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Marseille, France

Abstract

Automata networks are often conceived as a finite generalization of
cellular automata. In this paper, we prove that the limit dynamics of
any finite automata network under the parallel update schedule corre-
spond exactly to the fixed points of so-called strictly one-way cellular
automata. This correspondence is proven to be exact, as any strictly
one-way cellular automata can be transformed into a corresponding
automata network, where the attractors of the latter correspond ex-
actly to the fixed points of the former. This transformation is easy to
operate by using output functions which have been developed in the
author’s previous works.

1 Introduction

Automata networks are used to model gene regulatory networks [6, 12, 8,
1, 2]. In these applications the dynamics of automata networks are used
to understand how the biological systems might evolve. As such, there is
motivation in improving our computation and characterisation of automata
network dynamics. Rather than considering the problem in general, we look
for families or properties which allow for simpler dynamics that we might
be able to characterise [3, 4].

To help in that effort, we developed the formalism of modules [9] which
have inputs. By focusing on modules with acyclic interaction digraph, we
proved that the set of attractors was determined (up to the renaming of
configurations) by so called output functions [10]. By focusing on output
function sets rather than automata networks, we allow for the automatic
removal of many specificities of the networks which do not determine the
limit dynamics.

In this paper, we take the output function set, compose it into a single
output function on vectors, and then use this so-called global output func-
tion as the local function of a cellular automata. One of these properties of
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this cellular automata is that its fixed points correspond to the attractors
of any automata networks which realises the initial set of output functions.
Finally, we use this transformation to generalise a result about intertwined
fixed points in strictly one-way cellular automata, which allows for the de-
composition of the dynamics of the corresponding automata networks.

The demonstration of both results is available in the appendix.

2 Definitions

2.1 Automata networks

ANs are composed of a set S of automata. Each automaton in S, or node,
is at any time in a state in Λ. Gathering those isolated states into a vector
of dimension |S| provides us with a configuration of the network. More
formally, a configuration of S over Λ is a vector in ΛS . The state of every
automaton evolves as a function of the configuration of the entire network.
Each node has a unique function, called a local function, that is predefined
and does not change over time. A local function is thus a function f defined
as f : ΛS → Λ. Formally, an AN F is a set that assigns a local function fs
over S for every s ∈ S.

Example 1. Let S = {a, b, c}. Let F be the Boolean AN with local functions
fa(x) = xc, fb(x) = xa and fc(x) = ¬xa ∨ xb.

In the scope of this paper, ANs (and modules) are udpated according to
the parallel update schedule. Formally, for F an AN and x a configuration
of F , the update of x under F is denoted by configuration F (x), and defined
as for all s in S, F (x)s = fs(x).

2.2 Interaction digraph

ANs are usually represented by the influence that automata hold on each
other. As such the visual representation of an AN is a digraph, called an
interaction digraph, whose nodes are the automata of the network, and arcs
are the influences that link the different automata. Formally, s influences s′

if and only if there exist two configurations x, x′ such that fs′(x) 6= fs′(x
′)

and for all r in S, r 6= s if and only if xr = x′r.
The interaction digraph of the network detailed in Example 1 is illus-

trated in Figure 1.

2.3 Modules

Modules were first introduced in [9]. A module M is an AN with added
inputs. It is defined on two sets: S a set of automata, and I a set of inputs,
with S ∩ I = ∅. Similarly to standard ANs, we can define configurations
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Figure 1: Interaction digraph of network F described in Example 1.
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Figure 2: Interaction digraph of module M described in Example 2.

as vectors in ΛS , and we define input configurations as vectors in ΛI . A
local function of a module updates itself based on a configuration x and an
input configuration i, concatenated into one configuration. Formally, a local
function is defined from ΛS∪I to Λ. The module M defines a local function
for every node s in S.

We represent modules with an interaction digraph, in the same way as for
ANs. The interaction digraph of a module has added arrows that represent
the influence of the inputs over the nodes; for every node s and every input
α, the node s of the interaction digraph has an ingoing arrow labelled α if
and only if α influences s, that is, there exists two input configurations i, i′

such that for all β in I, β 6= α if and only if iβ = i′β, and x a configuration
such that fs(x · i) 6= fs(x · i′), where · denotes the concatenation operator.

A module is acyclic if and only if its interaction digraph is cycle-free.

Example 2. Consider set S from Example 1, and the set of inputs I =
{α}. Let M be the module with local functions f ′a(x, i) = iα, f ′b(x, i) = xa,
f ′c(x, i) = ¬xa ∨ xb. The module M is acyclic. The interaction digraph of
M is represented in Figure 2.

2.4 Recursive wirings

A recursive wiring over a module M is defined by a partial function ω : I 6→
S. The result of such a wiring is denoted �ω M , a module defined over sets
S and I \ dom(ω), in which the local function of node s is denoted f ′s and
defined as
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Figure 3: Dynamics of AN F as described in Example 1.

∀x ∈ BS∪I , f ′s(x) = fs(x ◦ ω̂), with ω̂(i) =

{
ω(i) if i ∈ dom(ω)
i if i ∈ I \ dom(ω)

.

In the case where ω is a total function, then the resulting module �ω M
has no remaining inputs and can be considered as an AN. We can then
consider the output set of M defined by ω as the image set of ω, denoted
img(ω). Such wiring ω is called a total recursive wiring.

Example 3. Consider F as defined in Example 1, and M as defined in
Example 2. Let ω be the recursive wiring such that ω(α) = c. We observe
that �ω M = F , and that the output set of M defined by ω is img(ω) = {c}.

2.5 Dynamics

We define the dynamics of an AN F as the digraph with ΛS as its set of
vertices. There exists an edge from x to y if and only if F (x) = y. The
dynamics of BAN F as described in Example 1 is represented in Figure 3.

The limit dynamics of an AN F is the digraph defined as the subgraph of
its dynamics, restricted to the configurations that are parts of cycles. Such
limit dynamics are often called the attractors of F .

2.6 Output functions

For I a set of inputs, an output function is a function which depends on
variables taken in I indexed with a positive integer. An output function is
meant to be computed on a history of past inputs fed to a module. In that
sense, the positive integer is called delay, and for any α ∈ I, α1 represents
the last value fed to the input α in that history. Variable α2 represents the
value that was before that, and so on. The precedence rises with the index.

It has been shown that output functions can be used to predict the value
of any node of an acyclic module from a long enough history of inputs [10].
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Example 4. Consider module M as developed in example 2. As M is
acyclic, we can define for it the following output functions:

Oa(J) = α1

Ob(J) = α2

Oc(J) = ¬α2 ∨ α3,

where J is a long enough sequence of inputs. For example, let us consider
J = (0, 1, 1) which means that α1 = 1, α2 = 1 and α3 = 0. Then, Oa(J) = 1,
Ob(J) = 1 and Oc(J) = ¬1 ∨ 0 = 0. These are the states of a, b and c
respectively after any set of updates of M , from any configuration, that ends
by affecting J = (0, 1, 1) to the input α.

When considering some acyclic module M paired with some total recur-
sive wiring ω, it has been shown in [10] that the attractors of �ω M (modulo
the names of the configurations) only depend on the output functions of the
nodes in the output set img(ω) (modulo the names of inputs in I, but not
their delay).

Example 5. Consider module M as developed in Example 2, and the total
recursive wiring ω developed in Example 3. As img(ω) = {c}, the output
function Oc(J) = ¬α2 ∨ α3 alone implies the attractors of �ω M . That is,
for any module M ′ and total recursive wiring ω′ such that img(ω′) = {s′}, if
Os(J) = ¬α′2∨α′3 for some α′ ∈ I ′, then �ω M and �ω′ M

′ have isomorphic
attractors (as per application of [10]).

An acyclic module can have more than one node in img(ω), and as such
its attractors can be characterised by more than one output functions. If
such is the case, consider that it is always possible to consider a set of
output functions as one global output function, at the cost of expanding the
alphabet Λ. This shorthand will be useful later on.

Example 6. Let Oa(J) = α1 ∨ β2 and Ob(J) = ¬α2 ∧ β1 two output func-
tions. Without loss of generality we consider O(J) the global output function
defined as

O(J) =

(
α1 ∨ β2
¬α2 ∧ β1

)
.

As such, the output functions of any acyclic module that compute the
attractors of related automata network can be considered as one global out-
put function on vectors. This will be useful later on, when using said global
output function as the local function of a cellular automaton.

2.7 Strictly one-way CA

For Λ an alphabet and r ∈ N, a cellular automaton (CA) is defined by a lo-
cal rule f : Λ{−r,1−r,...,r} → Λ. The number r is the radius of the CA, and its
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global rule is defined as F : ΛZ → ΛZ, with F (x)k = f(xk−r, xk+1−r, . . . , xk+r).
A given CA is said to be strictly one-way if its local function is defined over
f : Λ{1,2,...,r} → Λ, and its global rule as F (x)k = f(xk+1, xk+2, . . . , xk+r)
instead.

Example 7. Let Λ = {0, 1, 2, 3}. The local rule f(x) = x1 ⊕ x2 has radius
2 and defines a strictly one-way cellular automaton.

One-way cellular automata (whose local functions depend on indexes
from 0 to r) are an object of throughout study [11, 5, 7]. Strictly one-way
cellular automata are, as far as we know, a sub-class of one-way cellular
automata that have not been studied yet. Being strictly one-way is a very
restrictive property, as we can characterise the fixed points of such cellular
automata thanks to automata networks. As a consequence of Theorem 1, a
strictly one-way cellular automata has a finite set of fixed points which are
all periodic.

3 Associating global output functions and local
rules

Using the notion of global output function defined in Section 2.6, let us
consider what happens when considering the global output function O of
a module M with total recursive wiring ω as the local rule of a cellular
automaton.

To make this transformation possible, we consider the alphabet Λ′ of
the resulting cellular automaton as the set Λ′ = ΛI . Then, the local rule f ′

is defined as O in which any variable of the form αk is substituted for the
term (xk)α. That is, to find the evaluation of input α with delay k, we look
for the value behind index α in the vector contained in the neighboring cell
of distance k. The obtained CA is called the associated CA of the global
output function.

Example 8. Consider the global output function Oc developed in Example 5.
Its associated CA is defined on the alphabet B and its local rule f is defined
as

f(x) = ¬x2 ∨ x3.

Example 9. Consider the global output function O developed in Example 6.
Its associated CA is defined on the alphabet {0, 1}{α,β} and its local rule f
is defined as

f(x) =

(
(x1)α ∨ (x2)β
¬(x2)α ∧ (x1)β

)
.

As the delay of any variable in an output function is a positive integer,
any cellular automaton constructed that way is necesserarily strictly one-
way. Starting from the other side and considering any strictly one-way
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Figure 4: Fixed points shift dynamics of the CA developed in Example 8.
The name 011 corresponds to the periodic bi-infinite configuration composed
of the repetition of the word 011, starting at the index 0.

cellular automaton, it is straight-forward to construct a corresponding global
output function of which it is the associated CA.

Example 10. Let us consider the local rule f developed in Example 7, and
the set of inputs {α}. Taking the alphabet {0, 1, 2, 3}, let O be a global output
function such that

O(J) = α1 ⊕ α2.

If we assume some implicit bijection between {0, 1, 2, 3} and {0, 1}{α,β}, then
taking set of inputs {α, β} and the alphabet {0, 1}, we can define O′ a global
output function such that

O′(J) =

(
α1

β1

)
⊕
(
α2

β2

)
.

For both O and O′, f defines an associated cellular automaton.

For x a bi-infinite configuration of a cellular automaton, we define T (x)
as the right-shift of x. That is, for any i ∈ Z, T (x)i = xi+1.

For our final definition before the main result of this paper, let us use the
fixed points of a strictly one-way cellular automaton to construct a graph.
For F some cellular automaton, we define the fixed points shift dynamics as
the graph which takes the fixed points of F as nodes and any (x, y) as an
edge if and only if y = T (x). As an example, the fixed point shift dynamics
of the CA developed in Example 8 is represented in Figure 4.

With this representation in hand, we are ready for the main result.

Theorem 1. Consider M an acyclic module with ω a total recursive wiring.
Let F be an associated cellular automaton of M . The fixed points shift
dynamics of F and the limit dynamics of �ω M are isomorphic.

As an application of this theorem, we can observe that the limit dynamics
contained in the dynamics in Figure 3 and the fixed points shift dynamics
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represented in Figure 4 are isomorphic using the homorphism ĥ such that
ĥ(110) = 110, ĥ(011) = 011, ĥ(101) = 101 and ĥ(111) = 1.

This result proposes an interesting correspondence between cellular au-
tomata and automata networks, as any automata network can be turned
into an associated CA and any CA is the associate of an automata network.
As such, this result states that computing the attractors of an automata
network under the parallel update schedule and computing the fixed points
of a strictly one-way cellular automaton is the same exact computational
problem.

As an example of the usefulness of this correspondence, we propose a
slight generalisation of a known result about automata neworks [4]: if the
length of all the cycles in the interaction digraph of an AN are divisible by
some factor d greater than 1, then this AN is reducible into a smaller AN,
from which its attractors can be derived. This theorem has an intuitive
correspondence in strictly one-way cellular automata. Before stating the
result, some extra formalism is needed.

Let us define that for f : AB → C some function and b ∈ B, the variable
of index b is said to influence f if and only if there exist x, x′ ∈ AB such
that x|B\{b} = x′|B\{b}, xb 6= x′b and f(x) 6= f(x′).

For some positive integers r and d such that d|r, let µd : Λ{1,...,
r
d
} →

Λ{1,...,r} the function defined by µd(x)k = xd×k.
Let Σ be a set of bi-infinite words, and d a positive integer. The d-

interlacing of Σ is the set of bi-infinite words Σd such that w′ ∈ Σd if and
only if there exists some sequence of words {w1, w2, . . . , wd} in Σ such that
for all k ∈ Z, w′k = wab , for a and b the reminder and quotient of the division
of k by d respectively. This word is also denoted w′ = w1 ∼ w2 ∼ . . . ∼ w.d.

Theorem 2. Let f be the local rule of a strictly one-way CA. If there exists
some integer d > 1 that divides all integers in {k | xk influences f}, then
the set of fixed points of the CA with local rule f is the d-interlacing of the
set of fixed points of the CA with local rule f ◦ µd.

Example 11. Let us consider the Boolean local rule f(x) = ¬x2 ∨ x4. As
all the indexes of the variables that influence f are divisible by d = 2, the
fixed points of the CA with local rule f are therefore the 2-interlacing of
the fixed points of the CA with local rule f ◦ µ2. This rule is defined as
f ◦ µ2(x) = ¬x1 ∨ x2, and the fixed points of the related CA are 01 and
1, and their shifted equivalents. Let us name those fixed points a and b
respectively. By application of the 2-interlacing, the fixed points of the CA
with local rule f are a ∼ a = 0011, a ∼ b = 0111, b ∼ a = 1011 ≡ 0111 and
b ∼ b = 11 = 1, for a total of 3 distinct fixed points up to shifting.

By applying both theorems, and given a global output function O for
which there exists some integer d > 1 that divides the delay of all the input
variables that influence O, then the attractors of any automata network that
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realises O can be deduced from a copy of O in which all delays have been
divided by d.

4 Final words

To us, the main interest of Theorem 1 is to show that the intricate task
of describing the limit behavior of automata networks, which are diverse
in both interaction graphs and local functions, can actually be done by
describing the fixed points of cellular automata, with their uniform structure
and local behavior. This certainly speaks more to the complexity of the
latter than the simplicity of the former; however, we feel more confident
studying this combinatorial problem in the shape of a cellular automaton,
and hope that this shift in perspective yields interesting characterisations in
the future.
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A Proofs

First, let us state that we will consider strictly one-way cellular automata
as defined on local rules of the form f : Λ{−1,...,−r} → Λ, without loss of
generality. This inversion allows us to consider sequences both for cellular
automata and automata network attractors without any further reversing.
For any global output function O, the associated local rule f is defined as a
copy of O in which any variable αk is substitued for the term (x−k)α. This
inversion also implies the use of the left-shift instead of the right-shift in the
definition of the fixed points shift dynamics.

Let us now re-define some important notations. For F an automata
network with nodes S and x a configuration, we write F (x) the configuration
obtained by updating x under the parallel update schedule, which verifies
F (x)s = fs(x), for fs the local function of node s. We also write F k(x) the
configuration obtained by chaining k updates of x.

For M a module, x a configuration and i an input configuration, we
denote M(x, i) the configuration such that M(x, i)s = fs(x, i). For J a
sequence of input configurations, we denote M(x, J) the configuration ob-
tained by chaining |J | updates, starting with x, and taking subsequent input
configurations in J . Formally, M(x, (i1, i2, . . . , ik)) = M(M(x, i1), (i2, . . . , ik))
and M(x, ( )) = x.

For Os the output function of some node s of some module M , and for
J some long enough sequence of input configuration, we have by definition
that Os(J) = M(x, J)|s for any configuration x. It follows that for ω a total
recursive wiring over M , O the resulting global output function of M and
J a long enough input sequence,

∀x,O(J) = M(x, J)|img(ω). (1)

Let us know verify that if any acyclic module has a global output func-
tion, that the symmetric is verified and that any global output function is
realised by some acyclic module.

Lemma 1. Let O be a global output function defined on the alphabet Λ.
There exists some acyclic module M , such that O is the global output func-
tion of M .

Proof. Without loss of generality, we can consider O as operating over a
set of inputs that is a singleton {α}. As remarked in Section 3, any global
output function taking multiple inputs in a set I can be considered as an
output function taking one input evaluated over the set ΛI .

Let D be the maximum delay such that αD influences the computation
of O. We will construct the module M with input set {α} and taking states
in the alphabet Λ, with nodes set

S = {so} ∪ {sk|0 < k < D}
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,
And local functions

fs1(x, i) = iα

∀1 < k < D, fsk(x, i) = xsk−1

fso = O ◦ ν,

where ν : ΛS∪I → Λ{1,...,D} with ν(x, i)k = xsk . By construction, M is
acyclic and Oso = O.

Let us define the function λ : Λimg(ω) → ΛI such that λ(x|img(ω))α =
xω(α). This function allows us to read how inputs in M would be evaluated
so to imitate an update in �ω M . It verifies

�ω M(x) = M(x, λ(x|img(ω))).

Theorem 1. Consider M an acyclic module with ω a total recursive wiring.
Let F be an associated cellular automata of M . The fixed points shift dy-
namics of F and the limit dynamics of �ω M are isomorphic.

Proof. Let x be a configuration part of the limit dynamics of �ω M . As x
is part of an attractor, let us consider the sequence of configuration X =
(x1, x2, . . . , xk) that starts with x1 = x, such that �ω M(xi) = xi+1 for all
i < k, and �ω M(xk) = x.

For every x a configuration part of an attractor X = (x1, x2, . . . , xk) , we
define the input sequence Jx = (λ(x1|img(ω)), λ(x2|img(ω)), . . . , λ(xk|img(ω))).

Claim 1. For every configuration x part of an attractor, Jx is a fixed point
of F .

Let us denote the cell at index z ∈ Z as cz. To prove this fact, we only
need to prove that the value of ck in configuration Jx is stable. Indeed, as
every configuration in the attractor X generates a different shift of the CA
configuration Jx, proving the stability of the configuration as a whole (and
thus making it a fixed point) can be shown by proving the stability of the
same cell over each shift of the CA configuration. Let us prove the cell c0 is
stable.

To see that this claim is true, consider that Jx is the sequence gener-
ated by reading inputs over the attractor X, but can also generate it. By
the definition of Jx, the cell c0 is evaluated at λ(x1|img(ω)). And by the
definition of the local rule of the CA, the next value of the cell c0 is equal
to f(c−1, c−2, . . . , c−r), which is equal to λ(O(J∗x)|img(ω)), where J∗x is Jx
repeated enough times so to exceed in length the maximum delay in O. To
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prove that the cell c0 is stable, we need to show that λ(x1|img(ω)) = λ(O(J∗x)),
which is equivalent to show that x1|img(ω) = O(J∗x).

Let us consider m some large enough integer such that O(Jmx ) is well
defined. By Equation 1, and for y any configuration of M , O(Jmx ) =
M(x, Jmx )|img(ω). To evaluate this new term, let us consider that Jx,1 =
λ(x1|img(ω)). Thus, M(x, Jx,1) =�ω M(x) = x2. By repeating this argument

one can verify that M(x, (Jx,1, . . . , Jx,k−1)) = xk, and that M(x, Jx) =�ω

Mk(x) = x. It follows thatM(x, Jmx )|img(ω) =�ω M
k×m(x)|img(ω) = x|img(ω),

and thus x1|img(ω) = O(J∗x), which proves the CA configuration Jx is a fixed
point. This concludes the proof of Claim 1.

Let us state and prove the symmetric of Claim 1. For J some sequence of
inputs, we define �ω M(J∗) the configuration obtained by using the output
functions of M over the input configuration J∗ (which is the repetition of
J enough time so to overcome in length the maximum delay of any output
function of M).

Claim 2. Let J be a fixed point of F , M any acyclic module and ω a total
recursive wiring such that F is the associated CA of M . Then �ω M(J∗) is
a configuration of �ω M which is part of an attractor, and J = J�ωM(J∗).

Without loss of generality, we consider that M has only one input α.
Let O be the global output function defined by M and ω. Let us take m a
large enough integer such that O(Jm) is defined. As J is a fixed point, it
follows that Jk = λ(O(J[k−r,...,k−1])). In particular, for n = m× |J | and for
all 1 ≤ k ≤ n,

Jmk = λ(O(Jm[k,...,n] · J
m
[1,...,k−1])).

Let us define the function Θ : Λ{1,...,D} → ΛS with D the maximal delay
between the output functions of M , such that for K a long enough input
sequence, Θ(K)s = Os(K).

For m a long enough integer, we define X the sequence of configurations
of length |J |, such that for n = m × |J |, Xk = Θ(Jm[k,...,n] · J

m
[1,...,k−1]). This

sequence is constructed explicitely so that for every k,

λ(Xk|img(ω)) = Jk.

In other terms, the sequence X is a sequence of configurations of M , and
reading the output of each element in sequence produces the sequence J .

Let us now show that X is an attractor of �ω M . That is, updating
any element but the last gives us the next element, and updating the last
element gives us the first.

Let assume k < |X|. We observe that
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�ω M(Xk) = M(Xk, λ(Xk|img(ω)))

= M(Xk, Jk)

= M(Θ(Jm[k,...,n] · J
m
[1,...,k−1]), Jk).

By definition of Θ, for K long enough and for some input configuration
i, we state that M(Θ(K), i) = Θ(K · (i)). This is verified by the nature
of output functions. As Θ decides the value of any node in S over long
enough input sequences, adding a an input configuration i to K is the same
as updating Θ(K) with input configuration i. Applied to our equation, we
obtain that

M(Θ(Jm[k,...,n] · J
m
[1,...,k−1]), Jk) = Θ(Jm[k,...,n] · J

m
[1,...,k−1] · Jk)

= Θ(Jm[k,...,n] · J
m
[1,...,k])

The resulting sequence of inputs Jm[k,...,n] · J
m
[1,...,k] is of length |Jm| + 1.

As Jm was already long enough to define the value of Θ, removing the first
element in sequence does not change the evaluation of the underlying output
functions. We thus obtain that

Θ(Jm[k,...,n] · J
m
[1,...,k]) = Θ(Jm[k+1,...,n] · J

m
[1,...,k])

= Xk+1

Thus �ω M(Xk) = Xk+1 for k < |X|. Let us know evaluate �ω M(X|X|):

�ω M(X|X|) = M(Θ(Jm[|X|,...,n] · J
m
[1,...,|X|−1]), J|X|)

= Θ(Jm[|X|+1,...,n] · J
m
[1,...,|X|]).

Let us notice that |X| = |J |. We thus obtain that

Θ(Jm[|X|+1,...,n] · J
m
[1,...,|X|]) = Θ(Jm[|J |+1,...,n] · J)

= Θ(Jm[1,...,n−|J |] · J)

= Θ(Jm[1,...,n])

= X1,

Which proves that �ω M(X|X|) = X1, and altogether X is an attractor
of �ω M . Furthermore, the definition of Θ verifies that �ω M(J∗) =
Θ(J∗) = X1. It follows naturally that the sequence JX1 is equal to J ,
which concludes the proof of Claim 2.
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Wrapping up, we can define an homomorphism ĥ which associates to any
configuration x part of an attractor of �ω M the fixed point Jx. Claim 1
verifies this fixed point always exists, and Claim 2 verifies ĥ is well defined :
any fixed point is of the form Jy, for y some unique configuration part of an

attractor of �ω M . To prove that ĥ is an homomorphism, let us consider
that for any recurrent configuration x, the fixed point J�ωM(x) is equal to

the left-shifting of Jx.

Theorem 2. Let f be the local rule of a strictly one-way CA. If there exists
some integer d > 1 that divides all integers in {k|xk influences f}, then the
set of fixed points of the CA with local rule f is the d-interlacing of the set
of fixed points of the CA with local rule f ◦ µd.

Proof. Let C1
z be the set of cells which contains cz and the sells that influence

the update of cell cz. We define Cn+1
z as the union of Cnz and the set of cell

that influence any cell in Cnz . As there exists some factor d that divides the
distance between any cell and its influences, this property is also true of any
cell in Cωz . The same argument follows for the cells influenced by the cell at
z.

Taking cells of index a+ d× b for some a and all b, we obtain a band of
cells that are independant from every other. That is, their value does not
have influence over the value over the rest of the configuration, and the rest
of the configuration does not influence their value; as such, we can consider
every band (one defined by each a < d) as a different cellular automata with
local rule f ◦ µd.

From this, the result is obtained by observing that any fixed point in the
CA with local rule f is obtained by composing the independant fixed points
of the d bands which can be simulated by the CA with local rule f ◦ µd.
To compose all possible fixed points in the right shape we use the notion
of d-interlacing, which intuitively constructs a valid fixed point for the CA
with local rule f .
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