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Abstract: The main objective of this study was to monitor wet snow conditions from Sentinel-1 over
a season, to examine its variation over time by cross-checking wet snow with independent snow
and weather estimates, and to study its distribution taking into account terrain characteristics such
as elevation, orientation, and slope. One of our motivations was to derive useful representations
of daily or seasonal snow changes that would help to easily identify wet snow elevations and
determine melt-out days in an area of interest. In this work, a well-known approach in the literature
is used to estimate the extent of wet snow cover continuously over a season and an analysis of the
influence of complex mountain topography on snow distribution is proposed taking into account
altitude, slope, and aspect of the terrain. The Sentinel-1 wet snow extent product was compared
with Sentinel-2 snow products for cloud free scenes. We show that while there are good agreements
between the two satellite products, differences exist, especially in areas of forests and glaciers where
snow is underestimated. This underestimation must be considered alongside the areas of geometric
distortion that were excluded from our study. We analysed retrievals at the scale of our study area
by examining wet snow Altitude–Orientation diagrams for different classes of slopes and also wet
snow Altitude–Time diagrams for different classes of orientations. We have shown that this type
of representation is very useful to get an overview of the snow distribution as it allows to identify
very easily wet snow lines for different orientations. For an orientation of interest, the Altitude–Time
diagrams can be used to track the evolution of snow to locate altitudes and dates of snow loss. We
also show that ascending/descending Sentinel-1 image time series are complementary to monitor
wet snow over the French alpine areas to highlight wet snow altitude ranges and identify melt-out
days. Links have also been made between Sentinel-1 responses (wet snow) and snow/meteorological
events carefully listed over the entire 2017–2018 season.

Keywords: snow; wet snow; remote sensing; Sentinel-1; Sentinel-2; C-band backscatter

1. Introduction

In alpine regions, monitoring the spatial and temporal variations of snow conditions
is a key element for many applications such as hydrology, mountain ecosystems, meteo-
rological, and avalanche forecasting. Mapping wet snow is a critical input for wet snow
avalanche forecasts. Wet snow avalanches occur when melt water or rain penetrate the
snowpack, leading to increased instability of the snowpack, but are difficult to predict and
estimate, even a posteriori [1]. Furthermore, assessing the amount of snow, its evolution
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over time, and particularly the start date of snowmelt is critical to optimize hydro-power
production and to anticipate flood risk. The melt-out date of the seasonal snow cover plays
an important role in mountain ecosystems [2].

Remote sensing allows monitoring of seasonal snow everywhere and as often as
possible according to the observation constraints of satellite sensors, although specific
challenges need to be addressed such as separating the contributions of snow and canopy
in forests, the need for adequate pre-processing of observations in complex terrain and the
requirements for satellite product evaluation through in situ observations [3]. Sentinel-1
satellites provide C-band synthetic aperture radar (SAR) data at unprecedented temporal
and spatial resolutions and are able to detect the presence of wet snow [4–6]. This makes it
possible to contribute to monitoring seasonal snow in the mountains at high resolution [7].
Sentinel-1 observation time series were studied by [8] to infer information about snowmelt
dynamics. These data were also used by [9] to map snow depth in the Northern Hemi-
sphere mountains at 1 km2 resolution using change detection method. In the study of [10],
the authors evaluated backscatter numerical simulations at C-band over mountains using a
chain of models composed of the SAFRAN meteorological reanalysis, the Crocus snowpack
model, and the radiative transfer model Microwave Emission Model for Layered Snow-
packs (MEMLS3&a). The authors showed that there is good agreement between Sentinel-1
observations and simulations under snow-free or dry snow conditions. Under wet snow
conditions, a bias between observations and simulations was noted although the changes
in time and space are well correlated. A review about snow retrievals from SAR data is
given in [11]. For C-band co-polarized measurements, there is low absorption or scattering
of the signal by dry snow, whereas the signal undergoes high absorption and reflection
by wet snow. In the study of [12], the authors have shown that polarimetric information
from multi-frequency (L- and C-bands) and multi-temporal SAR data can be successfully
used to map the extent of dry snow in alpine areas. For a wet snowpack, surface refreezing
would result in a strong volumetric scattering of the coarse grains of the refrozen layer and
therefore an increase in backscattering ([13]). Snow volume scattering is more noticeable
in cross-polarization with a gradual increase in backscatter with snow accumulation, a
decrease in backscatter is generally observed for wet snow probably caused by absorption
and reflection processes ([9]). Wet snow detection methods usually rely on change detec-
tion approach using an image ratio to compare two images (wet snow backscatters are
generally lower than dry snow or soil backscatters). The ratio between two images with
and without snow is computed for the same study area and a threshold is applied to derive
a snow mask [14]. Algorithmic improvements have been designed [5,7] to better account
for minimum and maximum values of snow backscatter and for an optimized choice of
reference images. In addition to snow parameters, surface roughness and local incidence
angle also contribute to the complex relationship between backscatter and snow, resulting
in positive or negative correlations depending on the situation ([13,15,16]). The relationship
between incidence angles and co/cross polarizations at C-band was investigated [17] in
order to identify wet snow-covered surfaces. The wet snow and soil separation was shown
to be easiest with incidence angle values close to 45◦ [18]. The study of [4] used Sentinel-1
images with a −2 dB threshold by combining the two available VV and VH polarizations.
A stochastic approach was used [19] to map wet snow probability occurrences. Data fusion
methods have also been used to combine snow information from optical images and from
SAR images ([20,21]).

The main objective of this study was to monitor wet snow conditions from Sentinel-1
over a season, to examine its variation over time by cross-checking wet snow with indepen-
dent snow and weather estimates, and to study its distribution taking into account terrain
characteristics such as elevation, orientation, and slope. One of our motivations was to
derive useful representations of daily or seasonal snow changes that would help to easily
identify wet snow elevations and determine melt-out days in an area of interest.

This article relies on the method described in [4] and combines Sentinel-1 VV/VH
polarizations to monitor wet snow in a steep alpine mountainous area during a 7 month
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period (62 Sentinel-1 scenes with ascending and descending modes). The study of [4]
uses 3 Sentinel-1 descending orbit images (of June 2015) to derive wet snow maps. The
robustness of the wet snow retrieval approach is studied by evaluating the performances
of the wet snow detection method taking into account terrain characteristics (elevation,
slopes, aspects) and meteorological events during the time period of December 2017 to June
2018 over an alpine area. The studied season is characterized by exceptional snow cover
following extremely heavy precipitation events associated with temperatures significantly
below average, except in January, exceptionally warm. Snow conditions were quite variable
depending on the altitude with ordinary snow conditions below 1200 m, remarkable snow
conditions from 1500 m, and exceptional snow conditions from 1800 m approximately [22].
Whenever possible, comparisons between Sentinel-1 and Sentinel-2 snow products were
also performed.

Data and models used in this study are described in Section 2. Results are provided in
Section 3, while Section 4 provides discussion and conclusion statements.

2. Data and Method
2.1. Location and Time Period

The area under investigation is located in the French Alps, as shown on Figure 1. This
figure also shows the elevation, aspect, and slope distribution of the study area. The spatial
coverage of relevant Sentinel-1 orbits for our study area is also plotted. Our area is a quite
heterogeneous alpine zone with complex topography and with terrain mainly dominated
by north/south aspects. It has an area of 2310 km2 with several land cover types including
forests, bare ground, glaciers, and wetlands (as shown on Figure 1 using 25 m resolution
land cover products from the CORINE Land Cover (CLC) European database). The time
period of this study ranges from December 2017 to June 2018. This corresponds to highly
disturbed meteorological and snow conditions in the European Alps and particularly the
French Alps [22,23].

Figure 1. Location of the study area and surface types from the CORINE Land Cover products. The
spatial coverage of Sentinel-1 relative orbits 139 and 161 is shown in the location map.
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2.2. Sentinel-1 Data

We use backscatter coefficients at C-band from SAR observations on board Sentinel-1
missions launched by the European Space Agency (ESA) within the Copernicus Program.
Sentinel-1 mission consists of a constellation of two satellites, Sentinel-1A and Sentinel-1B,
which are 180◦ orbit apart, which allow continuous observations of the French Alps
every 6 days. Sentinel-1A and Sentinel-1B were launched in April 2014 and April 2016
respectively. Sentinel-1 has a side-looking imaging geometry, so that images are subject to
geometry-induced radiometric distortions (shadow, layover, and foreshortening effects). In
case of foreshortening, mountain slopes facing the sensor are compressed in a few image
pixels which appear bright. Layover effect, it is an extreme case of foreshortening; it occurs
in cases where the top of the mountain is closer to the sensor than the bottom. Shadow
areas correspond to the hidden parts of the radar beam. This phenomenon occurs when
the target is obscured by an obstacle. Layover, foreshortening, and shadow regions are
usually simulated using digital elevation models and sensor acquisition parameters (see
for instance [24,25]).

We used Level-1 Ground Range Detected (GRD) products available from the ESA web
site (https://scihub.copernicus.eu/dhus/). Sentinel-1 data have a spatial resolution of
20 m in both VV and VH polarizations. We use Sentinel-1 relative orbits A161 (ascending)
and D139 (descending), which are relevant for our test site and study period. SAR data
have been processed using the ESA Sentinel-1 Toolbox (SNAP). For preprocessing SAR
data, the following SNAP software operators are used in the following order: (1) “Apply
orbit file” to updated orbit metadata with a more precise orbit file, (2) “GRD border noise
removal”, to remove low intensity noise and invalid data on scene edges, (3) “Thermal noise
removal” to help reducing noise effects a noise look-up table, (4) “Radiometric calibration”
to compute backscatter intensity using sensor calibration parameters in the GRD metadata,
(5) “Speckle Filtering” to reduce the data inherent salt and pepper like textures (using
refined Frost filter [26]), and (6) “Terrain correction” to convert data from ground range
geometry to sigma0 using the National Institute for Geographic and Forestry Information
(IGN) 25 m Digital elevation model. Areas of shadow, layover, and foreshortening areas
were identified for each orbit using the SNAP module “SAR Simulation Terrain Correction”.
Since no specific corrections have been made to correct or attenuate layover/foreshortening
effects (see for instance methods proposed by [27,28]), shadow, layover, foreshortening
areas have been excluded. Note that the use of such methods would correct the geometry
of the scene as well as its radiometry by normalizing the backscatter to the local illuminated
area as seen by the sensor without using an ellipsoid-model-based incidence angle as we
get from terrain correction. A series of 62 Sentinel-1 images from ascending and descending
orbits were used, and are listed in Tables 1 and 2. We use the Theia snow products derived
from Sentinel-2 data when available over our test zone (cloud free situations) [29]. The
Sentinel-2 mission developed by the European Space Agency (ESA) is composed of two
satellites (Sentinel-2A and Sentinel-2B) operating in the same orbit (786 km) launched in
2015 and in 2017, respectively. These snow retrieval products are developed by CNES and
CESBIO and are available from the Theia website (https://theia.cnes.fr). Sentinel-2 snow
retrieval products used in this study are listed in Tables 1 and 2. Sentinel-2 snow retrieval
products are used as a reference to evaluate Sentinel-1 derived wet snow maps. We would
like to emphasize that the Sentinel-2 snow retrievals refer to snow extent whereby dry
versus wet is not distinguished, while Sentinel-1 only detects wet snow, so the comparison
is not between two identical snow retrievals. In addition, significant differences between
the two snow products could be caused by the different satellite overpass times.

https://scihub.copernicus.eu/dhus/
https://theia.cnes.fr
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Table 1. SAR scenes from Sentinel-1 relative orbits A161 (ascending, afternoon) and D139 (descending, early morning) used
in this study as well as Sentinel-2 snow products used in this study. Key meteorological and snowpack parameters are also
reported: meteorological event; expert elevations of the snow–rain line and continuous snowline (northern and southern
orientation); highlights related to the satellites retrievals: presence of clouds and Snowfall reaching Low Altitudes (SLA)
for Sentinel-2; origin of wet snow for Sentinel-1: Rain-On-Snow event (ROSE), melt event (ME). Snowpack accumulation
period from mid-December 2017 to end of March 2018.

Date Satellite Relative Meteorological Snow-Rain Line Snowlines HighlightOrbit Event Elevation North/South

24 August 2017 Sentinel-1 D139
25 August 2017 Sentinel-1 A161

10–11 December 2017 – – Ana storm 500 to 2200 m 1200 m/1400 m ROSE
16 December 2017 Sentinel-1 D139 Snowfall 600 to 400 m 1000 m/1000 m SLA
17 December 2017 Sentinel-1 A161
22 December 2017 Sentinel-1 D139 1000 m/1000 m
23 December 2017 Sentinel-1 A161
28 December 2017 Sentinel-1 D139 Snowfall 1000 to 200 m 1000 m/1000 m SLA
29 December 2017 Sentinel-1 A161 Snowfall 600 m SLA

3 January 2018 Sentinel-1 D139 Eleanor 1500 to 2000 m ROSE
4 January 2018 Sentinel-1 A161 storm 2200 m ROSE
5 January 2018 Sentinel-2 – 1000 m/1300 m
9 January 2018 Sentinel-1 D139 Retour d’Est 1800 to 1400 m ROSE
10 January 2018 Sentinel-1 A161
15 January 2018 Sentinel-1 D139
15 January 2018 Sentinel-2 – 1000 m/1400 m Cloudy
16 January 2018 Sentinel-1 A161 Snowfall 700 to 1300 m
21 January 2018 Sentinel-1 D139 Heavy snowfall 1000 to 1400 mm
22 January 2018 Sentinel-1 A161 Heavy snowfall 2000 m ROSE
25 January 2018 Sentinel-2 – 1000 m/1100 m Cloudy
27 January 2018 Sentinel-1 D139 Snowfall 1000 m
28 January 2018 Sentinel-1 A161 1000 m/1200 m
30 January 2018 Sentinel-2 – 1000 m/1200 m Sea of clouds
2 February 2018 Sentinel-1 D139
3 February 2018 Sentinel-1 A161
4 February 2018 Sentinel-2 – 1000 m/1200 m Cloudy
8 February 2018 Sentinel-1 D139
9 February 2018 Sentinel-1 A161
9 February 2018 Sentinel-2 – 1000 m/1300 m
14 February 2018 Sentinel-1 D139
14 February 2018 Sentinel-2 – 1000 m/1000 m
15 February 2018 Sentinel-1 A161 Snowfall 1800 to 2300 m ROSE
19 February 2018 Sentinel-2 – 1100 m/1200 m Cloudy
20 February 2018 Sentinel-1 D139
21 February 2018 Sentinel-1 A161
24 February 2018 Sentinel-2 – 1100 m/1300 m Cloudy
26 February 2018 Sentinel-1 D139 Very cold
27 February 2018 Sentinel-1 A161 Very cold

4 March 2018 Sentinel-1 D139
5 March 2018 Sentinel-1 A161

10 March 2018 Sentinel-1 D139 Snowfall 2400 m ROSE
11 March 2018 Sentinel-1 A161 Snowfall 2500 to 1900 m ROSE
21 March 2018 Sentinel-2 – 1100 m/1300 m Cloudy
22 March 2018 Sentinel-1 D139
23 March 2018 Sentinel-1 A161
26 March 2018 Sentinel-2 – 1200 m/1500 m Cloudy
28 March 2018 Sentinel-1 D139 Snowfall 1600 to 18,000 m
29 March 2018 Sentinel-1 A161 Snowfall 1800 to 16,000 m
31 March 2018 Sentinel-2 – Heavy snowfall 1100 m 1100 m/1300 m SLA for the time
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Table 2. Same as Table 1 for the 2018 melt season, from early April to mid-June 2018.

Date Satellite Relative Meteorological Snow-Rain Line Snowlines HighlightOrbit Event Elevation North/South

2 April 2018 – – 1000 m/1000 m Onset of the melt
season

3 April 2018 Sentinel-1 D139 1000 m/1000 m ME
4 April 2018 Sentinel-1 A161 1000 m/1200 m ME
5 April 2018 Sentinel-2 – 1200 m/1500 m ME Cloudy
9 April 2018 Sentinel-1 D139 1200 m/1500 m ME
10 April 2018 Sentinel-1 A161 Snowfall 1200 m 1200 m/1400 m SLA for the time
15 April 2018 Sentinel-1 D139 1400 m/1700 m ME
15 April 2018 Sentinel-2 – 1400 m/1700 m ME
16 April 2018 Sentinel-1 A161 1400 m/1700 m ME
20 April 2018 Sentinel-2 – 1400 m/1700 m ME
21 April 2018 Sentinel-1 D139 1500 m/1800 m ME
22 April 2018 Sentinel-1 A161 1600 m/1900 m ME
25 April 2018 Sentinel-2 – 1600 m/2000 m ME
27 April 2018 Sentinel-1 D139 1700 m/2000 m ME
28 April 2018 Sentinel-1 A161 1700 m/2000 m ME
3 May 2018 Sentinel-1 D139 Retour d’Est 2800 m 1900 m/2200 m Small amount
4 May 2018 Sentinel-1 A161 Retour d’Est 2500 m 1900 m/2300 m Small amount
5 May 2018 Sentinel-2 – 1900 m/2300 m Cloudy
9 May 2018 Sentinel-1 D139 1700 m/2000 m ME
10 May 2018 Sentinel-1 A161 Snowfall 2600 m 1700 m/2000 m MS/ ROSE
13 May 2018 – – Snowfall 1500 m 1500 m/2300 m SLA for the time
15 May 2018 Sentinel-1 D139 Snowfall 2000 to 2400 m 1500 m/2000 m ROSE
15 May 2018 Sentinel-2 – Snowfall 2000 to 2400 m 1500 m/2000 m Cloudy
16 May 2018 Sentinel-1 A161 1900 m/2300 m ME
20 May 2018 Sentinel-2 – 2000 m/2300 m Stormy
21 May 2018 Sentinel-1 D139 Instable 2600 m 2000 m/2300 m ME
22 May 2018 Sentinel-1 A161 Instable 2800 m 2000 m/2300 m ME
25 May 2018 Sentinel-2 – 2000 m/2300 m Partly cloudy
27 May 2018 Sentinel-1 D139 Instable 3400 m 2000 m/2400 m ME
28 May 2018 Sentinel-1 A161 Instable 3200 m 2000 m/2500 m ME
2 June 2018 Sentinel-1 D139 Instable 3500 m 2000 m/2600 m ME
3 June 2018 Sentinel-1 A161 Instable 3400 m 2100 m/2600 m ME
8 June 2018 Sentinel-1 D139 Instable 2200 m/2600 m ME
9 June 2018 Sentinel-2 – Instable 2200 m/2600 m Cloudy
9 June 2018 Sentinel-1 A161 Instable 2200 m/2600 m ME

14 June 2018 Sentinel-1 D139 // ME
14 June 2018 Sentinel-2 – // ME Cloudy
15 June 2018 Sentinel-1 A161 // ME
19 June 2018 Sentinel-2 – - ME
20 June 2018 Sentinel-1 D139 - ME
21 June 2018 Sentinel-1 A161 - ME
26 June 2018 Sentinel-1 D139 - ME
27 June 2018 Sentinel-1 A161 - ME

2.3. Methods

Several Sentinel-1 pre-processing steps are necessary before computing wet snow
maps. A workflow within the ESA SNAP toolbox has been designed to automatically
process all Sentinel-1 scenes (data of each orbit tracks has been processed separately). The
workflow includes precise orbit data update, calibration of images, the speckle reduction
using Frost filter, co-registration of images and terrain correction. For each orbit track, a
summer image was selected as a master scene (24–25 August 2017 for D139 and A161,
respectively). SAR local incidence angles as well as shadow/layover/foreshortening binary
masks were computed using the IGN 25 m DEM. Backscatter ratio values of the winter
image versus the reference one were computed for tracks D139 and A161 for the VV and
the VH polarizations. We then merged VV and VH ratio to compute a combined single
channel Rc using values of the local incidence angle following the method described in [4]:

Rc = WRvh + (1 − W)Rvv (1)

where W varies with respect to the local incidence angle. Rvv is VV-polarized ratio
between snow image and the summer reference. Rvh is VH-polarized ratio between snow
image and the summer reference. A threshold of −2 dB was then applied to compute
ascending/descending wet snow maps. Sentinel-1 wet snow products were also filtered to
reduce single outlayer pixels. Ascending and descending products were used separately
or merged (called S1 Combined hereafter) to observe different sides of mountains. The
wet snow binary images from the descending orbit of day D and the ascending orbit of
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day D + 1 were combined into a single wet snow product, preserving wet snow detection
information regardless of orbit direction. The combined product is binary and contains
the following values: 0 if bare ground or dry snow, 1 if wet snow is detected within 48 h
by one or both orbits. Note that all our images are perfectly co-located and have the same
number of pixels.

2.4. Elements About Snow and Meteorological Conditions

S1 observations are sensitive to the amount of liquid water in the seasonal snowpack,
whose variations in time and space are particularly difficult to quantify (e.g., [30]). Specific
situations of interest for the evaluation of S1 observations in this respect, thus include rain
events reaching above the snowline (Rain-On-Snow events: ROSE) ([31]), and melt events
(ME) [32]), when liquid water forms close to the snow surface due to the surface energy
balance. While ROSE are affected by spatial variations in precipitation and rain/snow
transition, melt is much controlled by slope aspect, inclination and elevation in link with
incoming short wave radiation and orographic gradients. While the penetration of liquid
water in a dry snowpack is rapid and highly heterogeneous ([33]), both along slope-parallel
and slope-perpendicular dimensions ([34]), this small-scale heterogeneity lowers when
the snowpack is wet. As a result of spring diurnal cycles, wet surface snow layers or thin
snowpacks can also refreeze over night (20 to 40 cm of total refreezing is common in one
night, especially at an early stage of humidification). Thus, a thin or only moderately wet
snowpack may be dry or wet for the same day depending on the time of observation.

In this study, S1 and S2-based snow products are analyzed with respect to snow
conditions estimated every day by Météo-France snow and avalanche forecasters and
provided in snow and avalanche bulletins for the Oisans massif (this massif is representative
of our test area). The forecast bulletins provide information on snow, weather conditions
such as snowfall, rainfall, wind, and the corresponding avalanche risk using the European
Avalanche Danger Scale. On all the Northern Alps, December 2017 and January 2018
were marked by a succession of quite active storms with several heavy precipitation
events and temperatures rather high with respect to monthly climatology [23]. This
induced a succession of Snowfall reaching Low Altitude (SLA) and episodes of warm,
rainy weather with rain reaching unusually high elevations (up to 2300 m in the massif
of Oisans, 2400 m in other massifs), generating Rain-On-Snow events. The month of
February experienced frequent snowfall and most often cold temperatures. During March,
weather disturbances occurred as well as late snow events. On average, and despite some
fluctuations, temperatures were generally quite low during this month. Temperatures were
remarkably mild during the month of April with an exceptional warm episode from the
18th to the 22nd. The end of April was again very disturbed with a marked decrease in
temperatures. Tables 1 and 2 synthesize the chronology of snow and rain events on the
massif of Oisans from mid-December 2017 to late June 2018. The dates of satellite retrievals
(Sentinel-1 and Sentinel-2) are highlighted in these tables. The main ROSE (early January,
15 February, 9 and 10 March) and snowfall episodes (late December, 16 and 21–22 January,
late March) are highlighted.

3. Results
3.1. Focus on Two Situations

Figure 2 shows in pink the obtained wet snow binary product using Sentinel-1 images
of 27–28 April 2018 (descending and ascending) and in blue the wet snow mask using
data from 20–21 June 2018 (descending and ascending). For comparison, Figure 3 shows
Sentinel-2 snow extent of 25 April 2018 and 19 June 2018 (in pink and blue, respectively).
Figure 4 maps pixels of geometric distortions for the ascending (in pink) and the descending
orbits (in orange). A relatively significant number of pixels was screened out (almost 15%)
but combining ascending and descending orbit images should help to optimally observe the
test area. Sentinel-2 scenes were almost cloud-free and the agreement between Sentinel-1
and Sentinel-2 snow products was rather good for these periods mostly associated with wet
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snow conditions. A Hamming distance was calculated between Sentinel-1 and Sentinel-2
binary snow products to quantify the difference between the binary matrices by associating
the number of positions where the two sequences differ. This number, normalized by the
total number of pixels, was found to be lower than 0.2 (matrices are identical when the
Hamming distance is close to zero). The spatial variability was consistent between the two
satellite products and a relatively smaller extension of wet snow was observed compared
to that of Sentinel-2. In particular, very high elevation areas (dark areas, elevation greater
than 3000 m) and also some northern slopes at low elevations (e.g., the two south corner
of the domain) are associated with snow in Sentinel-2 product and not in Sentinel-1 wet
snow product. This could be due on the one hand to the presence of dry snow at very
high elevations and to glaciers signature and on the other hand, as far as low elevations
and north slopes are concerned, by the fact that for early morning or late evening tracks,
on those kinds of slopes, the snow cover was quite thin and thus totally refrozen and
transparent to Sentinel-1 (prevailing snow conditions essentially of spring type, with
freeze/thaw cycles). This effect could also partly be explained by the effect of snow volume
scattering, increasing cross-polarization backscatter in winter, particularly for bedrock
pixels. Forest cover may also have an impact on snow detection. The variability of forest
backscatters over time is generally low, making it difficult to reach the −2 dB threshold,
especially if the snow is shallow. In addition, it has been observed that after an initial
snowmelt phase with a sharp decrease in backscatter, the backscatter of wet snow increases
sharply afterwards ([8]). This effect, not fully understood yet, can lead to failures to detect
wet snow. Some of the snow differences between Sentinel-1 and Sentinel-2 retrievals may
also be explained by the extent of areas of shadow/layover/foreshortening that were
excluded from our study. Sentinel-1 observations are acquired early in the morning for
the descending orbit or late in the afternoon for the ascending orbit. A diurnal effect in
wet snow estimates is therefore expected. It is also important to note that some of the
limitations we have listed are due to the selection of the reference image. Some of these
issues can be corrected with a different selection of the reference image(s). For example, no
pixel of wet snow can be detected on glaciers with a reference taken during summer.
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Figure 2. Wet snow cover extent derived from Sentinel-1 descending/ascending images of 27/28
April 2018 and 20/21 June 2018. Background: IGN Digital elevations.

Figure 3. Snow cover extent derived from Sentinel-2 image of 25 April 2018 and 19 June 2018.
Background: IGN Digital elevations.
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Figure 4. Shadow/layover/Foreshortening pixels for SAR Ascending and Descending orbits.

3.2. Sentinel-1 Ascending/Descending Orbits for Monitoring Snowmelt

Figure 5 is an Altitude–Orientation diagram which shows the normalized percentage
of snow-covered pixels by classes of elevation and orientation for ascending and descending
Sentinel-1 orbits (27–28 April 2018). Situations with all slopes (top) are separated from
moderate slopes (middle) and high slopes (bottom). The number of used Sentinel-1 pixels
is shown in solid line contours for the ascending orbit and dashed line contours for the
descending orbit. If 100% of used data (i.e., excluding geometric distortion pixels) are
associated with wet snow means that for a given class of orientation and elevation the
snowpack can be assumed to be completely wet. If the percentage is lower, it means that a
portion of the pixels is snow-free or is associated with dry snow. Not surprisingly, one can
notice that the percentage of snow-covered pixels varies according to the slopes and orbit
direction. A larger percentage of snow pixels is noticed for western and eastern orientations
for the ascending and descending orbits, respectively, especially for areas with large slopes.
This is very consistent with the observation hours of Sentinel-1 over the area (at sunrise
for descending orbit and in the late afternoon for the ascending orbit). For moderate
slope areas, the wet snow retrieval from the ascending orbit is very consistent with the
descending orbit wet snow. Selecting moderate slope pixels could therefore be useful to
derive a relevant overview of the evolution of wet snow by using separate information
from the ascending and the descending orbits. This would make it possible to monitor wet
snow every 3 days on a mountain area of interest if it is observed under the same conditions
as our test area. This statement is only valid if the objective is to have an overall view of the
wet snow evolution at the scale of an area of interest (an Alpine massif for example) in order
to get some information about the variation of wet snow by altitude/orientation/slope.
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(a) Ascending, All Slope (b) Descending, All Slope

(c) Ascending, Slopes ≤ 20◦ (d) Descending, Slopes ≤ 20◦

(e) Ascending, 20◦ > Slopes ≤ 45◦ (f) Descending, 20◦ > Slopes ≤ 45◦

Figure 5. Altitude–Orientation diagram with the normalized percentage of wet snow pixels by
classes of elevation and orientation for Sentinel-1 (left: ascending, right: descending) for 27–28 April
2018. (Top): Situations with all slopes, (middle): moderate slopes (lower than 20 deg), and (bottom):
high slopes. The number of used Sentinel-1 pixels is shown in solid line contours for the ascending
orbit and dashed line contours for the descending orbit.

Figure 6 is an Altitude–Orientation diagram which shows the normalized percentage
of snow-covered pixels by classes of elevation and orientation for Sentinel-2 (top) and
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Sentinel-1 merged ascending and descending wet snow extent (bottom) for two dates
during the melt season, late April (left) and mid-June (right). The number of used Sentinel-
1 pixels is shown in solid line contours for the ascending orbit and dashed line contours for
the descending orbit. Note that for the ascending orbit, eastern orientations are associated
with more geometry-induced radiometric distortions (shadow/layover/foreshortening).
For the descending orbit, western orientations are associated with a greater number of
shadow/layover/foreshortening pixels. Note that the total number of used Sentinel-1
pixels remains the same from a scene to another. For Sentinel-2, this number depends on
cloud cover. From these representations we can get a good idea about the average altitude
that separates (wet) snow from snow free surfaces (or soil-dry snow for Sentinel-1), which
we refer to here as the snow line. It is the elevation at which the normalized percentage of
(wet) pixels covered by snow is greater than 50%. For late April 2018, the Sentinel-2 snow
line is about 2000 m for southern orientations in good agreement with Sentinel-1. The snow
line is about 1800–1900 m for northern orientations for Sentinel-2 and Sentinel-1. For high
altitude areas (greater than 3000 m and 3400 m for northern and southern orientations,
respectively), Sentinel-1 shows lower percentages of wet snow pixels while Sentinel-2
indicates almost 100% of snow. This may indicate the presence of dry snow in these areas.
Others possible explanation could be high backscatter from glaciers, or from snow volume
scattering, or refrozen snow at the 6 a.m./p.m. overpass times. These late April situations
perfectly illustrate the possible use of Sentinel-1 and Sentinel-2 in synergy to estimate
the extent of wet snow and dry snow. Similar conclusions can be derived from mid-June
situations with an overall good agreement between Sentinel-1 and Sentinel-2 products
(snow line close to 2500 m for both satellites) and a snow line generally higher for southern
orientation than for northern orientations. In fact, Figure 6 shows a combined view of both
ascending and descending Sentinel-1 images and also combines terrain situations with
different slopes.

Figure 6. Altitude–Orientation diagram which shows the normalized percentage of snow (wet snow)
pixels by classes of elevation and orientation for Sentinel-2 (top, 25 April and 19 June) and Sentinel-1
(bottom, 27–28 April and 20–21 June). Cloudy pixels are screened for Sentinel-2, the number of
Sentinel-2 snow pixels is shown in solid line contours. The number of used Sentinel-1 pixels is shown
in solid line contours for the ascending orbit and dashed line contours for the descending orbit.
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3.3. Seasonal Evolution of Wet Snow

In this section, we focus on the time evolution of snow conditions in our study area.
As stated earlier, snow was remarkably abundant during the 2017–2018 season, sometimes
reaching values close to absolute records for some altitude ranges. This was due to intense
precipitation events during the winter (in December, January, and March) and to relatively
low temperatures (below-average) except for January, which was exceptionally warm. The
season was also characterized by several storm episodes and with several rain events
reaching high altitudes (2000 to 2400 m). The period is characterized by a relatively late
spring arrival (early April) but with a quick shift to near-summer conditions.

Figures 7 and 8 show Altitude–Time diagrams for northern and southern orientations,
respectively, obtained using the normalized percentage of snow-covered pixels by classes
of elevation and time for Sentinel-1 ascending/descending images. Only moderate slope
pixels are used for these plots (lower than 20 degrees). Snowlines estimated by forecasters
using in situ observations and model outputs are also represented: solid red lines for
northern orientation and dashed red lines for southern orientation. When available, the
altitude of Snow-Rain lines (or range of altitudes) are displayed as red diamond symbols
(light red diamonds are added for range altitudes). These estimates are extracted from
Tables 1 and 2. From these figures, one could clearly distinguish Sentinel-1 responses due
to some snow and meteorological events like snow fall events of mid- and end-December,
ROSE (Rain-On-Snow events) as for 3–4 January (rain event occurs after the Descending
SAR image acquisition). One could note the extension of wet snow of 4 January for altitudes
ranging from 1500 to 2700 m for northern orientations (wet snow line close to 2000 m and
1800 m for northern and southern orientations, respectively). Another ROSE event effect is
seen on 22 January (with rain snow line close to 2000 m). Additionally of interest, ROSE
events of March (10–11) with snow–rain line close to 2500 m. One could see other events of
interest such as 2829 March (rainfall/snowfall transition elevation of about 1600 m). For all
these situations, Sentinel-1 snow products reflect relevant responses to these events. All
snow and meteorological events of interest are summarized in Tables 1 and 2. As expected,
spring and its associated melting phenomena appear early April with a wet snow line close
to 2000 m (on 4 April). Snowmelt seems to occur around 2000–2300 m until mid-April to
reach almost 3000 m on 16 April, accordingly with an unusual heatwave at that time. From
the end of May, there is no snow below 2000 m, wet snow being observed at altitudes higher
than 2500 m. The evolution of the snow line (normalized percentage of snow-covered
pixels above 50%) in time has a larger gradient for the southern orientation than for the
northern one. At 2000 m, the melt-out date is close to 27 May for northern orientation
(6 days later than the southern orientation). There are some differences during the melt
season for situations linked to snowfall reaching low altitudes and fresh snow (likely dry)
(see for instances situations of 10 April and 13 May). Therefore, we can conclude about the
relatively good agreement between estimates of snowline altitudes and Sentinel-1 products
to reliably represent the time evolution of seasonal snow, to identify rain–snow limits with
a very good and expected differentiation between northern and southern orientations.
Monitoring snow evolution is possible and some of the SAR signals are very consistent
with meteorological and/or snow conditions. Figures A1 and A2 in Appendix A gather all
the obtained Altitude–Orientation diagrams during the 2017–2018 season. Altitude/time
evolution of Sentinel-1 wet snow perfectly illustrate the evolution over time of the altitude
of the wet snow for all orientations (western and eastern orientations not shown but can be
inferred from the addition figures in Appendix A). The analysis of these results suggest
that freeze/thaw phenomena could possibly be inferred from ascending/descending orbit
combinations and deserve to be studied in depth (this aspect is not discussed in this paper).
By analyzing the altitude-diagrams for the entire season and by combining ascending and
descending orbits, we can reasonably conclude about the relevance of the use of Sentinel-1
observations for the study of the snowpack even in steep mountain areas. A simple method
is used here to combine binary wet snow retrievals from ascending and descending orbits.
Ideally, by normalizing effects of terrain slope (e.g., using ’terrain flattening’ approach
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of [27]), the overlay of ascending/descending orbits would be easier. This should also
facilitate the separation of terrain variations from variations due to wet snow changes.

The snowline altitudes are often surveyed for the northern and southern orientations
but Sentinel-1 offers us a great opportunity to complement the snowline estimates and to
monitor their extent in all directions. The contribution of Sentinel-1 data can be critical
for regions with very scarce in situ observations and with a poor a priori knowledge of
snow conditions.

Figure 7. Altitude–Time diagram with the normalized percentage of wet snow-covered pixels by classes of elevation and
time for all Sentinel-1 ascending/descending images. Results are given for northern orientations and for moderate slope
pixels (lower than 20 degrees).

Figure 8. Same as Figure 7 but for southern orientations.

3.4. Some Issues Regarding Wet Snow Retrieval from Sentinel-1

The use of a fixed threshold method, such as the present one, gives very interesting
results but is still subject to considerable improvement, particularly with regard to the
selection of the best possible reference image and a suitable threshold for snow detection
depending on the type of surface.

In our study, the reference image was chosen by targeting dates with the smallest
possible amount of snow, and no precipitation events. We think that this simple procedure
is not sufficient to guarantee the best possible choice of reference image and that we need to
develop alternatives to reduce the uncertainties that could be induced by an inappropriate
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choice of reference image or threshold values. In the literature, many studies have used
a 2–3 dB threshold to separate dry and wet snow. The algorithm of [7] used a fixed
threshold to map wet snow using a reference image taken under either dry snow or frozen
ground conditions. However, it has been shown that the 2–3 dB threshold is not applicable
everywhere and can introduce detection errors depending on the type of surface, the snow
surface roughness, the liquid water content of snow, . . . (see for instance [35]). This is
particularly problematic for forest areas associated with a relatively reduced SAR signal
variation (sometimes smaller than the 2–3 dB range). The forest’s response depends on
its vegetation density and structure (vegetation components with a size comparable to
the SAR wavelength). The seasonal phenology of trees with falling leaves before winter
can also have a significant impact on radar signals. Few studies have addressed the issue
of wet snow detection in forest areas. A method was proposed by [36] who suggest to
use two reference images taken before and after the melting season. The authors used
the two reference images to estimate the relative fraction of snow-free ground. However,
false detection could occur if the second reference image is snow free and the ground was
already drying ([37]). In the study of [8], the authors have shown that melting phases
(moistening, ripening and runoff) can be effectively identified using multi-temporal SAR
backscattering. The results presented in our study were obtained by using one summer
reference image per orbit direction and a fixed threshold of 2 dB. We performed additional
sets of wet snow retrievals by testing an average SAR image over summer as reference, or
a reference taken from early September 2017. The results of these calculations are shown
in Table 3. One could see that differences can be observed in the detection of wet snow
following selected reference images: on average, more snow-covered pixels are detected
with a mean summer average (more than 3%) than with an early September reference.
This effect is more pronounced with ascending orbits. Differences were also observed
in wet snow variation by altitude and orientation (not shown). Sensitivity studies are
necessary to optimally select the most stable and reliable reference images (snow free or dry
snow). This can be achieved through multi-temporal filtering ([38]) or using some temporal
adaptive filtering strategies based on the analysis of the temporal evolution of SAR image
time series ([39,40]). With regard to thresholds, an interesting option is to use threshold
functions instead of a fixed threshold, to better account for the variability of the signal with
land cover (for instance sigmoid functions have been used by [41–43]). Optical satellite
measurements were also used to correct possible inconsistencies in wet snow estimates,
particularly in woodlands or waterlogged soils ([43]). The use of image similarity metrics
instead of thresholds could facilitate wet snow discrimination. For instance, the normalized
cross correlation ratio, the Hausdorff distance, and some other more refined image distance
functions considered in [44–46]. The adaptation of these distances will require several
improvements to tune the distance parameters to maximize the sensitivity to wet snow
and to improve their filtering effects.
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Table 3. Percentage of the surface covered by wet snow using images of the descending orbit (left) and the ascending orbit
(right). The results are given using an average summer image as a reference and using a reference image taken in early
September. 100% means that the entire study area is covered by wet snow.

Date Summer Early Sep.

28 March 2018 7.1 6.9
3 April 2018 14.9 15.4
9 April 2018 27.4 26.3
15 April 2018 24.9 24.5
21 April 2018 32.0 31.5
27 April 2018 35.7 35.7
3 May 2018 30.9 30.8
9 May 2018 32.3 32.3
15 May 2018 27.7 27.7
21 May 2018 28.5 28.7
27 May 2018 19.5 19.4
2 June 2018 21.2 21.2
8 June 2018 15.7 15.3

14 June 2018 16.5 16.5
20 June 2018 10.9 10.8
26 June 2018 10.7 11.4

Date Summer Early Sep.

29 March 2018 21.3 18.6
4 April 2018 24.4 21.7
10 April 2018 34.2 30.4
16 April 2018 43.0 40.6
22 April 2018 39.3 36.6
28 April 2018 38.6 36.4
4 May 2018 33.2 30.8

10 May 2018 33.1 31.1
16 May 2018 37.3 34.2
22 May 2018 28.4 26.2
28 May 2018 20.5 19.8
3 June 2018 19.6 18.9
9 June 2018 16.0 14.9
15 June 2018 15.5 14.4
21 June 2018 10.5 10.0
27 June 2018 9.9 9.2

4. Conclusions

Monitoring alpine seasonal snow, and wet snow in particular, is of interest for sev-
eral applications including hydrology, mountain ecosystems, avalanche monitoring, and
prediction applications. With the advent of the Sentinel-1 Earth observation satellites, a
growing number of studies is now available on wet snow detection using C-band SAR ob-
servations. The Sentinel-1 SAR sensor has several advantages: high sensitivity to the liquid
water content of the snow, non-sensitivity to cloud cover and very high spatial resolution
which makes it possible to use it for monitoring wet snow in alpine terrain in all weather
conditions. The study presented here uses a well-known approach in the literature ([4]) to
estimate the extent of snow cover continuously over a season and proposes an analysis of
the influence of complex mountain topography on snow distribution taking into account
altitude, slope and aspect of the terrain. The Sentinel-1 wet snow extent product was com-
pared with Sentinel-2 snow products [29] for cloud free scenes. Sentinel-1 wet snow maps
compare very well with Sentinel-2 snow maps during melt periods. The use of hamming
distance, as a measure of similarity, showed small differences between the two products
during these periods. We show that while there are good agreements between the two
satellite products, differences exist, especially in areas of forests and glaciers where snow is
underestimated. This underestimation must be considered alongside the areas of geometric
distortion that were excluded from our study. We analyzed retrievals at the scale of our
study area by creating wet snow Altitude–Orientation diagrams for different classes of
slopes and also wet snow Altitude–Time diagrams for different classes of orientations. We
have shown that this type of representation is very useful to get an overview of the snow
distribution as it allows to identify very easily wet snow lines for different orientations. For
an orientation of interest, the Altitude–Time diagrams can be used to track the evolution of
snow to locate altitudes and dates of snow loss. This type of diagnosis can be particularly
useful for specific applications that focus on the spatial distribution of snow cover at the
scale of a given region (e.g., mountain massifs) rather than on traditional snow maps.
This is particularly the case for modeling and forecasting snow cover and the resulting
avalanche activity, as well as for monitoring mountain ecosystems. It is worth mentioning
here that the use of this type of diagram would allow the comparison of different sources
of snow products regardless of their native resolution.

Distributions of wet snow by altitude, time, and orientation have been inferred, some
of which have been supported by forecasters’ expertise (with snowline altitude estimates
for the southern and northern slopes). If we consider south-facing slopes, wet snow clearly
appears from mid-March onwards for the 2000–2500 m altitude ranges, with an average
percentage of snow-covered areas of almost 40%. This percentage increases significantly at
the beginning of April to reach an average of 60% for these same ranges of altitude. The
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maximum altitude of the wet snowline increases from 2500 m at the beginning of April to
3500 m 20 days later with an increase in areas covered by wet snow. At the end of April,
wet snow spreads well beyond the south-facing slopes. It can be noted that the maximum
altitude of the wet snowline has a bell shape centered on southern orientations; this can
be observed throughout the month of April (see the Altitude–Orientation diagram in the
Appendix A). This shape tends to flatten later as wet snow spreads to all other orientations
and higher in altitudes. The minimum altitude of wet snow varies more progressively
(by 100 m or 300 m according to the observation dates). The percentage of wet snow
pixels starts to decrease from the beginning of June for all orientations. These wet snow
distributions, if confirmed in other study areas, could enable us to draw up a general
pattern for the evolution of wet snow conditions in the 2017–2018 season, which could be
interestingly compared to other seasons.

We also show that ascending/descending Sentinel-1 image time series are complemen-
tary to monitor wet snow over the French alpine areas to highlight wet snow altitude ranges
and identify melt-out days. Links have also been made between Sentinel-1 responses (wet
snow) and snow/meteorological events carefully listed over the entire 2017–2018 season.

The comparison also highlighted situations where cloud cover was a barrier to the use
of Sentinel-2 and where Sentinel-1 data could still be used to derive information about wet
snow. Under clear sky situations, the representation of the snow in the form of diagrams
(Altitude–Orientation or Altitude–Time) makes it possible to outline options for combining
the two satellite products in order to monitor the extents of dry/wet snow (by elevation,
orientation, slopes).

Future developments will include studies to test new metrics of similarities between
images instead of thresholds that would, among other effects, improve the detection of
snow on forest areas as well as the application of methodologies to optimally select refer-
ence images. Other promising developments include the combination of SAR backscatter
and coherence measurements to get an accurate representation of dry and wet snow in the
mountains. Coherence is a correlation measure of complex SAR images that determines the
degree of similarity of the phase of two images. Coherence depends on the backscattering
mechanisms of targets on the ground that may change between two satellite passes. A
high coherence would indicate a small change in the nature of the surface between two
acquisitions, while a low coherence would indicate a change on the ground. Coherence
losses can be due to several physical processes including vegetation, snow and soil mois-
ture. Several studies have shown that areas with coherence loss due to decorrelation could
be mapped as a snow-covered area (see for instance [47]). However, effective methods
should be used to separate effects of snow and vegetation since changes such as vegetation
growth, leaf fall, effect of wind on trees, etc., also induce coherence loss. Ideally, the use of
both backscattering and coherence measurements with satellite repeat passes together with
other auxiliary information should be privileged, as in the study by [48] in which a wide
range of complex SAR-based observations were used as input to a random forest classifier
as well as parameters describing the topography of the terrain to monitor snow evolution.
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Appendix A. Altitude–Orientation Wet Snow Diagrams

(a) 16–17 December (b) 22–23 December (c) 28–29 December (d) 3–4 January

(e) 15–16 January (f) 21–22 January (g) 27–28 January (h) 2–3 February

Figure A1. Cont.
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(i) 8–9 February (j) 14–15 February (k) 20–21 February (l) 26–27 February

(m) 4–5 March (n) 10–11 March (o) 22–23 March (p) 28–29 March

Figure A1. Altitude-orientation diagram from mid-December 2017 to end of March 2018 with the normalized percentage of
wet snow-covered pixels by classes of elevation and orientation for Sentinel-1 merged ascending/descending orbits with all
slopes. To compute the diagrams, only “useful” pixels are considered for Sentinel-1 (by screening out areas of geometric
distortions). The number of “useful” pixels is shown as solid line contours for the ascending orbit and dashed line contours
for the descending orbit.

(a) 3–4 April (b) 9–10 April (c) 15–16 April (d) 21–22 April

(e) 27–28 April (f) 3–4 May (g) 9–10 May (h) 15–16 May

Figure A2. Cont.
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(i) 21–22 May (j) 27–28 May (k) 2–3 June (l) 8–9 June

(m) 14–15 June (n) 20–21 June (o) 26–27 June

Figure A2. Same as Figure A1 but for April to late June 2018.
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