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Abstract

We provide a large probability bound on the uniform approximation of fractional
Brownian motion with Hurst parameter H, by a deep-feedforward ReLU neural network
fed with a N -dimensional Gaussian vector, with bounds on the network design (number
of hidden layers and total number of neurons). Essentially, up to log terms, achieving
an uniform error of O

(
N−H

)
is possible with log(N) hidden layers and O (N logN)

parameters. Our analysis relies, in the standard Brownian motion case (H = 1/2), on
the Levy construction and in the general fractional Brownian motion case (H 6= 1/2), on
the Lemarié-Meyer wavelet representation. This work gives theoretical support on new
generative models based on neural networks for simulating continuous-time processes.

Keywords: fractional Brownian motion, Gaussian process, neural networks, generative models
MSC: 62M45, 60G15, 60G22

1 Introduction

Over last few years a new paradigm of generative model has emerged in the new machine learning
community with the goal of sampling high-dimensional complex objects (such as images, videos or
natural language) from a data set of these objects. If X denotes the random variable taking values in
a general metric space (X , dX ) from which we have observations (Xi)i≥1, the problem of generative
model construction amounts to �nding a function Gθ : RN 7→ X and a latent probability distribution
µ on RN such that

X
d
= Gθ(Z) and Z ∼ µ. (1)

Usually, the choice of the dimension N (the so-called latent dimension) is part of the problem. The
function Gθ belongs to a parametric family of functions G = {Gθ}θ∈Θ, and it is common to consider
neural networks: in this work, we follow this approach. Essentially, two main questions have to be
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addressed to obtain a generative model: a) how to choose G to have a chance to get the equality in
distribution (1), or at least a good approximation of it for some Gθ ∈ G? b) how to learn the parameter
θ from the data set? The second question b) has been tackled by [1] in their seminal work of Generative
Adversarial Network (GAN). We will not focus on that problematic in this work, there is a tremendous
number of works (about 30,000 citations of [1] on Google Scholar at the date of writing this article).
Instead, we are to focus on a), i.e. quantifying how to choose G and the latent space (N,µ) when X
is the space of continuous functions indexed by time, equipped with the sup norm dX , and when the
distribution of X is that of a stochastic process (in�nite dimensional object), possibly non-Markovian.

Among the huge and expanding literature on GANs, lot of works studied the ability to generate
time-series (in a discrete time), either in �nance [2], in medicine [3] or in meteorology [4], for citing
only some of them. However, to the best of our knowledge, none of them is dealing with continuous-
time processes. Moreover, designing the architecture of a neural network Gθ with respect to its depth
(number of hidden layers), size (number of neurons), type (feed-forward, recurrent, convolutional,
etc.) and activation functions (sigmoid, ReLU, etc.), is a very di�cult question and therefore often
left to empirical grid search. In this work, we aim at tackling these aspects and providing precise
quantitative guidelines on G in the case where X is a fractional Brownian motion (fBm) with Hurst
parameter H ∈ (0, 1) including standard Brownian motion (H = 1/2) as a particular case.

A fBm is a centered Gaussian process with a speci�c covariance function [5], detailed de�nition and
properties are given in Section 2. Remind that a fBm is α-Hölder-continuous for α < H quasi-surely
with respect to the Brownian motion capacity for any H ∈ (0, 1) [6, Corollary 4.2]. The motivation
in choosing such a model for our study is threefold. First, its stochastic simulation is known to be
quite delicate (at least for H 6= 1/2), especially when the number of time points gets larger and
larger � see [7, 8] for a review and [9, 10] for recent contributions � hence having at hand a generative
model for the full path is really appealing for practical use. Second, it is widely used in various real-life
modelings: uni and bipedal postural standing in biomechanics [11]; volatility of �nancial assets [12,13];
vortex �lament structures observed in 3D �uids [14]; prices of electricity in a liberated market [15];
solar cycle [16]; for other fractional-based modeling, see [17]. Third, understanding the right design of
G for generating the fBm distribution may well open the way to handle more complicated stochastic
models written as a Stochastic Di�erential Equation (SDE) driven by fBm for instance: indeed, as we
will see, the design of the current G inherits much from the time-regularity of X and this property is
lifted to SDE driven by X. This part is left to further investigation.

In this work we study the required depth (number of hidden layers) and complexity (number of
neurons and parameters) of a deep-feedforward neural network (NN) for G, with a Recti�ed Linear
Unit (ReLU) for the activation function [18, Chapter 6]: it is referred to as ReLU NN in the sequel.
For the latent distribution µ, we consider N independent components and without loss of generality
for the simulation purpose, each of them is taken as a standard Gaussian random variable. Essentially,
our results state (Theorems 2 and 3) that for a given latent dimension N , there is a Gθ ∈ G such that
equality (1) holds with an error N−H (1 + log(N))

1/2 in sup norm with probability 1 − p. Moreover,
focusing on the rates with respect to N → +∞, the depth of Gθ is at most

O (logN)

and its global complexity is
O
(
N1+ζ logN

)
,

where ζ is a positive parameter that can be taken as small as desired, and where the O (.) depend on
p, ζ and H. In particular for the Brownian motion (H = 1/2) we can take ζ = 0. A more detailed
dependence on p, ζ and H is given latter.

These results are original to the best of our knowledge, and should play a key role in tuning
GAN-based methods in the choice of the parametric family of NN for generating fractional stochastic
processes in continuous time. These results make a clear connection between the time-regularity of the
path (that could be measured on the real observed data) and the architecture of the parameterization
to set up.

This work is organized as follows. In Section 2, we recall few properties of fBm. Our approx-
imations are based on wavelet decomposition and we will provide appropriate materials. Then we
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state our main quantitative results about depth and complexity of deep ReLU NN for generating fBm.
Section 3 is devoted to the proofs. For pedagogical and technical reasons, we start with the case
H = 1/2 (standard Brownian motion) in Subsection 3.1; then we handle the general case of fBm in
Subsection 3.2. Simulation of fBm with a NN approach is illustrated in Section 4. A few technical
proofs and numerical illustrations are postponed to Appendix.

Notations: The set of naturals without zero is de�ned by N0 := {1, 2, . . . , n, . . . } and N := N0 ∪{0};
de�ne the setM :=

{
2n+1, n ∈ N

}
; the vector of N standard Gaussian random variables G1, . . . , GN

is denoted by G1:N ; the imaginary number i2 = −1. We write x = Oc (y) if |x| ≤ c |y| for some positive
constant c which, in the context where it is used, does not depend neither on the latent dimension N
nor on the accuracy ε; usually y will be a not-small quantity (y ≥ 1) as a polynomial or logarithmic
function of N or/and ε−1 according to the context. Finally, we write aN � bN if there exists a constant
c ≥ 1 such that ∀N ∈ N0, c−1 ≤ aN/bN ≤ c.

2 Preliminaries and main results

2.1 About Fractional Brownian motion

Fractional Brownian motion (fBm)
{
BH(t)

}
t∈R with a Hurst parameter H ∈ (0, 1) is a Gaussian

process, centered (E
[
BH(t)

]
= 0), with covariance function

Cov
(
BH(t), BH(s)

)
=
VH
2

(
|t|2H + |s|2H − |t− s|2H

)
, for any s, t ≥ 0, (2)

with VH = Var[BH(1)]. We call BH(·) a standard fBm if VH = 1. When H = 1/2, we will simply
write B instead of B1/2. Our aim is to approximate the distribution of BH on a �nite interval: owing
to the self-similarity property of fBm [19, Proposition 2.1], we can consider, without loss of generality,
the interval [0, 1], which is our setting from now on.

As BH is a centered Gaussian process in a Banach space (C 0([0, 1],R), ‖.‖∞) (see [20, Proposi-
tion 3.6]), BH admits almost sure (a.s.) series representation of the form

BH(t) =

∞∑

k=0

uk(t)Gk, ∀t ∈ [0, 1], (3)

where {uk}k∈N is a sequence of continuous non-random functions, and {Gk}k∈N is a sequence of
independent standard Gaussian variables N (0, 1). Equality (3) holds in the sense that the series
converges a.s. uniformly. Such representations for fBm are studied in [21] using wavelets.

Let H ∈ (0, 1); [22] showed that there exists a sequence {uk}k such that the L2-truncation error is


E


 sup
t∈[0,1]

∣∣∣∣∣
∞∑

k=N

uk(t)Gk

∣∣∣∣∣

2





1/2

� N−H(1 + log(N))1/2; (4)

in addition, the above convergence rate is optimal among all sequences {uk}k for which (3) converges
a.s. in sup-norm.

In [21] the authors focused on the a.s. uniform convergence on [0, 1] for di�erent wavelet rep-
resentations series (3) using a speci�c mother wavelet function ψ, and the authors of [23, Theo-
rem 5] showed their optimality in the sense of (4). Not only ψ has to generate an orthonormal

basis
{
ψj,k(x) = 2j/2ψ

(
2jx− k

)}
(j,k)∈Z2 of L2(R,dx) =

{
f :
∫∞
−∞ |f(x)|2 dx <∞

}
[24, Theorem 7.3,

p. 278], but also it must respect some other regularity properties discussed hereafter.
In the following, our convention is to write the Fourier transform and its inverse as

f̂(ξ) :=

∫ ∞

−∞
f(x)e−ixξ dx, f(x) :=

1

2π

∫ ∞

−∞
f̂(ξ)eixξ dξ. (5)
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2.2 Brownian motion: wavelet representation and main result for NN gen-

erative model

A �rst well-known series representation is the so-called Lévy construction of the standard Brownian
motion (VH = 1, H = 1/2) obtained by plugging in (3) the basis functions

ψFS
j,k(t) = 2j/2ψFS

(
2jt− k

)
, j ∈ N, k = 0, . . . , 2j − 1, (6)

where ψFS(x) = 2
(
x10≤x<1/2 + (1− x)11/2≤x≤1

)
is twice the antiderivative of the Haar mother

wavelet [25]. The set {ψFS
j,k}j∈N,k=0,...,2j−1 de�nes the Faber-Schauder (F-S) system [26,27] and forms

an orthogonal basis of L2(R,dx). Thus, given {G1, Gj,k}j≥0, 0≤k<2j a sequence of independent stan-
dard Gaussian random variables N (0, 1), the Lévy construction of the standard Brownian motion
states that a.s. the truncated series

B(n)(t) := G1t+

n∑

j=0

2j−1∑

k=0

2−(j+1)ψFS
j,k(t)Gj,k (7)

converges uniformly on [0, 1] to a Brownian motion B as n → ∞ (see [28, Section 3.4]). We write
BN := B(n) with N = 2n+1, to emphasize that (7) contains N scalar Gaussian random variables, which
is consistent with the latent dimension discussed above. The next result quanti�es the a.s. convergence
rate of BN to B, the proof is postponed to Section A.1.

Lemma 1. Let N ∈M. Then, there exists a �nite random variable C(8) ≥ 0 such that almost surely

sup
t∈[0,1]

|B(t)−BN (t)| ≤ C(8)N
−1/2

(
1 + log(N)

)1/2
. (8)

The above result is somehow well-known and shows that it is enough to approximate with a high
probability the function t 7→ BN (t) by a ReLU NN with suitable architecture, which is the purpose of
the following statement.

Theorem 2. Let N ≥ 2 and
(
ΩN ,FN ,PN

)
be a probability space supporting N i.i.d. standard

Gaussian random variables G1:N . Therefore, there exists an extension (Ω,F ,P) supporting a Brownian
motion B such that ∀p ∈ (0, 1], there exist a ReLU neural network

B̃N,p :

{
RN → C 0([0, 1],R)

G1:N := (G1, . . . , GN ) 7→ B̃N,p(·, G1:N )

and a �nite random variable C ≥ 0 (independent from N and p) such that

P

(
sup
t∈[0,1]

∣∣∣B(t)− B̃N,p(t, G1:N )
∣∣∣ ≤ CN−1/2 (1 + logN)

1/2

)
≥ 1− p. (9)

Additionally, B̃N,p is composed at most by

1. Oc
(

log
(

NρN
(1+logN)1/2

))
hidden layers,

2. Oc
(
N log

(
NρN

(1+logN)1/2

))
neurons and parameters,

with ρN = −Φ−1( p
2N ) and Φ−1 the quantile function of the standard Gaussian distribution.

The proof is postponed to Subsection 3.1. The �niteness of C means only P(C < +∞) = 1 and a
careful inspection of the proof would show that C has �nite polynomial moments at any order. This
will be similar for the fBM-result of Theorem 3.

Remark 1. It is known that Φ−1(u) ∼ −√−2 log u as u → 0+, see [29]. Therefore we shall get
equivalents of the architecture size, either as p→ 0 or as N →∞ (which results in ρN →∞ anyhow):
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1. For a �xed p and as N → ∞, ρN/(1 + logN)1/2 tends to a constant so the depth and the
complexity are respectively of order Oc (log(N)) and Oc (N logN);

2. For a �xed N and as p → 0, the impact on the network size is moderate since both depth and
complexity are of order Oc (log log(1/p)).

As a complement to the previous marginal asymptotics, the estimates of Theorem 2 allow to have p de-

pendent on N : for instance, building a ReLU NN with an error tolerance of order N−1/2 (1 + logN)
1/2

with probability 1−N−k (for any given k > 0) can be achieved using a depth Oc (logN) and a complexity
Oc (N logN).

The next two remarks apply both to the current Brownian motion case and to the fBM studied in next
subsection.

Remark 2. One may wonder how to improve the rate of convergence of Theorem 2 in terms of
complexity. As far as Lemma 1 is concerned, the convergence rate is optimal in the sense of [22] using
a linear approximation w.r.t to the Gaussian inputs. In other words, there cannot be another fBm
series expansion with a faster rate of convergence. But once we consider non-linear approximation,
there is no reason that using N Gaussians, we cannot approximate (using a suitable NN) the fBm with
an accuracy higher than N−1/2(1 + log(N))1/2. In particular, and even if it is already quite cheap,
there is no reason for the NN depth to be of order log(N) as we propose. On the other hand, once the
latent dimension N is �xed, clearly one cannot use less that Oc (N) parameters (no matter which NN
is used), which is exactly what we propose (up to the logarithmic term).
Finally, taking p = 0 is not possible within our method of proof, it is an open question if another
construction would allow p = 0.

Remark 3. From the GAN point of view, it is enough to know (like in Theorem 2) that such a ReLU
NN can generate a Brownian motion without the knowledge of the NN parameters explicitly; indeed,
the GAN optimization algorithm will retrieve the parameters.
Regarding the practical use of this generative model, notice that sampling a Brownian motion path
boils down to sample G1:N (with N independent standard Gaussian variables), and then compute
B̃N,p(t, G1:N ) for all times t required by the situation at hand.

2.3 Fractional Brownian motion: wavelet representation and main result

for NN generative model

Among the wavelet fBm series representations proposed in [21], we will focus on the following one

BH(t) =

∞∑

j=−∞

∞∑

k=−∞
2−jH

(
ΨH
(
2jt− k

)
− ΨH(−k)

)
Gj,k, (10)

with

Ψ̂H(ξ) :=
ψ̂(ξ)

(iξ)H+1/2
, (11)

and

VH = Var
[
BH(1)

]
=

1

2H sin(πH)Γ (2H)
, (see De�nition 2), (12)

and where Γ (·) is the Gamma function. The proof of this representation is recalled in Appendix-
Section B for the convenience of the reader. One choice for the wavelet ψ is the Lemarié-Meyer
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wavelet [30] (see [24, Equations (7.52)-(7.53)-(7.85) and Example 7.10] for more details on its con-
struction) de�ned by its Fourier transform

ψ̂M(ξ) := e−i
ξ
2





sin

(
π

2
ν

(
3 |ξ|
2π
− 1

))
,

2

3
π ≤ |ξ| ≤ 4

3
π,

cos

(
π

2
ν

(
3 |ξ|
4π
− 1

))
,

4

3
π ≤ |ξ| ≤ 8

3
π,

0, otherwise,

(13)

where ν : R→ [0, 1] is a smooth function satisfying

ν(x) =

{
0, if x ≤ 0,

1, if x ≥ 1,
and ν(x) + ν(1− x) = 1. (14)

Such properties allow to satisfy the quadrature conditions of the conjugate mirror �lter [24, Subsec-
tion 7.1.3 p. 270] which speci�es the scaling function in the construction of wavelet bases (see [24, Chap-
ter 7] for a complete overview of wavelet bases analysis). Considering the truncated series of (10) over
a speci�c set IN containing at most N indices (j, k), the authors of [23, Section 5 p. 469] have shown
that there exists a �nite r.v. C(15) ≥ 0 such that

sup
t∈[0,1]

∣∣BH(t)−BHN (t)
∣∣ ≤ C(15)N

−H (1 + log(N))
1/2

. (15)

In other words, if ΨH is well chosen such that ψ satis�es conditions (A1), (A2), (A3) listed below then
the wavelet decomposition (10) is optimal [23, Theorem 5] in the sense of (4).
Back to the construction of (13), a classical example of ν due to Daubechies [31, p. 119] is

ν(x) = x4
(
35− 84x+ 70x2 − 20x3

)
,

which entails that ψ̂M has 3 vanishing derivatives at |ξ| = 2π/3, 4π/3, 8π/3. Below, we will propose
another example of ν with higher order vanishing derivatives at the boundaries in order to get (see the
proof in Subsection 3.2.1) a fast decay rate of all the derivatives (ψM)(k) at in�nity, which results in
reducing the complexity cost of the ReLU NN architecture that we will build in Theorem 3. Note that
the construction below might not be numerically optimal among the large literature on wavelets and
applications in signal processing, however it is a concrete example on which we can base our theoretical
result.

Construction of ψM Let qst be the quantile function of a Student distribution with β degrees of
freedom. Thus, considering the function

ν(u) :=
1

1 + exp(−qst(u))
, u ∈ [0, 1] (16)

conditions (14) are easily satis�ed. To be self content, we now brie�y recall and verify (A1), (A2), (A3)
from [23, p. 456] to validate the use of such ν:

(A1).
{
x 7→ 2j/2ψ(2jx− k), j ∈ Z, k ∈ Z

}
is an orthonomal basis of L2(R,dx).

(A2). The Fourier transform ψ̂ is 4 times continuously di�erentiable. Moreover, for any k = 0, 1, 2, 3
there is a constant C > 0 such that

∣∣∣ψ̂(k)(ξ)
∣∣∣ ≤ C(1 + |ξ|)−3/2, for any ξ ∈ R.

(A3). ψ̂(ξ) has a zero of order 4 at ξ = 0 (i.e. for all k = 0, 1, 2, 3, ψ̂(k)(0) = 0).

6



Condition (A1) clearly holds since the wavelets
{
ψM
j,k

}
(j,k)∈Z2

generate an orthonormal basis of

L2(R,dx). Condition (A3) is straightforwardly satis�ed because ψ̂M vanishes at 0. Last, consider (A2):

the decay of ψ̂M and its derivatives at in�nity is straightforward since it has compact support. What
really needs to be checked is the smoothness property of ψ̂M: let us justify that it is C∞. Observe that
this follows from the tentative property ν(q)(0+) = ν(q)(1−) = 0 for all q ∈ N0. To see this, remind that
the Student distribution belongs to the Fréchet maximum domain of attraction [32, Theorem. 1.2.1(1.)],
therefore qst increases as a power function with exponent γ = 1/β > 0 called the tail-index. Second,
for all q ∈ N, q(q)

st (u) increases at most as a power function around 0 and 1, see [33, Lemma 15].
Moreover, the sigmoid function ∆(x) := (1+exp(−x))−1 clearly satis�es ∆(q)(x) = Oc (exp(− |x|)) for
q ≥ 1. Hence, applying the Faà di Bruno formula [34, p. 224-226] for expanding the derivative of the
composition of ∆(·) and qst(·) gives

ν(q)(u) =

q∑

l=1

1

l!
∆(l) (qst(u))

∑

is∈N0:i1+···+il=q

q!

i1!i2! . . . il!

l∏

s=1

q
(is)
st (u), q ∈ N0,

which readily leads to ν(q)(0+) = ν(q)(1−) = 0 since the exponential function decays faster than any
polynomials. See Figure 9 for an illustration of ΨH built with (13) and (16) .

We are now in a position to state our second main result.

Theorem 3. Let N ≥ 2 and
(
ΩN ,FN ,PN

)
be a probability space supporting N i.i.d. standard

Gaussian random variables G1:N . Therefore, there exists an extension (Ω,F ,P) supporting a fractional
Brownian motion BH such that ∀p ∈ (0, 1], for all r ∈ N0 there exist a ReLU neural network

B̃HN,p :

{
RN → C 0([0, 1],R)

G1:N := (G1, . . . , GN ) 7→ B̃HN,p(·, G1:N )

and a �nite random variable C ≥ 0 (independent from N and p) such that

P

(
sup
t∈[0,1]

∣∣∣BH(t)− B̃HN,p(t, G1:N )
∣∣∣ ≤ CN−H (1 + log(N))

1/2

)
≥ 1− p.

Additionally, B̃HN,p is composed by

1. Oc
(

log
(

NρN
(1+log(N))1/2

))
hidden layers,

2. Oc
(
N1+H+1

2r log
(

NρN
(1+log(N))1/2

)(
ρN

(1+log(N))1/2

) 1
2r

)
neurons and parameters,

where ρN is de�ned in Theorem 2. The constants in Oc (·) may depend on r and H.

Observe that Remarks 1-2-3 apply similarly to the above Theorem.

2.4 Discussion

In Table 1 we compare the asymptotic architecture bounds between a BM and a fBm. Note that the
BM bene�ts from a natural construction of the F-S wavelet through ReLU functions. In comparison,
the fBm construction su�ers from 1) an additional approximation of the wavelet ΨH and 2) a larger
bound on the sum over IN , which has only a log impact in the asymptotic NN architecture (see details
in the proof in Subsection 3.2.2). Therefore, both models have the same asymptotic depth (with a
constant depending on r) and a very close complexity in terms of the latent dimension N .

The takeaway message from these results is that a NN with N Gaussian r.v. as inputs for ap-
proximating a process with a time regularity H (and an approximation error N−H up to log-term)
may have at most a depth logN and a complexity N logN . Although the set IN is not explicit for
�nding the optimal fBm NN parameters, this part can be achieved through the optimization of the
GAN model with the appropriate architecture detailed in Subsection 3.2.

7



BM fBm

error tolerance (TOL) N−1/2 N−H

depth log
(
TOL−1

)
log
(
TOL−1

)

complexity TOL−2 log
(
TOL−1

)
TOL−( 1

H
+ζ) log

(
TOL−1

)

Table 1: For a given con�dence probability p, asymptotic complexity rates with respect to

tolerance error (TOL). The parameter ζ can be taken arbitrary small, constants depending on

H, p and ζ > 0 are omitted.

3 Proofs

In this section we will discuss the constructive proofs of the ReLU NN that appear in the main results.
We start with the case H = 1/2 (standard Brownian motion) in Subsection 3.1 and we then handle
the general case of fBm in Subsection 3.2. Before that, recall the output expression of a 1-hidden layer

NN given some input x ∈ R and parameterized by θ =
{
w

(1)
k , w

(2)
k , b

(1)
k , b(2)

}K
k=1

is

K∑

k=1

w
(2)
k σ

(
w

(1)
k x+ b

(1)
k

)
+ b(2), (17)

with σ(x) := max(0, x) the ReLU function. Similarly, a multi-layer NN is just multiple compositions
of σ with (17) between di�erent hidden layers. For readers interested in having references on approxi-
mation properties of NN, we may refer to [35, Theorem 1 p. 70] for L2 error using single hidden layer
NN, to [36, Corollary 6.4 p. 170] for uniform approximations, and to a more recent paper [37] which
has shown some uniform convergence rate for multi-layers NN.

3.1 NN representation of BM

In the following proof of Theorem 2 we will restrict to N ∈ M =
{

2n+1, n ∈ N
}
. However note

that if one wants to choose a N /∈ M, it will neither impact the error nor the complexity bounds in

Theorem 2. Indeed, it su�ces to take n =
⌊

log(N)
log(2) − 1

⌋
andN ′ = 2n+1 such thatN ′ ∈ (N2 , N ], and then

set B̃p,N (t, G1:N ) := B̃p,N ′ (t, G1:N ′). Regarding the error bound and complexity w.r.t. N , use those
for N ′ by easily adjusting constants: indeed, since N ′ ≤ N , it follows that ρN ′ ≤ ρN , 1

(1+log(N ′)) ≤
1

1−log(2)
1

(1+log(N)) for the complexity bound and N ′−1/2
(1 + log(N ′))1/2 ≤

√
2N−1/2(1 + log(N))1/2

for the error bound.

From now on, N = 2n+1. For ease of notation, let

sj,k(t) :=
ψj,k(t)

2j/2
= ψ

(
2jt− k

)
∈ [0, 1], (18)

be the normalized F-S wavelet, where ψ = ψFS in this section. Then, in view of (7) and Lemma 1, the
objective is to �nd a ReLU NN with N standard Gaussian variables and the time t as inputs, that can
approximate with uniform error and high probability

BN (t) = G1t+

n∑

j=0

2j−1∑

k=0

2−(j/2+1)sj,k(t)Gj,k. (19)

The key advantage with the F-S wavelet (6) is that the mother wavelet ψ can be built easily with 3
ReLUs and 9 parameters such as

ψ(x) = 2

(
σ(x)− 2σ

(
x− 1

2

)
+ σ (x− 1)

)
. (20)
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Clearly a product operation in (19) is required between the inputs Gj,k (i.e. the latent space in a
GAN setting) and the normalized wavelets sj,k just built (see Figure 1). Since such an operation is
not natively done in a feedforward network, let us study how to approximate it.

Clearly a product operation in (17) is required between the inputs Gj,k (i.e.
the latent space in a GAN setting) and the normalized wavelets sj,k just built
(see Figure 1). Since such an operation is not natively done in a feedforward195

network, let us study how to approximate it.

t

1

�

�

�

/
sj,k(t)

2j

2j

2j
�k

�(k + 1/2)

�(k + 1)

2

�4

2

Figure 1: Neural network construction of a normalized Faber-Schauder basis function (16).
The circles filled with � represent a ReLU function, while the ones with a / represent the
identity function.

3.1.1. How to make a product with a NN

Let h(x) = x2. The key observation in [? , Proposition 2] based on [? ] is
that h can be approximated by piece-wise linear interpolation

eh`(x) = x �
X̀

j=1

 [�j](x)

22j
, (19)

with

 [�j](x) :=  � · · · �  | {z }
j times

(x), (20)

such that

sup
x2[0,1]

���h(x) � eh`(x)
��� = 2�2(`+1). (21)

(a) (b)

Figure 2: Plot of  [�j] for j = {1, 2, 3} (a); approximation of h(x) = x2 with eh` for ` = {1, 2}

11

Figure 1: Neural network construction of a normalized Faber-Schauder basis function (18).

The circles �lled with σ represent a ReLU function, while the ones with a / represent the

identity function.

3.1.1 How to make a product with a NN

Let h(x) = x2. The key observation in [37, Proposition 2] based on [38] is that h can be approximated
by piece-wise linear interpolation

h̃`(x) = x−
∑̀

j=1

ψ[◦j](x)

22j
, (21)

with

ψ[◦j](x) := ψ ◦ · · · ◦ ψ︸ ︷︷ ︸
j times

(x), (22)

such that

sup
x∈[0,1]

∣∣∣h(x)− h̃`(x)
∣∣∣ = 2−2(`+1).

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

j=1 j=2 j=3

(a)

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

h ̃h1 ̃h2

(b)

Figure 2: Plot of ψ[◦j] for j = {1, 2, 3} (a); approximation of h(x) = x2 with h̃` for ` = {1, 2}

Expression (21) can be interpreted as a NN approximation with ` hidden layers, where each compo-
sition in (22) is just the sum of all translated positions of a F-S wavelet, i.e. ∀j ≥ 0, ψ[◦j+1](x) =∑2j−1
k=0 ψ

(
2jx− k

)
. Therefore, instead of making a linear combination of such functions built through

9



a long single hidden layer, the bene�t of increasing the depth of the network allows to increase at a
geometric rate the number of wavelets and to reduce the complexity cost from 3× 2`−1 to 3` neurons.

Additionally, one shall be aware that h̃` does approximate the square function only inside the
interval [0, 1] (see Figure 2b). Therefore we introduce a new function

∨
h`(x) = h̃` (|x|) = h̃` (σ(x) + σ(−x)) , (23)

which applies a ReLU absolute value on the input. Obviously
∨
h` extends the approximation of h on

[−1, 1] such that

sup
|x|≤1

∣∣∣∣h(x)−
∨
h`(x)

∣∣∣∣ = 2−2(`+1). (24)

The NN construction of (23) requires ` + 1 hidden layers and Oc (`) neurons and parameters (see
Figure 3).

which applies a ReLU absolute value on the input. Obviously
_
h` extends the

approximation of h on [�1, 1] such that

sup
|x|1

����h(x) �
_
h`(x)

���� = 2�2(`+1). (23)

The NN construction of (22) requires `+1 hidden layers and Oc (`) neurons and205

parameters (see Figure 3).

x

�

�
/

1

1

�

�

�

�

�

�

/ _
h2(x)

1

�1

1

1

1

1

1

�1/2

�1

1

�1/2

1

�1/2

�1/8

1/4

�1/8

2

�4

2

Figure 3: Neural network architecture of
_
h` with ` = 2. Lighter arrows refer to similar

parameters which can easily be inferred from (18). For implementation purpose, one can
obviously bypass the identity function in the middle of the network which is put here for the
sake of clarity.

Once the square operation is approximately synthetized through a ReLU
NN, we can leverage the polarization identity to get the product operation
(x, y) 7! xy. Because the above approximation (23) is valid only on the interval
[�1, 1], it is useful to use a polarization identity with some flexible rescalings of
x and y. It writes, for any a, b > 0,

xy = ab

✓
�
⇣ x

2a
� y

2b

⌘2

+
⇣ x

2a
+

y

2b

⌘2
◆

.

The following Proposition provides a uniform error bound on the approximation
of the product with a ReLU NN.

Proposition 4. Let k(x, y) := xy. Then, for any ` 2 N0, for given a > 0 and
b > 0,210

1. there exists a NN eka,b
` : R2 ! R with `+ 1 hidden layers such that

sup
x,y:|x|a,|y|b

���k(x, y) � eka,b
` (x, y)

���  ab2�(2`+1); (24)

2. if x = 0 or y = 0, then eka,b
` (x, y) = 0;

3. the ReLU NN eka,b
` can be implemented with no more than Oc (`) complexity

and a depth `+1 :=
l

1
2 log(2) log

�
ab
"

�
� 1

2

m
+1, where " is the error tolerance

in sup norm.

12

Figure 3: Neural network architecture of
∨
h` with ` = 2. Lighter arrows refer to similar

parameters which can easily be inferred from (20). For implementation purpose, one can

obviously bypass the identity function in the middle of the network which is put here for the

sake of clarity.

Once the square operation is approximately synthetized through a ReLU NN, we can leverage the
polarization identity to get the product operation (x, y) 7→ xy. Because the above approximation (24)
is valid only on the interval [−1, 1], it is useful to use a polarization identity with some �exible rescalings
of x and y. It writes, for any a, b > 0,

xy = ab

(
−
( x

2a
− y

2b

)2

+
( x

2a
+

y

2b

)2
)
.

The following Proposition provides a uniform error bound on the approximation of the product with
a ReLU NN.

Proposition 4. Let k(x, y) := xy. Then, for any ` ∈ N0, for given a > 0 and b > 0,

1. there exists a NN k̃a,b` : R2 → R with `+ 1 hidden layers such that

sup
x,y:|x|≤a,|y|≤b

∣∣∣k(x, y)− k̃a,b` (x, y)
∣∣∣ ≤ ab2−(2`+1); (25)

2. if x = 0 or y = 0, then k̃a,b` (x, y) = 0;

3. the ReLU NN k̃a,b` can be implemented with no more than Oc (`) complexity and a depth `+1 :=⌈
1

2 log(2) log
(
ab
ε

)
− 1

2

⌉
+ 1, where ε is the error tolerance in sup norm.

Proof. It is enough to set

k̃a,b` (x, y) := ab

(
−
∨
h`

( x
2a
− y

2b

)
+
∨
h`

( x
2a

+
y

2b

))

and to apply (24), while observing that when |x| ≤ a and |y| ≤ b, x
2a ±

y
2b ∈ [−1, 1].
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3.1.2 Final approximation of BN

Based on Proposition 4, it seems that we can deduce a uniform bound on the product sj,k(t)Gj,k
by a linear combination of composition functions of ReLUs (i.e. a multi-layer NN). Nevertheless,
recall that (25) only holds for |x| ≤ a and |y| ≤ b . Thus, although it is clear from (18) that for all
t ∈ [0, 1] we have sj,k(t) ∈ [0, 1], the random variables Gj,k need however to be bounded in order to
use Proposition 4: it can be made only with some probability.

Proposition 5. Let N ∈ N0 and p ∈ (0, 1], set

ρN = −Φ−1
( p

2N

)
≥ 0,

with Φ−1 the quantile function of the standard Gaussian distribution, and let G1:N be i.i.d. standard
Gaussian random variables. Then

P (∀i = 1, . . . , N : |Gi| ≤ ρN ) ≥ 1− p.
Proof. Clearly, the probability on the above left hand side equals

1− P

(
N⋃

i=1

{
|Gi| ≥ ρN

})
≥ 1− 2NΦ (−ρN ) = 1− p.

Therefore combining Propositions 4 and 5 with a = 1 and b = ρN , we can de�ne

k̃1,ρN
` (sj,k(t), Gj,k) := ρN

(
−
∨
h`

(
sj,k(t)

2
− Gj,k

2ρN

)
+
∨
h`

(
sj,k(t)

2
+
Gj,k
2ρN

))
, (26)

which can be implemented with `+ 2 hidden layers (since we need an additional one to build the sj,k)
and Oc (`) neurons and parameters (see Figure 4).

t

1

�

�

�

/
sj,k(t)

Gj,k

_
h`

_
h`

/
1/2

1/2

� 1
2⇢N

1
2⇢N

�⇢N

⇢N

ek1,⇢N

` (sj,k(t), Gj,k)

Figure 4: Neural network architecture of ek1,⇢N
` (sj,k(t), Gj,k) .

Let eBN be the NN approximation of (17) such that

eBN (t) = ek1,⇢N

` (t, G1) +

nX

j=0

2j�1X

k=0

2�(j/2+1)ek1,⇢N

` (sj,k(t), Gj,k) , (26)

with ek1,⇢N

` defined in (25). Therefore, on the event {|Gi|  ⇢N : i = 1, . . . , N}
which has a probability greater than 1 � p, one has

sup
t2[0,1]

���BN (t) � eBN (t)
���  sup

t2[0,1]

���tG1 � ek1,⇢N

` (t, G1)
���

+ sup
t2[0,1]

������

nX

j=0

2j�1X

k=0

2�(j/2+1)
⇣
sj,k(t)Gj,k � ek1,⇢N

` (sj,k(t), Gj,k)
⌘
������

(from Proposition 4 and since sj,k(t) 2 [0, 1] and |Gj,k|  ⇢N )

 ⇢N2�(2`+1)

0
@1 +

nX

j=0

2j�1X

k=0

2�(j/2+1)

1
A

= ⇢N2�(2`+1)

 
1 +

N1/2 � 1

2
�p

2 � 1
�
!

(recall N = 2n+1)

 ⇢N2�2`N1/2.

Hence, with probability at least 1�p, combining Lemma 1 with the above yields

sup
t2[0,1]

���B(t) � eBN (t)
���  C(6)N

�1/2
�
1 + log (N)

�1/2
+ ⇢N2�2`N1/2.

It follows that, if we choose

` =

&
1

2 log(2)
log

 
N⇢N�

1 + log (N)
�1/2

!'
_ 1, (27)

14

Figure 4: Neural network architecture of k̃1,ρN` (sj,k(t), Gj,k) .

Remark 4. A slight advantage of (26) over the polarization identity in [37, Equation (4) p. 106] is
that it only requires two square approximations instead of three.

Let B̃N be the NN approximation of (19) such that

B̃N (t) = k̃1,ρN
` (t, G1) +

n∑

j=0

2j−1∑

k=0

2−(j/2+1)k̃1,ρN
` (sj,k(t), Gj,k) , (27)

with k̃1,ρN
` de�ned in (26). Therefore, on the event {|Gi| ≤ ρN : i = 1, . . . , N} which has a probability

greater than 1− p, one has

sup
t∈[0,1]

∣∣∣BN (t)− B̃N (t)
∣∣∣ ≤ sup

t∈[0,1]

∣∣∣tG1 − k̃1,ρN
` (t, G1)

∣∣∣

+ sup
t∈[0,1]

∣∣∣∣∣∣

n∑

j=0

2j−1∑

k=0

2−(j/2+1)
(
sj,k(t)Gj,k − k̃1,ρN

` (sj,k(t), Gj,k)
)
∣∣∣∣∣∣

11



(from Proposition 4 and since sj,k(t) ∈ [0, 1] and |Gj,k| ≤ ρN )

≤ ρN2−(2`+1)


1 +

n∑

j=0

2j−1∑

k=0

2−(j/2+1)




= ρN2−(2`+1)

(
1 +

N1/2 − 1

2
(√

2− 1
)
)

(recall that N = 2n+1)

≤ ρN2−2`N1/2.

Hence, with probability at least 1− p, combining Lemma 1 with the above yields

sup
t∈[0,1]

∣∣∣B(t)− B̃N (t)
∣∣∣ ≤ C(8)N

−1/2
(
1 + log (N)

)1/2
+ ρN2−2`N1/2.

It follows that, if we choose

` =

⌈
1

2 log(2)
log

(
NρN(

1 + log (N)
)1/2

)⌉
∨ 1, (28)

then (9) is proved with B̃N,p(t, G1:N ) := B̃N (t). All in all, based on Figure 4, the architecture required
for the N products in (27), i.e. N sub-networks, yields a total of at most ` + 2 hidden layers and a
complexity Oc (N`). Replacing with (28) gives the stated bounds.

3.2 NN representation of fBm

Now that we are acquainted with the case of BM, we can move on to the more general case which
requires additional arguments. In view of (15) with a �xed γ > 0, the goal here is to prove that there
exists a ReLU NN approximating uniformly

BHN (t) =
∑

(j,k)∈IN
2−jH

(
ΨH
(
2jt− k

)
− ΨH(−k)

)
Gj,k, (29)

with Card (IN ) ≤ N and Gj,k ∼ N (0, 1). The proof will be composed in two parts. First we will
discuss how ΨH can be approximated by ReLU basis functions in R. Second, we will see how to control
the error on the product with Gaussians in (29). In this section we will write ψM(·) = ψ(·) for the
Lemarié-Meyer wavelet (13) with ν(·) as in (16).

3.2.1 Approximation of ΨH

We want to show that for all ε ∈ (0, 1) there exists a ReLU NN g̃ such that

sup
u∈R
|ΨH(u)− g̃(u)| ≤ ε. (30)

Note that we cannot apply the universal approximation theorem [39, Theorem 1] which holds for
continuous functions with compact support. To tackle the in�nite support, the strategy will consist of
�rst approximating ΨH in some interval [−umax, umax], and then using the fast decay rate of |ΨH(u)|
for |u| > umax. Indeed, since by construction ψ̂ and its derivatives vanish in the neighborhood of ξ = 0,
Ψ̂H de�ned in (11) is C∞ with compact support for any parameter H ∈ R. So for all (m, q) ∈ N2, we
claim that

∣∣∣Ψ (q)
H (u)

∣∣∣ ≤ CH−q,m

1 + |u|m+1 , (31)

where CH−q,m is a constant depending on H−q and m. The property for q = 0 is clear: use the inverse
Fourier transform and m+ 1 integration by parts, taking advantage that the derivatives of Ψ̂H vanish

12



at the boundary of its support (see discussion after (16)). For q 6= 0, observe that Ψ (q)
H (u) = ΨH−q(u)

and the property follows. Now we proceed to (30), by following the ideas of [37, Theorem 1] with some
variations. In (31), we have a degree of freedom with the choice of the parameter m, it will be �xed
at the end of the proof.

Consider a uniform grid of M points {ui = (i− 1)δ − umax}Mi=1 with M > 1 and δ = 2umax

M−1 on the
domain [−umax, umax], assuming δ ≤ 1/2. The parameter umax > 0 will be �xed later. Additionally,
for i = 1, . . . ,M , we de�ne a triangular function

φi(u) := φ

(
u− ui
δ

)
,

where

φ(t) := σ(t+ 1) + σ(t− 1)− 2σ(t),

and with the following (obvious) properties:

1. φi(·) is symmetric around ui,

2. sup
u∈R
|φi(u)| = φi(ui) = 1,

3. supp(φi) ∈ [ui − δ, ui + δ],

4.
∑M
i=1 φi(u) ≡ 1, for u ∈ [−umax, umax].

The function φi is nothing else than another FS wavelet ψFS
j,k with slightly di�erent scaling and position

parameters. Now let r ∈ N0 and consider a localized Taylor polynomial function

g1(u) :=

M∑

i=1

φi(u)Pi(u), (32)

where Pi is the Taylor polynomial of degree (r − 1) of ΨH ∈ C∞ at the point ui given by

Pi(u) :=

r−1∑

q=0

Ψ
(q)
H (ui)

q!
(u− ui)q.

To approximate the q-power function, we will need the following result.

Proposition 6. Let ` ∈ N0, a > 0 and b > 0. For any q ∈ N, de�ne recursively the ReLU NN with at
most (q − 1)(`+ 1) hidden layers by

y 7→ ỹq := k̃
b,bq
`

(
y, ỹq−1

)
, q ≥ 2,

with by convention ỹ0 := 1, ỹ1 := y, where k̃a,b` is de�ned in Proposition 4 and where

bq := bq−1
(

1 + 2−(2`+1)
)q−2

. (33)

It is such that

sup
y:|y|≤b

∣∣yq − ỹq
∣∣ ≤ bq

((
1 + 2−(2`+1)

)q−1

− 1

)
, (34)

sup
x,y:|x|≤a,|y|≤b

∣∣∣xyq − k̃a,bq+1

`

(
x, ỹq

)∣∣∣ ≤ abq
((

1 + 2−(2`+1)
)q
− 1
)
. (35)

13



Proof. We set η := 2−(2`+1) and we proceed by induction. Inequality (34) holds for q = 2 thanks to
Proposition 4. Now take q ≥ 3, assume (34) holds for q − 1. Clearly, this implies

sup
|y|≤b

∣∣∣ỹq−1
∣∣∣ ≤ bq−1 (1 + η)

q−2
= bq. (36)

Therefore,

sup
|y|≤b

∣∣yq − ỹq
∣∣ ≤ sup

|y|≤b

∣∣∣yq − y ỹq−1
∣∣∣+ sup
|y|≤b

∣∣∣y ỹq−1 − ỹq
∣∣∣

≤ b sup
|y|≤b

∣∣∣yq−1 − ỹq−1
∣∣∣+ sup
|y|≤b

∣∣∣y ỹq−1 − k̃b,bq`

(
y, ỹq−1

)∣∣∣

≤ bbq−1
(
(1 + η)q−2 − 1

)
+ bbq−1(1 + η)q−2η

= bq
(
(1 + η)q−1 − 1

)

where, at the last inequality, we have used Proposition 4 combined with bound (36). We are done
with (34). Similarly for (35), we get

sup
|x|≤a,|y|≤b

∣∣∣xyq − k̃a,bq+1

`

(
x, ỹq

)∣∣∣ ≤ a sup
|y|≤b

∣∣yq − ỹq
∣∣+ sup
|x|≤a,|y|≤b

∣∣∣x ỹq − k̃a,bq+1

`

(
x, ỹq

)∣∣∣ .

Combining (34) and Proposition 4 with (36), we get (35).

Proof. We set ⌘ := 2�(2`+1) and we proceed by induction. The inequality (33)
holds for q = 2 thanks to Proposition 4. Now take q � 3, assume (33) holds for
q � 1. Clearly, this implies

sup
|y|b

��� gyq�1
���  bq�1 (1 + ⌘)

q�2
= bq. (35)

Therefore,

sup
|y|b

��yq � eyq
��  sup

|y|b

���yq � y gyq�1
���+ sup

|y|b

���y gyq�1 � eyq
���

 b sup
|y|b

���yq�1 � gyq�1
���+ sup

|y|b

���y gyq�1 � ekb,bq

`

⇣
y, gyq�1

⌘���

 bbq�1
�
(1 + ⌘)q�2 � 1

�
+ bbq�1(1 + ⌘)q�2⌘

= bq
�
(1 + ⌘)q�1 � 1

�

where, at the last inequality, we have used Proposition 4 combined with the
bound (35). We are done with (33). Similarly for (34) we get

sup
|x|a,|y|b

���xyq � eka,bq+1

`

���
�
x, eyq

�
 a sup

|y|b

��yq � eyq
��+ sup

|x|a,|y|b

���x eyq � eka,bq+1

`

�
x, eyq

���� .

Combining (33) and Proposition 4 with (35), we get (34).255

u

_
h`1

ekb,b3
`1

ekb,b4
`1

ekb,br�1

`1
. . .

1 1 1 1 1

^(u � ui)
2 ^(u � ui)

3 ^(u � ui)
4 ^(u � ui)

r�1

�ui �ui �ui �ui �ui

Figure 5: Neural network architecture of all power functions of (u�ui)
q for q 2 {2, . . . , r � 1}

with b = 2� and bq is defined from (32).

We are now in a position to prove (29). Given the support property of �i,
the strategy consists of splitting the error approximation in three pieces:

1. A classical Taylor bound on the main interval yields

sup
|u|umax

| H(u) � g1(u)| = sup
|u|umax

�����
MX

i=1

�i(u) ( H(u) � Pi(u))

�����
 2 max

i=1,...,M
sup

u2supp(�i)

| H(u) � Pi(u)|
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Figure 5: Neural network architecture of all power functions of (u−ui)q for q ∈ {2, . . . , r − 1}
with b = 2δ and bq de�ned in (33).

We are now in a position to prove (30). Given the support property of φi, the strategy consists of
splitting the error approximation in three terms:

1. A classical Taylor bound on the main interval yields

sup
|u|≤umax

|ΨH(u)− g1(u)| = sup
|u|≤umax

∣∣∣∣∣
M∑

i=1

φi(u) (ΨH(u)− Pi(u))

∣∣∣∣∣
≤ 2 max

i=1,...,M
sup

u∈supp(φi)
|ΨH(u)− Pi(u)|

since u is in the support of at most two φi's and |φi(u)| ≤ 1,

≤ 2 max
i=1,...,M

sup
u∈supp(φi)

∣∣∣Ψ (r)
H (u)

∣∣∣
r!

(2δ)r

≤ 2

r!
CH−r,m(2δ)r,

14



using (31). Let g̃i,q(·) be the ReLU NN approximation of u 7→ φi(u)(u − ui)
q using (35) with

|φi(u)| ≤ 1 = a and |u− ui| ≤ 2δ = b (see Figure 5). In view of (32), set

g̃(u) :=

r−1∑

q=0

1

q!

M∑

i=1

Ψ
(q)
H (ui)g̃i,q(u). (37)

Observe, from the second statement of Proposition 4 that g̃i,q(u) = 0 for u /∈ supp(φi). So using (35)
(setting η := 2−(2`1+1) with `1 ∈ N0) leads to

sup
|u|≤umax

|g1(u)− g̃(u)| ≤
r−1∑

q=0

sup
|u|≤umax

∣∣∣Ψ (q)
H (u)

∣∣∣
q!

M∑

i=1

sup
|u|≤umax

|φi(u)(u− ui)q − g̃i,q(u)|

≤ 2r max
q=0,...,r−1

CH−q,m

∞∑

q=1

(2δ)q
((1 + η)q − 1)

q!
. (38)

Using that 2δ ≤ 1 and η ≤ 1/2, we easily get that the above right hand side is bounded by
r δ η Ce maxq=0,...,r−1 CH−q,m for some universal constant Ce. To sum up, we have proved

sup
|u|≤umax

|ΨH(u)− g̃(u)| ≤ CH,r,m (δr + δη)

where, here and in what follows, CH,r,m stands for a �nite positive constant depending on H, r,m,
which value may change from line to line, without changing its name. By taking

δ =

(
ε

6CH,r,m

) 1
r

∧ 1

2
= Oc

(
ε

1
r

)
, η ≤ ε

6CH,r,mδ
= Oc

(
ε1− 1

r

)
, (39)

we have

sup
|u|≤umax

|ΨH(u)− g̃(u)| ≤ ε

3
.

The condition on η≤ 1/2 is satis�ed for

`1 =

⌈
1

2 log(2)
log

(
6CH−r,mδ

ε

)
− 1

2

⌉
∨ 1 = Oc

(
log
(
ε−1
))
. (40)

2. Focusing on the small interval |u| ∈ [umax, umax + δ] where u belongs to supp(φM ) only, write

sup
|u|∈[umax,umax+δ]

|ΨH(u)− g1(u)|

= sup
|u|∈[umax,umax+δ]

|ΨH(u)− φM (u)PM (u)|

≤ sup
|u|∈[umax,umax+δ]

|ΨH(u)|+ sup
|u|∈[umax,umax+δ]

|ΨH(u)− PM (u)|

≤
(31)

CH,m

1 + um+1
max

+
CH−r,m

1 + um+1
max

δr

r!

≤
(39)

CH,r,m
1 + um+1

max

.

Similarly to bound (38) but taking advantage of the fast decay of

supu∈[umax,umax+δ]

∣∣∣Ψ (q)
H (u)

∣∣∣ yields

sup
|u|∈[umax,umax+δ]

|g1(u)− g̃(u)| ≤ CH,r,m
δ η

1 + um+1
max

.

15



All in all, and using δ η ≤ 1/4,

sup
|u|∈[umax,umax+δ]

|ΨH(u)− g̃(u)| ≤ CH,r,m
1 + um+1

max

≤ ε

3

for a new constant CH,r,m and with the choice

umax :=

(
3CH,r,m

ε

) 1
m+1

.

3. Finally, on the last interval |u| ∈ [umax + δ,+∞), both g̃(·) and g1(·) vanish, and from (31), we
readily get

sup
|u|∈[umax+δ,+∞)

|ΨH(u)− g̃(u)| ≤ CH,m

1 + um+1
max

≤ ε

3
.

All in all, (30) is proved with the ReLU NN (37). Collecting previous asymptotics, we get

M =
2umax

δ
+ 1 = Oc

(
ε−

1
m+1 ε−

1
r

)
. (41)

3.2.2 Error control including Gaussian random variables

We are back to the approximation of (29). For (j, k) ∈ IN we set

Yj,k(t) := ΨH
(
2jt− k

)
− ΨH(−k) and Ỹj,k(t) := g̃

(
2jt− k

)
− g̃(−k)

for its ReLU NN approximation. In view of (29), let us derive an error bound of the product Yj,k(t)Gj,k
for t ∈ [0, 1] and Gj,k a standard Gaussian random variable. From (30) with ε ≤ 1 and (31), we get

sup
t∈[0,1]

∣∣∣Ỹj,k(t)
∣∣∣∨ sup

t∈[0,1]

|Yj,k(t)| ≤ 2ε+ 2 sup
u∈R
|ΨH(u)| ≤ 2 (1 + CH,m) =: C̄H . (42)

Similarly to (26), we can rewrite for t ∈ [0, 1] and (j, k) ∈ IN the NN product approximation of
Ỹj,k(t)Gj,k with `2 ∈ N0 as

k̃C̄H ,ρN`2

(
Ỹj,k(t), Gj,k

)
= C̄HρN

(
−
∨
h`2

(
Ỹj,k(t)

2C̄H
− Gj,k

2ρN

)
+
∨
h`2

(
Ỹj,k(t)

2C̄H
+
Gj,k
2ρN

))
. (43)

Let us work on the event {|Gj,k| ≤ ρN : (j, k) ∈ IN} which has a probability greater than 1 − p and
let us focus on the approximation error of the �rst term on the right-hand side of (43):

sup
t∈[0,1]

∣∣∣∣∣
∨
h`2

(
Ỹj,k(t)

2C̄H
− Gj,k

2ρN

)
−
(
Yj,k(t)

2C̄H
− Gj,k

2ρN

)2
∣∣∣∣∣

≤ sup
t∈[0,1]

∣∣∣∣∣∣
∨
h`2

(
Ỹj,k(t)

2C̄H
− Gj,k

2ρN

)
−
(
Ỹj,k(t)

2C̄H
− Gj,k

2ρN

)2
∣∣∣∣∣∣

+ sup
t∈[0,1]

∣∣∣∣∣∣

(
Ỹj,k(t)

2C̄H
− Gj,k

2ρN

)2

−
(
Yj,k(t)

2C̄H
− Gj,k

2ρN

)2
∣∣∣∣∣∣

≤
(24)

2−2(`2+1) +
supt∈[0,1]

∣∣∣Ỹj,k(t)− Yj,k(t)
∣∣∣

2C̄H

×




supt∈[0,1]

∣∣∣Ỹj,k(t)
∣∣∣+ supt∈[0,1] |Yj,k(t)|
2C̄H

+
|Gj,k|
ρN




≤
(30),(42)

2−2(`2+1) +
2ε

C̄H
.
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So replacing in (43) and similarly for the second term, it entails

sup
(j,k)∈IN

sup
t∈[0,1]

∣∣∣Yj,k(t)Gj,k − k̃C̄H ,ρN`2

(
Ỹj,k(t), Gj,k

)∣∣∣ ≤ 2−(2`2+1)C̄HρN + 4ερN .

For the �nal ReLU NN approximation of (29), de�ne B̃HN as

B̃HN (t) :=
∑

(j,k)∈IN
2−jH k̃C̄H ,ρN`2

(
g̃
(
2jt− k

)
− g̃(−k), Gj,k

)
. (44)

Combining (15),(29),(44) gives (still on the event {|Gj,k| ≤ ρN : (j, k) ∈ IN})

sup
t∈[0,1]

∣∣∣BH(t)− B̃HN (t)
∣∣∣ ≤ sup

t∈[0,1]

∣∣BH(t)−BHN (t)
∣∣+ sup

t∈[0,1]

∣∣∣BHN (t)− B̃HN (t)
∣∣∣

≤ C(15)N
−H (1 + log(N))

1/2
+N

(
2−(2`2+1)C̄HρN + 4ερN

)

recalling that Card (IN ) ≤ N . It su�ces to ensure that the second term at the right-hand side is
bounded by 2N−H (1 + log(N))

1/2 thanks to the choices

ε =
(1 + log(N))

1/2

4ρNNH+1
∧ 1, (45)

`2 =

⌈
1

2 log(2)
log

(
C̄HρNN

H+1

(1 + log (N))
1/2

)⌉
∨ 1 = Oc

(
log
(
ε−1
))
. (46)

3.2.3 Architecture

The total architecture of g̃ is composed by M sub-networks, where each g̃i,q is built as a cascade of q
NN with (`1 + 1) hidden layers, i.e. (q− 1) NN from Proposition 6 and 1 more from the product with
φi. Therefore, g̃ requires at most a depth Oc (`1) and a complexity Oc (M`1), with constants clearly
depending on r. Using M in (41) and `1 in (40), we get the architecture bounds as a function of the
accuracy ε, for just one approximation of ΨH with g̃.

As mentioned above, Ỹj,k is composed of 2g̃ NN and so it has the same depth but twice the
complexity (number of neurons and parameters) of g̃. Additionally, (44) requires (`2 +1) hidden layers
to perform the multiplications with the Gaussian random variables. Finally, all these operations are
computed for N di�erent scaling/transition parameters (j, k). All in all, the total architecture of B̃HN
(see Figure 6) is composed of at most

1. Oc (`1 + `2) hidden layers,

2. Oc
(
N
(
M`1 + `2

))
neurons and parameters.

Replacing with (39), (41) and (46) gives the architecture bounds with respect to ε, i.e.

1. hidden layers:

Oc (`1 + `2) = Oc
(

log
(
ε−(1− 1

r )
)

+ log
(
ε−1
))

= Oc
(
log
(
ε−1
))
,

where we have observed that the exponent inside the log term can be put in the Oc since the
constants are allowed to depend on r in our notation;

2. neurons and parameters:

Oc
(
N
(
M`1 + `2

))
= Oc

(
N
(
ε−

1
2r log

(
ε−(1− 1

r )
)

+ log
(
ε−1
)))

= Oc
(
Nε−

1
2r log

(
ε−1
))
,

with equilibrium at r = m + 1 in (41). Remembering the choice (45) of ε w.r.t. N gives the
announced result.
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Appendix A. Complements285

Appendix A.1. Proof of Lemma 1

Let us bound the truncated approximation of (5) for all n 2 N,

sup
t2[0,1]

������
B(t) �

0
@G1t +

nX

j=0

2j�1X

k=0

2�(j+1) FS
j,k(t)Gj,k

1
A
������

= sup
t2[0,1]

������

1X

j=n+1

2j�1X

k=0

2�(j+1) FS
j,k(t)Gj,k

������


1X

j=n+1

2�(j/2+1) sup
0k2j�1

|Gj,k|

 C

1X

j=n+1

2�(j/2+1)
�
log(j + 2j + 1)

�1/2
a.s.

 C

1X

j=n+1

2�
1
2 (j+1) (1 + j)

1/2

 C 2�
1
2 (n+1) (n + 1)

1/2

 C N�1/2
�
1 + log(N)

�1/2
,

where C is a non-negative random variable which may change from line to
line. In the third line, use the fact that the wavelets have disjoint support in
k and so for fixed j, any t belongs to the support of at most one  FS

j,k, with��� FS
j,k

���
1

 2j/2. In the fourth, invoke [22, Lemma 2]; in the fifth the inequality290

holds for j large enough; in the sixth use a classical integral test, and lastly
replace with N .
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Figure 6: Neural network architecture of B̃H
N (t, G1:N ).

Remark 5. One can observe that Ỹj,k(·) may require only one g̃(·) since the term ΨH(−k) does
not depend on t and so could be approximated by a single NN parameter. It slightly simpli�es the
construction of Figure 6 although it does not change the �nal asymptotic bounds.

4 Numerical results

As mentioned in the introduction, the objective of this paper is neither to focus on the learning task
nor to solve the adversarial optimization problem in a GAN setting. As a complement to the above
theoretical part, we present here one approach to build a generative NN able to simulate fBm paths.
The computing implementation of (29) on a time grid time {tj = j/T, j = 0, . . . , T} is realized in three
steps (see more details below): (1) approximate ΨH on a speci�c support, (2) �nd the set of indices
IN and (3) draw some noise from the latent space.

1. In order to approximate the function

x 7→ ΨH(x) =
1

2π

∫ +∞

−∞
eixξ

ψ̂M(ξ)

(iξ)H+1/2
dξ, (47)

takeM points {xi}Mi=1 from a grid with uniform step in a large enough �nite interval and compute
{ΨH(xi)}Mi=1 using (13) and (16) with a �xed γ. As illustrated in Figure 9d, one can bene�t
from a non-uniform grid of points {xi}Mi=1 for better approximation. Note that given the high
regularity of ΨH , a quadrature method with degree D will give an excellent estimation of the
integral in (47). Then, it is straightforward to build a feedforward NN Ψ̃H,θ that can minimize
the L2 distance

L(θ) =
1

M

M∑

i=1

∣∣∣ΨH(xi)− Ψ̃H,θ(xi)
∣∣∣
2

.

2. Compute the index set IN based on the one proposed in [23, Section 5]. For every integer J ≥ 0,
let FJ and PJ be the sets of indices de�ned as

FJ =
{

(j, k) ∈ Z2 : 0 ≤ j ≤ J and |k| ≤ (J − j + 1)−22J+4
}
,

PJ =
{

(j, k) ∈ Z2 : −J ≤ j ≤ −1 and |k| ≤ 2[J/2]
}
.

Next, for (j, k) ∈ IJ = FJ ∪ PJ , consider the coe�cients

cj,k = 2−2jH
(
ΨH(2j − k)− ΨH(−k)

)2
,
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and with a slight variation from [23], de�ne the truncated set IN containing the N largest
coe�cients cj,k as

IN :=

N⋃

i=1

Bi,

with Bi+1 =

{
arg max
(j,k)∈IJ

cj,k\Bi
}

, B1 = arg max
(j,k)∈IJ

cj,k and N ≤ card(IJ). Note that (29) requires

the evaluation of ΨH at some points {xi}Mi=1 with an increasing support with respect to J .
Therefore, one must choose a degree D large enough such that the integral values are well
estimated at the boundaries of the support.

3. Simulate some independent standard Gaussian random variables Gj,k. For the sake of simplicity
and since the product approximation error (Proposition 4) is geometrically small with respect
to the depth, one can use the real product instead.

In the simulation study, we used M = 10000 in [−1000, 1000], including 8000 points in [−50, 50],
J = 10, N = 40000, γ = 10000, T = 1000 and D = 20000 with a Gauss-Chebyshev quadrature
[40, p. 889]. The neural network Ψ̃H,θ is composed by 10 hidden layers of 200 neurons in order
to be consistent with the theoretical result (Oc (logN) hidden layers and Oc (N logN) parameters).
Obviously, one could use a much lighter parametrization. The model was trained with the Adam
optimizer [41] with default parameters β1 = 0.9 and β2 = 0.999, a learning rate of 1e-3 and a batch-
size of 1024 during 1000 iterations. The best θ is selected by minimizing the loss evaluated every 10
iterations on the training data set.

The numerical experiments have been conducted on the Cholesky computing cluster from Ecole
Polytechnique http://meso-ipp.gitlab.labos.polytechnique.fr/user_doc/. All the code was
implemented in Python 3.8.2 and using the library PyTorch 1.7.1 for the neural network training.

The estimated Hurst parameter Ĥ on BHN (resp. H̃ on B̃HN ) is computed using a basic absolute-
moment estimation by identifying the slope of log t 7→ logBHN (t) (resp. log B̃HN (t)) [42]. In order
to assess the quality of the simulated fBm for di�erent H, Figure 7 proposes graphical fBm wavelet
representations of one trajectory and its error with a NN fBm simulation. The persistence (resp. non-
persistence) phenomena is graphically con�rmed on BHN and the small error shows that it is also the
case for B̃HN as H < 1/2 (resp. H > 1/2 ). Additionally, the excellent approximation of the estimated
Hurst parameters H̃ con�rms that the regularity of the NN simulated paths is well preserved. On the
other hand in Figure 8, we compare the real covariance function (2) with the one on B̃HN . The small
error between the two surfaces illustrates that the covariance function of B̃HN is also well preserved. To
conclude, although this method of simulation may not be optimal in the sense of speed or accuracy,
the numerical results highlight a good performance of our proposed generative NN model to simulate
realistic fBm paths.
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(f) H̃ = 0.599
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Figure 7: Simulation of fBm for H = {0.2, 0.4, 0.6, 0.8} presented as rows. Left: wavelet

representation t 7→ V
−1/2
H BH

N (t) with the estimated Hurst index Ĥ. Right: error t 7→
V
−1/2
H (BH

N (t)− B̃H
N (t)) with the estimated Hurst index H̃ on the NN fBm.
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Figure 8: fBm covariance surface for H = {0.2, 0.4, 0.6, 0.8} presented as rows. Left:

real normalized function (t, s) 7→ V −1H Cov(BH(t), BH(s)). Right: error (t, s) 7→
V −1H (Cov(BH(t), BH(s))− Cov(B̃H

N (t), B̃H
N (s))) for (t, s) ∈ [0, 1]2.
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A Complements

A.1 Proof of Lemma 1

Let us bound the truncated approximation of (7) for all n ∈ N,

sup
t∈[0,1]

∣∣∣∣∣∣
B(t)−


G1t+

n∑

j=0

2j−1∑

k=0

2−(j+1)ψFS
j,k(t)Gj,k



∣∣∣∣∣∣

= sup
t∈[0,1]

∣∣∣∣∣∣

∞∑

j=n+1

2j−1∑

k=0

2−(j+1)ψFS
j,k(t)Gj,k

∣∣∣∣∣∣

≤
∞∑

j=n+1

2−(j/2+1) sup
0≤k≤2j−1

|Gj,k|

≤ C
∞∑

j=n+1

2−(j/2+1)
(
log(j + 2j + 1)

)1/2
a.s.

≤ C
∞∑

j=n+1

2−
1
2 (j+1) (1 + j)

1/2

≤ C 2−
1
2 (n+1) (n+ 1)

1/2

≤ C N−1/2
(
1 + log(N)

)1/2
,

where C is a non-negative random variable which may change from line to line. In the third line, use
the fact that the wavelets have disjoint support in k and so for �xed j, any t belongs to the support of

at most one ψFS
j,k, with

∥∥∥ψFS
j,k

∥∥∥
∞
≤ 2j/2. In the fourth, invoke [23, Lemma 2]; in the �fth the inequality

holds for j large enough; in the sixth use a classical integral test, and lastly replace with N .
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A.2 Wavelet representation
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(c) x 7→ ψ(x)
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(d) x 7→ ΨH(x) with H = 0.2

Figure 9: Lemarié-Meyer wavelet constructed with (16), (13), (11) for γ = 10.

B Harmonizable representation of fBm

B.1 Real valued Gaussian measure

Let f ∈ L2(R,dx) =
{
f : R 7→ R :

∫∞
−∞ |f(x)|2 dx <∞

}
and denote 〈f, g〉 =

∫∞
−∞ f(x)g(x) dx the

inner product in L2(R,dx) (still valid for complex-valued functions). De�ne respectively the Fourier
transform F : f ∈ L1(R,dx) 7→ f̂ = F(f) : ξ ∈ R 7→

∫∞
−∞ f(x)e−ixξ dx and the inverse Fourier

transform F−1 : ϕ ∈ L1(R,dξ) 7→ F−1(ϕ) : x ∈ R 7→ 1
2π

∫∞
−∞ ϕ(ξ)eixξ dξ by the de�nitions (5). We

recall the Parseval-Plancherel formula for any f, h ∈ L1(R,dx) ∩ L2(R,dx):

∫ ∞

−∞
f(x)h(x) dx =

1

2π

∫ ∞

−∞
f̂(ξ)ĥ(ξ) dξ. (48)

This isometry (up to the constant 2π) allows to extend the Fourier transform F and its inverse F−1 to
square integrable functions, see [24, Section 2.2]. Observe that F−1(ϕ) is a real-valued function when

ϕ ∈ L2
r (R,dξ) =

{
ϕ : R 7→ C s.t.

∫ ∞

−∞
|ϕ(x)|2 dx <∞ and ϕ(−ξ) = ϕ(ξ)

}
,

therefore F is an isometry between L2(R,dx) and L2
r (R,dξ).
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Then, see [17, Section 2.1.6], one can de�ne the centered-real valued Gaussian measure by

X(ϕ) :=

∫ ∞

−∞
F−1(ϕ)(x) dW (x)

notation
=

∫ ∞

−∞
ϕ(ξ) dŴ (ξ)

for ϕ ∈ L2
r (R,dξ), such that

Cov (X(ϕ1), X(ϕ2)) =

∫ ∞

−∞
F−1(ϕ1)(x)F−1(ϕ2)(x) dx. (49)

If (en)n is an orthonormal basis of L2(R,dx), then

X(ϕ) =
∑

n

〈
en, F−1(ϕ)

〉
Gn (50)

where Gn =
∫∞
−∞ en(x) dW (x) are i.i.d. standard Gaussian random variables.

B.2 Series representation of fBm

For t ∈ [0, 1], take ϕt(ξ) := eitξ−1
(iξ)H+1/2 ∈ L2

r (R,dξ) and set

BH(t) :=

∫ ∞

−∞
ϕt(ξ) dŴ (ξ). (51)

We now verify that this harmonizable representation leads to the fBm-representation (10), (11), (12)
consistently with the covariance formula (2).

For this, as an orthonormal basis of L2(R,dx), consider the basis functions generated by mother
wavelet function ψ:

{
ψj,k(x) = 2j/2ψ(−2jx− k)

}
(j,k)∈Z2 . Note that usually, to a given mother wavelet

ψ, one invokes the function basis
{
ψj,k(x) = 2j/2ψ(2jx− k)

}
(j,k)∈Z2 : our choice of changing the sign

in front of x is made for getting exactly the representation (10), (11) at the end, of course the sign
change does not a�ect the orthonormality property of the basis as it can be easily checked. In view of
(50) and (48), we have to compute the coe�cients

cj,k(t) :=
〈
ψjk, F−1(ϕt)

〉
=

1

2π

∫ ∞

−∞
ψ̂jk(ξ)ϕt(ξ) dξ.

A direct computation gives

ψ̂j,k(ξ) = 2j/2
∫ ∞

−∞
e−ixξψ(−2jx− k) dx = 2−j/2eiξk2−j ψ̂(−2−jξ),

cj,k(t) =
1

2π

∫ ∞

−∞

e−iξt − 1

(−iξ)H+1/2
2−j/2eiξk2−j ψ̂(−2−jξ) dξ

=
2−jH

2π

∫ ∞

−∞

eiω2jt − 1

(iω)H+1/2
e−iωkψ̂(ω) dω (setting ω = −2−jξ)

= 2−jH
(
ΨH
(
2jt− k

)
− ΨH (−k)

)

recalling the de�nition (11) of ΨH . All in all, from (50) we have obtained

BH(t) =

∞∑

j=−∞

∞∑

k=−∞
2−jH

(
ΨH
(
2jt− k

)
− ΨH (−k)

)
Gj,k.

We get the announced representation (10).
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B.3 Covariance of BH

We now establish (2), with VH given by (12). We �rst state a useful formula.

Lemma 7. Let β ∈ (0, 2). Then for all t ∈ [0, 1],

∫ ∞

0

1− cos(ut)

|u|β+1
du = 2−β

√
π
tβ

β

Γ
(

1− β
2

)

Γ
(

1+β
2

) .

Proof. Starting from the derivative

∂t

∫ ∞

0

1− cos(ut)

|u|β+1
du =

∫ ∞

0

sin(ut)

|u|β
du =

∫ ∞

0

sin(y)

yβ
tβ−1 dy

by the change of variable y = ut. Recognizing a known integral function [43, Equation (13) p. 387]
with β ∈ (0, 2) and computing the antiderivative �nish the proof.

Now, let 0 ≤ s ≤ t ≤ 1. Starting from (51), and using (49)-(48), we get

Cov
(
BH(t), BH(s)

)
=

1

2π

∫ ∞

−∞

(
eiξt − 1

) (
e−iξs − 1

)

|ξ|2H+1
dξ

=
1

π

∫ ∞

0

(1− cos(ξt)) + (1− cos(ξs))− (1− cos(ξ(t− s)))
|ξ|2H+1

dξ.

Using Lemma 7 with β = 2H ∈ (0, 2) entails

Cov
(
BH(t), BH(s)

)
=

2−2H

2H
√
π

Γ (1−H)

Γ ( 1
2 +H)

(
|t|2H + |s|2H − |t− s|2H

)
.

The Euler re�ection and the Legendre duplication formulas write for all a /∈ Z:

Γ (1− a)Γ (a) =
π

sin(πa)
, Γ

(
1

2
+ a

)
Γ (a) = 21−2a

√
πΓ (2a).

Therefore, we retrieve (2) with

Var
(
BH(1)

)
= VH =

2−2H

H
√
π

Γ (1−H)

Γ ( 1
2 +H)

=
1

2H sin(πH)Γ (2H)

as announced.
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