On Some Associations Between Mathematical Morphology and Artificial Intelligence - Archive ouverte HAL
Communication Dans Un Congrès Année : 2021

On Some Associations Between Mathematical Morphology and Artificial Intelligence

Résumé

This paper aims at providing an overview of the use of mathematical morphology, in its algebraic setting, in several fields of artificial intelligence (AI). Three domains of AI will be covered. In the first domain, mathematical morphology operators will be expressed in some logics (propositional, modal, description logics) to answer typical questions in knowledge representation and reasoning, such as revision, fusion, explanatory relations, satisfying usual postulates. In the second domain, spatial reasoning will benefit from spatial relations modeled using fuzzy sets and morphological operators, with applications in model-based image understanding. In the third domain, interactions between mathematical morphology and deep learning will be detailed. Morphological neural networks were introduced as an alternative to classical architectures, yielding a new geometry in decision surfaces. Deep networks were also trained to learn morphological operators and pipelines, and morphological algorithms were used as companion tools to machine learning, for pre/post processing or even regularization purposes. These ideas have known a large resurgence in the last few years and new ones are emerging.
Fichier principal
Vignette du fichier
DGMM2021_MM_IA.pdf (347.84 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03237697 , version 1 (26-05-2021)

Identifiants

Citer

Isabelle Bloch, Samy Blusseau, Ramón Pino Pérez, Élodie Puybareau, Guillaume Tochon. On Some Associations Between Mathematical Morphology and Artificial Intelligence. DGMM 2021: Discrete Geometry and Mathematical Morphology, May 2021, Uppsala, Sweden. pp.457-469, ⟨10.1007/978-3-030-76657-3_33⟩. ⟨hal-03237697⟩
224 Consultations
341 Téléchargements

Altmetric

Partager

More