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Introduction

The chemostat is a laboratory apparatus invented simultaneously, by J. Monod and by A. Noviek, and L. Sziland in the 1950s, in which organisms grow in a controlled way, [START_REF] Monod | La technique de culture continue: Théorie et applications[END_REF][START_REF] Novick | Experiments with the chemostat on spontaneous mutations of bacteria[END_REF]. This apparatus consists of an enclosure, containing the reaction volume, connected by input to feed the system with resources, and outlet through which microorganisms are removed. The chemostat model describes several ecological interactions (commensalism, syntrophy, competition, mutualism,...) and can capture complex relationships, such as the combination of mutualism and competition, [START_REF] Smith | The Theory of the Chemostat: Dynamics of Microbial Competition[END_REF][START_REF] Harmand | The Chemostat: Mathematical Theory of Microogranism Cultures[END_REF][START_REF] Vet | Bistability in a system of two species interacting through mutualism as well as competition: Chemostat vs. Lotka-Volterra equations[END_REF]. Mutualism is a cooperative relationship between two or more species of organisms so that all parties benefit from this relationship. Mutualism can be described as reciprocal benefits interaction. Compared to competition and prey-predator relationship, this interaction had not received much attention from researchers until recent decades, where it had occupied an important area of attention and interest, [START_REF] Bergstrom | Interspecific mutualism: puzzles and predictions, Genetic and Cultural Evolution of Cooperation[END_REF], [START_REF] Megee | Studies in intermicrobial symbiosis. Saccharomyces cerevisiae and Lactobacillus casei[END_REF] and the references therein. The existence of a similar type of relationship between species is an important factor for biodiversity and deserves great interest, as it prevents the competitive exclusion. When several species are in competition on a single nutrient, the competitive exclusion principle predicts that only one of them can survive, [START_REF] Smith | The Theory of the Chemostat: Dynamics of Microbial Competition[END_REF]. The Lotka-Volterra equations are often used to describe population dynamics. However, they fail to describe the dynamics when diverse interactions are involved.

Several authors have proposed different models of mutualism, [START_REF] Vandermeer | Varieties of mutualistic interaction in population models[END_REF][START_REF] Goh | Stability in models of mutualism[END_REF]. These models are a little complicated, which made them difficult to study. Discrete models are common in the study of population dynamics. For instance, in [START_REF] Chen | Permanance for the discrete mutualism model with time delays[END_REF], a discrete model of mutualism was studied with the aim of investigating the persistent property of the system. S. Vent et al. in [START_REF] Vet | Mutualistic cross-feeding in microbial systems generates bistability via an Allee effect[END_REF], have studied a model of two mutualistic species via cross-feeding in a chemostat. This model was reduced from a six-dimensional system to a two-dimensional one. The obtained phase plane and the nullclines, describing the dynamics of the species, are observed in different mutualistic models, [START_REF] Vet | Mutualistic cross-feeding in microbial systems generates bistability via an Allee effect[END_REF] and the references therein. The authors showed numerically that when the dilution is switched on, the weak Allee effect turns into a strong Allee effect, which corresponds to bistability in the system. In [START_REF] Zhang | Mutualism or cooperation among competitors promotes coexistence and competitive ability[END_REF], one form of intraguild mutualism model with one resource and two consumers is described. The authors prove numerically that the system exhibits a rich behavior. They show that intraguild mutualism can enhance coexistence of consumers, induce cyclic dynamics, give rise to a bistability or the washout of both consumer species. In [START_REF] Elhajji | Assiation between competition and obligate mutualism in a chemostat[END_REF], the authors consider a three-dimensional chemostat model involving two obligate mutualistic species in competition on a single resource. They performed the analytical analysis of the system and, considering general growth functions, they showed the existence and the stability of coexistence steady states.

The unicity occurs in the case when the growth functions are of Monod type. Bistability has been observed numerically in [START_REF] Vet | Bistability in a system of two species interacting through mutualism as well as competition: Chemostat vs. Lotka-Volterra equations[END_REF]. The model describes the dynamics of two species interacting through mutualism as well as competition.

Competition is an interaction between two or more species in which all organisms are harmed.

There are two types of competition, intraspecific competition (between individuals of the same species) and interspecific competition (between two or more different species). When competition is exclusive in the system, the only case that the species can coexist at steady-state is when the number of different nutrients they compete for is bigger than the number of these competing species, [START_REF] Pavlou | Microbial competition in bioreactors[END_REF]. The following equations describe the competition of n species on a single resource (see [START_REF] Smith | The Theory of the Chemostat: Dynamics of Microbial Competition[END_REF]).

     Ṡ = D(S in -S) - n i=1 µ i (S) y i x i ẋi = [µ i (S) -D i ]x i , i = 1, .., n (1) 
For i = 1, ..., n, x i represents the concentration of species i. S is the concentration of the nutrient.

The parameters D i are the sum of the dilution rate D and the death rates of species i (the death rates are often neglected). S in is the concentration of the substrate S in the feed. y i , i = 1, ..., n are the yield coefficients. µ i (•) is the growth rate of species i. When the growth rates depend also on the species concentration x i , i = 1, ..., n, we obtain a more general model, see for example [START_REF] Harmand | The Chemostat: Mathematical Theory of Microogranism Cultures[END_REF]. [START_REF] Harmand | Microbial ecology and bioprocess control: Opportunities and challenges[END_REF] increasing in S, decreasing in x i Fekih Salem, Harmand, Lobry, 1, ..., n > 0 d i (x i ) depends only on S and x i Rapaport and Sari [START_REF] Fekih-Salem | Extensions of the chemostat model with flocculation[END_REF] increasing in S, decreasing in x i Fekih Salem and Sari [START_REF] Fekih-Salem | On the global stability of the coexistence equilibrium of a density dependent model of competition for one resource[END_REF] 2 > 0 D depends on both species increasing in S, decreasing in x i Fekih Salem, Lobry and Sari [START_REF] Fekih-Salem | A density-dependent model of competition for one resource in the chemostat[END_REF] 2 > 0 D 1 = D 2 increasing in S, decreasing in x 1 and x 2 

     Ṡ = D(S in -S) - n i=1 µ i (S, x 1 , ..., x n ) y i x i ẋi = [µ i (S, x 1 , ..., x n ) -D i ]x i , i = 1, ..., n (2) 
In this paper, we are interested in studying the case of simultaneous mutualist and competitive relationship between two species, so that each of them gives the other a nutrient for its growth (cross-feeding) and at the same time they are competing for the main source of carbon, Fig. 1. This phenomenon can be modeled by a chemostat system, with five variables. Two of them represent the species, and the others represent the substrates. The resulting system has been studied numerically in [START_REF] Vet | Bistability in a system of two species interacting through mutualism as well as competition: Chemostat vs. Lotka-Volterra equations[END_REF]. The authors carried out numerical simulations using random parameter values and Monod growth functions. They prove, by varying the values of the maximal growth rates, that there could be two cases of bistability, bistability between extinction of both species and coexistence, and bistability between survival of the first species (without the second) and coexistence. For more information about the origin of the bistability, they reduced this complex system (due to the number of its equations and the nonlinearity of their growth Figure 1: Interactions between the two species. X 1 and X 2 represent the microbial species, competing on the nutrient S 0 . X 1 (resp. X 2 ) consumes the nutrient S 2 (resp. S 1 ) and produces S 1 (resp. S 2 ). functions) into a set of two extended Lotka-Volterra equations. As the reduced model is a twodimensional system, they can illustrate its dynamics in the phase plane. Although it is observed, by varying the growth rates, that both models have similar behavior, varying two of the operating parameters reveals a disparity between the stability regions of the chemostat model and the extended Lotka-Volterra one. This disagreement can be explained by the elimination of high order terms while reducing the model.

In this paper, we propose to give a comprehensive and analytical analysis of system (3) of [START_REF] Vet | Bistability in a system of two species interacting through mutualism as well as competition: Chemostat vs. Lotka-Volterra equations[END_REF].

We allow a large class of kinetics and we determine the existence and the local stability conditions of the steady states, in this general case. In order to simplify the mathematical analysis, some change of variables must be done in order to reduce the number of production (consumption) constants. Three cases must be distinguished.

This paper is organized as follows. In Section 2, we provide a description of the model by defining all variables and parameters and making some changes of variables. We present the model assumptions and notations in Section 3. In Section 4, we determine the steady-states of the model and their existence conditions according to the operating (or control) parameters.

We study the local stability of the steady-states in Section 5. In Section 6, we present some bifurcation diagrams with respect to the limiting nutrient S 0 and time simulations to illustrate the different behaviors of the system.

The model

The model developed in [START_REF] Vet | Bistability in a system of two species interacting through mutualism as well as competition: Chemostat vs. Lotka-Volterra equations[END_REF] has five components: two biomasses and three substrates. This model is written as follows:

                                 dX1 dt = (f 1 (S 0 , S 2 ) -D)X 1 dX2 dt = (f 2 (S 0 , S 1 ) -D)X 2 dS0 dt = D(S in 0 -S 0 ) -v 01 f 1 (S 0 , S 2 )X 1 -v 02 f 2 (S 0 , S 1 )X 2 dS1 dt = D(S in 1 -S 1 ) + v 11 f 1 (S 0 , S 2 )X 1 -v 12 f 2 (S 0 , S 1 )X 2 dS2 dt = D(S in 2 -S 2 ) -v 21 f 1 (S 0 , S 2 )X 1 + v 22 f 2 (S 0 , S 1 )X 2 (3) 
where for i = 1, 2, X i represents the bacterial population concentration, S i represents the nutrient concentration, S in i is the inflow nutrient concentration, f i is the growth rate of the bacteria. D is the dilution rate and v ij , i = 0, 1, 2, j = 1, 2 are the yield coefficients. These constants are preceded by a positive sign for production and by a negative one for consumption of nutrients. To facilitate the mathematical analysis and reduce the number of constants, we can rescale system and use the following change of biomass variables:

x 1 = v 01 X 1 , x 2 = v 02 X 2 .
With this change of variables, we obtain the next system:

                               dx 1 dt = (f 1 (S 0 , S 2 ) -D)x 1 ( 4 
)
dx 2 dt = (f 2 (S 0 , S 1 ) -D)x 2 ( 5 
)
dS 0 dt = D(S in 0 -S 0 ) -f 1 (S 0 , S 2 )x 1 -f 2 (S 0 , S 1 )x 2 (6 
)

dS 1 dt = D(S in 1 -S 1 ) + v 11 v 01 f 1 (S 0 , S 2 )x 1 - v 12 v 02 f 2 (S 0 , S 1 )x 2 (7) 
dS 2 dt = D(S in 2 -S 2 ) - v 21 v 01 f 1 (S 0 , S 2 )x 1 + v 22 v 02 f 2 (S 0 , S 1 )x 2 (8) 
Then, we multiply equation ( 7) by v02 v12 and equation ( 8) by v01 v21 , and we use the change of substrate variables:

s 0 = S 0 , s 1 = v 02 v 12 S 1 , s 2 = v 01 v 21 S 2 . ( 9 
)
The system writes in the following form:

               dx1 dt = (µ 1 (s 0 , s 2 ) -D)x 1 dx2 dt = (µ 2 (s 0 , s 1 ) -D)x 2 ds0 dt = D(s in 0 -s 0 ) -µ 1 (s 0 , s 2 )x 1 -µ 2 (s 0 , s 1 )x 2 ds1 dt = D(s in 1 -s 1 ) + ω 1 µ 1 (s 0 , s 2 )x 1 -µ 2 (s 0 , s 1 )x 2 ds2 dt = D(s in 2 -s 2 ) -µ 1 (s 0 , s 2 )x 1 + ω 2 µ 2 (s 0 , s 1 )x 2 (10) 
where the growth functions µ i (•, •) are given by:

µ 1 (s 0 , s 2 ) = f 1 (s 0 , v 21 v 01 s 2 ), µ 2 (s 0 , s 1 ) = f 2 (s 0 , v 12 v 02 s 1 ), (11) 
the input concentrations are :

s in 0 = S in 0 , s in 1 = v 02 v 12 S in 1 , s in 2 = v 01 v 21 S in 2 . ( 12 
)
and the constants ω i , i = 1, 2 are defined by:

ω 1 = v 02 v 11 v 01 v 12 , ω 2 = v 01 v 22 v 02 v 21 .
System [START_REF] Fekih-Salem | On the global stability of the coexistence equilibrium of a density dependent model of competition for one resource[END_REF] has the benefit of involving only two constants (instead of six), according to which we'll discuss the existence and the stability of steady states.

Assumptions on the model and notations

We assume that the growth rates are of class C 1 on R 2 + and satisfy:

H1 ∀s 0 > 0 and s 2 > 0, 0 < µ 1 (s 0 , s 2 ) < +∞ and µ 1 (0, s 2 ) = µ 1 (s 0 , 0) = 0.
This assumes that there is no growth of species x 1 in the absence of the substrate s 0 or the substrate s 2 .

H2 ∀s 0 > 0 and

s 1 > 0, 0 < µ 2 (s 0 , s 1 ) < +∞ and µ 2 (0, s 1 ) = µ 2 (s 0 , 0) = 0.
This assumes that there is no growth of species x 2 in the absence of the substrate s 0 or the substrate s 1 .

H3 ∀s 0 > 0 and s 2 > 0, ∂µ1 ∂s0 (s 0 , s 2 ) > 0 and ∂µ1 ∂s2 (s 0 , s 2 ) > 0, which means that the growth rate of species x 1 increases with both substrates s 0 and s 2 .

H4 ∀s 0 > 0 and s 1 > 0, ∂µ2 ∂s0 (s 0 , s 1 ) > 0 and ∂µ2 ∂s1 (s 0 , s 1 ) > 0, which means that the growth rate of species x 2 increases with both substrates s 0 and s 1 .

H5

The functions s 0 → µ 1 (s 0 , +∞) and s 0 → µ 2 (s 0 , +∞) are monotonically increasing.

Hypothesis (H5) means that there is a direct relationship between the growth of species x 1 , x 2 and the concentration of s 0 .

Solutions of system (10) verify the following result. Its proof uses classical tools, see for example [START_REF] Daoud | Modèles mathématiques de digestion anaérobie: effet de l'hydrolyse sur la production du biogaz[END_REF] or [START_REF] Fekih-Salem | A density-dependent model of competition for one resource in the chemostat[END_REF].

Proposition 3.1. For positive initial conditions, solutions of the system [START_REF] Fekih-Salem | On the global stability of the coexistence equilibrium of a density dependent model of competition for one resource[END_REF] are bounded and remain positive, for all t ≥ 0. In addition, the set

Ω = {(x 1 , x 2 , s 0 , s 1 , s 2 ) ∈ R 5 + /ω 1 x 1 + ω 2 x 2 + ω 1 ω 2 s 0 + ω 2 s 1 + ω 1 s 2 = s in },
where

s in = ω 1 ω 2 s in 0 + ω 2 s in 1 + ω 1 s in 2
, is a positive invariant attractor for all solutions of system [START_REF] Fekih-Salem | On the global stability of the coexistence equilibrium of a density dependent model of competition for one resource[END_REF].

In the following table, we provide some notations and definitions that we will use later.

Definition

s i = M j (s 0 , y), Let s 0 ≥ 0, s i = M j (s 0 , y) is the unique solution of i = 1, 2, j = 1, 2, i = j µ j (s 0 , s i ) = y, for all 0 ≤ y < µ j (s 0 , +∞). s i 0 = s i 0 (D), i = 1, 2 s i 0 = s i 0 (D) is the unique solution of µ i (s i 0 , +∞) = D, for all D < µ i (+∞, +∞). s0 s0 = max(s 1 0 , s 2 0 ) I I =] s0 , +∞[ H(s 0 , D) H(s 0 , D) = (ω 1 ω 2 -1)s 0 + (ω 1 + 1)M 1 (s 0 , D) + (ω 2 + 1)M 2 (s 0 , D), for all s 0 ∈ I and D ∈ [0, min(µ 1 (s 0 , +∞), µ 2 (s 0 , +∞))[. M (D) M (D) = (ω 1 + 1)M 1 (+∞, D) + (ω 2 + 1)M 2 (+∞, D). F 1 (D) F 1 (D) = inf s0∈( s0,+∞) H(s 0 , D).
Table 3: Definition of auxiliary functions, interval I, and some notations. From the definition of M 1 , M 2 , s 1 0 and s 2 0 provided in Table 3 , we can deduce that:

M 1 (s 1 0 , D) = +∞, M 2 (s 2 0 , D) = +∞.
Therefore, we have: lim s0→ s0 + H(s 0 , D) = +∞, and

lim s0→+∞ H(s 0 , D) =      -∞ si ω 1 ω 2 < 1 M (D) si ω 1 ω 2 = 1 +∞ si ω 1 ω 2 > 1
where Consequently, we have 

M (D) = (ω 1 + 1)M 1 (+∞, D) + (ω 2 + 1)M 2 (+∞, D). ( 13 
F 1 (D) = H( s0 , D). D µ 2 (s 0 , +∞) µ 1 (s 0 , +∞) s 1 0 s 2 0 s 0
s 0 M (D) s0 H(s 0 , D) (B) s 0 s0 H(s 0 , D) s0 F 1 (D) (C)
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We get the steady-states by setting the right-hand side of equations of (10) equal to zero:

(µ 1 (s 0 , s 2 ) -D)x 1 = 0 (14) (µ 2 (s 0 , s 1 ) -D)x 2 = 0 (15) D(s in 0 -s 0 ) -µ 1 (s 0 , s 2 )x 1 -µ 2 (s 0 , s 1 )x 2 = 0 (16) D(s in 1 -s 1 ) + ω 1 µ 1 (s 0 , s 2 )x 1 -µ 2 (s 0 , s 1 )x 2 = 0 (17) D(s in 2 -s 2 ) -µ 1 (s 0 , s 2 )x 1 + ω 2 µ 2 (s 0 , s 1 )x 2 = 0 (18) 
A steady-state exists if and only if all its components are nonnegative. Equation ( 14) induces that:

x 1 = 0 or µ 1 (s 0 , s 2 ) = D,
and from (15), we deduce that:

x 2 = 0 or µ 2 (s 0 , s 1 ) = D.
Then, we can have four types of steady-states:

E 0 : x 1 = 0, x 2 =
0 where both species are extinct.

E 1 : x 1 > 0 and x 2 = 0, where species x 1 survives while species x 2 is extinct.

E 2 :
x 1 = 0 and x 2 > 0, where species x 1 is extinct while x 2 survives.

E * : x 1 > 0 and x 2 > 0, where both species are maintained.

In the following result we give the steady-states of [START_REF] Fekih-Salem | On the global stability of the coexistence equilibrium of a density dependent model of competition for one resource[END_REF] and the necessary and sufficient conditions of their existence.

Theorem 1. Under hypotheses H1-H4, the system [START_REF] Fekih-Salem | On the global stability of the coexistence equilibrium of a density dependent model of competition for one resource[END_REF] has the following steady-states

E 0 = (0, 0, s in 0 , s in 1 , s in 2 )
, which always exists.

E 1 = (x * 1 , 0, s * 0 , s * 1 , s * 2 ), where s * 2 is the unique solution in the interval ]max(s in 2 -s in 0 , 0), s in 2 [ of equation µ 1 (s in 0 -s in 2 + s 2 , s 2 ) = D, ( 19 
)
x * 1 = s in 2 -s * 2 , s * 0 = s in 0 -s in 2 + s * 2 and s * 1 = s in 1 + ω 1 (s in 2 -s * 2 ). ( 20 
)
This steady-state exists if and only if

µ 1 (s in 0 , s in 2 ) > D. E 2 = (0, x * 2 , s * 0 , s * 1 , s * 2 ), where s * 1 is the unique solution in the interval ]max(s in 1 -s in 0 , 0), s in 1 [ of the equation µ 2 (s in 0 -s in 1 + s 1 , s 1 ) = D, ( 21 
)
x * 2 = s in 1 -s * 1 , s * 0 = s in 0 -s in 1 + s * 1 and s * 2 = s in 2 + ω 2 (s in 1 -s * 1 ). ( 22 
)
It exists if and only if µ 2 (s in 0 , s in 1 ) > D.

E * = (x * 1 , x * 2 , s * 0 , s * 1 , s * 2 )
, where s * 0 is a solution of the equation :

H(s 0 , D) = s in , ( 23 
)
s * 1 = M 2 (s * 0 , D), s * 2 = M 1 (s * 0 , D), x * 1 = s in 0 -s in 1 + M 2 (s * 0 , D) -s * 0 ω 1 + 1 and x * 2 = s in 0 -s in 2 + M 1 (s * 0 , D) -s * 0 ω 2 + 1 , ( 24 
)
with :

s in = (ω 1 ω 2 -1)s in 0 + (ω 2 + 1)s in 1 + (ω 1 + 1)s in 2 . • If ω 1 ω 2 < 1, E * exists if and only if s in 0 -s in 1 > s 0 -M 2 (s 0 , D) and s in 0 -s in 2 > s 0 -M 1 (s 0 , D). • If ω 1 ω 2 = 1, E * exists if and only if s in 0 -s in 1 > s 0 -M 2 (s 0 , D), s in 0 -s in 2 > s 0 -M 1 (s 0 , D) and M (D) < s in . • If ω 1 ω 2 > 1, E * exists if and only if s in 0 -s in 1 > s 0 -M 2 (s 0 , D), s in 0 -s in 2 > s 0 -M 1 (s 0 , D)
and

F 1 (D) ≤ s in .
The proof of Theorem 1 is given in the Appendix.

Remark 1. Under hypothesis H6, if F 1 (D) < s in then [START_REF] Pavlou | Microbial competition in bioreactors[END_REF] has two solutions, we denote them by s 1 0 and s 2 0 such that s0 < s 1 0 < s0 < s 2 0 < +∞, see Fig 4.

If F 1 (D) = s in then s0 < s 1 0 = s0 = s 2 0 < +∞.
The two solutions s 1 0 and s 2 0 give rise to two steady-states, we denote them by E * 1 and E * 2 , respectively. When F 1 (D) = s in , these steady-states coalesce. 

s0 s 1 0 H(s 0 , D) s in F 1 (D)

Local stability of steady-states

In this section, we will study the local stability of the steady-states by calculating the Jacobian matrices. We use the abbrevation LES for local exponentially stable.

Theorem 2. Under hypotheses H1-H6

,

-E 0 is LES if and only if µ 1 (s in 0 , s in 2 ) < D and µ 2 (s in 0 , s in 1 ) < D. -E 1 is LES if and only if µ 2 (s in 0 -s in 2 + s * 2 , s in 1 + ω 1 (s in 2 -s * 2 
)) < D, where s * 2 is a solution of equation [START_REF] Lobry | Sur un modèle densité-dépendant de compétition pour une ressource[END_REF].

-E 2 is LES if and only if µ 1 (s in 0 -s in 1 + s * 1 , s in 2 + ω 2 (s in 1 -s * 1 
)) < D, where s * 1 is a solution of equation [START_REF] Monod | La technique de culture continue: Théorie et applications[END_REF].

- We summarize in Table 4 the existence and local stability conditions of steady-states of model [START_REF] Fekih-Salem | On the global stability of the coexistence equilibrium of a density dependent model of competition for one resource[END_REF].

Steady-state Existence conditions

Stability conditions [START_REF] Fekih-Salem | On the global stability of the coexistence equilibrium of a density dependent model of competition for one resource[END_REF]. Functions M 1 , M 2 , H and F 1 are defined in Table 3 Remark 2. • When ω 1 ω 2 < 1, the condition s in > F 1 (D) of existence of E * , and its stability condition ∂H ∂s0 (s * 0 , D) < 0 are always satisfied.

E 0 Always exists µ 1 (s in 0 , s in 2 ) < D µ 2 (s in 0 , s in 1 ) < D E 1 µ 1 (s in 0 , s in 2 ) > D µ 2 (s in 0 -s in 2 + s * 2 , s in 1 + ω 1 (s in 2 -s * 2 )) < D E 2 µ 2 (s in 0 , s in 1 ) > D µ 1 (s in 0 -s in 1 + s * 1 , s in 2 + ω 2 (s in 1 -s * 1 )) < D s in 0 -s in 1 > s * 0 -M 2 (s * 0 , D) E * s in 0 -s in 2 > s * 0 -M 1 (s * 0 , D) ∂H ∂s0 (s * 0 , D) < 0 s in > F 1 (D)
• When ω 1 ω 2 = 1, we have F 1 (D) = M (D), then, the condition s in > F 1 (D) of existence of E * becomes s in > M (D).
And its stability condition is always satisfied.

• When ω 1 ω 2 > 1, the stability condition is always satisfied for the steady-state E * 1 , and it is not

satisfied for E * 2 .
Let's notice, from Table 4, that if E 1 or E 2 exists then, the washout steady-state becomes unstable.

Bifurcation diagrams and time simulations

In this section, we illustrate our theoretical results by bifurcation diagrams with the input concentration S in 0 , for model (3) considered in [START_REF] Vet | Bistability in a system of two species interacting through mutualism as well as competition: Chemostat vs. Lotka-Volterra equations[END_REF]. The growth rates are of double-Monod type and are given by the following functions:

f 1 (S 0 , S 2 ) = μ1 S 0 K 10 + S 0 S 2 K 12 + S 2 , f 2 (S 0 , S 1 ) = μ2 S 0 K 20 + S 0 S 1 K 21 + S 1 ,
μi , i = 1, 2 are the maximal growth rate and K ij , i, j = 0, 1, 2, are the half saturation constants.

These parameters depend on the organisms and substrates considered and are fixed. The biological parameters values used in this section are given in Table 5. In order to compare our results to those of [START_REF] Vet | Bistability in a system of two species interacting through mutualism as well as competition: Chemostat vs. Lotka-Volterra equations[END_REF], we use the same values of biological parameters. Table 5: Biological parameter values. The unit of the maximal growth rates μi , i = 1, 2 is 1/time and the unit of the half-saturation constants K ij is mass/volume.

Using the change of variables ( 12) and ( 11), the growth rates µ i (•, •), i = 1, 2 of model [START_REF] Fekih-Salem | On the global stability of the coexistence equilibrium of a density dependent model of competition for one resource[END_REF] are given by

µ 1 (s 0 , s 2 ) = μ1 s 0 K 10 + s 0 s 2 ( v01 v21 )K 12 + s 2 , µ 2 (s 0 , s 1 ) = μ2 s 0 K 20 + s 0 s 1 ( v02 v12 )K 21 + s 1 . ( 25 
)
Assumptions (H1)-(H5) are satisfied by the functions defined in [START_REF] Smith | The Theory of the Chemostat: Dynamics of Microbial Competition[END_REF]. The inverse functions M 1 (s 0 , D) and M 2 (s 0 , D) of functions [START_REF] Smith | The Theory of the Chemostat: Dynamics of Microbial Competition[END_REF], are given respectively by: for y ∈ [0, µ 1 (s 0 , +∞)),

M 1 (s 0 , y) = ( v01 v21 )K 12 y μ1s0 K10+s0 -y , for y ∈ [0, µ 2 (s 0 , +∞)), M 2 (s 0 , y) = ( v02 v12 )K 21 y μ2s0 K20+s0 -y and µ 1 (s 0 , +∞) = μ1 s 0 K 10 + s 0 , µ 2 (s 0 , +∞) = μ2 s 0 K 20 + s 0 .
In addition,

s 1 0 (D) = DK 10 μ1 -D , s 2 0 (D) = DK 20 μ2 -D .
The function H is given by:

H(s 0 , D) = (ω 1 ω 2 -1)s 0 + (ω 1 + 1) ( v01 v21 )K 12 y μ1s0 K10+s0 -y + (ω 2 + 1) ( v02 v12 )K 21 y μ2s0 K20+s0 -y . Notice that ∂ 2 H ∂s 2 0 (s 0 , D) = (ω 1 + 1) ∂ 2 M 1 ∂s 2 0 (s 0 , D) + (ω 2 + 1) ∂ 2 M 2 ∂s 2 0 (s 0 , D),
with, for all s 0 ∈ I and D ∈ [0, µ 1 (s 0 , +∞)[,

∂ 2 M 1 ∂s 2 0 (s 0 , D) = 2 v01 v21 μ1 K 10 K 12 D[(s 0 + K 10 )( μ1-s0 K10+s0 -D) 2 + (s 0 + K 10 ) 2 ( μ1s0 K10+s0 -D) μ1K10 (K10+s0) 2 ] [(K 10 + s 0 ) 2 ( μ1s0 K10+s0 -D) 2 ] 2 , since D ∈ [0, µ 1 (s 0 , +∞)[, we have μ1 s 0 K 10 + s 0 -D > 0, which proves that ∂ 2 M 1 ∂s 2 0 (s 0 , D) > 0.
In the same way, we can prove that

∂ 2 M 2 ∂s 2 0 (s 0 , D) > 0, for s 0 ∈ I, D ∈ [0, µ 2 (s 0 , +∞)[. Therefore, ∂ 2 H ∂s 2 0
(s 0 , D) > 0, for all s 0 ∈ I and D ∈ [0, min(µ 1 (s 0 , +∞), µ 2 (s 0 , +∞))[. So the function s 0 → H(s 0 , D) is convex and satisfies hypothesis H6.

In the following, we give the bifurcation diagrams with respect to S in 0 in the three cases:

ω 1 ω 2 > 1, ω 1 ω 2 = 1
and ω 1 ω 2 < 1. Therefore, we fix the values of the input concentrations S in 1 , S in 2 and the dilution rate D. Assume that S in 1 = S in 2 = 1, D = 2, for all cases and the biological parameters of (3) given by Table 5.

We consider the yield coefficients defined in Table 6. The bifurcation values σ i , i = 1, ..., 4 are defined in Table 7, and provided in Table 8.

Case v 01 v 02 v 11 v 12 v 21 v 22 ω 1 ω 2 > 1 1 1 0.2 0.1 0.1 0.2 ω 1 ω 2 = 1 1 1 0.1 0.1 0.1 0.1 ω 1 ω 2 < 1 1 1 0.2 1 0.1 0.2
Table 6: Values of yield coefficients, for the three cases. We then give the next result, corresponding to the case ω 1 ω 2 > 1:

S in 0 Definition σ 1 the solution of equation µ 1 (S in 0 , v01 v21 S in 2 ) = D σ 2 the solution of equation µ 2 (S in 0 , v02 v12 S in 1 ) = D σ 3 the solution of equation µ 2 (S in 0 -v01 v21 S in 2 + s * 2 , v02 v12 S in 1 + ω 1 ( v01 v21 S in 2 -s * 2 )) = D σ 4 the solution of equation F 1 (D) = S in
Proposition 6.1. Assume that ω 1 ω 2 > 1.
The existence and stability of steady-states of ( 3), with respect to the input concentration S in 0 is given in Table 9. 8.

Interval of S in 0 E 0 E 1 E 2 E * 1 E * 2 (0, σ 4 ) S (σ 4 , σ 1 ) S S U (σ 1 , σ 3 ) U S S U (σ 3 , σ 2 ) U U S (σ 2 , +∞) U U U S
Despite the difference between the bifurcation values in the case ω 1 ω 2 = 1 and the case ω 1 ω 2 < 1, the existence and the behavior of the steady states in both cases are similar. We then have, Proposition 6.2. When ω 1 ω 2 ≤ 1, the existence and stability of steady-states of ( 3), with respect to the input concentration S in 0 is given in Table 11.

Interval of S in 0 E 0 E 1 E 2 E * (0, σ 1 ) S (σ 1 , σ 3 ) U S (σ 3 , σ 2 ) U U S (σ 2 , +∞) U U U S
Table 11: Existence and stability of steady-states, with respect to S in 0 , in the case

ω 1 ω 2 ≤ 1. The values of σ i , i = 1, • • • , 3 are provided in Table 8.
In this case, there are only transcritical bifurcations between the steady states. When S in 0 crosses the value σ 1 , a transcritical bifurcation occurs between the washout E 0 and E 1 . E 0 bifurcate with E 2 at σ 2 and at σ 3 , there is a transcritical bifurcation between the steady state E 1 of extinction of the second species and the coexistence steady state E * . Figs 5, 6 and 7 show the bifurcation diagrams of (3) in the different cases, according to ω 1 ω 2 . We represent the components X 1 and X 2 of the steady states, as a function of the input concentration S in 0 . We use a specific color for each steady state. The colors used in Figs 5, 6 and 7, are given in Table 12. Figs. 5 and6 show, in the case ω 1 ω 2 ≤ 1, the transcritical bifurcations value where E 1 loses its stability.

E 0 E 1 E 2 E * Magenta Green Cyan Red
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E * E 1 E 2 E 0  σ 1  σ 3  σ 2 X 1 S in 0 (A) E * E 1 E 2 E 0  σ 1  σ 3  σ 2 X 2 S in 0 (B) Figure 5: Bifurcation diagram in the case ω 1 ω 2 = 1 (A) The component X 1 with respect to S in 0 (B) The component X 2 with respect to S in 0 . E * E 1 E 2 E 0  σ 1  σ 3  σ 2 X 1 S in 0 (A) E * E 1 E 2 E 0  σ 1  σ 3  σ 2 X 2 S in 0 (B)
E * 2 E * 1 E 1 E 2 E 0  σ 3  σ 2  σ 1  σ 4 X 1 S in 0 (A) E * 2 E * 1 E 1 E 2 E 0  σ 3  σ 2  σ 1  σ 4 X 2 S in 0 (B) Figure 7: Bifurcation diagram in the case ω 1 ω 2 > 1 (A) The component X 1 with respect to S in 0 (B) The component X 2 with respect to S in 0 .
Bistability between E 0 and E * 1 and between E 1 and E * 1 can be observed also by time simulations. The simulations presented in Figs 8 and9 show the bistability behavior, in the case

ω 1 ω 2 > 1.
Values of S in 0 , and initial conditions used in Figs 8 and 9 are given in Table 13.

S in 0 Interval of S in 0 (X 1 (0), X 2 (0), S 0 (0), S 1 (0), S 2 (0)) Figure 66 (σ 4 , σ 1 ) (10,10,10,3,3) 8 (A) 66 (σ 4 , σ 1 ) (10,10,30,3,3) 8 (B) 90 (σ 1 , σ 3 ) (10,0.1,10,3,3) 9 (A) 90 (σ 1 , σ 3 ) (10,0.1,10,15,15) 9 (B) 
Table 13: Values, intervals of S in 0 , and initial conditions for Figs 8 and9.

According to the initial conditions, the solutions converge either to E 0 or to E * 1 , for S in 0 = 66 ∈ (σ 4 , σ 1 ). In From here, we conclude that there is bistability between E 1 and E * 1 when S in 0 = 90 ∈ (σ 1 , σ 3 ). These numerical simulations confirms the results obtained by the analytical analysis and observed in the bifurcation diagrams. 

Conclusion

In this work, we performed the mathematical analysis of model (3), which was proposed in [START_REF] Vet | Bistability in a system of two species interacting through mutualism as well as competition: Chemostat vs. Lotka-Volterra equations[END_REF] and studied only numerically. The model consider the phenomenon of a simultaneous competitive and mutualist relationship between two microbial species in a chemostat. This interesting phenomenon occurs when bacterial species cross-feed essential nutrients and in parallel compete for the main source of carbon, which occurs in several situations.

Our first step, after transforming the model in order to reduce the number of the yield coefficients, was to determine the steady-states and to provide the conditions of their existence with respect to the operating parameters, which are the dilution rate and the input concentrations. We used a general class of growth functions and we give an exhaustive study of the behavior of the system (independently of the values of the parameters). We distinguished three different cases according to the value of ω 1 ω 2 . The numerical study of [START_REF] Vet | Bistability in a system of two species interacting through mutualism as well as competition: Chemostat vs. Lotka-Volterra equations[END_REF] corresponds to the case ω 1 ω 2 > 1. Model [START_REF] Fekih-Salem | On the global stability of the coexistence equilibrium of a density dependent model of competition for one resource[END_REF] can have four types of steady-states, the washout steady-state, two steady-states of extinction of one of species, and a coexistence steady-state, where the two species survive at the same time.

All types of steady-states are unique, except in the case ω 1 ω 2 > 1, where we prove that there are two positive steady-states. Next, we discussed the local stability of the steady-states, which can be asymptotically stable, according to the operating parameters. The positive steady state is always stable, when it is unique. In the case, ω 1 ω 2 > 1, one of the steady state is asymptotically stable and the other is unstable. The existence of an unstable steady state can not been observed by a numerical study, as in [START_REF] Vet | Bistability in a system of two species interacting through mutualism as well as competition: Chemostat vs. Lotka-Volterra equations[END_REF]. Finally, we have drawn the bifurcation diagrams of model

(3) that show how the system behaves when we vary the input concentration S in 0 . In the case ω 1 ω 2 > 1, the bifurcation diagrams show that the system exhibits bistability, once between the washout steady-state E 0 and the steady-state of coexistence E * 1 and once between the extinction of the second species steady-state E 1 and the positive steady-state E * 1 . This behavior is already detected by the numerical study in [START_REF] Vet | Bistability in a system of two species interacting through mutualism as well as competition: Chemostat vs. Lotka-Volterra equations[END_REF]. Our results are confirmed by time simulations.

In [START_REF] Vet | Bistability in a system of two species interacting through mutualism as well as competition: Chemostat vs. Lotka-Volterra equations[END_REF], operating diagrams with respect to the input concentration S in 0 and the flow rate are presented. These diagrams are bifurcation diagrams that indicate how stability of the steady states changes as function of the operating parameters and show the stability (or the bistability) regions of the different steady states. Since there are four operating parameters in the system (the three input concentrations and the dilution (or the flow) rate), one must fix two of them to have planar diagrams. The comparison between the operating diagrams corresponding to the chemostat equations and the extended Lotka-Volterra, see Fig 5 of [START_REF] Vet | Bistability in a system of two species interacting through mutualism as well as competition: Chemostat vs. Lotka-Volterra equations[END_REF], reveals that there is a discrepancy between the two models. As observed numerically in [START_REF] Vet | Bistability in a system of two species interacting through mutualism as well as competition: Chemostat vs. Lotka-Volterra equations[END_REF], our analytical study proves that there is a unique stable coexistence steady state, although that the Lotka-Volterra model predicts the possibility of existence of two positive steady states. We aim in a future work to use our analytical results to perform the operating diagrams and compare them to those of [START_REF] Vet | Bistability in a system of two species interacting through mutualism as well as competition: Chemostat vs. Lotka-Volterra equations[END_REF]. On another hand, it was shown that in a two-tiered food chain describing a syntrophic interaction, [START_REF] Sari | A model of a syntrophic relationship between two microbial species in a chemostat including maintenance[END_REF], introducing maintenance (or decay) terms in the model preserves the stability of the system, for all parameters values and for a large class of growth functions. Our next aim is to take into account maintenance terms in the competitive mutualistic model and to investigate if they have effects on the asymptotic behavior of the system. If stability and bistability are not affected, determining operating diagrams in both cases, with and without maintenance, will allow to investigate if regions of stability (or bistability) change.

Appendix. Proofs.

Proof of Theorem 1.

When x 1 = 0, x 2 = 0, from ( 16), ( 17) and ( 18) respectively, we deduce that s 0 = s in 0 ,

s 1 = s in 1 , s 2 = s in 2 .
So, E 0 = (0, 0, s in 0 , s in 1 , s in 2 ), it always exists. For the steady-state E 1 , x 1 = 0 and x 2 = 0. From ( 14), we deduce that µ 1 (s 0 , s 2 ) = D.

From (18), we have: 17), we can deduce that: 16), we obtain D(s in 0 -s 0 ) = µ 1 (s 0 , s 2 )x 1 , and as a result s 0 = s in 0 -s in 2 + s 2 , which is positive if and only if s 2 > s in 2 -s in 0 . We deduce that s * 2 is a solution of the equation [START_REF] Lobry | Sur un modèle densité-dépendant de compétition pour une ressource[END_REF].

D(s in 2 -s 2 ) = µ 1 (s 0 , s 2 )x 1 , then, x 1 = s in 2 -s 2 , which is positive if and only if s 2 < s in 2 . From (
D(s 1 -s in 1 ) = ω 1 µ 1 (s 0 , s 2 )x 1 , which gives, s 1 = s in 1 + ω 1 (s in 2 -s 2 ). Under the condition s 2 < s in 2 , s 1 is positive. From (
And by substraction of equation ( 16) from equation ( 18), we have

x 2 = s in 0 -s in 2 + s 2 -s 0 ω 2 + 1 which gives x 2 = s in 0 -s in 2 + M 1 (s 0 , D) -s 0 ω 2 + 1 .
As a consequence of equation ( 16), s 0 is a solution of the following equation:

(ω 1 ω 2 -1)s 0 + (ω 2 + 1)M 2 (s 0 , D) + (ω 1 + 1)M 1 (s 0 , D) = (ω 1 ω 2 -1)s in 0 + (ω 2 + 1)s in 1 + (ω 1 + 1)s in 2 .
The component x 1 > 0 if and only if s in 0 -s in 1 > s 0 -M 2 (s 0 , D) and x 2 > 0 if and only if

s in 0 -s in 2 > s 0 -M 1 (s 0 , D).
Moreover, we have:

s 0 → ∂H ∂s 0 (s 0 , D) = (ω 1 ω 2 -1) + (ω 1 + 1) ∂M 1 ∂s 0 (s 0 , D) + (ω 2 + 1) ∂M 2 ∂s 0 (s 0 , D). ( 26 
)
Noticing that, from definition of M 1 given in Table 3, we have:

µ 1 (s 0 , M 1 (s 0 , D)) = D, for all D ∈ [0, µ 1 (s 0 , +∞)[ (27) 
calculating the derivative of ( 27) with respect to s 0 , we can prove that

∂M 1 ∂s 0 (s 0 , D) = - ∂µ 1 ∂s 0 (s 0 , M 1 (s 0 , D)) ∂µ 1 ∂s 2 (s 0 , M 1 (s 0 , D)) -1 < 0, thanks to H3.
In a similar way, we prove that ∂M2 ∂s0 (s 0 , D) < 0.

According to the value of ω 1 ω 2 , we have to distinguish 3 cases: 

If ω 1 ω 2 < 1, ∂H ∂s0 (s 0 ,

Proof of Theorem 2.

To simplify the study of the local stability of the seady-states, we use the following change of variables:

z 0 = s 0 + x 1 + x 2 , z 1 = s 1 -ω 1 x 1 + x 2 , z 2 = s 2 + x 1 -ω 2 x 2 .
Therefore, system (10) writes:

               dx1 dt = (µ 1 (z 0 -x 1 -x 2 , z 2 -x 1 + ω 2 x 2 ) -D)x 1 dx2 dt = (µ 2 (z 0 -x 1 -x 2 , z 1 + ω 1 x 1 -x 2 ) -D)x 2 dz0 dt = D(s in 0 -z 0 ) dz1 dt = D(s in 1 -z 1 ) dz2 dt = D(s in 2 -z 2 ) (28) 
Finally, the matrix J 1 at E * is:

J 1 = -(E + F )x * 1 (-E + ω 2 F )x * 1 (-G + ω 1 K)x * 2 -(G + K)x * 2 
The trace of this matrix is negative so its eigenvalues are of negative real part if and only if its determinant is positive which means that:

(E + F )(G + K)x * 1 x * 2 -(-E + ω 2 F )(-G + ω 1 K)x * 1 x * 2 > 0, leading to: [(1 + ω 1 )EK + (1 + ω 2 )F G + (1 -ω 1 ω 2 )F K]x * 1 x * 2 > 0. Therefore, since x * 1 > 0 and x * 2 > 0, (1 + ω 1 )EK + (1 + ω 2 )F G + (1 -ω 1 ω 2 )F K > 0. ( 29 
)
Notice that

∂M 1 ∂s 0 (s 0 , y) = - ∂µ 1 ∂s 0 (s 0 , s 2 ) ∂µ 1 ∂s 2 (s 0 , s 2 ) -1 = -E/F. ∂M 2 ∂s 0 (s 0 , y) = - ∂µ 2 ∂s 0 (s 0 , s 1 ) ∂µ 2 ∂s 1 (s 0 , s 1 ) -1 = -G/K.
From ( 26), we deduce that:

∂H ∂s 0 (s 0 , D) = (ω 1 ω 2 -1) + (ω 2 + 1)(- G K ) + (ω 1 + 1)(- E F ).
Then, ∂H ∂s 0 (s 0 , D) = -(1 -ω 1 ω 2 )F K + (ω 1 + 1)EK + (ω 2 + 1)GF F K .

As a consequence, condition (29) is equivalent to ∂H ∂s0 (s * 0 , D) < 0. This condition is always satisfied when ω 1 ω 2 ≤ 1.

Proof of Propositions 6.1 and 6.2.

From Table 4, and by using the change of variables [START_REF] Harmand | The Chemostat: Mathematical Theory of Microogranism Cultures[END_REF], we obtain the conditions of existence and stability of (3), see 

v 01 v 21 S in 2 .
Using Table 14, we can see that:

• The steady-state E 0 always exists and is stable for S in 0 < σ 1 , since µ 1 (σ We can prove in a similar way that, in the case ω 1 ω 2 ≥ 1, E 2 is unstable for S in 0 > σ 2 . Now, in the case ω 1 ω 2 ≤ 1, the positive steady-state E * exists, for

S in 0 > σ 3 .
This condition is obtained from the second condition of existence of E * in Table 14. It guarantees the fulfillment of the first condition (see Fig. 12). From remark 2, E * is always stable.

(A) For ω 1 ω 2 > 1, from 

S in 0 Q 1 (S in 0 ) Q 2 (S in 0 )  σ 3 y (B) S in 0  σ 3 y Q 1 ( S i n 0 ) Q 2 ( S i n 0 ) Q 3 (S in 0 )

Fig 2

 2 Fig 2 illustrates the graphs of functions µ 1 (., +∞), µ 2 (., +∞). s 1 0 and s 2 0 , are the intersection of these graphs with the line y = D, respectively.

)Fig 3

 3 Fig 3 illustrates the graph of function H according to the position of ω 1 ω 2 to 1. Therefore, when ω 1 ω 2 > 1, the positive function s 0 → H(s 0 , D) tends to +∞ at the extremities of I and has a minimum value on this interval. So, we can add the following assumption:

Figure 2 :

 2 Figure 2: Graphs of the functions µ 1 (., +∞), µ 2 (., +∞) and definition of the values s 1 0 and s 2 0 .

Figure 3 :

 3 Figure 3: Graph of H: (A) the case ω 1 ω 2 < 1, (B) the case ω 1 ω 2 = 1, (C) the case ω 1 ω 2 > 1 and definition of s0 and F 1 (D).

s0 s 0 s 2 0Figure 4 :

 24 Figure 4: The values s 1 0 and s 2 0 in the case ω 1 ω 2 > 1.

Figure 6 :

 6 Figure 6: Bifurcation diagram in the case ω 1 ω 2 < 1 (A) The component X 1 with respect to S in 0

Fig 8 (

 8 Fig 9 (B) the solutions converge to E * 1 .From here, we conclude that there is bistability between

Figure 8 :Figure 9 :

 89 Figure 8: Time simulations for S in 0 = 66 ∈ (σ 4 , σ 1 ): (A) Convergence to E 0 , washout of the species. (B) Convergence to E * 1 , coexistence of both species.

  Fig 3 (B)). If ω 1 ω 2 > 1, from hypothesis H6, equation H(s 0 , D) = s in admits a solution on the interval I if and only if F 1 (D) ≤ s in (see Fig 3 (C)).

Figure 12 :

 12 Figure 12: Curves of functions Q1 (S in 0 ) = S in 0 -v02 v12 S in 1 -s * 0 + M 2 (s * 0 , D), Q 2 (S in 0 ) = S in 0 -v01 v21 S in 2 -s * 0 + M 1 (s * 0 , D) and Q 3 (S in 0 ) = S in -M (D). (A) In the case ω 1 ω 2 < 1. (B) In the case ω 1 ω 2 = 1.

Table 1 and

 1 

	References	i	S in D i	µ i (S)
	Hsu, Hubbell and Waltman [15]	1, ..., n > 0 D	Monod
	Hsu [14]	1, ..., n > 0 distinct Monod
					Linear,
	Wolkowicz and Lu [29]	1, ..., n > 0 D + ε i	Monod,
					Nonmonotonic (inhibition)
	Smith and Waltman [25]	2	> 0 D	Monod
		1, ..., n 1	1	Increasing
	Li [16]	1, ..., n > 0 distinct Monotonic, Nonmonotonic
	De Leenheer, Angeli and Sontag [6] 1, ..., n 1	distinct Increasing
	Abdellatif, Fekih-Salem and Sari [1] 2	> 0 distinct Increasing
		1, ..., n > 0 distinct Increasing

2 summarize the modeling assumptions of the competition models (

1

) and (

2

) studied in the literature, according to the number of competing species i, S in , D i , and the growth rates µ i .

Table 1 :

 1 Literature examples of competition relationship on one substrate model[START_REF] Abdellatif | Competition for a single resource and coexistence of several species in the chemostat[END_REF] 

	References	i	S in D i	µ

i (S, x 1 , ..., x n ) Lobry, Mazenc and Rapaport

[START_REF] Lobry | Persistence in ecological models of competition for a single resource[END_REF] 

1, ..., n > 0 D depends only on S and x i increasing in S, decreasing in x i Lobry, Rapaport and Mazenc [19] 1, ..., n > 0 distinct depends only on S and x i increasing in S, decreasing in x i Lobry and Mazenc [17] 1, ..., n > 0 distinct depends only on S and x i f (S)g(x i ) Harmand, Rapaport, Dochain 1, ..., n > 0 D depends only on S and x i and Lobry

Table 2 :

 2 Literature examples of competition relationship model with density-dependant growth function

Table 4 :

 4 Existence and local stability of steady-states of

Table 7 :

 7 Definitions of the critical values of σi , i = 1, ..., 4

	Case	σ 1	σ 2	σ 3	σ 4
	ω 1 ω 2 > 1 67.1118530885 202.0100502513 103.3607227 65.55518440
	ω 1 ω 2 = 1 67.11185309	202.0100503	124.4188425 -
	ω 1 ω 2 < 1 67.11185309	202.0100502513 103.3607227 -

Table 8 :

 8 Values of σ i , in the three cases.

Table 9 :

 9 Existence and stability of steady-states, with respect to S in 0 , in the case ω 1 ω 2 > 1. The letter S (resp. U) means that the corresponding steady-states is LES (resp. unstable). No letter means that the steady-state does not exist. The values of σ i , i = 1, • • • , 4 are provided in

Table 8 .

 8 Notice that, in this case, bistability occurs between E 0 and E * 1 , for S in 0 ∈ (σ 4 , σ 1 ) and between E 1 and E * 1 , for S in 0 ∈ (σ 1 , σ 3 ). Bifurcations at the values σ i , i = 1, ..., 4, when ω 1 ω 2 > 1, are described in

Table 10 .

 10 Type of the bifurcation σ 1 Transcritical bifurcation of E 0 and E 1 σ 2 Transcritical bifurcation of E 0 and E 2 σ 3 Transcritical bifurcation of E 1 and E *

	2

Table 10 :

 10 Type of bifurcations corresponding to the critical values σ i , i = 1, ..., 4, when ω 1 ω 2 > 1. Now, we consider the case ω 1 ω 2 ≤ 1. Notice that, in this case, there is a unique positive steady state, so σ 4 doesn't exist. The corresponding values of σ i , i = 1, 2, 3 are given in Table

Table 12 :

 12 Colors used in Figs 5, 6 and 7. (In fig 7, we use the red color for E * 1 , and the blue color for E * 2 ). The solid (resp. dashed) lines means that the steady-state is LES (resp. unstable). at σ 1 , σ 2 , and σ 3 . The steady-state E 0 loses its stability when E 1 appears, E 1 also loses its stability when the positive steady-state E * appears. Fig 7 illustrates the case ω 1 ω 2 > 1, where a saddle-node bifurcation of E * 1 and E * 2 appears at σ 4 . These two steady-states appear at the same time, E * 1 is always stable, while E * 2 is always unstable and disappears at σ 3 , which is the
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Table 14 ,

 14 Steady-state Existence conditions

	Stability conditions

Table 14 :

 14 Existence and local stability of steady-states of (3) with,S in = (ω 1 ω 2 -1)S in 0 + (ω 2 + 1)

	v 02 v 12	S in 1 + (ω 1 + 1)

  1 , v01 v21 S in 2 ) = 2 = D, and µ 2 (σ 1 , v02 v12 S in 1 ) = 1 < D = 2. The first condition of stability of E 0 becomes unfulfilled, for S in 0 > σ 1 . • E 1 exists for S in 0 > σ 1 . Fig 10 shows that this steady-state is LES if and only if

				S in 0 < σ 3 ,		
	σ 3 is the value of S in 0 such that					
	µ 2 (σ 3 -	v 01 v 21	S in 2 + s * 2 ,	v 02 v 12	S in 1 + ω 1 (	v 01 v 21	S in 2 -s * 2 )) = D.

Table 14 ,

 14 the third condition of existence of positive steady-states is satisfied for This is what Fig 13 (A) shows. Fig 13 (B) and Fig 13 (C) show that the first and the second existence condition of the positive steady state are always satisfied for E * 1 when S in 0 > σ 4 . For E * 2 , the first condition of existence is satisfied only when S in 0 ∈ [σ 4 , α], α 142, and the second condition is satisfied when S in 0 ∈ [σ 4 , σ 3 ], σ 3 103.36. Then we deduce that the steadystate E * 2 exists for S in 0 ∈ [σ 4 , α] ∩ [σ 4 , σ 3 ] = [σ 4 , σ 3 ]. This is what explains that the steady state E * 2 disappears for S in 0 > σ 3 . From Remark 2, the steady-states E * 1 is always stable, because the stability condition is always satisfied, and E * 2 is always unstable. Therefore, at S in 0 = σ 4 there is a saddle-node bifurcation of E * 1 and E * 2 and a transcritical bifurcation of E 1 and E * 2 , at S in 0 = σ 3 .

	S in 0 >	1 ω 1 ω 2 -1	(F 1 (D) -(ω 2 + 1)	v 02 v 12	S in 1 -(ω 1 + 1)	v 01 v 21	S in 2 ) =: σ 4 .

E 1 exists if and only if equation [START_REF] Lobry | Sur un modèle densité-dépendant de compétition pour une ressource[END_REF] admits a positive solution that guarantees the positivity of the components x 1 , s 0 and s 1 . So we conclude that s *

2 ∈]max(s in 2 -s in 0 , 0), s in 2 [. We define the function: s 2 → g(s 2 ) = µ 1 (s in 0 -s in 2 + s 2 , s 2 ). The function g is strictly increasing on ]max(s in 2 -s in 0 , 0), s in 2 [ since its derivative

For the steady-state E 2 , x 1 = 0 and x 2 = 0. From [START_REF] Hsu | A mathematical theory for single-nutrient competition in continuous cultures of micro-organisms[END_REF] we deduce that

From [START_REF] Lobry | Effect on persistence of intra-specific competition in competition models[END_REF], we have: 16), we deduce: [START_REF] Lobry | Persistence in ecological models of competition for a single resource[END_REF], we obtain that:

, which is positive if s 1 < s in 1 . We deduce that s 1 is a solution of equation [START_REF] Monod | La technique de culture continue: Théorie et applications[END_REF]. The steady-state E 2 exists if and only if equation ( 21) admits a positive solution that guarantees the positivity of the components x 2 , s 0 , s 2 . Then, we conclude that s *

1 ∈]max(s in 1 -s in 0 , 0), s in 1 [. We define the function

). The derivative of the function j is given by:

which is positive for s 1 > 0. Then, the function j is strictly increasing on ]max(

Finally, for the steady-state E * , when x 1 = 0 and x 2 = 0. From ( 14) and ( 15), we deduce that µ 1 (s 0 , s 2 ) = D and µ 2 (s 0 , s 1 ) = D, which give s 2 = M 1 (s 0 , D) and

By substracting equation ( 16) from equation [START_REF] Lobry | Effect on persistence of intra-specific competition in competition models[END_REF], we obtain

A steady-state of ( 28) is of type (x 1 , x 2 , z 0 , z 1 , z 2 ).Then, the four steady-states E 0 , E 1 , E 2 , E * write as:

, where x * 1 is given by [START_REF] Megee | Studies in intermicrobial symbiosis. Saccharomyces cerevisiae and Lactobacillus casei[END_REF].

, where x * 2 is given by [START_REF] Novick | Experiments with the chemostat on spontaneous mutations of bacteria[END_REF].

, where x * 1 , x * 2 are given by [START_REF] Sari | A model of a syntrophic relationship between two microbial species in a chemostat including maintenance[END_REF]. The Jacobian matrix of (28) has a block triangular form:

where:

0 and

Notice that all these derivatives are positive. The eigenvalues of J which is a block triangular matrix are -D (with multiplicity 3) and the eigenvalues of the matrix J 1 .

At the steady-state E 0 , the matrix J 1 is given by:

Then, E 0 is stable if and only if λ 1 negative and λ 2 negative which equivalent to µ 1 (s in 0 , s in 2 ) < D and µ 2 (s in 0 , s in 1 ) < D. At E 1 , the matrix J 1 is:

The matrix J 1 at E 2 is: 

We have a similar figure for the case ω 1 ω 2 ≥ 1.

• E 2 exists if and only if

is fulfilled when

From