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ABSTRACT 
The overall pace of interaction combines the user’s pace and the 
system’s pace, and a pace mismatch could impair user preferences 
(e.g., animations or timeouts that are too fast or slow for the user). 
Motivated by studies of speech rate convergence, we conducted an 
experiment to examine whether user preferences for system pace 
are correlated with user pace. Subjects frst completed a series of 
trials to determine their user pace. They then completed a series 
of hierarchical drag-and-drop trials in which folders automatically 
expanded when the cursor hovered for longer than a controlled 
timeout. Results showed that preferences for timeout values corre-
lated with user pace – slow-paced users preferred long timeouts, 
and fast-paced users preferred short timeouts. Results indicate po-
tential benefts in moving away from fxed or customisable settings 
for system pace. Instead, systems could improve preferences by 
automatically adapting their pace to converge towards that of the 
user. 

CCS CONCEPTS 
• Human-centered computing → HCI theory, concepts and 
models; Empirical studies in HCI. 
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1 INTRODUCTION 
Results from experiments in communication studies show that 
speech rate convergence – adapting the rate of speech towards that of 
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a communication partner – helps to foster positive experiences dur-
ing communication. Experiments have indicated that convergence 
predicts cooperation and acceptance between people [33, 42] and 
that assessments of competence, social attractiveness, and afnity 
are increased when speech rate convergence occurs [4, 44]. Con-
versely, a failure to converge risks negative social outcomes, such 
as appearing impatient, abrupt, or rude (when speaking quickly to 
a slow speaker), or dull, soporifc, or stolid (when speaking slowly 
to a fast speaker). 

Computer-based user interfaces support a communication dia-
logue between users and their systems, and like dialogues between 
humans, both parties in the communication (the user and the com-
puter) contribute to the overall interaction pace. On the human 
side (user pace) some users will carefully contemplate each action 
and express their intention with slow, deliberative input device 
manipulation. Other users, however, will make their decisions and 
manipulations as rapidly as possible. Furthermore, any individual 
user’s preferred rate of interaction may periodically change due to 
factors such as fatigue, workload, illness, and stress. 

On the system side of the interaction (system pace), many fac-
tors can infuence the rate at which system states are transitioned, 
including the use of explicit timeouts, animations, network or pro-
cessing latency and jitter, and the transfer functions used to map 
input events into system outcomes (such as scrolling and pointing 
gain functions). System features contributing to interaction pace 
are abundant, both at the operating system level and in applications. 
Examples in computer operating systems include the animated ap-
pearance and disappearance of windows, menus, and control panels 
(e.g., the Windows Start Menu and Mac OS Dock), pop-up tooltips 
and hotkeys that appear after a hover delay, and accessibility fea-
tures such as screen readers, which have a speech rate and a hover 
timeout delay before screen reading initiates. Similarly, mobile op-
erating systems and applications make extensive use of timeouts 
to discriminate tap, long- and very-long press, built-in delays to 
determine intentions (e.g., dragging an icon between homescreen 
pages), and input transfer functions (e.g., iOS keyboard delete key, 
which accelerates deletion the longer it is held down). 

Importantly, while preferences for interaction pace are likely to 
difer between users (e.g., some sedate, others frenetic) and between 
time periods for the same user (e.g., when energetic versus fatigued), 
elements of system pace are frequently set to a fxed value by the 
designer in a ‘one size fts all’ manner. Sometimes designers provide 
confguration facilities that allow elements of system pace to be 
customised – but customisation features are known to be seldom 
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used [25, 31, 32], leaving most users with the unchanging default 
set by the designer. 

Instead of using fxed or user-customisable elements of system 
pace, systems could be designed to automatically adapt to better 
match the user’s pace, which we term interface pace convergence. 
Exemplifying this type of behaviour, Giacolone [19] (in [41]) de-
scribes a gambling machine interface that adapts to the user’s rate 
of play. When the user is slow to press the machine’s “deal” button, 
an animation depicts hands slowly dealing cards to the user, but 
the animation is faster when the user is quick on the trigger: “if 
one wants to play at a leisurely pace, the game will proceed at its 
normal play rate, but if the player’s excitement level increases and 
he demonstrates a desire to play faster, the game play rate will be 
automatically increased” [19, col. 2:8-11]. 

The system pace feature that we study later in this paper con-
cerns the hover timeout that is widely used in hierarchical browsers, 
such as Microsoft’s File Explorer, Apple’s Finder, and in most email 
clients and programming IDEs – see Figure 1 for examples. During 
drag-and-drop activities, these interfaces use a built-in timeout to 
determine when a hierarchical item will expand to show its chil-
dren; items automatically expand when the cursor hovers over them 
for longer than a timeout period. If the timeout is too short then 
unintended item expansions will occur, which is likely to be frus-
trating. However, if the timeout is too long then the user will need 
to excessively pause during their drag-and-drop actions, which is 
also likely to cause frustration. Although our study focuses on drag-
and-drop interactions, users will typically encounter interactive 
features that infuence the system’s pace dozens or hundreds of 
times each day, and every time they do so there may be a small 
element of frustration associated with the behaviour being slightly 
too fast or slightly too slow for the user. 

In this paper, we examine whether user preferences for diferent 
levels of system pace covary with user pace – do fast users prefer 
fast interfaces and slow users prefer slow? First, we describe theo-
retical foundations from communication studies that inspired our 
work, as well as reviewing prior work relating to interaction pace in 
HCI. We then describe the experiment that tests our main hypoth-
esis – that preference patterns for slow- and fast-paced interface 
conditions difer between slow- and fast-paced users. Participants 
initially completed a set of drag-and-drop trials that did not involve 
the expansion feature (i.e., no timeout), with the data used to mea-
sure and classify user pace for each participant. Participants then 
completed three sets of hierarchical drag-and-drop trials in which 
folders expanded when a hover timeout was exceeded. The frst 
two sets of trials involved a timeout of 250 ms and 750 ms (coun-
terbalanced), with participants selecting their preferred interface. 
Before the third set of trials, participants used a slider and sandbox 
interface to personally confgure their preferred timeout setting. 

Results supported the hypothesis – experimental participants 
who were classifed as fast predominantly preferred the interface 
with the shorter timeout, whereas those classifed as slow predomi-
nantly preferred the longer timeout. Also, participants’ confgured 
timeout settings positively correlated with their mean performance 
on the initial trials that did not involve a timeout. We discuss how 
these fndings relate to the concept of interface pace convergence, 
as well as possibilities for its implementation. 

The contributions of this work are as follows: 

(a) Windows File Explorer. 

(b) Thunderbird folders. 

(c) Xcode project navigator. 

Figure 1: Hierarchy interfaces that expand parent items 
based on a hover timeout during drag-and-drop actions. 

(1) We provide empirical evidence that user preferences for sys-
tem pace (interface conditions that vary only in the duration 
of interface timeouts) covary with automatically measured 
user pace; 

(2) We introduce the concept of interaction pace convergence 
and discuss design implications for improving the subjective 
appeal of interfaces by automatically measuring user’s pace 
and converging system pace towards that of the user; 
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(3) We provide a review of factors relating to interaction pace, 
founded on communication theories from outside HCI. 

2 BACKGROUND 
Two main areas of related work, described below, provide the moti-
vation and background for this research. First, we review fndings 
from communication studies into the occurrence and outcomes of 
communication convergence, which indicate that convergence is 
correlated with positive afective outcomes, such as afnity and 
pro-social behaviour. Second, we review interactive systems and 
HCI literature that address issues related to interaction pace. 

2.1 Inspiration from the Communication 
Studies Literature 

2.1.1 The occurrence of convergence in communication. Communi-
cation accommodation theory and related work on phonetic con-
vergence and entrainment concerns the adjustments that people 
make to attune their communication to one another, as well as 
the outcomes of succeeding or failing to do so. Communication 
patterns may converge towards one another, increasing similarity or 
synchronisation – for example, a speaker may talk faster and more 
energetically than they would normally when conversing with an 
energetic fast speaker. But patterns may also diverge away from one 
another, such as a person using clipped short sentences to respond 
to a speaker who is perceived to be verbose when time is short. Con-
vergence and entrainment have been examined and demonstrated 
across many aspects of speech and communication, including the 
pitch and loudness of speech (e.g., Levitan and Hirschberg [28]), 
pronunciation (e.g., Pardo et al. [38]), the use of gestures (e.g., Char-
trand and Bargh [4]) or lexical constructs (e.g., Bradac et al. [1]). 
Interested readers are directed to Giles et al. [20], Pardo et al. [38] 
and Lewandowski and Jilka [29] for more extensive introductions 
related to these general communication efects. 

In this work, our particular interest is on temporal aspects of con-
vergence, including widely studied speech rate efects. Jungers et al. 
[26], for example, showed that experimental participants adapted 
their rate of speech to converge towards that of fast or slow speakers 
in audio recordings, and results from Schultz et al. [42] show simi-
lar efects in scripted turn-taking dialogues. Further studies have 
replicated fndings on speech rate convergence using standardised 
corpora [8, 18]. 

2.1.2 Conditions influencing convergence. Many studies of commu-
nication convergence seek to understand the conditions infuencing 
its occurrence and strength, and some of these infuences could 
have implications for human-computer interaction. 

Lewandowski and Jilka [29] recently examined the infuence of 
language talent, personality and attention. Results of their study 
showed that German native speakers who had higher competence 
in English converged more towards someone speaking English than 
those with lower English competence, suggesting that some level of 
fuency is necessary for convergence to occur. This fnding might 
imply that convergence efects in interaction rely on some level of 
competence or expertise with the interface. 

Studies by Dias and Rosenblum [12] suggest that speech conver-
gence is stronger when communication partners are more socially 

present. In their studies pairs of communicators were seated approx-
imately one and a half meters from one another, but in their two 
conditions pairs could either see and hear one another, or only hear 
one another due to a curtain separating their view. Pairs in the ‘see 
and hear’ condition converged more than those in the hear-alone 
condition. This fnding could have implications for agent-based 
interfaces because convergence patterns (and their outcomes) may 
difer when between interaction with a voice-only agent and an 
agent that has a voice and visual avatar. 

The sex of communicators is also known to infuence conver-
gence. Generally, results indicate that female talkers converge more 
than males, but a proper understanding of the efects of mixed-sex 
pairings is not yet established (see Pardo et al. [38] for a recent re-
view). In interaction, there are possible implications for the choice of 
male or female agent voices with or without the visual appearance 
of an associated avatar. 

2.1.3 The outcomes and motivation for convergence. While the stud-
ies above largely focused on whether communicators converge and 
the conditions under which they do so, some of the most interest-
ing work for HCI examines the reasons for convergence and the 
outcomes of it. 

In a one-shot prisoners’ dilemma study, Manson et al. [33] ob-
served that speech rate convergence indicated pro-social behaviour 
(i.e., greater cooperation on the prisoners’ dilemma task) and that 
the participants evaluated each other more positively when their 
speech rates converged. They summarise as follows: “temporally 
based behavioral coordination might facilitate pro-social behavior 
when the joint cooperative efort is itself perceived as a form of coordi-
nation” [33, p. 419]. Manson’s fndings are echoed in other studies 
of diferent communication modes. For example, Chartrand and 
Bargh [4] observed greater liking between partners who mimic one 
another’s gestures. Other studies have shown related efects of com-
munication mimicry and convergence, including larger tips when 
a confederate waitress mimicked her customers’ orders than when 
she did not [46], and that adapting language to increase similarity 
in grammatical structures and word use enhances mutual under-
standing (e.g., Pickering and Garrod [39]), the success of hostage 
negotiations [45], and the formation of romantic relationships [23]. 
In summary, previous work indicates a variety of positive outcomes 
from convergence, including pro-social behaviour and afnity be-
tween people. 

2.2 Interaction Pace in HCI 
In a human-computer dialogue, both parties contribute to the over-
all pace of interaction, through the user’s pace and the system’s 
pace. Early studies relating to pace efects in HCI largely focused 
on the implications of delays introduced by the system, with Shnei-
derman providing an insightful review almost 40 years ago [43]. 
Interestingly, Shneiderman’s review alludes to the potential neg-
ative outcomes of a user converging to a system’s fast pace: “As 
users pick up the pace of a rapid interaction sequence, they may learn 
less, read with lower comprehension, make ill-considered decisions, 
and commit more data entry errors” [43, p. 266]1. Information about 
system delays is now routinely included in undergraduate HCI 
1Jakob Nielsen recently made similar points in favour of slow interaction, although 
with tongue frmly in cheek. https://www.nngroup.com/articles/slow-ui/. 
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courses, with approximate threshold delays of less than 0.1 seconds 
for the user to feel that the system is reacting instantaneously, less 
than 1.0 seconds for the user to maintain an uninterrupted train of 
thought, and less than 10 seconds to maintain the user’s attention 
[35]. 

System delays are often caused by compute-bound processes 
(such as searching a large data structure) or by limitations in net-
work bandwidth, latency, or jitter. While these limitations still 
infuence interaction, hardware improvements continually reduce 
the frequency and magnitude of their occurrence. However, unlike 
the delays that are imposed on the system by processing or trans-
mission requirements, interaction efects with temporal properties 
such as animations and timeouts are often intentionally engineered 
into systems, and these intentionally engineered timeout efects 
are the focus of our work. 

In the following paragraphs we frst review the state of the art in 
contemporary user interfaces, demonstrating the widespread use of 
temporal efects in current interfaces. We then briefy review HCI 
literature investigating efects related to interface pace convergence. 

2.2.1 Interaction pace features in contemporary interfaces. We see 
four main ways in which current interfaces are designed to incor-
porate elements that infuence the system’s pace: animation and 
motion efects, information rate efects, input device transfer func-
tions, and temporal discrimination with overloaded input. Other 
system factors beyond these four may also infuence the overall 
pace of interaction, such as the availability of interface shortcuts, 
but in general shortcut facilities are designed to enable the user to 
obtain the fastest pace possible, rather than imposing some element 
of system pace on the user. 

Animations are widely used to accompany the appearance and 
disappearance of basic interface controls such as windows and 
menus. The use of animations has several potential advantages for 
the user, including softening visual efects that might otherwise 
be perceptually jarring, and providing a spatial cue to the source 
and destination of objects when they appear or disappear. By de-
fault, on Microsoft Windows 10 the Start Menu appears with a 
fast-in, slow-out animation, windows zoom and fade when they 
appear/disappear from the taskbar, and menus are animated. Mi-
crosoft Windows provides a personalization option to disable all 
animations, and specifc animations can be selectively enabled using 
settings under ‘performance options’. Similar facilities are provided 
by other operating systems, including Mac OS, iOS, and Android. 
Although it is possible for expert users to set the duration of menu 
animations by editing the MenuShowDelay value in the Windows 
system registry, few users would be expected to do so. Animations 
such as those described above are typically of short duration at 
around 300 ms. Interested readers are directed to Chevalier et al. 
[6], Hudson and Stasko [22] for high quality reviews of animation 
efects. 

Information rate efects determine the amount of information 
presented to the user per unit time, and they can be related to 
animation efects. These efects are commonly used to manipulate 
the difculty of computer games. For example, a game might present 
waves of items to contend with in each level (e.g., asteroids or 
enemies), manipulating the number of items and the time available. 
Visualisation techniques such as Rapid Serial Visual Presentation 

also manipulate information rate to assist activities such as rapid 
comprehension or search [11, 47]. 

Input device transfer functions are used to translate low-
level signals received from input devices into output control efects 
displayed on the screen. For example, transfer functions determine 
the mapping between mouse and cursor movement, and on mobile 
devices they determine how swiping gestures infuence scrolling 
movement. These functions are often sophisticated, attempting to 
appropriately amplify the user’s input when it appears that the user 
wishes to move quickly, yet diminish input when it appears that the 
user wants precision. Transfer functions can therefore infuence 
the system’s pace of interaction. For example, a low-acceleration 
scrollwheel transfer function will require the user to repeatedly 
rotate the wheel to move through a long document; but conversely 
a high acceleration transfer function risks a twitchy behaviour 
that results in extensive over-shooting. Operating systems and 
input device vendors typically provide confguration interfaces that 
allow the user to directly control transfer function behaviour for 
cursor movement and scrollwheel operation. Interested readers are 
directed to Quinn et al. [40] for a discussion of transfer functions 
in touch scrolling and to Casiez et al. [2] for their use with mouse 
input devices. 

Temporal discrimination with overloaded input is the area 
examined in our experimental work. Input devices ofer a limited 
vocabulary of possible actions for the user to express their intent – 
for example, a mouse will typically have only two or three buttons, 
a scrollwheel, and a displacement sensor, and a touchscreen may 
report only the coordinates of one or more contacts. To increase the 
user’s ability to express varied intentions designers often exploit 
the temporal components of user actions to discriminate intent. For 
example, using a mouse, two successive clicks are only interpreted 
as a double-click if they occur within a timeout period. If this time 
period is too short for the user then they will fail to reliably double-
click, but if it is too long then the system may misinterpret separate 
manipulations as single double-click action. Temporal discrimina-
tion is also widely used on mobile devices – for example, on the iOS 
homescreen a single tap on an icon opens the object, a long press (a 
press longer than a timeout) posts a context menu, and a very long 
press (longer than another timeout) enters a reconfguration mode. 

Related timeout methods are also commonly employed in in-
terfaces when the input mechanism used for a particular action 
is temporarily unavailable because it is consumed by an ongoing 
user action. For example, in hierarchical browsers a mouse left 
button click is used to expand a parent object and reveal its chil-
dren. But during drag-and-drop actions the left button must remain 
pressed because releasing drops the dragged item onto the under-
lying object. Therefore, designers use a hover timeout to resolve 
the problem of overloaded input – if the cursor hovers over a par-
ent item for longer than the timeout then the underlying object 
expands to show its children. This hover-expansion technique (also 
named ‘spring-loaded folders’ [9, 17]) is widely used across plat-
forms and applications, including Windows Explorer, Mac Finder, 
most email clients, and many programming IDEs, and similar time-
outs exist in a wide range of interfaces, including dragging items 
across homescreen pages on mobile devices. 

System timeout values such as these infuence a system’s pace of 
interaction. In general, long timeouts permit slow-paced interaction, 
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but they also risk frustrating a user who wants to proceed more 
quickly. For example, a user who wants to drag an icon across 
several homescreen pages on their phone must wait for the timeout 
to expire at the edge of each page. Conversely, short timeouts 
permit fast interaction but risk frustrating the user by incorrectly 
identifying their intention – the user might accidentally change to 
the next homescreen page as a result of briefy dragging an item 
near the edge of the screen. 

To gain insight into the timeout values used in current software 
systems, we used a screen recorder to inspect the timeouts used for 
hover expansion in the Mac Finder and in the Thunderbird email 
client. The Thunderbird value is fxed at 1000 ms. The Finder’s value 
varies depending on which view is enabled. By default, the timeout 
is 600 ms in the column view, and 1000 ms in other views, although 
the user can confgure the timeout using the ‘spring-loaded delay’ 
setting in System Preferences (the range of values available with 
the setting is 200-1200 ms in the column view, and 500-1200 ms in 
other views). We suspect that the column view is designed to have 
a shorter default timeout because users can easily recover from 
accidental expansions (expanded content is shown in a column 
to the right of the expanded item, leaving the display of parent 
items unaltered), whereas in the other views the expanded content 
replaces the original content, making accidental expansions harder 
to recover from. The diferent values used by the Finder suggest that 
designers have thought carefully about timeout implications. But 
regardless of this careful thought, in many systems the timeouts are 
confgured in a ‘one size fts all’ manner, and even if customisation 
facilities are provided they are known to be seldom used [25, 31, 32]. 
Consequently, users who would prefer to proceed more quickly or 
more slowly are likely to be constrained by an invariant system 
pace. 

2.2.2 HCI research and interaction pace. As mentioned above, Shnei-
derman considered interaction pace within his seminal review of 
system delays [43], and Dix [13] directly examined interaction pace 
in the context of computer-mediated collaboration between people. 
A few authors have contemplated how users might beneft from 
interfaces that promote slower, refective, laid-back and restful in-
teractions in mobile search [24], in a music player that adapts to 
the user’s pace [15], and at a DIS conference workshop [36]. Oth-
ers have scrutinised how aspects of performance and satisfaction 
change as users are prompted to alter their pace of interaction, 
demonstrating a strong increase in errors in a game [34] and in 
abstract pointing tasks [48]. 

The area of HCI research that has paid closest attention to pace 
and convergence efects is speech interaction. In an early and com-
prehensive study Oviatt et al. [37] demonstrated that 70-95% of child 
participants (aged 7-10) quickly converged their rate of speech to-
wards that of an animated agent. More recently Dohsaka et al. [14] 
examined convergence in the opposite direction – where the du-
ration of the agent’s speech pauses converged towards that of the 
human – with Likert item responses suggesting positive subjective 
outcomes from system convergence. Related positive fndings have 
been demonstrated for automated speech rate adaptation in syn-
thesised Mandarin speech [5]. Other recent studies have examined 
speech convergence and entrainment efects to promote positive 

turn-taking behaviour in human users and to build positive social 
responses to the system [27, 30]. 

3 EXPERIMENT: USER PREFERENCES AND 
INTERACTION PACE 

The review of prior work suggests that users’ afnity and prefer-
ences for interfaces may be enhanced if the system’s pace is more 
similar to their own. Furthermore, there may be opportunities to im-
prove users’ overall preference for interfaces by having the system 
converge its pace towards that of the user. 

We therefore conducted an experiment to examine the frst of 
these possibilities, scrutinising user preferences for system pace 
across levels of user pace. The hypothesis is formally expressed as 
follows: 

H1 User preferences for system pace (as exhibited through sys-
tem delay timeouts) covary with user pace — faster users 
show stronger preference for shorter timeouts, and slower 
users show stronger preference for longer timeouts. 

If supported, this hypothesis suggests that system designers 
could improve user preferences by matching the system’s interac-
tion pace (e.g., timeout duration) to the user’s pace of interaction, 
in a form of interface pace convergence. However, there are at least 
three reasons to think that the hypothesis may not be supported. 
First, the automatic measurement of user pace may be insensitive, 
providing poor distinction between users. Second, measured user 
pace may be a poor predictor of user preferences for system pace 
– for example, all users might prefer faster (or slower) system re-
sponse, regardless of their user pace. Third, the hypothesised efect 
may be sufciently small to make it impractical to demonstrate at 
reasonable experimental scale. 

To briefy summarise the method, participants frst completed 
an initial series of drag-and-drop actions that did not involve the 
folder-expansion feature, with the data used to characterise their 
pace of interaction. Each participant then completed a series of 
hierarchical drag-and-drop tasks using two interfaces – one fast 
and one slow – that difered only in the hover timeout required 
before a hierarchical item would automatically expand to reveal 
its children. They then selected which of the two interfaces they 
preferred. Finally, they used a slider to confgure and test their 
preferred timeout for a fnal series of drag-and-drop tasks. 

3.1 Task Interactions 
We based the experiment on drag-and-drop behaviours similar to 
those widely used in hierarchical fle and email interfaces. Subjects 
had to drag a series of objects onto targets located in a hierarchical 
structure. At the beginning of each task the structure was maximally 
contracted, and when the cursor hovered over a hierarchical item 
for longer than a timeout period the item automatically expanded 
to reveal its child items. Each time an item expanded any previously 
expanded item at the same hierarchy level was contracted, so at 
most a single item at each level of the hierarchy could be expanded 
at once. The expansion/contraction of items was not animated. 

We chose to base the experiment on icon drag-and-drop for four 
main reasons: 
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(1) Familiarity – the participants would be familiar with these
behaviours from everyday computer use and should there-
fore be able to understand task requirements without exten-
sive training.

(2) Simple and modelable interface actions – the participants’
actions in completing the tasks include simple manipulations
that are amenable to well-validated models such as Fitts’s
Law [16].

(3) Ease of experimental control – related to the previous point,
system properties within these behaviours can be precisely
configured, including the distance that an icon must be
dragged, the target size, and the hover timeout before an
item will expand.

(4) Ecological validity – several widely disseminated interfaces
(including the Mac OS Finder, Windows Explorer, and most
email clients) include system-imposed hover timeouts.

Each task was cued by showing a blue icon containing a number
series at the top of the display. The number series, such as “3.1.2”
indicated the required target. The hierarchical structure was shown
immediately beneath the cued item, initially showing the fully
contracted view of sixteen items, enumerated 1 – 16 (see Figure 3b,
which shows a partially expanded hierarchy).

3.2 Timeout setting and pilot studies
The key manipulation in the study was the duration of the hover
timeout. If the timeout was too short, then unintended items would
expand while the user dragged the item towards the target (false-
positive expansions, potentially causing user frustration). And if
the timeout was too long, then users would be overly delayed,
potentially causing frustration.

Figure 2 shows a characterisation of the effects of different time-
out values on fast- and slow-paced users, according to our hypothe-
sis. The figure highlights the importance of choosing timeout values
that suffer neither flooring nor ceiling effects (timeout values that
are respectively so short or long that nearly all users dislike them).

The timeout values used in our experiment were 250 ms for our
fast condition and 750 ms for our slow condition. These timeout
values were selected following a series of pilot studies using an
identical method to that described below, except for the tested
timeout durations. The first pilot study (n=15) used values of 450
ms and 900 ms, with 100% of participants preferring 450 ms; the
second pilot study (n=5) used 400 ms and 800 ms, and again 100%
preferred the faster condition; the third pilot (n=12) used 200 ms and
800 ms, with 70% preferring the slow condition. A final pilot study
(n=10) used 250 ms and 750 ms, with a 50:50 split in preferences.
We therefore used these values of 250 ms and 750 ms for the main
experiment.

3.3 Procedure
We conducted the experiment on Amazon Mechanical Turk. Each
participant proceeded through three experimental stages: 1. user
pace determination; 2. system pace experience and preference; 3.
setting and experience of user-tailored system pace.

3.3.1 Stage 1. User pace determination. After collecting background
demographics (age, gender, pointing device, frequency of computer
use and game play), participants completed a set of one-dimensional

Timeout duration

Ceiling effect
Timeout too long
Disliked by nearly all

Floor effect
Timeout too short
Disliked by nearly all

Subjective 
satisfaction

Slow paced
users

Fast paced
users

Figure 2: Characterisation of hypothetical effects of time-
out delays on subjective satisfaction for fast- and slow-paced
users, including the role of flooring and ceiling effects.

(a) Stage 1 task (no hierarchy). (b) Stage 2& 3 task (hierarchy).

Figure 3: Drag-and-drop tasks. The item was torn off from
the top and dragged to the numerical target.

drag-and-drop trials. A web page instructed participants that they
needed to drag a blue box object containing a number onto the
target grey box showing the same number. Participants clicked a
button labelled ‘Start Tasks’ at the bottom of the instruction page
when ready to continue.

Sixteen grey target objects were vertically arranged below the
blue dragged object, enumerated 1 – 16 (see Figure 3a). The dragged
object moved with the cursor and turned green while the cursor
was over the target. Participants completed each trial by dropping
the dragged object while it was green. Correctly completing one
trial caused the next target to be immediately displayed in the blue
box at the top of the display. If the object was dropped onto the
wrong target, the same blue target item was re-displayed at the
top of the list (preventing participants from racing through the
experiment without regard to accuracy).

Each participant completed 20 drag-and-drop trials, consisting
of four familiarisation tasks (dragging items to randomly selected
odd-numbered targets) and 16 controlled tasks (two repetitions for
each of the even-numbered targets).

Data from these trials was used to determine each participant’s
user pace, as determined from their mean time on error-free trials.

3.3.2 Stage 2. System pace experience and preference. On complet-
ing the final task in stage 1, a web page displaying instructions was
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automatically shown for the next experimental stage. In stage 2, 
participants completed trials with two diferent settings for system 
pace, and then chose their preference. The instruction page included 
a sample hierarchy and instructed participants to drag the blue box 
to the target identifed by its number string, such as ‘5.2.3’, meaning 
that the item should be dragged to item 5 at the frst level, item 2 
at the second level, and items 3 at the third level (see Figure 3b). 
Participants were required to complete four familiarisation trials 
on the instruction page, each involving dragging the object to a 
target at the third level of the hierarchy. In these familiarisation 
trials, each level of the hierarchy opened after a hover timeout of 
1000 ms. 

Having completed the four familiarisation trials, a ‘Next’ but-
ton appeared, and clicking it advanced to a new page informing 
participants that they would use two systems – ‘System A’ then 
‘System B’ – to complete two sets of hierarchical drag-and-drop 
trials. Participants clicked a button labelled ‘Start System A Tasks’ 
when ready to proceed. After completing the set of trials with Sys-
tem A, they then clicked a button labelled ‘Start System B Tasks’ to 
begin the second set of trials. 

Similar to the previous stage, the blue box to be dragged was 
shown at the top of the display, immediately above sixteen grey box 
items, numbered 1-16 and prefxed with a symbol ‘▶’. Consistent 
with many commercial interfaces, the ▶ symbol indicted that the 
object contained children. At the start of each trial all items within 
the hierarchy were collapsed. When the dragged blue box hovered 
over a hierarchical parent item for longer than a timeout period, the 
item would expand to reveal its hierarchical content (see Figure 3b). 
Only one item at each level of the hierarchy could be expanded at 
any time, so when a hierarchical item was expanded, any previously 
expanded item at that level was automatically contracted. Each of 
the sixteen top-level items contained fve child items (enumerated 
1-5), and each of the child items contained between one and fve 
grand-child items – item n.1 contained four items, n.2 three, n.3 
two, n.4 one, and n.5 contained fve items. This structure was used 
to reduce target item spatial stability when unintended items were 
expanded (as normally occurs in real data hierarchies) – if all items 
had the same number of children then the location of a target would 
remain constant when one item expands and another contracts, 
for example, item 10 would remain spatially stable while the user 
dragged downwards to replace the fve children of 2.1 with fve 
children of 2.2. As at most only one item at each level of the hierar-
chy could be expanded, the maximum number of items displayed 
at once in the hierarchical view was 26 (16+5+5), plus the dragged 
item. 

The dragged object turned green when it was over the fnal target. 
Dropping the object while green completed the trial, causing the 
next trial to be immediately displayed; dropping the object on the 
wrong target caused the trial to begin anew, with the hierarchy 
fully contracted. If the cursor was moved outside of the list while 
dragging the object, the same blue target item was re-displayed 
at the top of the list (preventing participants from avoiding the 
expansion feature). 

Each participant completed 12 trials with each of the two sys-
tems (‘A’ and ‘B’), comprising one selection at each of the top-levels 
targets in the range 3-14. Each second and third level target was 
always item 5. We avoided using the top-most and bottom-most 

top-level items because they are least likely to induce unintended 
expansions (e.g., there is no expandable item beneath item 16, so 
the user can slowly approach item 16 from below without risking 
unintended expansion, unlike other locations). We always used 
the last item (item 5) at the second- and third- level because it is 
the most likely item to sufer unintended expansions – for exam-
ple, dragging of the bottom of target item 6.5 or 6.5.5 risks the 
unintended expansion of item 7. 

Having completed all of the trials with both Systems A and B, 
participants were asked to respond to the following forced-choice 
question: 

If completing these tasks again, I would prefer to use: 
□ System A □ System B 

The only diference between System A and System B was the 
length of the timeout period used to determine that the dragged 
object had hovered over a hierarchical object for sufciently long 
to trigger its expansion. The two settings were fast (250 ms) and 
slow (750 ms). For half of the participants, ‘System A’ was fast and 
‘System B’ was slow, with the inverse for the other half. 

3.3.3 Stage 3. Seting and experience of user-tailored system pace. 
Up to this point in the experiment the participants had not been 
informed about the use of diferent timeouts in the systems. A web 
page instructed participants that Systems A and B difered only in 
the length of the hover timeout used for item expansion. The web 
page included a slider showing the time settings used for Systems A 
and B (see Figure 4). A slider handle allowed users to set the timeout 
for an upcoming set of trials with System C. The web page also 
included an interactive ‘sandbox’ version of the System C interface, 
showing the same hierarchy as that used in Stage 2. 

Participants were instructed that they would complete a fnal 
set of drag-and-drop trials using ‘System C’, and that they should 
frst use the slider to set their preferred timeout value in the range 
1-1500 ms. The timeout was initially shown to match that of their 
preferred option (i.e., that used by their preferred of System A or 
B). Once the participants had manipulated the slider at least once, 
and completed at least one selection using the sandbox interface, a 
button at the bottom of the page was enabled stating ‘Start System 
C Tasks’. 

Finally, participants were asked to type any fnal comments they 
might have about the experiment. The experiment terminated with 
a web page that thanked them for their time. 

3.4 Subjects and Apparatus 
The experiment involved 208 participants on Amazon Mechanical 
Turk. Conditions for inclusion in the experiment were that each 
crowdworker had to be based in the United States, with a HIT 
approval rate greater than 90%, and with at least 1000 approved 
HITs. The participants’ mean age was 36.6 years (s.d., 10.5, min. 
18, max. 70); 61.5% self reported as male, 37.5% as female, and 1% 
declined to answer. Participants were asked to report the input 
device used for the study, with 83% reporting that they used a 
mouse, and 17% using a trackpad. Operating system use was divided 
between Microsoft Windows (89%), MacOS (8%), and Linux (3%). 
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Figure 4: Timeout confguration page and sandbox hierarchy, used to set timeout in Stage 3 of the experiment. 

The experiment took approximately 10 minutes to complete, with 
participation rewarded with a payment of USD$2.50 (apportioned 
from an hourly rate of USD$15 per hour). 

Software was written in HTML/CSS/JS, using the Paper.js library 
and a Firebase database to log all user actions, including the time 
taken to complete each of the trials and any errors made.2 

3.5 Design 
The hypothesis H1 (that fast users have stronger preference for 
fast timeouts, and slow users have stronger preference for slow 
timeouts) is tested through two main analyses. 

The frst analysis compares the proportions of participants who 
choose the fast system in preference to the slow system (when 
choosing between System A and System B) across three quantile 
bands of user pace classifcation (slow, medium, and fast) based on 
their performance in the stage 1 tasks. The dependent measures for 
this analysis are as follows: 

(1) user pace classifcation – the classifcation of each user’s pace 
from their data in the frst stage of the experiment, dividing 
participants into three quantile bands based on their mean 
trial completion times in the stage 1 drag-and-drop tasks (Q1, 
the fastest 331/3% of participants; Q2, the second quantile, 
representing the middle third of participants; Q3, the third 
quantile, representing the slowest third of participants). 

(2) system pace preference – the participant’s binary preference 
choice of either the fast or slow interface (i.e., the prefer-
ence of either System A or System B after stage 2 of the 
experiment). 

The hypothesis is tested using a χ2 test of proportions. The 
hypothesis requires that a higher proportion of participants who 
are classifed within Q1 (the fastest participants) choose the fast 
interface than do those who are classifed within Q3 (the slowest 
participants). 

2The software can be accessed and run at https://www.cosc.canterbury.ac.nz/andrew. 
cockburn/AdaptivePace/ 

The second analysis examines the relationship between the par-
ticipants’ user pace (as indicated by their mean performance in 
the stage 1 trials) and the timeout value that they select using the 
slider for System C. The dependent measures for this analysis are 
as follows: 

(1) user pace – each participant’s mean time on stage 1 trials. 
(2) System C timeout setting – the time that each participant 

selects as desirable for their set of trials with System C. 
In this second analysis, support for the hypothesis requires a posi-
tive correlation between user pace and System C timeout setting – 
fast-pace users with a low mean time on stage 1 trials should set a 
low timeout value for System C, and slow pace users should set a 
high timeout value for System C. 

Additional secondary analyses are also conducted to further char-
acterise the results, including analyses of the efects of participant 
gender and gaming experience, as well as participants’ comments3. 

4 RESULTS 

4.1 User pace characterisation from stage 1 
trials 

The analysis of results requires frst determining each participant’s 
user pace from their performance in stage 1 trials. We only included 
data for correct selections because including the time for errors 
could misrepresent a ‘rushing’ user who is fast but inaccurate as 
having a slow pace of interaction. 

Participants’ mean time for stage 1 trials ranged from an ex-
tremely fast 656 ms to a sedate 4100 ms, with an overall mean of 
1544 ms (s.d., 624, 95% CI [1458, 1631]). 

We computed quantile values that split the participants into three 
equally sized pools according to their mean performance on stage 1 
trials, classifying users as ‘fast’, ‘medium’, and ‘slow’. We used three 
quantiles (rather than two or four) for three reasons: frst, to provide 
a simple and natural alignment with our hypothesis; second, to 

3Experimental data and analysis scripts are available at https://osf.io/2e5yw/ 

https://www.cosc.canterbury.ac.nz/andrew.cockburn/AdaptivePace/
https://www.cosc.canterbury.ac.nz/andrew.cockburn/AdaptivePace/
https://osf.io/2e5yw/
https://Paper.js
https://USD$2.50
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provide a clear separation between fast and slow categories; third, 
to ensure a large sample within each of the fast and slow categories. 
The fastest 331/3% of participants were categorised as ‘Q1, fast’ if 
their mean trial time was less than 1219 ms; the middle 331/3% were 
classifed as ‘Q2, medium’ if their mean was in the range 1219-
1567 ms; and the slowest third of participant were categorised as 
‘Q3, slow’ if their mean was greater than 1567 ms. 

We computed an overall Fitts’s Law model [16] of movement 
time (MT) incorporating all participants’ means at each target dis-
tance. The model was strong (MT = 705+381× ID, R2 = 0.97), with 
the comparatively high intercept (705 ms) and slope (381 ms) values 
best attributed to the participants’ tasks involving dragging rather 
than traditional Fitts’s Law tapping tasks. Participants’ individual 
Fitts’s Law models ranged from good (R2 = 0.87) to non-existent 
(R2 < 10−5). We inspected the logs for participants with particu-
larly poor Fitts’s Law conformance (19 participants with Pearson 
r < 0.2) and found no explanation. However, our experimental 
instructions did not encourage participants to complete tasks at 
any particular speed or accuracy (unlike typical Fitts’s experiments, 
which prompt participants to complete trials ‘as quickly and ac-
curately as possible’). We maintained all participants’ data in our 
analysis. 

4.2 Preference for fast or slow system A/B, 
across user pace characterisation 

Although not part of our hypothesis, there was a general preference 
for the frst system experienced, with 59% of participants choosing 
System A (used frst) over System B (χ2 = 6.58, p = .01). Similar 
preference rates for the frst condition in forced-choice experiments 
have been observed in other studies (e.g., [21]). The proportion of 
participants who experienced the fast condition as System A was 
similar across quantiles (Q1-fast 49%, Q2-medium 51%, Q3-slow 
50%). As intended by our experimental design and pilot testing, 
when averaged across the three quantiles overall preferences for the 
fast and slow interfaces were fairly balanced, with 46% preferring 
fast and 54% preferring slow. 

Figure 5a summarises the main result, showing the proportion 
of users in each classifcation quantile that selected the fast (250 ms 
timeout) or slow (750 ms timeout) System A/B as their preferred 
interface. Importantly, 58.0% of users who were classifed in the 
Q1-fast quantile selected the fast 250 ms system as preferred to the 
slow 750 ms system. This preference for the fast interface decreased 
to 40.6% for the Q2-medium paced users, and to 38.6% for the Q3-
slow paced users. A three-way χ2 test of proportions shows that 
data as extreme as this sample should seldom occur in the absence 
of an underlying efect: χ2 = 6.35, p = .042. This supports H1, with 
further analyses of H1 below. 

4.3 System C timeout setting across user pace 
The second main analysis concerns the relationship between user 
pace and user’s preferred slider setting for the System C timeout. 
The mean value that participants set across quantiles is summarised 
in Figure 5b, from a low of 429 ms (s.d., 250 ms, 95% CI [369, 489]) 
for Q1-fast participants, through a mean of 546 ms (s.d., 302 ms, 
[473, 618]) for Q2-medium, to a maximum mean of 726 ms (s.d., 
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Figure 5: Main results from the experiment across 331/3 
quantiles of user pace (Q1 fast to Q3 slow). 

375 ms, 95% CI [636, 815]) for the Q3-slow participants. Analysis of 
variance for this data yields F2,205 = 15.77, p < 10−5. 

The overall relationship between participant’s mean time on 
stage 1 trials and their selected timeout value for System C is sum-
marised in Figure 6. The Pearson correlation coefcient for the 
relationship is positive, indicating that faster users tended to se-
lect shorter timeouts, and slower users selected longer timeouts 
(r = 0.41, p < 10−5, classifable as a medium efect [7]). The fg-
ure uses color to depict each participant’s preference selection of 
the fast (blue) or slow (red) version of System A/B, indicating a 
dominance of preference for fast interaction in the bottom-left of 
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Figure 6: Relationship between participants’ mean time on 
stage 1 trials and their selected System C time (line of best 
ft for all data). Blue data encodes participants who preferred 
the fast system A/B (250 ms), red encodes participants who 
preferred the slow system (750 ms). 
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the main chart; density plots at the top and right of the fgure also 
highlight distributions for participants who preferred the fast (blue) 
and slow (red) interfaces. 

Figure 2 showed a characterisation of the hypothetical efects 
of timeout delays on subjective satisfaction, for fast- and slow-
paced users. Figure 7 shows the experimental data relating to this 
characterisation, plotting the distribution of timeout values that par-
ticipants selected for System C across users classifed as Q1-fast and 
Q3-slow. The two peaks in the user-selected System C timeout val-
ues are clearly separated between Q1-fast and Q3-slow participants 
– a Kolmogorov-Smirnov test indicates that these two samples are 
unlikely to arise from the same distribution D = 0.48, p < 10−5. 
It is also notable that the distribution is tighter for Q1-fast partic-
ipants than it is for the Q3-slow participants, which is refected 
in the participants’ comments, discussed below. In general, fast 
participants seemed particularly clear about their need and desire 
for a fast system, whereas the opinions of participants classifed in 
Q3-slow were more variable. These results all support H1. 

4.4 Efect of gender, gaming frequency, and age 
Given the signifcant gender efects reported in studies of conver-
gence efects (see Section 2.1), we separately analysed the propor-
tions of males and females preferring the fast and slow Systems 
A/B across their respective quantiles. A numerically higher propor-
tion of males (50%) than females (38.5%) chose the fast system as 
preferred to slow (χ2 = 2.16, p = .14). For males, the preference 
diference was pronounced across classifcation quantile, with 67.4% 
of participants classifed in Q1 preferring the fast interface com-
pared to only 41.9% for those in Q3 (three sample test of equality 

Figure 7: Distribution of System C timeout selections for 
users classifed in Q1 (fast) and Q3 (slow), corresponding to 
hypothetical efects characterised in Figure 2. 

of proportions, χ2 = 7.9,p = .02). In contrast, female preference 
for the fast interface was much lower at 42.3% for Q1 participants 
and only 26.9% for those in Q3 (χ2 = 2.3, p = .32). Despite these 
suggested preference diferences between males and females, there 
is little evidence that this can be attributed to a performance dif-
ference between genders – the mean time on stage 1 trials was 
1518 ms for males compared to 1594 ms for females (unpaired T 
test, T174 = −0.86, p = .39). 

As many computer games expose users to a demanding pace of 
interaction, we wondered whether the frequency of gaming use 
might infuence preferences for timeout duration, and whether 
males played games more than females. We therefore conducted 
a Spearman rank correlation between participants’ self-reported 
frequency of gaming use and their setting for the System C time-
out, showing at most a weak relationship (ρ = 0.13,p = .058), 
suggesting that gaming frequency was not a strong infuence on 
our results. Male and female responses for the time spent playing 
games each day were similar, with 19% of males and 27% of females 
reporting playing 0-1 hours per day, and 57% of males and 52% of 
females reporting playing 1-4 hours per day. Finally, analysis of the 
relationship between participants’ age and their setting for System 
C time also showed no clear relationship (Pearson r = .08,p = .24). 

4.5 Participant comments 
Participants’ comments amplifed the quantitative observations 
above. Many of the most forceful comments were from the fastest 
users who expressed strong disliking for the 750 ms timeout in 
System A/B. For example, the participant with the lowest mean 
time on stage 1 trials (participant 1389, mean 656 ms) commented 
“I hated the length of the delay in system A.” This participant set the 
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System C delay to 180 ms. The participant with the second lowest 
mean time on stage 1 trials (participant 1100, mean 808 ms) set 
the System C timeout to the minimum value available at 1 ms, but 
subsequently commented that this was too short: “When I did the 
initial trials I thought that setting it to the quickest speed would be 
the most efcient and it was for many of the trials. But, if I got of 
track at all, it was harder to get back to the right section to make the 
drop. The overall speed was a positive but it wasn’t perfect. Doing a 
few more trials now makes me think that something around 75ms 
would work best for me. It’s just enough of a delay for me to easily get 
in the right box, but not so much of a delay as to be annoyingly slow.” 

At the other end of the spectrum of user pace, several partic-
ipants in the Q3-slow quantile made comments referring to the 
frustration of the timeout being too short. For example, participant 
1193 (mean 3254 ms) commented that she had “a difcult time con-
trolling the mouse to move the lines down to the correct line” and 
that her selected timeout value of 857 ms was selected “because I 
thought that maybe I could keep up with it better”, which suggests 
a desire for an improved match between her pace and that of the 
system. Similarly, participant 1335 (mean 3760 ms) commented “It 
was aggravating when the numbers would drop down before I wanted 
them to, the precision was very difcult”, and he set a high timeout 
value of 897 ms, further commenting after completing the System 
C trials that even this was too fast “If I could, I would have gone back 
and chosen more time before the drop-down occurred.” 

5 DISCUSSION 
The results and participant comments indicate that user preferences 
are positively infuenced when the system’s pace better matches an 
automatic measurement of the user’s pace. Participant preferences 
for slow and fast system pace aligned with our automatic categori-
sation of participants as having slow, medium, or fast user pace, 
and the timeout values that users explicitly set for their upcoming 
trials correlated with their mean time on an earlier set of trials 
that did not involve a timeout. In short, as hypothesised, fast users 
preferred a faster interface, and slow users preferred a slower one. 

The following subsections discuss the broader meaning of these 
results, examining the potential causes of the observed efect, the 
relationship between our results and the concept of interface pace 
convergence, discussing ways that systems might measure user 
pace to facilitate interaction pace convergence, and exploring im-
plications for design. 

5.1 Why do the results matter? 
Figure 5a indicates a 19% shift in preferences for the fast version 
of System A/B across quantiles – from 58% preferring the fast 
interface in the Q1-fast quantile to 38.6% in the Q3-slow quantile, 
with a larger shift for males (25.5%) than females (15.4%). And the 
mean timeout value that participants explicitly set for their System 
C trials difered by 297 ms between Q1-fast (429 ms) and Q3-slow 
participants (726 ms), representing a 69% increase across quantiles. 
While statistical analyses show these and other measures to be 
unlikely due to chance, there are legitimate questions about the 
practical signifcance of the fndings. 

We see three main reasons that the fndings have important 
practical implications. First, interface designers continually seek 

reliable means to make small improvements to user experience, and 
our results suggest a new avenue for doing so – interaction pace 
convergence, discussed further in Section 5.3. 

Second, small elements of dissatisfaction or suboptimal system 
behaviour can have amplifed efects on the user when they occur 
frequently. This was particularly evident in the comments of some 
of the Q1-fast users regarding the slow behaviour of System A/B, 
one of whom stated that he ‘hated’ the delay. 

Third, although a diference of 297 ms between the mean times 
selected by Q1-fast and Q3-slow users may seem small, the features 
of contemporary interfaces suggest that designers understand that 
‘small’ diferences in timeouts have important implications. For 
example, in the Mac OS Finder the default timeout for spring-loaded 
folder expansion difers by 400 ms between column view and other 
views (suggesting an explicit design choice), and the full range of 
spring-loaded timeouts that users can confgure covers only 700 ms 
from fastest (500 ms) to slowest (1200 ms). 

5.2 What causes the observed efect? 
We were inspired to conduct this research by fndings on speech 
rate convergence from communication studies, as briefy reviewed 
in Section 2.1. The results reported above are consistent with under-
lying theories of convergence – our participants’ preferences and 
settings aligned with the notion that users have greater afnity for 
interfaces that are more similar to them in terms of pace. However, 
correlation is not causation, and a variety of factors other than afn-
ity for similarity might have contributed to the observed efects. For 
example, the results could be framed within fow theory [10], with 
an explanation that participants were best able to experience the 
desirable state of fow when the difculty of the interface (due to 
the timeout setting) was best balanced with their level of skill. Un-
der this theory, participants would become anxious if the timeout 
was too short for their skill level; and they would become bored if 
the difculty of the interface was too low (due to its long timeout). 
Other factors, such as participants’ variable tolerance for errors 
may have infuenced preferences, as might variations in the strate-
gies that users adopted to complete the tasks. Regarding strategies, 
during our pilot studies we noted that one very fast user assisted 
his performance with extremely short timeouts by intentionally 
overshooting beyond the intended target, then moving more slowly 
upwards to expand the intended target – in this way he reduced the 
incidence of target movement that occurs when under-shooting in 
a downward direction. 

There are extensive opportunities for further experimental work 
to examine and tease apart causal factors infuencing our results. 

5.3 Relationship between the results and 
interface pace convergence 

Regardless of the underlying theoretical foundation or cause of the 
observed efects, the primary fnding remains that preferences for 
interface conditions were improved when the system’s pace better 
matched the user’s pace. One important design implication of this 
is that systems could adapt interface properties such as timeouts 
to converge the system’s pace to better match that of the user in a 
form of interface pace convergence. 
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Although some interfaces provide facilities that allow the user 
to confgure timeouts many others do not, leaving users with a 
‘one size fts all’ system pace. Even when customisation facilities 
are provided they often go ignored, and they necessarily increase 
the complexity of the interface presented to the user. Our results 
suggest that instead of invariant pace and instead of customisa-
tion facilities, interfaces could be designed to observe the user’s 
pace of interaction, and automatically adapt interface properties to 
converge towards the user’s pace. In this way, the interface might 
become more responsive (e.g., a shorter timeout) when used by a 
fast user or when the user is inferred to be rushing, and the timeout 
might increase when the user is slow or interacting more leisurely. 

However, the conditions tested in our experiment did not di-
rectly involve the system converging to the user’s pace. Instead, the 
method measured the users’ pace, automatically categorised the 
participants as fast, medium, or slow, and exposed participants to 
fast and slow conditions. As predicted, users who were categorised 
as fast had stronger preference for the fast condition than slow 
users, and those categorised as slow had stronger preference for 
the slow condition than fast users. 

While this method did not involve interface pace convergence, 
participants were not aware of the basis for their exposure to the 
settings of System A and B, and those settings could theoretically 
have arisen from interface pace convergence. For example, a simple 
convergence algorithm might be ‘if the measured user pace is fast, 
make the interface more similar to the user’s pace by using a short 
250 ms timeout; and if the measured user pace is slow, make the 
interface more similar to the user’s pace by using a long 750 ms 
timeout.’ An experiment testing this simple form of interface pace 
convergence might initially measure the user’s pace, then have 
users choose their preferred version of the interface after complet-
ing two sets of trials, one with the algorithm correctly applied, and 
the other with it incorrectly applied. Fast and slow users should 
have stronger preferences for the interface with the correctly ap-
plied convergence. Importantly, from any participant’s perspective, 
this hypothetical experiment testing interface pace convergence 
would be identical to the one our participants actually conducted. 

As it stands, our results indicate that user preferences for timeout 
values (which infuence system pace) covary with user pace. Further 
empirical work is needed to test their generalisation to interface 
pace convergence. 

5.4 What data could determine the user’s pace 
as a basis for convergence? 

The possibility for interface pace convergence raises questions 
about how the system might measure and determine the user’s pace, 
as well as the frequency of any such measurement and resultant 
adaptation. To classify participants as slow, medium, or fast, our 
experiment used data from the stage 1 trials, where every trial 
had a clear starting and terminating action (initiating the drag 
at a specifc location, and dropping the item on a predetermined 
target). However real interaction often lacks such clear start and 
end points. For example, it can be very difcult to determine where 
and when a particular pointing action begins, and whether the 
target is successfully hit or missed [3]. 

There are many opportunities for examining factors that might 
indicate users’ pace. These include the mean time between succes-
sive interface manipulations (as suggested by Giacolone Jr [19], 
Schüll [41]), and the velocity profle of manipulations such as 
scrolling and pointing. Further work could also examine the use 
of biometrics such as eye gaze movement, pupil dilation, galvanic 
skin response, and others as proxies for indicating user pace. 

5.5 Lessons for hierarchy interfaces 
Our experimental tasks involved drag-and-drop behaviours that 
are a standard part of a wide range of interfaces that support hi-
erarchical browsing. We used these interactions as a convenient 
and familiar exemplar for studying general concepts relating to 
user- and system-pace, and not because we wanted to make spe-
cifc recommendations for hierarchical interfaces. However, the 
results suggest that a non-confgurable predetermined timeout for 
hierarchy expansion is suboptimal. Furthermore, only 10% of our 
participants set a timeout value for System C that exceeded one sec-
ond, yet a one second timeout is used in many systems (including 
Thunderbird), suggesting that the majority of users would prefer 
faster operation with a shorter timeout. 

However, designers face complex tradeofs around these timeout 
values. We suspect that designers are knowingly setting a timeout 
value that is too long for the majority of users. Setting a value 
that is too short for a user will cause unintended items to expand, 
potentially moving the target item from its original location on 
the display, which is likely to be highly frustrating as the user will 
efectively need to ‘fght a twitchy system’ during drag-and-drop. 
Conversely, setting a value that is too long is likely to be somewhat 
frustrating to a rushing user, but the frustration is unlikely to be 
as potent as that for the slow user fghting the system (unless a 
fast user is continually delayed during a long series of drag-and-
drop activities, as was the case in our experiment). Therefore, we 
suspect that designers choose to avoid the potent frustration of a 
too short timeout by setting a timeout that is mildly frustrating for 
the majority. Designers might also contemplate allowing users to 
confgure the timeout value, but doing so would add complexity to 
the user interface (requiring a confguration dialog and interface 
mechanisms to activate it), and it is unclear that a large proportion 
of users would make use of the customisation facilities [31]. 

5.6 Further work on interface pace 
convergence 

There are abundant opportunities for further research on inter-
face pace convergence. As mentioned above, there are interesting 
questions about how a system might measure and infer the user’s 
pace. There are also interesting questions about the frequency with 
which a system might benefcially adapt to the user’s pace – minute-
by-minute adaptations could risk the user perceiving the system as 
inconsistent, but hour-by-hour might benefcially capture impor-
tant pace changes stimulated by factors such as post-meal blood 
sugar levels. Between-subject factors also raise an abundance of 
interesting questions, especially when the interface is gendered, as 
is the case with speech interfaces (e.g., Siri and Alexa). Research 
from communication studies has extensively observed diferences 
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in convergence between mixed and same sex communication part-
ners, and it would be interesting to understand how the efects of 
interaction pace convergence vary across user genders when the 
interface itself is gendered. 

Finally, our study involved a batch of sequential drag-and-drop 
activities completed by crowd-workers on Amazon Mechanical 
Turk for whom there is a clear imperative for completing tasks in 
the minimum time possible. Like all empirical studies, there is need 
for replication and method triangulation to examine the boundaries 
of generalisation and validity. 

6 CONCLUSION 
Extensive results from communication studies indicate that afn-
ity and pro-social behaviour can be enhanced when people adapt 
their communication patterns, such as the rate of speech, to better 
match their communication partner. Inspired by these fndings, we 
examined whether users would have stronger preferences for an 
interface that better matched the user’s pace of interaction. Experi-
mental results aligned with our hypothesis – faster users showed 
stronger preference for a faster interface, and slower users had 
stronger preference for a slower interface. This fnding has three 
potentially important design implications. First, interface designers 
often seek efciency optimisation – trying to make the interface 
as fast as possible – yet this fnding suggests that doing so could 
impair satisfaction for users who prefer a more leisurely pace4. Sec-
ond, interface designers often build predetermined timeouts into 
their systems, imposing a ‘one size fts all’ element of interaction 
pace into the system; alternatively, designers sometimes provide 
confguration interfaces that allow users to customise timeouts, but 
these often go ignored, leaving users with the designer’s predeter-
mined default. The experimental results suggest that an invariant 
default system pace will leave many users with a system pace that is 
mismatched with their preferred pace. Third, there are abundant de-
sign and research opportunities for new interfaces that observe and 
adapt to the users pace, in a form of interaction pace convergence. 
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