. We wanted to identify genes
that were differentially expressed across multiple SARS-CoV-2-
infected samples, while not significant in samples infected with
other respiratory viruses. As a primary dataset, we selected
GSE14750722 (Fig. 2a), which includes gene expression mea-
surements from three cell lines derived from the human
respiratory system (NHBE, A549, Calu-3) infected either with
SARS-CoV-2, influenza A virus (IAV), respiratory syncytial virus
(RSV), or human parainfluenza virus 3 (HPIV3). We also ana-
lyzed an additional dataset GSE150316 (Fig. 2a), which includes
RNA sequencing (RNA-seq) extracted from formalin-fixed,
paraffin-embedded (FFPE) histological sections of lung biopsies
from COVID-19 deceased patients and healthy individuals. This
second dataset encompasses a variable number (1–5) of post-
mortem lung biopsies per subject. The results coming from FFPE
sections were less consistent, presumably due to the collection of
biospecimens from different sites within the lung. Supplementary
Data 1 provides details of all the samples included in our analyses.

We retrieved 41 differentially expressed genes (DEGs) that
showed significant and consistent expression changes in at least
three datasets from cell lines infected with SARS-CoV-2 and were
not significantly affected in cell lines infected with other viruses
within the same dataset. To these, we added 36 genes that showed
significant and consistent expression changes in 2 of 4 cell line
datasets infected with SARS-CoV-2 and at least 1 lung biopsy
sample from a SARS-CoV-2 patient. The rationale behind these
criteria was that results from FFPE sections were less reliable and,
hence, were used only as supporting evidence where a gene was
altered in at least two cell line samples. We further excluded four
discordant genes that were upregulated in more than one cell line
sample and downregulated in the biopsy samples. Thus, the final
set consisted of 73 DEGs (Supplementary Data 2a): 53
upregulated and 20 downregulated, of which 41 had an absolute
Log2FC > 1 in at least one dataset (selected genes from this list are
shown in Table 1).

SERPINA3, an antichymotrypsin that was proposed as a
candidate inhibitor of viral replication23, was the only gene
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specifically upregulated in the four cell line datasets tested
(Table 1). Other interesting upregulated genes were the
amidohydrolase VNN2, the pro-fibrotic gene PDGFB, the β-
interferon (IFN) regulator PRDM1 and the proinflammatory
cytokines CSF2 and IL32. FKBP5, a known regulator of nuclear
factor-κB (NF-κB) activity, was among the consistently down-
regulated genes. This set of genes represents a signature of host
response specific to SARS-CoV-2 and may help to explain the
specific clinical and epidemiological features of this disease. We
also generated additional lists of DEGs that met different filtering
criteria (Supplementary Data 2b, c and 3 for the complete DEG
results for each dataset).

To better understand the underlying biological functions and
molecular mechanisms associated with the observed DEGs, we
performed a hypergeometric test to detect statistically significant
overrepresented Gene Ontology (GO) terms24 among the DEGs
having an absolute Log2FC > 1 in each dataset separately24.

Consistent with the findings of Blanco-Melo et al.22, GO
enrichment analysis returned terms associated with immune
system processes, response to cytokine, stress and viruses, and
phosphatidylinositol 3-kinase (PI3K)/AKT signaling pathway,
among others (see Supplementary Data 4 for complete results). In
addition, we report 285 GO terms common to at least two cell
line datasets infected with SARS-CoV-2 and absent in the
response to other viruses (Fig. 2b and Supplementary Data 5a, b),
including neutrophil and granulocyte activation, interleukin-1
(IL-1)-mediated signaling pathway, proteolysis, and stress-
activated signaling cascades. We also detected 397 cell line-
specific GO terms (76 in NHBE, 160 in A549, and 161 in Calu-3),
which were not detected in the other viral datasets (Supplemen-
tary Data 5c). Our results show that each cell type regulates
specific responses against SARS-CoV-2: A549-specific terms
included vacuolar organization, endosome membrane, and
protein export, whereas Calu-3-specific terms included oxidative
phosphorylation, mitochondria, and cellular response to oxidative
stress; NHBE cells had the majority of significant terms involved
in cell chemotaxis and leukocyte-mediated immunity. One
possible reason for these cell-specific responses is that each cell

type expresses different levels of the viral receptor ACE2
(Supplementary Fig. 1).

Next, we wanted to pinpoint intracellular signaling pathways that
may be modulated specifically during SARS-CoV-2 infection. A
robust bootstrap-based signaling pathway impact analysis (SPIA)
enabled us to identify 30 pathways, including many involved in the
host immune response, which are significantly enriched among
DEGs in at least one virus-infected cell line dataset (Supplementary
Data 6). More importantly, we predicted four pathways to be
specific to SARS-CoV-2 infection and observed that the significant
pathways differ by cell type and multiplicity of infection (MOI). The
significant results included only one term common to A549 (MOI
0.2) and Calu-3 cells (MOI 2), namely IFN-α/β signaling. In
addition, we found the amoebiasis pathways (A549 cells, MOI 0.2)
and the p75(NTR)-mediated and trka receptor signaling pathways
(A549 cells, MOI 2) to be significantly impacted.

We also used a classic hypergeometric method as a
complementary approach to our SPIA pathway enrichment
analysis. Although there were generally higher numbers of
significant results using this method, we observed that the vast
majority of enriched terms (false discovery rate (FDR) < 0.05)
described infections with various pathogens, innate immunity,
metabolism, and cell cycle regulation (Supplementary Data 6).
Interestingly, we were able to detect enriched Kyoto Encyclopedia
of Genes and Genomes (KEGG) pathways common to at least
two SARS-CoV-2-infected cell types and absent from the other
virus-infected datasets (Fig. 2b). These included pathways related
to infection, cell cycle, endocytosis, signaling pathways, cancer,
and other diseases.

Our analyses highlight biological pathways in human lung cells
that are altered specifically by SARS-CoV-2 infection, either in a
cell-type-specific manner or consistent across cell types. This
complements studies identifying pathway-level alterations in
immune cells of COVID-19 patients25–27.

SARS-CoV-2 infection results in altered lipid-related metabolic
fluxes. To better understand how gene expression changes in
response to virus infection impact human metabolism, we projected

Fig. 1 Overview of the bioinformatic workflow applied in this study. As indicated in orange, RNA-seq data from SARS-CoV-2-infected samples were used
as the input to identify differentially expressed (DE) genes, isoforms, and transposable elements (TEs). DE genes were used to identify functional
enrichment of deregulated genes and possible impacts on metabolism. Neighboring genes of differentially expressed TEs (DETEs) were analyzed to verify if
TEs could serve as regulatory mechanisms of gene expression. In green, the complete genome of the SARS-CoV-2 virus was used to identify enrichment of
RNA-binding protein (RBP) motifs. We also used all available sequenced genomes as of 11 November 2020, to detect conserved RBP motifs and possible
links to disease severity.
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the transcriptomic data onto the human metabolic network28. This
is an important analysis, as it can recover pathway-level changes that
are not evident from analyzing dysregulated genes separately. This is
based on the fact that the regulation of the entire metabolic path-
ways can be achieved by targeting few key enzymes via different
regulatory mechanisms29–31. By integrating information of the
metabolic network with differential expression, we can predict which
connected pathways were most likely increased or decreased in viral
infection32.

This analysis detected decreased fluxes in inositol phosphate
metabolism in both A549 and Calu-3 cells infected with SARS-
CoV-2 with an MOI of 2 (Supplementary Data 7). In addition, we
detected an increased flux common to A549 and Calu-3 cell lines

in reactive oxygen species detoxification, in accordance with
previous terms recovered from functional enrichment analyses.
Our analysis in A549 cells (MOI 2) also recovered decreased
fluxes in several lipid pathways: fatty acid, cholesterol, sphingo-
lipid, and glycerophospholipid, which have been shown as
essential for the infection of multiple coronaviruses33. Overall,
we were able to predict pathway-level changes that were not
evident based only on DEGs, given that the control of key
enzymes can be enough for the regulation of entire pathways.

SARS-CoV-2 infection induced an isoform switch of genes
associated with immunity and mRNA processing. We analyzed

Fig. 2 Overview of the RNA-seq-based results specific to SARS-CoV-2, which were not detected in the other viral infections (IAV, HPIV3, and RSV).
a Representation of the RNA-seq studies used in our analyses. b A subset of non-redundant reduced terms consistently enriched in more than one SARS-
CoV-2 cell line, which were not detected in the other viruses’ datasets. c Top 20 differentially expressed isoforms (DEIs) in SARS-CoV-2-infected samples.
The y-axis denotes the differential usage of isoforms between conditions (i.e., difference in isoform fraction, dIF), whereas the x-axis represents the overall
log2FC of the corresponding gene. Thus, DEIs also detected as differentially expressed genes (DEGs) by this analysis are depicted in blue. d Different
manners by which transposable element (TE) family overexpression might be detected. Although TEs may be autonomously expressed, the old age of most
TEs detected points toward either being part of a gene (exonization or alternative promoter) or a result of pervasive transcription. We report the functional
enrichment for neighboring genes of differentially expressed TEs (DETEs) specifically upregulated in SARS-CoV-2 Calu-3 and A549 cells (MOI 2). Source
data for Fig. 2 is provided in Supplementary Data 18.

ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-021-02095-0

4 COMMUNICATIONS BIOLOGY |           (2021) 4:590 | https://doi.org/10.1038/s42003-021-02095-0 | www.nature.com/commsbio

www.nature.com/commsbio


changes in transcript isoform expression and usage associated
with SARS-CoV-2 infection, and predicted whether these changes
might result in altered protein function.

We calculated isoform fraction (IF) values as the percentage of
an individual isoform’s expression level relative to all other
isoforms present within the parent gene’s expression level as
presented in Eq. (1):

IFisoform 1 ¼
Isoform expression 1

Gene expression Isoform expression 1þ isoform 2þ ¼ þ isoform n
� �

ð1Þ
Differential isoform usage (difference in IF, dIF) is defined as

the difference in the fraction of an isoform present between two
conditions presented in Eq. (2):

dIF ¼ IFcondition 2 � IFcondition 1 ð2Þ
We identified isoforms experiencing a switch in usage ≥30% in

absolute value (dIF ≥ |0.3|) across conditions and retrieved those
with an FDR-adjusted p-value (q-value) < 0.05. Based on these
criteria, we detected 3569 differentially expressed isoforms across
all samples (Supplementary Table 1 and Supplementary Data 8).
We performed biological consequence enrichment analysis to
assess whether a particular consequence occurs more frequently
than its opposite between conditions (Supplementary Fig. 2). For
example, isoforms from A549 cells infected with RSV, IAV, and
HPIV3 exhibited significant increases in nonsense-mediated decay

(NMD) sensitivity and intron retention gain, while simultaneously
exhibiting decreases in open reading frames (ORFs) and domains
present. These conditions also displayed significant changes in
splicing patterns, ranging from loss of exon skipping events,
changes in usage of alternative transcription start and termination
sites, and decreased alternative 5′- and 3′-splice sites (Supplemen-
tary Fig. 3).

In contrast, isoforms from SARS-CoV-2-infected samples
displayed no significant global enrichment of biological con-
sequences or alternative splicing events (Supplementary Figs. 2
and 3, respectively). However, nonsignificant trends (FDR-
adjusted p-value > 0.05) indicated that certain transcripts in
SARS-CoV-2 samples experienced decreases in ORF length,
numbers of domains, coding capability, intron retention, and
NMD (Supplementary Fig. 2). Although these trends were not
significant on the genome-wide scale, they implicate that SARS-
CoV-2 may trigger host machinery to target and aberrantly
splice specific isoforms, leading to decreases in transcript length
and, therefore, production of truncated proteins or alternative
proteins.

To identify the specific isoforms affected by SARS-CoV-2
infection, we analyzed gene expression and isoform usage of
individual isoforms in SARS-CoV-2 samples vs. controls. Results
showed significant changes in gene expression and isoform usage
at the individual gene level, with top-expressing isoforms
associated with genes encoding cellular processes such as immune
response and antiviral activity (IFI44L, IL-6, MX1, TRIM5),
transcription and mRNA processing (DDX10, HNRNPA3F6,
JMJD7, ZNF487, ZNF599), and cell cycle and survival (BCL2L2-
PABPN1, CDCA3) (Fig. 2c, Supplementary Fig. 4, and Supple-
mentary Data 8).

We noticed that IL-6, a gene encoding a cytokine involved in
acute and chronic inflammatory responses, displayed significant
changes in both gene expression and isoform usage in SARS-
CoV-2 infection. IL-6 expression increased by two- to sixfold with
an MOI of 2 (Fig. 3b). To date, the Ensembl Genome Reference
Consortium has identified nine IL-6 isoforms in humans, with the
traditional transcript having six exons (IL6-204), five of which
contain coding elements (Fig. 3a). NHBE cells expressed four
known IL-6 isoforms, whereas A549 cells expressed one unknown
and six known isoforms (Supplementary Fig. 5). When evaluating
the actual isoforms used across conditions, SARS-CoV-2-infected
NHBE cells used three out of four isoforms observed, whereas
SARS-CoV-2-infected A549 cells used all seven observed iso-
forms. For example, in the case of NHBE SARS-CoV-2 samples,
the IF for the IL6-201 isoform= 0.75, IL6-204= 0.05, IL6-206=
0.09, and IL6-209= 0.06, and the sum of these IF values= 0.95,
or 95% usage of the IL-6 gene relative to mock. SARS-CoV-2
samples (A549 MOI 0.2, A549 MOI 2, and NHBE MOI 2)
exhibited exclusive usage of non-canonical isoform IL6-201
(Fig. 3c) and, inversely, mock samples almost exclusively utilized
the IL6-204 transcript. In NHBE-infected cells, isoform IL6-201
experienced a significant increase in usage (dIF= 0.75) and IL6-
204 a significant decrease in usage (dIF=−0.95) when compared
to mock conditions. Similarly, isoform IL6-201 in A549-infected
cells experienced an increase in usage (dIF= 0.58), whereas uses
of all other isoforms remained nonsignificant in comparison to
mock conditions.

The IL6-201 and IL6-204 isoforms both contain five coding
exons, and according to Ensembl, both are predicted to produce
the same 212 amino acid protein product. The main difference
between both isoforms is that IL6-201 does not contain exon 1
(5′-untranslated region, 5′-UTR), which is present in IL6-204.
The 5′-UTRs are traditionally involved in translational regulation,
either promoting or inhibiting translation, depending upon the
sequence and secondary RNA structure34,35 or modulating

Table 1 Differentially expressed genes specific to SARS-
CoV-2 infection.

Gene Cell type and MOI Also
detected in
biopsies

A549 A549 Calu-3 NHBE

MOI 0.2 MOI 2

VNN2 6.18 0.42 6.13
CSF2 3.56 7.30 2.70
WNT7A 4.99 0.79 0.45
PDZK1IP1 1.72 0.70 2.28
SERPINA3 0.49 1.39 0.77 1.44 Case 9
RHCG 1.51 2.02 1.33
IL32 1.64 1.23 1.21 Case 1
PDGFB 1.91 1.75 1.00
ALDH1A3 1.09 1.32 0.39
TLR2 1.63 0.89 0.84
SERPINB1 0.61 1.17 0.72
PRDM1 0.82 3.49 0.59
MT-TN 0.55 1.70 0.33
ATF4 0.79 1.07 0.26
PTPN12 0.48 0.97 1.23
DUSP16 0.33 0.41 1.43
FKBP5 −0.39 −0.36 Cases 1,

3, 8, 11
DAP −0.18 −0.61 Case 1
FECH −0.27 −0.36 Case 1
MT-CYB −0.30 −0.26 Case 1, 8
EIF4A1 −0.33 −0.63 Case 1
POLE4 −0.23 −0.82 −1.24
DDX39A −0.23 −1.27 −0.54
CENPP −0.36 −0.40 −0.38
TMEM50B −0.48 −0.59 −0.53
HPS1 −0.28 −0.31 −0.62
SNX8 −0.30 −0.43 −0.56

Log2 fold change for selected genes that showed significant up- or downregulation in SARS-
CoV-2-infected samples (FDR-adjusted p-value < 0.05) and not in samples infected with the
other viruses tested.
MOI multiplicity of infection.
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mRNA stability36. Thus, this isoform switch may be a mechanism
to regulate IL-6 protein synthesis through control of translation
rate and/or mRNA stability.

Overexpression of TE families close to immune-associated
genes upon SARS-CoV-2 infection. TEs are repeated DNA
sequences that are able to spread across the genome, representing
around two-thirds of the human genetic material37. TEs can be
grouped into two different classes regarding their transposition
mechanisms: (1) DNA elements, which are mobilized via a DNA
molecule and make up around ~3% of the human genome38, and
(2) retrotransposons, which have an RNA intermediate. Retro-
transposons can be further divided into long-term repeat (LTR)
elements, also named endogenous retroviruses, which account for
~8% of the human genome, or long and short interspersed nuclear
elements (LINEs and SINEs) and SINE-VNTR-Alu elements,
which lack LTRs and are the most abundant superfamilies in the
human genome, accounting for around one-third of DNA
sequences38. Although the human genome is bursting with TEs,
most TE families are unable to transpose, either because they lost
their transpositional machinery or because they have accumulated
mutations that hinder their activity. There are only three TE
families currently active in the human genome: LINE1, Alu
(SINE) subfamily, and SVAs39. Nevertheless, the graveyard of
dead TEs in the human genome has been repeatedly shown to
regulate host gene expression, thus participating in key develop-
mental and immune networks40–42. Therefore, searching for TE
deregulation upon viral infection might shed light into activation
of young TE families, but also pinpoint changes in gene regulatory
networks.

To estimate the expression of TE families and their possible
roles in SARS-CoV-2 infection, we mapped the RNA-seq reads
against all annotated TE human families (see “Methods” section)
and detected differentially expressed TE (DETE) families (Fig. 2d
and Supplementary Data 9). We found 68 common TE families
upregulated in SARS-CoV-2-infected A549 and Calu-3 cells
(MOI 2), including 53 retrotransposons (24 LINEs, 27 LTRs, and
two SINEs). It is important to note that none of the current
transpositionally active human TE families were found to be
upregulated in SARS-CoV-2-infected cells. From this list, we
excluded all TE families detected in cells infected with the other
viruses. This allowed us to identify 16 families that were
specifically upregulated in Calu-3 and A549 cells infected with
SARS-CoV-2, and not in the other viral infections. The 16
families identified are MER77B, MamRep4096, MLT2C2,
PABL_A, Charlie9, MER34A, L1MEg1, LTR13A, L1MB5,
MER11C, MER41B, LTR79, THE1D-int, MLT1I, MLT1F1, and
MamRep137. Most of the TE families uncovered are ancient
elements, and none are capable of transposing43–45. Eleven of the
16 TE families specifically upregulated in SARS-CoV-2-infected
cells are LTR elements and include well-known TE immune
regulators. For instance, MER41B (primate-specific TE family) is
known to contribute to IFN-γ-inducible binding sites (bound by
STAT1 and/or IRF1)46,47. Other LTR elements are also enriched
in STAT1-binding sites (MER77B, LTR13, and MLT1l)46 or have
been shown to act as cellular gene enhancers (LTR13A48,49).

In humans, TEs have been shown to accumulate in
mammalian-specific gene regulatory sequences, such as within
immunity-related gene transcripts50. Given that at least four TE
families identified are well-known host–gene regulators, along
with the general ability of TE families to impact nearby gene

Fig. 3 Isoform usage of IL-6 transcripts in SARS-CoV-2-infected cells. a IL6-204 is the major IL-6 transcript and is composed of 6 exons, five (E2, E3, E4,
E5, E6) containing coding sequences (CDS) and one (E1) containing exclusively a 5′-untranslated region (5′-UTR). Both isoforms (IL6-204 and IL6-201)
have the same protein-coding capability. The main difference between them is the absence of E1 in IL6-201, which is the major induced isoform upon SARS-
CoV-2 infection. b Gene expression of IL-6 in all SARS-CoV-2 cell line samples (A549 multiplicity of infection (MOI) 0.2 and 2; Calu-3 and NHBE MOI 2).
Each boxplot represents three biological replicates and statistical testing was performed with DESeq2 (detailed in “Methods” section). Exact p-values are
available in Supplementary Data 2. c Isoform usage switch between both isoforms in SARS-CoV-2-infected cell line samples. This figure shows that IL6-204
is almost exclusively expressed in uninfected (mock) cells, whereas IL6-201 is almost exclusively expressed in SARS-CoV-2-infected cells. Each boxplot
represents three biological replicates and statistical testing was performed with IsoformSwitchAnalyzeR and exact q-values are available in Supplementary
Data 8. Source data for Fig. 3 is provided in Supplementary Data 18.
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expression, we further investigated the functional enrichment of
genes near these upregulated TE families (Supplementary
Data 10). The GREAT method used for this analysis extends
the regulatory domain of each annotated gene to 5 kb upstream
and 1 kb downstream the transcription start site, as we still lack
precise maps of gene regulatory regions51. We detected GO
functional enrichment of several immunity-related terms (e.g.,
major histocompatibility complex (MHC) protein complex,
antigen processing, regulation of dendritic cell differentiation,
and T-cell tolerance induction), metabolism-related terms (such
as regulation of phospholipid catabolic process), and, interest-
ingly, a specific human phenotype term called “progressive
pulmonary function impairment” (Fig. 2d).

Even though we did not limit our search only to neighboring
genes which were also DE, we found several similar (and very
specific) enriched terms in both analyses, for instance, related to
endosomes, endoplasmic reticulum, and vitamin (cofactor)
metabolism, among others. This result supports the idea that
some responses during infection could be related to TE-mediated
transcriptional regulation. Finally, when we searched for enriched
terms related to each one of the 16 families separately, we also
detected immunity-related enriched terms such as regulation of
ILs, antigen processing, TGF-β receptor binding, and temperature
homeostasis. It is important to note that given the old age of some
of the TEs detected, overexpression might be associated with
pervasive transcription or inclusion of TE copies within unspliced
introns (Fig. 2d). In conclusion, we were able to demonstrate that
16 TE families are upregulated specifically upon SARS-CoV-2
infection, including four TE families previously shown to harbor
STAT1/IRF1-binding sites, and are enriched close to immunity-
related genes. Finally, to clearly pinpoint if such TE families are
responsible for nearby gene regulation, future work should focus
on TE-gene chimeric transcript searches (using long read RNA-
seq or paired-end reads), mapping of regulatory sequences within
TE copies using chromatin-related methods such as ATAC-seq,
and deletion of TE copies followed by analysis of gene expression.

The SARS-CoV-2 genome is enriched in binding motifs for 40
human proteins, most of them conserved across SARS-CoV-2
isolates. The SARS-CoV-2 virus possesses a positive-sense, sin-
gle-stranded, monopartite RNA genome. Such viruses are well-
known to co-opt host RBPs for diverse processes including viral
replication, translation, viral RNA stability, assembly of viral
protein complexes, and regulation of viral protein activity14,15.
Therefore, we sought to predict host RBPs that may form func-
tionally significant interactions with the SARS-CoV-2 genome.

To do so, we first filtered the AtTRACT database52 to obtain a
list of 102 human RBPs and 205 associated position weight
matrices (PWMs) describing the experimentally determined
sequence-binding preferences of these proteins. We then scanned
the SARS-CoV-2 reference genome sequence to identify potential
binding sites for these proteins. Figure 4 illustrates our analysis
schema. We identified 99 human RBPs with a total of 11,897
potential binding sites in the SARS-CoV-2 positive-sense genome
(Supplementary Data 11).

As the SARS-CoV-2 genome produces negative-sense inter-
mediates as part of the replication process53, we also scanned the
negative-sense genome sequence, where we found 11,333
potential binding sites for 96 RBPs (Supplementary Data 11).

To find RBPs whose binding sites occur in the SARS-CoV-2
genome more or less frequently than expected by chance, we
repeatedly scrambled the genome sequence to create 1000 simu-
lated genome sequences with an identical nucleotide composition
to the SARS-CoV-2 genome sequence (30% A, 18% C, 20% G,
32% T). We used these 1000 simulated genomes to determine a

background distribution of the number of binding sites found for
a specific RBP. This allowed us to pinpoint RBPs with
significantly more or fewer binding sites in the actual SARS-
CoV-2 genome than expected based on the background
distribution (two-tailed z-test, FDR-corrected P < 0.01). To
retrieve RBPs whose motifs were enriched in specific genomic
regions, we also repeated this analysis independently for the
SARS-CoV-2 5′-UTR, 3′-UTR, intergenic regions, and for the
negative-sense genome sequence. Motifs for 40 human RBPs were
found to be enriched in at least one of the tested genomic regions,
whereas motifs for 23 human RBPs were found to be depleted in
at least one of the tested regions (Supplementary Data 12).
Although experimental validation would be required to confirm
the importance of these putative interactions, enrichment or
depletion of binding sites for an RBP is suggestive that it may be
beneficial or inhibitory, respectively, to viral replication.

We next examined whether any of the 6936 putative binding
sites for these 40 enriched RBPs were conserved across SARS-
CoV-2 isolates. We found that 6591 putative binding sites,
representing 34 RBPs, were conserved across more than 95% of
SARS-CoV-2 genome sequences in the GISAID database
(≥171,953 out of 181,003 genomes). However, this is of limited
significance, as the RBP-binding sites in coding regions are likely
to be conserved due to evolutionary pressure on protein
sequences rather than the RBP-binding ability. We therefore
repeated this analysis focusing only on putative RBP-binding sites
in the SARS-CoV-2 UTRs and intergenic regions. There were 124
putative RBP-binding sites for 21 enriched RBPs in the UTRs and
intergenic regions. Of these, 50 putative RBP-binding sites for 17
RBPs were conserved in >95% of the available genome sequences;
6 in the 5′-UTR, 5 in the 3′-UTR, and 39 in intergenic regions
(Supplementary Table 2).

Subsequently, we interrogated publicly available data to further
investigate the putative SARS-CoV-2/RBP interactions (Supple-
mentary Data 13). According to GTEx data54, 39 of the 40
enriched RBPs and all 23 of the depleted RBPs were expressed in
human lung tissue. Furthermore, 31 of 40 enriched RBPs and 22
of 23 depleted RBPs were co-expressed with the ACE2 and
TMPRSS2 receptor genes in single-cell RNA-seq data from
human lung cells55, indicating that they are present in cells that
are susceptible to SARS-CoV-2 infection. We next checked
whether any of these RBPs have been reported to interact with
SARS-CoV-2 proteins and found that human poly(A)-binding
protein cytoplasmic 1 and 4 (PABPC1 and PABPC4, respectively)
were reported to bind to the viral N protein in a recent study18. If
this report is correct, these RBPs may interact with both the
SARS-CoV-2 RNA and proteins. Finally, we combined these
results with our analysis of differential gene expression to identify
SARS-CoV-2-interacting RBPs that also show expression changes
upon infection. The results of this analysis are summarized for
selected RBPs in Table 2. Based on our computational analysis
and existing literature, we highlight these enriched RBPs for their
potential functional interaction with SARS-CoV-2 RNA.

Motif enrichment in SARS-CoV-2 differs from related cor-
onaviruses. We repeated the above analysis to calculate the
enrichment and depletion of RBP-binding motifs in the genomes
of two related coronaviruses: (i) the SARS-CoV virus that caused
the SARS outbreak in 2002–2003 and (ii) RaTG13, a bat cor-
onavirus with a genome that is 96% identical with that of SARS-
CoV-22,6. We found that the pattern of enrichment and depletion
of RBP-binding motifs in SARS-CoV-2 is different from that of
the other two viruses (Supplementary Data 14 and 15). Specifi-
cally, the SARS-CoV-2 genome is uniquely enriched for binding
sites of CELF5 in its 5′-UTR, PPIE in its 3′-UTR, and ELAVL1 in
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the viral negative-sense RNA molecule. Interestingly, ELAVL1 is
a known stabilizer of RNA56, whereas CELF5 and PPIE partici-
pate in splicing57,58. Despite the high sequence identity between
the two genomes, the single binding site for CELF5 on the SARS-
CoV-2 5′-UTR is conserved in 95.8% of available SARS-CoV-2
genome sequences but absent in the 5′-UTR of RaTG13.

A viral genome variant associated with host age. We used the
meta-CATS software59 to test whether any viral sequence variants
were associated with a change in disease severity, age, or biolo-
gical sex in human hosts. We computed statistical correlations
between 8079 complete SARS-CoV-2 genomes and the associated
clinical metadata for each genome (e.g., severe, moderate, or mild
disease; decade of age; and male or female). Briefly, this process
calculates a χ2-score from a contingency table that contains the
nucleotides present at each aligned position and the clinical
metadata. The resulting p-value identifies positions that contain a
statistically significant skew in the distribution of bases between
the metadata categories. The alignment consisted of 30,649
nucleotide positions and 28,870 of these aligned positions con-
tained at least one variant. We identified 3960 positions that
contained at least one significant pairwise correlation with disease
severity, 25 with patient age, and 883 with biological sex.

The FDR-corrected statistical results from this χ2-test of
independence revealed a large number of nucleotide positions

that showed statistically significant skew in the distribution of
bases (Supplementary Data 16). However, further analysis
revealed a low specificity for the vast majority of these results
due primarily to the presence of ambiguous bases in a small
number of the consensus genomes. This indicates that disease
severity or infection of either biological sex of the patient cannot
be solely attributed to a single viral variant.

In contrast, we identified a significant and specific skew in
the distribution of bases between host age and aligned position
14,525 (cytosine to thymine at unaligned position 14,408 in the
reference genome). The CCT to CTT codon variation (P323L
in the RNA-dependent RNA polymerase (RdRP)) was found to
significantly differ only when patients between 20 and 30 years
old were compared against patients who were at least 85 years
old (p-value < 0.04).

The distribution of bases between these two populations were
246C, 760T, and 3Y for the patients in their 20s, whereas the
distribution for patients older than 85 years was 27C, 249T, and
7Y. These results show a 1 : 3 ratio of C to T in young patients
and a ratio of ~1 : 9 of C to T in older patients. Two additional
Pearson’s χ2-tests were subsequently performed, to account for
the biological sex of the patients as covariates with age. These
showed significant skew in the distribution of bases from viruses
infecting 20- to 29-year-old males vs. >85-year-old males

Fig. 4 Workflow and selected results for the analysis of potential binding sites for human RNA-binding proteins (RBPs) in the SARS-CoV-2 genome.
In orange, human RNA-binding protein (RBP) position weight matrices (PWMs) from the ATtRACT database were used as input to search for
putative binding sites in the SARS-CoV-2 virus genome (green). Binding motifs of several RBPs were detected to be enriched/depleted within the
positive-strand genome (containing genes, 5′- and 3′-untranslated regions (UTRs), and intergenic regions) and the negative-sense intermediates.
Conserved RBP-binding sites were determined from the multiple sequence alignment of ~180k SARS-CoV-2 genomes available from GISAID. Finally,
we included information from human gene expression data and protein–protein interaction networks for human and SARS-CoV-2 that are publicly
available.
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Table 2 RNA-binding proteins (RBPs) predicted to interact with SARS-CoV-2.

RBP DE analysis Experimental evidence in human datasets RBP-binding site prediction

A549 Log2FC Calu-
3 Log2FC

SARS-CoV-2-
specific DEG

GTEx lung
tissue (TPM)

scRNA PPI map Viral
RNA
binding

Conserved in
SARS-CoV-2
genomes

Region

HNRNPA1 −0.32 331.336 TRUE Yes Yes 3′-UTR
HNRNPA2B1 −1.08 −0.29 539.829 TRUE Yes Yes
PABPC1 0.72 0.44 Yes 448.025 TRUE SARS-CoV-

2 N protein
Yes

PABPC4 0.30 −0.28 103.082 TRUE SARS-CoV-
2 N protein

Yes

PPIE −0.27 13.827 TRUE Yes
CELF5 0.56 0.079 TRUE Yes 5′-UTR
FMR1 0.75 21.435 TRUE Yes
RBM24 0.34 1.412 Yes
EIF4B 0.53 0.64 170.303 TRUE Yes Yes Intergenic
ELAVL1 −0.31 27.440 TRUE Yes Yes
PABPC1 0.72 0.44 Yes 448.025 TRUE SARS-CoV-

2 N protein
Yes Yes

PPIE −0.27 13.827 TRUE Yes
TIA1 0.34 0.41 Yes 46.934 TRUE Yes Yes
TIAL1 0.25 40.593 Yes

Selected human RBPs whose putative binding sites are enriched in regions of the SARS-CoV-2 genome, along with experimental information. Log2 fold change is reported only for differentially expressed
genes (DEGs) with FDR-adjusted p-value < 0.05. scRNA indicates whether the RBP is co-expressed with ACE2 and TMPRSS2 in single-cell RNA-seq data from human lung cells55; PPI Map indicates
reported interaction with a SARS-CoV-2 viral protein18; viral RNA binding indicates RBPs experimentally found to interact with SARS-CoV-2 RNA in a human liver cell line85,86.
UTR untranslated region.

Fig. 5 Overview of human factors specific to SARS-CoV-2 infection detected by our analyses. This figure includes human RNA-binding proteins (RBPs),
whose binding sites are enriched and conserved in the SARS-CoV-2 genome but not in the genomes of related viruses, and gene isoforms and metabolites
that are consistently altered in response to SARS-CoV-2 infection of lung epithelial cells but not in infection with the other tested viruses. ECM:
extracellular matrix.
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(p-values= 2.2 × 10−16), as well as in 20- to 29-year-old females
vs. >85-year-old females (p-value= 3.2 × 10−7).

Discussion
Here we report the results of a complementary panel of analyses
that, together, enable a better understanding of host–pathogen
interactions, which contribute to SARS-CoV-2 replication and
pathogenesis in the human respiratory system. Figure 5 illustrates
an overview of interesting host and viral factors detected in this
work.

We performed a cross-dataset analysis of differential gene
expression, highlighting specific genes that may play a role in the
unique pathogenic features of COVID-19. Moreover, this analysis
formed the basis for our subsequent dissection of pathway
activity, metabolism, TEs, and regulatory activity in COVID-19.
We discovered several known immunoregulators among the
genes specifically and consistently altered in response to SARS-
CoV-2, which points to distinct features of the immune response
to this pathogen.

For example, CSF2, which encodes the granulocyte-
macrophage colony stimulating factor (GM-CSF), was among
the most highly upregulated genes in SARS-CoV-2-infected cells
and is associated with tissue hyper-inflammation60. GM-CSF
induces survival and activation in macrophages and neutrophils,
and has been found at high levels in the blood of severe COVID-
19 patients61, and several clinical trials are planned using agents
that target GM-CSF or its receptor62. Another proinflammatory
cytokine specifically upregulated in SARS-CoV-2-infected cells is
IL32, which together with GM-CSF, promotes the release of
tumor necrosis factor and IL-6 in a positive loop, and contributes
to the cytokine storm63. In accordance, IL-6 was upregulated in
the three SARS-CoV-2-infected cell lines analyzed here. More-
over, not only upregulation but also a shift in isoform usage of IL-
6 was detected in three SARS-CoV-2-infected datasets. A shift in
5′-UTR usage in the presence of SARS-CoV-2 may be attributed
to indirect host cell signaling cascades that trigger changes in
transcription and splicing activity, which could also explain the
overall increase in IL-6 expression.

Aberrant isoform usage and splicing have previously been
associated with the human antiviral response, cancer, and neu-
rodegenerative diseases64–66; moreover, a recent study found that
SARS-CoV-2 infection alters isoform usage of the ERAP2 gene67.
However, to our knowledge, ours is the first genome-wide ana-
lysis of the effect of SARS-CoV-2 on isoform usage. Additional
experiments are needed to validate the effect of the IL6-201 iso-
form on IL-6 protein activity in SARS-CoV-2-infected lung tis-
sues. However, elevated IL-6 was observed in more than half of
COVID-19 patients68 and was associated with COVID-19 com-
plications, progression and poor prognosis, respiratory failure,
sepsis, and mortality risk69–73. Our observations suggest the
possibility that isoform switching, as well as upregulation of gene
expression, may contribute to this IL-6 elevation. Although
clinical trials evaluating IL-6 inhibitors in immune-based thera-
pies exist74, the value in using IL-6 activity, and by extension all
relevant isoforms, as a prognostic tool in determining severity
and disease progression in SARS-CoV-2-infected patients is
apparent.

SERPINA3, an essential enzyme in the regulation of leukocyte
proteases, is induced by cytokines75 and has been proposed to
inhibit viral replication23. This was the only gene consistently
upregulated in all cell line samples infected with SARS-CoV-2
and absent from the other virus-infected datasets in this study.
The VNN2 gene was also upregulated in our analysis. Vanins are
involved in proinflammatory and oxidative processes, and VNN2
plays a role in neutrophil migration by regulating b2 integrin76.

Downregulated genes included SNX8, which has been reported in
RNA virus-triggered induction of antiviral genes23,77, and FKBP5,
a regulator of NF-κB activity78. These results suggest that SARS-
CoV-2 tends to indirectly target specific genes involved in gen-
ome replication and host antiviral immune response without
eliciting a global change in cellular transcript processing or pro-
tein production.

One of the first and most important innate antiviral responses
is the production of type I IFN. This induces hundreds of IFN-
stimulated genes, which limit virus spread and infection.
Expression of SARS-CoV-2 proteins has previously been reported
to inhibit the type I IFN signaling pathway79. Our signaling
pathway analysis supported this by showing that type I IFN
response was greatly impacted upon SARS-CoV-2 infection. We
also observed elevated expression of PRDM1 (Blimp-1) in SARS-
CoV-2-infected cells, which may contribute to the critical reg-
ulation of IFN signaling cascades. Interestingly, the TE family
LTR13, which was also upregulated, is enriched in
PRDM1 binding sites80. Therefore, it is possible that regulatory
factors involved in IFN and immune response in SARS-CoV-2
infection could be partially attributed to TE transcriptional acti-
vation. Similarly, we detected upregulation of several immunor-
egulatory TE families in SARS-CoV-2-infected cells. The
MER41B family, for instance, is known to contribute to IFN-γ-
inducible binding sites (bound by STAT1 and/or IRF1). Func-
tional enrichment of nearby genes was in accordance with these
findings, as several immunity-related terms were enriched along
with “progressive pulmonary impairment.”

In parallel, TEs seem to be co-regulated with phospholipid
metabolism, which directly affects the PI3K/AKT signaling
pathway, central to the immune response. Alterations in phos-
pholipid metabolism and the PI3K/AKT pathway were detected
in our metabolic flux analysis and functional enrichment analysis,
respectively. A recent screen for host genes required for SARS-
CoV-2 infection identified three members from the PI3K
pathway19. In addition, phosphatidylinositol metabolic processes
are important for the infection of multiple coronaviruses33 and it
is well-known that lipid metabolism is essential throughout the
life cycle of several viruses81,82. Moreover, both glyceropho-
spholipids and fatty acids were reported to be significantly dys-
regulated in COVID-19 patients83. Finally, alteration of fatty acid
metabolites in COVID-19 patients was highly correlated with IL-
6 levels84, showing the potential of genome-wide complementary
approaches to better understand this complex disease.

RBPs are likely candidates for host factors involved in the
response of human cells to SARS-CoV-2, as well as viral
manipulation of host machinery. During preparation of this
study, two experimental studies85,86 reported hundreds of pro-
teins that interact with SARS-CoV-2 RNA in human liver-derived
cell lines. Encouragingly, they validated binding of several can-
didate proteins highlighted by our analysis (Table 2 and Sup-
plementary Data 13). However, they did not identify the specific
sites where these proteins bind to viral RNA and a deeper
understanding of which RBPs promote or inhibit viral activity
remains necessary. Our analysis complements these studies by (1)
identifying putative binding sites for each protein on the viral
genome, (2) identifying proteins whose binding sites were sig-
nificantly enriched or depleted in the viral genome, and (3)
identifying potential binding sites that are conserved and specific
to SARS-CoV-2. We suggest that these proteins are likely to
include functionally important interactions and should be the
focus of experimental studies.

One of the RBPs whose potential binding sites are enriched and
conserved in the SARS-CoV-2 genome is eIF4b, suggesting that
SARS-CoV-2 viral protein translation could be eIF4b dependent.
We also detected upregulation of the EIF4B gene in A549 and
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Calu-3 cells, which might indicate that this protein is sequestered
by the virus and, therefore, cells need to increase its production.
Another conserved RBP, which was also upregulated in infected
cells, is the PABPC1, which is involved in mRNA stability and
translation. PABPC1 has been implicated in multiple viral
infections; it is modulated to inhibit host protein translation,
promoting viral RNA access to the host translational
machinery87. Interestingly, PABPC1 and PABPC4 have been
reported to interact with the SARS-CoV-2 N protein, which
stabilizes the viral genome18. This raises the possibility that the
viral genome, N protein, and human PABP proteins may parti-
cipate in a joint protein–RNA complex that assists in viral gen-
ome stability, replication, and/or translation87–91.

Binding motifs for hnRNPA1 were enriched specifically in the
3′-UTR of SARS-CoV-2, even though they were depleted in the
genome overall. hnRNPA1 interacts with 3′-UTRs of other cor-
onaviruses and participates in transcription and replication of the
murine hepatitis virus92–94. The hnRNPA1 gene, along with
hnRNPA2B1, was downregulated in Calu-3 cells and, in contrast
to the previous examples of upregulated genes, could denote a
response from human cells to control viral replication.

Finally, we identified a significant association between a viral
sequence variant and age of the host. The P323L mutation in the
RdRP was previously shown to be associated with changes in
geographical location of the viral strain95, although not with the
age of the patient. It is possible that intracellular characteristics
associated with senescence favor one allele in the polymerase over
the other, such as stabilizing the interaction between the RdRp
and the viral nsp8 proteins96,97. Such possibilities are consistent
with previous indications that host cellular factors are critical to
SARS-CoV-2 sequence evolution98. Our statistical analysis may
contain sources of bias that are not limited to the number of
genome sequences being collected earlier vs. later in the pandemic
and the availability of genomes lacking complete clinical meta-
data. Although we examined patient sex as a possible covariate
with age, it is impossible to account for all possible covariates due
to the lack of data at the current time. Additional annotated
datasets, as well as lab experiments are required to better elucidate
the effect(s) of such viral sequence variants on the host response.

In conclusion, we envision that applying this workflow will
yield important mechanistic insights in future analyses on
emerging pathogens and we provide all source code freely for
future use. Similarly, we expect that these findings will give rise to
future studies that elucidate the underlying mechanism(s)
responsible for such host–pathogen interactions. Modulating the
host components of these mechanisms can aid in the selection of
host-based drug targets, prophylactics, and/or therapeutics to
reduce virus infection and replication with minimal adverse
effects in humans.

Methods
RNA-seq data processing and differential expression analysis. Two datasets
were downloaded from the NCBI Gene Expression Omnibus (GEO) database. The
first dataset, GSE14750722, includes gene expression measurements from three cell
lines derived from the human respiratory system (NHBE, A549, Calu-3) infected
either with SARS-CoV-2, IAV, RSV, or HPIV3. The second dataset, GSE150316,
includes RNA-seq extracted from FFPE histological sections of lung biopsies from
COVID-19 deceased patients and healthy individuals. Supplementary Data 1
describes these datasets in detail.

For the first dataset (GSE147507), data were downloaded from Sequence Read
Archive (SRA) using sra-tools (v2.10.8; https://github.com/ncbi/sra-tools) and
transformed to FASTQ with fastq-dump. FastQC (v0.11.9; https://github.com/s-
andrews/FastQC) and MultiQC (v1.9)99 were employed to assess the quality of the
data and the need to trim reads and/or remove adapters. Selected datasets were
mapped to the human reference genome (GENCODE Release 19, GRCh37.p13)
using STAR (v.2.7.3a)100. Alignment statistics were used to determine which
datasets should be included in subsequent steps. The resulting SAM files were
converted to BAM files employing samtools (v1.9)101. Next, read quantification was
performed using StringTie (v2.1.1)102 and the output data were post-processed

with an auxiliary Python script provided by the same developers to produce files
ready for subsequent downstream analyses. Expression was quantified for 57,820
genes based on GENCODE Release 19. For the second gene expression dataset
(GSE150316), raw counts for 59,091 genes were directly downloaded from GEO.

DESeq2 (v1.26.0)103 was used in both cases to identify DEGs. Finally, an
exploratory data analysis was carried out based on the transformed values obtained
after applying the variance stabilizing transformation104 implemented in the vst()
function of DESeq2103. Principal component analysis (PCA) was performed on the
samples to evaluate the main sources of variation in the data and to remove outlier
samples. Based on the PCA plots, no obvious outliers were detected in GSE147507;
however, four entire samples (Cases 4, 6, 7, and 10) along with replicate 2 from
Case 5 were detected as outliers and discarded from GSE150316 (Supplementary
Fig. 6 and Supplementary Data 1).

GO enrichment analysis. The DEGs produced by DESeq2 with an absolute
Log2FC > 1 and FDR-adjusted p-value < 0.05 were used as input to a general GO
enrichment analysis105. Each term was subjected to a hypergeometric test from the
GOstats package (v2.54.0)106 and the p-values were corrected for multiple
hypothesis testing, employing the Bonferroni method107. GO terms with a sig-
nificant adjusted p-value < 0.05 were reduced to representative non-redundant
terms with the use of REVIGO108.

Host signaling pathway enrichment. The DEG lists produced by DESeq2 with an
absolute Log2FC > 1 and FDR-adjusted p-value < 0.05 were used as input to the
SPIA algorithm to identify significantly affected pathways from the R graphite
library109,110. Pathways with Bonferroni-adjusted p-values < 0.05 were included in
downstream analyses. The significant results for all comparisons from publicly
available data from KEGG, Reactome, Panther, BioCarta, and NCI were then
compiled to facilitate downstream comparison. Hypergeometric pathway enrich-
ments were performed employing the Database for Annotation, Visualization, and
Integrated Discovery (DAVID, v6.8)111.

Integration of transcriptomic analysis with human metabolic network. To
predict increased or decreased fluxes of reactions, we projected the transcriptomic
data onto the human reconstructed metabolic network Recon (v2.2)28. This can be
done based on the fact that the metabolic network includes gene-protein-reaction
associations (GPRs), which in turn are easily mapped to the transcriptomic dif-
ferential expression data. This, however, should not be seen as a quantitative
measurement of fluxes, but rather as an indication of an activation or inactivation
of certain parts of the network. First, we ran EBSeq (v3.12)112 on the gene count
matrix generated in the previous steps. EBSeq returns the Posterior Probabilities of
each gene being Differentially Expressed (PPDE) as well as the log2 fold changes.
Then, we used the output of EBSeq as input to the Moomin method32 using default
parameters. The Moomin method recovers topologically connected pathways
predicted to be activated or inactivated based on the expression changes of cor-
responding GPRs included in the metabolic network. As there is usually not only
one solution for a given differential expression dataset, a high number of solutions
should be enumerated to construct a consensus solution. We enumerated 500
topological solutions for each of the datasets tested.

Isoform analysis. Using transcript quantification data from StringTie as input, we
identified isoform switching events and their predicted functional consequences
with the IsoformSwitchAnalyzeR R package (v1.11.3)113.

To calculate differential activity between samples, isoform usage is measured by
the IF value, which quantifies the individual isoform expression level relative to the
parent gene’s expression level as previously presented in Eq. (1):

IFisoform 1 ¼
Isoform expression 1

Gene expression isoform expression 1þ isoform 2þ ¼ isoform n
� �

By proxy, the dIF between samples measures the effect size between conditions
and is calculated as previously presented in Eq. (2):

dIF ¼ IFcondition 2 � IFcondition 1

dIF was measured on a scale of 0 to 1, with 0= no (0%) change in usage
between conditions and 1= complete (100%) change in usage. The sum of dIF
values for all isoforms associated with one gene is equal to 1. We next filtered for
isoforms that experienced >30% switch in usage (dIF ≥ |0.3|) and had an FDR-
corrected p-value cutoff of <0.05 (q-value < 0.05), which we define as “significant
isoforms” for the remainder of the Methods.

Following filtering for these significant isoforms, we predicted their coding
capabilities, protein structure stability, peptide signaling, and shifts in protein
domain usage using The Coding-Potential Assessment Tool114, IUPred2115,
SignalP116, and Pfam tools117, respectively. These external analyses were imported
back into IsoformSwitchAnalyzeR and were used for downstream biological
consequence and alternative splicing event enrichment analyses.

To plot individual isoform usage by differential gene expression, we combined
the IsoformSwitchAnalyzeR dIF calculations and gene expression data from the
aforementioned DESeq2 results. The top 30 isoforms per dataset comparison were
identified by ranking isoforms by gene switch q-value, i.e., the significance of the
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summation of all isoform switching events per gene between mock and infected
conditions.

A biological consequence is defined as the biological property of a transcript
(i.e., domain region, ORF, etc.). After calculating the number of significant
isoforms experiencing a biological consequence or alternative splicing event, we
performed enrichment analysis to determine if a consequence or splicing event
occurred more frequently in a particular direction (i.e., gain vs. loss) across
conditions. For example, a fraction score of 0.5 implies that out of all significant
isoforms experiencing consequence A, 50% experience a gain in consequence A
and 50% experience a loss in consequence A, indicating no global preference in the
direction the isoform population experiences consequence A. Statistical differences
between consequence directions were calculated using a Fisher’s exact test and p-
values were FDR adjusted.

TE analysis. TE expression was quantified using the TEcount function from the
TEtools software118. TEcount detects reads aligned against copies of each TE family
annotated from the reference genome. DETEs in infected vs. mock conditions were
detected using DEseq2 with a matrix of counts for genes and TE families as input.
Functional enrichment of nearby genes (upstream 5 kb and downstream 1 kb of
each TE copy within the human genome) was calculated with GREAT51 using
options “genome background” and “basal+ extension.” Only the occurrences that
were identified as statistically significant by region using a binomial test were
selected.

Identification of putative binding sites for human RBPs on the SARS-CoV-2
genome. The list of RBPs downloaded from ATtRACT was filtered to retain only
human RBPs. PWMs for these RBPs were obtained from ATtRACT. The PWM is a
representation of the experimentally determined sequence-binding preferences of
the RBP. These PWMs were further filtered to retain PWMs obtained through
competitive experiments and to drop PWMs with very high entropy. This left 205
experimentally determined PWMs for 102 human RBPs. The SARS-CoV-2 refer-
ence genome sequence was scanned with these 205 PWMs to detect sequence
matches using the TFBSTools R package (v1.20.0). This scored sub-sequences on
the genome based on their sequence match to the given PWMs. A minimum score
threshold of 90% was used to identify putative RBP-binding sites.

Enrichment analysis for putative RBP-binding sites. The sequence of the SARS-
CoV-2 genome was shuffled 1000 times. Each of the 1000 shuffled sequences was
scanned for putative RBP-binding sites as described above. Next, the number of
putative binding sites for each RBP was counted, and the mean and SD of the
number of sites was calculated for each RBP across all 1000 shuffled sequences. The
z-score for each RBP was then calculated as provided in Eq. (3):

Z ¼ Sreal � �Sshuffled
σshuffled

ð3Þ

where Sreal is the number of putative binding sites for the RBP on the real genome,
�Sshuffled is the mean number of putative binding sites for the RBP across
1000 shuffled sequences, and σshuffled is the SD of the number of putative binding
sites for the RBP across 1000 shuffled sequences. The two-tailed p-value for each
RBP was calculated from the z-score. A minimum FDR-adjusted p-value of 0.01
was taken as the cutoff for significant enrichment or depletion.

The same analysis was repeated taking only the sequence of the 5′-UTR, 3′-
UTR, or intergenic regions of the SARS-CoV-2 reference genome, and was also
repeated using the negative-sense genome sequence. Finally, this analysis was
repeated with the reference genomes of SARS-CoV and RaTG13.

Conservation analysis for putative RBP-binding sites. The multiple sequence
alignment of 181,003 SARS-CoV-2 genome sequences was downloaded from
GISAID119. For each putative RBP-binding site, we selected the corresponding
columns of the multiple sequence alignment. We then counted the number of
genomes in which the sequence was identical to that of the reference genome.

Viral genotype–phenotype association. All complete SARS-CoV-2 genomes
having disease severity metadata in GISAID on 11 November 2020, together with
the GenBank reference sequence, were aligned with MAFFT (v7.464) within a
high-performance computing environment using 1 thread and the–nomemsave
parameter120. Sequences responsible for introducing excessive gaps in this initial
alignment were then manually identified and removed, leaving 8079 sequences that
were then used to generate a new multiple sequence alignment.

The disease severity metadata for these sequences was then normalized into
four categories: severe (862 samples), moderate (3873 samples), mild
(2996 samples), and NA (310 samples). The complete correspondence between
original patient status and these four categories can be found in Supplementary
Data 17. These categories were based on whether the patient was treated in the
intensive-care unit or died during acute infection, hospitalized or symptomatic,
asymptomatic, not specified, or not available, respectively. The distribution of
patient biological sex included males (4067 samples), females (3085 samples),
unknown (798 samples), and not specified (129 samples). Patient age was

converted into age ranges including the following: unspecified (38 samples), <20
(441 samples), 20–29 (1009 samples), 30–39 (1268 samples), 40–49 (1255 samples),
50–64 (1661), 65–74 (769), 75–84 (516 samples), >85 years old (283 samples), or
not available (839 samples).

Next, the sequence data and associated metadata were used as input to the
meta-CATS59 algorithm. Meta-CATS uses a χ2-statistical test to identify aligned
positions containing significant differences in their base distribution between two
or more metadata categories (e.g., severe vs. mild disease or male vs. female). The
Benjamini–Hochberg multiple hypothesis correction was then applied to all
positions121. Significant results were then evaluated against the annotated protein
regions of the reference genome to determine their effect on amino acid sequence.

Statistics and reproducibility
RNA-seq datasets. Biological replicates for individual conditions are described as
follows: within GSE147507 series 1, 2, 5, 7, 8, and 9 consisted of three biological
replicates; series 3 and 4 consisted of two biological replicates. Within GSE150316,
Cases 8 and 9 along with the negative control consisted of five biological replicates;
Cases 1 and 4 consisted of four biological replicates; Cases 2 and 11 consisted of
three biological replicates; and Case 3 consisted of two biological replicates. More
details on the samples and replicates for each dataset are given in Supplementary
Data 1.

DEGs and TEs. Differential expression of genes and TEs was separately determined
based on the counts of features with DESeq2 (v1.26.0)103, which is based on a
negative binomial regression model. The method normalized sequencing depth
using a median-to-ratio method; then a Bayesian shrinkage approach was used to
estimate both coefficients and dispersion parameters in the negative binomial.
Then, a Wald’s test was performed to identify DE genes or DETEs.

Enrichment analyses. The GO functional enrichment analysis was performed by
retrieving all of the GO annotations for each DEG in each dataset. A hypergeo-
metric statistical test was applied to all of the GO annotations for each DEG in each
dataset, functions with an FDR-adjusted p-value < 0.05 were considered sig-
nificantly overrepresented.

Genes with FDR-adjusted p-values < 0.05 based on DESeq2 were used as the
gene list, whereas the superset of both significant and nonsignificant genes for each
dataset was used as the background gene list. These lists of genes were then
subjected to 5000 bootstrap replicates to generate a null distribution for each
available pathway. Pathways that had a Bonferroni-adjusted p-value < 0.05 were
labeled as statistically significant and were reported in the results.

Differential usage of isoforms. IsoformSwitchAnalyzeR R package (v1.11.3)113

detected genome-wide enrichment by counting isoform switches and comparing
the number of gain vs. losses. Enrichment tests were performed via base R’s prop.
test and comparisons of enrichments were done with fisher.test. FDR-adjusted p-
values (q-values) inferior to 0.05 were considered significant.

Metabolic flux prediction. We ran EBSeq (v3.12)112 on the gene count matrix.
EBSeq returned the posterior probabilities of each gene being differentially
expressed (PPDE) and the log2 fold changes. Moomin32 then used the results of
PPDE along with log2 fold changes to predict topological solutions within the
metabolic network.

TE functional enrichment analysis. Based on DETEs, we used GREAT51 to analyze
the functional significance of cis-regulatory regions. The method performs a
binomial test on the total portion of the genome associated with any given ontology
vs. the fraction of the input genomic regions which fall into those areas.

RBP analysis. Enrichment or depletion of putative RBP-binding sites in a sequence
was calculated by shuffling the sequence 1000 times and scanning each shuffled
sequence for putative RBP-binding sites. A z-score for each RBP was calculated as
provided in Eq. (3):

Z ¼ Sreal � �Sshuffled
σshuffled

where Sreal is the number of putative binding sites for the RBP on the real genome,
�Sshuffled is the mean number of putative binding sites for the RBP across
1000 shuffled sequences, and σshuffled is the SD of the number of putative binding
sites for the RBP across 1000 shuffled sequences. The two-tailed p-value for each
RBP was calculated from the z-score. A minimum FDR-adjusted p-value of 0.01
was taken as the cutoff for significant enrichment or depletion.

Viral genotype–phenotype association. Over 8000 SARS-CoV-2 genomes that had
associated clinical metadata such as disease severity, age, or biological sex were
included in the analysis. The sequences were divided into categories based on the
available clinical metadata before being subjected to a χ2-statistical test. Results that
met an FDR-adjusted p-value < 0.05 were labeled as statistically significant and
were manually reviewed to identify aligned positions that had the potential for
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statistical skew due to not surpassing the minimal number of bases in a given
category (at least five viral strains having the same base in each category).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
RNA-seq datasets with accessions GSE147507 and GSE150316 were obtained from the
NCBI Gene Expression Omnibus (GEO) database (https://www.ncbi.nlm.nih.gov/geo).
The reference genome sequences of SARS-CoV-2, RaTG13, and SARS-CoV were
downloaded from Genbank under the accessions NC_045512, MN996532.1, and
NC_004718.3, respectively. A list of known RNA-binding proteins (RBPs) and their
Position Weight Matrices (PWMs) were downloaded from ATtRACT (https://attract.
cnic.es/download). Normalized gene expression values in human lung tissue were
obtained from the GTEx database, version 8 (https://gtexportal.org/home/datasets).
Single-cell RNA-seq data for human lung cells were obtained from the NCBI GEO
database under accession GSE122960. Finally, all SARS-CoV-2 complete genomes
collected from humans, along with associated metadata, were downloaded from the
GISAID database (https://www.gisaid.org/) on 11 November 2020119. Supplementary
data have been deposited on Zenodo at https://doi.org/10.5281/zenodo.4644596122. Any
other data are available from the corresponding authors on reasonable request.

Code availability
Code for the analyses described in this work is available at https://github.com/
vaguiarpulido/covid19-research123, under the MIT open-source license. The following
versions of software were used in this study: STAR (v2.3.7a), Samtools (v1.10), StringTie
(v2.1.1), DESeq2 (v1.26.0), GOstats package (v2.54.0), IsoformSwitchAnalyzeR R
package (v1.11.3), Moomin (v1.0), EBSeq (v3.12), TETools (v1.0.0), sra-tools (v2.10.8),
FastQC (v0.11.9), MultiQC (v1.9), TFBSTools R package (v1.20.0), and MAFFT (v7.464).
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