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ABSTRACT

Currently, the evolution of cyber-physical systems within the industry 4.0 paradigm enables the collection of large 
quantities of heterogeneous data that have not yet been efficiently exploited. One of the reasons is the digital chain 
disruption and lack of communication between the shop floor and operational management departments. To tackle such 
issues, this paper proposes a reporting frame-work as a common platform to support communication between the shop 
floor and operation management teams. The framework is based on a multi-agent system that solves the interoperability 
issues between tools, software and information systems. Agents are used to represent services such as reporting and are 
mainly exploited for decision-aiding. A reporting scenario is proposed to address chatter problems in an aeronautic case 
study. Efficient management of complex data is achieved by providing customized indicators for decision actors.

1. Introduction

Nowadays, industrial companies are faced with uncer-

tain, competitive and rapidly changing markets. They 

are then pressured to improve their manufacturing 

systems and to optimize their product cost, quality 

and lifecycle. These challenges, coinciding with the 

introduction of advanced information and communi-

cation technologies (ICT) (e.g. Internet of Things (IoT) 

(Wollschlaeger, Sauter, and Jasperneite 2017; Gilchrist 

2016), sensing networks (Akyildiz et al. 2002; Gungor 

and Hancke 2009), cloud computing (Tao et al. 2011; 

Liu et al. 2019), embedded intelligent systems ( 

Sangiovanni-Vincentelli and Martin 2001; Vahid and 

Givargis 2001), etc.), have led to the emergence of the 

so-called ‘fourth industrial revolution’, commonly 

referred to as Industry (Henning 2013; Lasi et al. 

2014; Brettel et al. 2014). In such a context, one of 

the most critical issues is the management of Cyber 

Physical Systems (CPSs) as a combination of physical 

and digital entities. As a core foundation of industry 

4.0 (Lee 2008; Lee, Bagheri, and Kao 2015; Jazdi 2014), 

CPS is considered as ‘an autonomous and reactive 

entity that interacts with its physical and logical envir-

onment and offers a great opportunity to build smart 

and flexible manufacturing systems’ (Wang, Törngren, 

and Onori 2015; Rossit, Tohmé, and Frutos 2019).

Research on this topic has skyrocketed in the last 

years and paved the way for new decision-aid applica-

tions dedicated to various business actors in the com-

pany (Singh et al. 2019). Furthermore, the CPS 

proliferation has significantly impacted the smart manu-

facturing systems where a large amount of multi-source, 

heterogeneous and dynamic data is being generated 

throughout the production process by highly connected 

entities (e.g. embedded sensors, information systems, 

etc.) (Monostori et al. 2016; Maleki et al. 2017).

In this field, more and more sophisticated methods 

are proposed, including Machine Learning (Qiu et al. 

2016; Soto, Tavakolizadeh, and Gyulai 2019), Large- 

Scale Computing (Schadt et al. 2010), Knowledge 

Discovery in Database (Maimon and Rokach 2005), 

Data Mining methods for clustering, classification, 

regression, and prediction, etc. (Harding, Shahbaz, 

and Kusiak et al. 2006). The main objective of these 

techniques is to extract patterns and drive meaningful 

and understandable knowledge from massive raw 

databases, initially considered as ambiguous.

Companies are then prompted to adopt knowl-

edge-based strategies to take advantage of big data 

analytics in improving their processes (Wang and 

Wang 2016; Waller and Fawcett 2013; Jun, Lee, and 

Kim 2019). This goal can be achieved by feeding back 
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contextual and useful knowledge to the right actors in 

order to assist them in their activities. This function, 

known as Reporting, is considered as a fundamental 

task of generating metrics and key performance indi-

cators (KPIs). Consequently, vertical information flow 

can be viewed as a closed-loop stream: descendant 

flow from the operational management departments 

(e.g. process planning, quality, etc.), and ascendant 

flow from machines and operators provide produc-

tion progress feedback.

However, the growing volume of digital data (several 

gigabytes of data per day) gathered from the shop floor 

is a big issue raising the need of efficient technologies 

which are able to collect (through IoT solutions), store 

(by means of Cloud Computing) and process (using 

Artificial Intelligence techniques) (Chen, Mao, and Liu 

2014; Lee, Kao, and Yang 2014a; Zikopoulos and Eaton 

et al. 2011). In addition, the management of this huge 

quantity of collected data and discovered knowledge 

has a great impact on the quality of the decision aid 

process. Hence, the management of the entire digital 

chain in the company must be carried out through 

reliable infrastructure (Denkena, Schmidt, and Krüger 

2014) ensuring communication between heteroge-

neous devices, software and information systems (e.g. 

Computer-Aided Manufacturing (CAM), Computer- 

Aided Design (CAD), Computer-Aided Engineering 

(CAE), Product Lifecycle Management (PLM), Enterprise 

Resource Planning (ERP), Manufacturing Execution 

Systems (MES), Supply Chain Management (SCM), etc.). 

Such a platform should serve also as a common reposi-

tory that enables knowledge sharing and data consis-

tency checking.

Although the significant efforts that have been 

made to process big data generated in smart fac-

tories, discovered knowledge remains underexploited 

or disconnected from the decision center. The main 

contribution of this research work is the development 

of a digital chain management framework to support 

the decision-making process through useful knowl-

edge reporting and ICT interoperability. This frame-

work is used for automatic processing of large 

quantities of complex data. Hierarchical/edge com-

puting of data is proposed to avoid saturating the 

system. These data are aggregated and transferred 

to the right person at the right time through 

a reporting platform. To validate the proposition, an 

agent-based technique is used as a technical solution. 

Multi-Agents Systems (MAS) are supposed to have 

some characteristics such as autonomy, sociability 

with each other and their environment, reactivity, 

etc. (Ferber and Weiss 1999). Autonomous agents 

are also used to manage information flow through 

the digital chain by connecting the cyber physical 

entities, management software tools and the com-

pany’s decisional actors. In this paper, MAS are used 

for distributed control and decision-aiding. Initial 

developments of the possible agents are proposed 

using an application study.

The application context of the proposed framework is 

related to High-Speed Machining (HSM) of aeronautic 

parts where many advanced manufacturing technolo-

gies are jointly applied. The machining process is mana-

ged by a variety of data including production planning 

and orders, product quality, maintenance scheduling, 

work instructions, financial constraints, etc. On the 

other hand, smart sensors collect and monitor internal 

signals from machine-tools describing several character-

istics of the machining process (energy, vibrations, spin-

dle speed, etc.). This data is collected and processed to 

generate useful KPIs (such as chatter occurrence and 

sources, failed programs, spindle incidents, etc.). 

A practical case study using aeronautic company data 

is implemented to illustrate the feasibility of the pro-

posed architecture.

The aim of this paper is to study the feasibility of the 

proposed framework architecture from a practical point 

of view. For this, interoperability and digital chain issues 

are tackled using agents. Deploying such a module- 

based system enables the easy integration of future 

tools, software or information systems that may be 

implemented in the company. A proposed scenario is 

implemented in a real case study to validate the frame-

work proposition. The remaining section of this paper is 

organized as follows: the next section describes in details 

the problem statement. The third section introduces 

a literature review about implementing CPSs in an indus-

try 4.0 environment using agent-based technology. The 

proposed reporting framework is presented in the fourth 

section where the design and implementation of the 

multi-agent system are detailed. Section 5 shows the 

results obtained on an industrial case scenario. In the 

final section, a selection of future works is listed.

2. Problem statement

This paper deals with High-Speed Machining (HSM) of 

structural parts in the aeronautic industry. This sector, 
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in contrast to other industries, is characterized by 

processing a small number of parts but with high 

added value. Under challenging constraints of quality 

and safety, the manufacturing process must be accu-

rate and produce compliant parts from the outset. 

However, due to critical cutting conditions, the 

machine spindle, the cutting tool and the work- 

piece are generally subject to unexpected vibrations 

(Rabréau et al. 2017; Ritou et al. 2018). These issues 

lead to undesired phenomena hampering the 

machining process optimization, e.g. chatter, tool 

breakage, spindle damage, work-piece deterioration.

For instance, chatter generates unacceptable and 

poor surfaces (figure 1(a)) requiring additional manual 

operations during the finishing phase (Lamikiz et al. 

2005). Besides, these vibrations have negative effects 

on tools and spindles causing lifetimes reduction (fig-

ure 1(b)). All these factors lead to productivity decrease 

and huge financial losses for industrial companies. For 

example, chatter cost results from less productivity due 

to finishing operations and machine unavailability, raw 

material rebuttal, and unexpected maintenance inter-

vention. Overcoming these problems then becomes 

strategic. For this reason, process engineering and 

planning departments seek to carefully design and 

schedule the machining process. The main objective 

of the design is to select conservative cutting para-

meters, including tools and programs settings, to 

avoid abnormal events. For the quality department, 

reducing the control and finishing times can be 

achieved by the early identification of the damaged 

parts during the machining process (i.e. those affected 

by particular incidents during their machining). On the 

other hand, maintenance actors need to schedule con-

dition-based interventions by monitoring the spindle 

health status and detecting significant deteriorations 

from undesired behaviour (De Castelbajac et al. 2014). 

The production department has to define an optimal 

planning adaptable to demand constraints by tracking 

the shop floor activity, e.g. breakdown times, produc-

tion delays, unscheduled downtimes, etc.

Despite their simple statements, these decisions are 

often hard to make, since the department in charge is 

disconnected from the real progress of the shop floor. 

The decision taken becomes unsuitable because it is 

taken based on non-contextual observations or theo-

retical recommendations. To make the right decisions, 

management staff must be able to efficiently exploit all 

available information. Three levels of decision-making 

(operational, tactical, and strategic) are identified in the 

enterprise. Several information systems are available in 

the company to support information management and 

exchange at each decision-making level. For instance, 

ERP (Enterprise Resource Planning) and PLM (Product 

Lifecycle Management) form the core of the informa-

tion system. The execution of production orders are 

managed by a Manufacturing Execution System (MES).

Decision-making often requires the interaction 

between these three levels. For example, knowledge 

extracted from real-time data collected at the opera-

tional level, when coupled with production orders 

given by the ERP, could be helpful to understand 

obvious events which have occurred during the man-

ufacturing operations. Effective decisions can thus be 

taken regarding process monitoring and quality con-

trol. Hence, three key tasks are identified: (1) raw data 

collected throughout the product lifecycle must be 

correctly processed to extract meaningful knowledge 

and generate the adequate reports, (2) efficient data 

management to enable the creation and the diffusion 

of useful reports to the right decisional actors in various 

departments of the company, and (3) interoperability 

(a) Chatter problem. (b) Spindle break.

Figure 1. Undesired phenomena during HSM.
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between heterogeneous legacy software and informa-

tion systems at different levels of the company must be 

tackled to support the data management strategy.

Generally, only descendant decisions are available 

in the company and no ascendant information is 

captured. In this work, top down decisions and bot-

tom up feedback are tackled in a closed-loop control 

system through a decision-aiding reporting mechan-

ism. Data are processed and KPIs are generated and 

transferred from the bottom (shop floor) to the top 

management (decision actors). The architecture stops 

at this point where experts are supposed to use these 

KPIs in order to take actions on the shop floor. This 

flow process results in a closed-loop control system 

between the top management and the physical 

equipment. From the implementation perspective, 

a combination of several technologies (i.e. Cyber- 

Physical, multi-agent and data mining) within 

a common decision-aid framework is proposed. The 

problem of chatter is addressed and a reporting sce-

nario is proposed to validate the proposition. This 

scenario should enable the closed-loop control sys-

tem. Human-in-this-loop takes place at the top down 

decision process which is beyond the scope of this 

work. The reporting mechanism is used above all for 

decision-aiding and experts are supposed to take 

decisions based on their knowledge and expertise. 

The next section introduces the main concepts and 

applications behind these paradigms before explain-

ing the proposed framework in Section 4.

3. Theoretical foundations

The technical choice of CPS architecture is one of the 

most important factors affecting the organization of 

the company services (Herterich, Uebernickel, and 

Brenner 2015). Monostori et al. (2016) have shown 

through a statistical survey of CPS related keywords, 

that agent-based techniques are one of the most 

commonly used techniques to implement a CPS. 

Since the aim of this paper is to describe the archi-

tecture of the decision-aid system, the literature sur-

vey focuses on technical solutions.

3.1. Cyber physical systems

A Cyber Physical System is represented by collabora-

tive computational entities between the physical 

environment and its on-going processes, providing 

and using, at the same time, data access/data proces-

sing services (Monostori et al. 2016). In the manufac-

turing field application, an efficient CPS must be 

based on: (i) a consistent monitoring system ensuring 

the accuracy and security of the collected data; (ii) 

a solid control of the large quantities of heteroge-

neous data by extracting reliable patterns (Rajkumar 

et al. 2010), and (iii) an efficient decision support 

system based on smart analytic tools/algorithms 

(Lee, Kao, and Yang 2014b).

The details of the methodology of deploying a CPS 

may be ambiguous depending on the usage context. 

From a general perspective regarding the setting up 

a CPS, the architecture proposed in (Lee, Bagheri, and 

Kao 2015) has five layers, known as ‘5-Cs architecture’: 

Connection, Conversion, Cyber, Cognition and 

Configuration layer. The particularity of such architec-

ture is the introduction of the cyber layer, which 

represents the synchronization between the physical 

world and the cyber virtual space, usually referred to 

as ‘Cyber twins’ (Lu et al. 2020). This layer highlights 

the communication between the control commands, 

the different external applications of a company and 

the physical connected entities (machines, sensors). 

This five-layer architecture is used as a guideline for 

setting up a CPS in industry. However, its implemen-

tation depends on the company organization and 

related information systems. Manufacturing 

Execution Systems (MES) are usually implemented as 

an intermediate layer that links the production man-

agement layer with the physical layer. The main 

advantage of such a system is its ability to intercon-

nect with the different physical workshop equipment. 

However, an MES is usually centralized and often lacks 

the flexibility to effectively control the workshop. On 

the other hand, Enterprise Resource Planning (ERP) is 

implemented in the last layer of a CPS and is used 

generally to manage the company services. Existing 

structures of the current ERP though do not take into 

account the dynamic conditions of the production 

workshop, such as machine availability. As a result, 

the connection between ERP and MES is generally 

limited by the lack of information that goes back to 

the first physical layer.

To overcome these limitations, different strategies 

are proposed in the literature, such as the concept of 

‘e-manufacturing’ introduced in (Lee, Kao, and Yang 

2014a). This concept makes it possible to interconnect 

via internet-web interfaces, machining operations 
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with the functional objectives of the company. Other 

management strategies that focus on the mainte-

nance and monitoring of machining machines are 

proposed, such as ‘cloud manufacturing’ (Wang 

2013), autonomous Multi-Agent Systems (Kumari 

et al. 2015), etc.

3.2. Multi-agent systems for interoperability in 

manufacturing companies

In manufacturing companies, heterogeneous applica-

tions which are implemented in distinct layers using 

different programming languages, must interoperate 

with each other efficiently. Moreover, these applica-

tions manipulate heterogeneous data collected from 

several sources with variant representation models. 

The interoperability becomes then a critical issue in 

the deployment of manufacturing applications 

(Leitão 2009). It is defined as the capacity of two 

systems interacting and ensuring the understanding 

of the process and data exchanged on both sides 

(Luck, McBurney, and Preist 2003). To cope with this 

issue, industrial companies require technological 

solutions allowing interoperability among software 

systems in a distributed computing environment 

(Feng, Stouffer, and Jurrens 2005).

One of these technologies is Multi-Agent Systems 

(MASs) (Wooldridge and Jennings 1994; Jennings and 

Wooldridge 1998). Due to their social skills, agents can 

interact with each other, perceive the environment, 

provide and ask for services to achieve individual and 

collective goals through an augmented Agent 

Communication Language (ACL) (Fipa-ACL 2002). 

Agent-based approaches provide distributed control 

where artificial intelligence techniques can be used 

(Xie and Liu 2017). Agents are supposed to be auton-

omous, pro-active, reactive with the environmental 

context, etc.

Agent-based approaches are interesting when it 

comes to deploying enterprise applications (Bellifemine, 

Caire, and Greenwood 2007; Bellifemine, Poggi, and 

Rimassa 1999). Researchers have successfully applied 

MAS to supply chain management (Fox, Barbuceanu, 

and Teigen 2000), manufacturing planning and control 

(Shen 2002; Caridi and Cavalieri 2004; Shen, Wang, and 

Hao 2006; Zattar et al. 2010; Bussmann, Jennings, and 

Wooldridge 2004; Mezgebe et al. 2020), enterprise inte-

gration (Kishore, Zhang, and Ramesh 2006), and holonic 

manufacturing systems (Colombo, Schoop, and Neubert 

2006). A comprehensive survey of MASs and their poten-

tial manufacturing applications are outlined by 

Monostori, Váncza, and Kumara (2006). Examples of 

applications are the work of (Alaya et al. 2017), Lee et al. 

(2013) and Wang et al. (2016). In (Alaya et al. 2017), quality 

management in a production system is addressed using 

five agent modules. In Lee et al. (2013), health manage-

ment of equipment is dealt with using an agent techni-

que called ’Watchdog Agent’. This architecture consists of 

an intelligent software that performs predictive model-

ling features based on transparency. Moreover, in Wang 

et al. (2016), agents are used to model shop floor objects, 

such as machines, conveyors, products, etc. Then an 

intelligent negotiation mechanism was designed to 

enable agents to cooperate with each other so to recon-

figure themselves for the flexible production of multiple 

types of products.

Overall, these solutions show the interest of using 

the multi-agents techniques in the factory of the 

future. However, each of the presented solutions 

lacks genericity and seems more adapted to 

a specific service (such as quality) rather than to all 

the company services. In this work, we use agents for 

modelling services and distributed control. We focus 

on reporting services where agents are used for two 

purposes. The first one related to interoperability con-

sists of communicating all entities such as software, 

tools and information systems of the company. 

The second one related to decision-aiding and con-

sists of handling complex data, using the right tools/ 

processes and proposing the right information to the 

right person at the right moment. Such a framework is 

supposed to be more generic on different scenarios. 

Moreover, the modularity of multi-agents enables 

easy adaptation and flexibility for further 

development.

In the proposed framework, multi-agent techniques 

are supposed to model the interaction between entities 

and take intelligent decisions. Agents are used for dis-

tributed control and decision-aiding. However, for valida-

tion purposes, in the proposed scenario illustrated in 

Section 5.2, we do not exploit the full characteristics of 

multi-agents such as intelligent decisions. We first focus 

on the feasibility aspect and further intelligent agents are 

under development with other complicated scenarios as 

explained in the conclusion. The use of such a module- 

based technique is also a good opportunity for develop-

ing flexible solutions that can be adapted to different 

contexts.
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4. Proposed reporting framework

To assist the critical task of decision-making in manu-

facturing companies, a reporting system is proposed. 

Its main aim is to connect decisional-making actors to 

the shop floor and provide them with feedback regard-

ing production progress status and critical events 

observed during the manufacturing process. The ana-

lysis of these reports helps the employees to diagnose 

and resolve failure problems, thus improving the accu-

racy of the decision-making process for production 

optimization and quality control. Therefore, taking 

into consideration the needs of each department, the 

developed system creates and transmits synthetic and 

customized reports, combining several decision-aid 

indicators as a contextual instantiation of KPIs and 

smart data. The reports are customized according to 

the decision-making requirement, working situation, 

authority and level operator expertise.

At the methodological level, the reporting strategy 

is based on a multi-level data aggregation approach 

(Ritou et al. 2019) where the first level contains all 

measured raw data after cleaning and preparation; 

the second level regroups new ”smart data” obtained 

after an aggregation of raw data, the third level con-

cerns the evaluation of various key performance indi-

cators (KPIs) obtained through an aggregation of 

smart data. Processing and aggregation algorithms 

are configured by means of business rules and formal 

models as well as based on machine and tools char-

acteristics (Wang et al. 2020). These elements are 

stored in a knowledge repository, into which addi-

tional context descriptors are also added. For 

instance, based on some mechanical characteristics 

(such as knowledge), a reliable contextual classifica-

tion was proposed as a raw data aggregation to 

detect chatter phenomena among others. It consists 

of two steps, the first one is to detect chatters based 

on a calculated threshold, then during the second 

step, data are aggregated by a day/program/tool. 

The algorithms behind those aggregations are 

beyond the scope of this paper. The reader can refer 

to the work of Godreau et al. (2019) for more details.

At the technical level, the reporting task is handled 

by an agent-based architecture. This choice is moti-

vated by the successful application of MASs to cope 

with interoperability issues. The MAS is designed to 

manage both reporting scenarios and the whole digi-

tal chain that feeds the report contents. In the next 

sections, first, an overview of the proposed framework 

is given, and then the MAS architecture and agents 

roles are described.

4.1. Conceptual architecture

The proposed reporting framework is built as an inte-

grated cyber physical system where the different 

modules are interconnected and linked to the legacy 

tools. A three-layer architecture is proposed as shown 

in figure 2 (from bottom to top): (i) Physical layer, (ii) 

Application layer and (iii) Management layer. Each 

layer is described as follows:

4.1.1. Physical layer

This includes all sensing systems connected to the phy-

sical devices that execute the manufacturing operations 

on the shop floor. In addition, a Numerical Control (NC) 

machine is considered as a data source. Machining data 

are gathered from sensors through a monitoring and 

data collection system, called EmmaTools (De 

Castelbajac et al. 2014). It samples sensors from real- 

time signals, extracts execution data from NC, and stores 

them into a common raw database (EmmaTools DB) 

which is propagated to the upper layer.

4.1.2. Application layer

This contains two kinds of smart algorithms. The first 

one (named raw data aggregation) is related to the 

contextual classification and the analysis of the big 

data collected at the physical layer. New monitoring 

criteria are generated and stored in the Smart DB (e.g. 

chatter times, tool breakage detection (Boolean), 

machining operation type, etc.). The second algo-

rithm (named smart data aggregation) is to aggregate 

the previously processed smart data. The result is a set 

of exploitable key performance indicators (KPIs) 

stored in synthetic Traceability data base. This inter-

mediate layer also includes heterogeneous business 

applications, such as design and simulation tools, 

ERP/MES, and knowledge repositories containing 

rules and libraries set up by experts.

4.1.3. Management layer

This uses MAS to control the execution of smart algo-

rithms and orchestrates the coordination between 

heterogeneous applications. Communication and 

information flow between legacy tools and various 
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digital repositories is also achieved by the MAS. Each 

agent has the main role of perceiving the environ-

ment (equipment or software), understanding the 

reporting requests received from the user or other 

agents, and then reacting according to the requested 

information and context. In this approach, MAS 

enables the retrieval of the right information from 

the right source and executes the appropriate algo-

rithm. For instance, it can be the extraction and pro-

cessing of requested raw/smart data from the suitable 

DB, retrieving information from the ERP or MES, cal-

culating and storing targeted KPIs in the Traceability 

DB, and formatting and sending reports via mailing 

automates.

As shown in the application layer, several reposi-

tories are used to store raw, smart and traceability 

data as well as useful knowledge. They are described 

in various formats and sampled at variable frequen-

cies. The first step for building data and knowledge 

bases is to identify, at the semantic level, the right 

concepts for every type of entity but also to connect 

these concepts in a logical way, so that the data 

retrieval for reporting can be easier. The proposed 

traceability model is described in figure 3.

The traceability database relies on a key concept 

called a ”Traceability node” as a contextual instantia-

tion of various records in the data base according to 

the traceability objectives and mode as well as the 

business role of the claimer actor. A traceability node 

is a smart combination of ”trace items” that can be 

smart data and/or, KPIs. One trace items is referring to 

one reference attribute linked to a process, program, 

part and/or hardware resource (machine or cutting 

tool) so the traceability node could also include 

a comparative analysis between various elements 

cited above. Three types of smart algorithms are 

identified: Raw Aggregation data transform raw to 

smart data; Smart Aggregation data transform smart 

Figure 2. The Conceptual architecture.
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data to useful KPIs and Decision algorithms will 

implement additional analysis (for cause-effect 

detection for example). Concretely, the evaluation of 

data and KPIs explained above is achieved according 

to the following process shown in figure 4.

Access to the decision indicators above could be 

possible following three reporting modes: on demand 

reports (the operator initiates the creation of a desired 

report with specific settings), periodic reports (e.g. 

daily, weekly, etc.) or event driven report (triggered 

after the detection of an malicious event; e.g. chatter, 

tool break, etc.).

4.2. MAS for reporting

To develop an efficient solution, the number of agent 

types at management layer was restricted and the 

involvement of users was limited. Each agent on the 

platform perceives its environment and executes 

instructions defined by its behavior in order to reach 

its goal. The cooperation of all agents is required in 

order to achieve the global goal, i.e. reporting. 

Concretely, three types of agents are distinguished 

as explained below (figure 5):

• HMI/Configuration Agent (CA): this agent supports the 

human-machine interaction where the user inputs are 

received and analyzed. Thanks to this agent, the user has 

only to connect through a GUI (Graphical User Interface) to 

express his needs and to set up reporting request para-

meters. The CA is then responsible for handling these query 

details and routing them to the traceability agent for 

treatment.

• Traceability Agent (TA): based on the reporting para-

meters settings sent by the CA, the TA role involves 

communication with the smart database to extract use-

ful data and with the external application, i.e. Matlab 

software, to execute the suitable smart algorithms. 

Predefined KPIs models are selected for each case, and 

instantiated according to the user needs and, his profile 

in the enterprise. As a result, the calculated KPIs are then 

saved in the Traceability DB. Traceability points repre-

sent synthetic information that is directly exploitable for 

decision aiding. The traceability is carried out on 

demand, periodically, or by the occurrence of an event. 

The two latest modes are triggered through automatic 

workflow that executes the on demand traceability at 

a given time.

• Reporting Agent (RA): Once the synthesized KPIs are suc-

cessfully calculated and saved in the Traceability DB, RA is 

notified to manage results as a meaningful combination of 

KPIs. Different human readable reports formats can be 

Figure 3. Traceability DB Model.
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generated: graphs, tables, text. The user can navigate 

through an interactive interface or obtain direct access to 

the report files via e-mails. The CA then takes the role of 

a presentation module where the system outputs are fed 

back to the operator who has initiated the reporting 

demand.

Several agents from the same category can co-exist 

to achieve different behaviours. Table 1 outlines these 

behaviours and points out entities interacting with 

each agent and the communication means used to 

exchange information.

Figure 5. Agents collaboration within the reporting framework.

Figure 4. Global process of data management overview.
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ACL (Agent Communication Language) – XML 

(Extensible Markup Languag) – JDBC (Java DataBase 

Connectivity) – SMTP (Simple Mail Transfer Protocol)

4.3. Implementation issues

4.3.1. Technical architecture

Several software platforms have been proposed in the 

literature to support agent-based systems implementa-

tion which reduces the development time by providing 

the decomposition and communication infrastructure. 

In this paper, the proposed MAS is implemented using 

the IBM JADE (Java Agent DEvelopment Framework 

(Bellifemine, Caire, and Greenwood 2007; Bellifemine, 

Poggi, and Rimassa 1999)), an open source middleware 

distributed by Telecom Italia 46. Although many other 

multi-agent frameworks are available, JADE is the most 

commonly used in several application domains based 

on extensive available documentation. It provides 

predefined agent models and tools that enable the 

realization of different agent architectures with good 

runtime efficiency, software reuse, and agent mobility 

(Bellifemine, Poggi, and Rimassa 1999). Communication 

between agents is promoted by complying with the 

FIPA specifications for ACL (Agent Communication 

Language) where information flow among agents is 

enabled by message exchange (Fipa-ACL 2002). The 

study of ACLs is one of the most frequent research 

topics in the field of multi-agent systems (Soon et al. 

2019). The two most used standards for defining the 

encoding and managing of message transfert between 

agents are FIPA-ACL and KQML (Knowledge Query 

Meta Language model). They are almost identical in 

terms of their basic concepts and observed principles. 

They have also the same syntax and they differ mainly 

in the details of their semantic frameworks. Although 

KQML is good for the transfer of messages between 

agents, its direct exploitation in the construction of 

a cooperation system is very inefficient (Cost et al. 

2000), which better explains the choice of FIPA ACL. 

Moreover, thanks to predefined libraries of data models 

and XML parser, the TA is able to interoperate with 

different information systems and extract contextual 

information needed for reports (see figure 6).

On the other hand, MAS, specifically TA, has to 

interoperate with external software to efficiently per-

form smart data aggregation and calculate required 

KPIs. This task is achieved by using MathWorks 

Matlab, a powerful software used to perform complex 

numerical computations and data analysis (MATLAB 

2010). Inputs/outputs are exchanged between agents 

on the JADE platform and Matlab through an asyn-

chronous TCP/IP communication (see figure 6). 

Matlab for data aggregation is used to optimize the 

proposed MAS performance by speeding up the com-

putational time.

To store multi-source data, we use MySQL (DuBois 

2008), an open-source relational database manage-

ment system. Three types of databases are deployed. 

EmmaTools DB (raw database) includes data collected 

from machines on the the shop floor: data extracted 

from machine Numerical Control (e.g. time, program 

ID, tool ID, power, rotation speed, etc.) and sensors 

data (vibration, accelerations, temperature, frequen-

cies, etc). Smart DB contains new monitoring criteria 

and useful knowledge extracted by Data Mining tech-

niques from the raw data structured by tool call, per 

program per day (e.g. stopped time, machining time, 

finishing time, chatter time, tool break, excessive 

vibration time, etc.). Finally, synthesized KPIs calcu-

lated by intelligent aggregation of smart data are 

stored in the Traceability DB (e.g. chatter time by 

program, total number of tool breaks, ratio of non- 

machining time, etc.). Traceability points represent 

synthetic information which is directly exploitable 

for decision aiding. TA and RA are allowed to access 

to these databases, i.e. read/write targeted data by 

means of SQL (Structured Query Language) queries, 

Table 1. Agents roles specifications.

Agents Roles Interacting entities Communication

Configuration Agent (CA) User GUI
Traceability Agent ACL messages

Traceability Agent (TA) ERP, MES, . . . XML files
Matlab

Asynchronous TCP/IP communication Traceability DB JDBC
Reporting Agent ACL messages

Reporting Agent (RA) Traceability DB JDBC

Receives reporting request 
Sends reporting parameters 
Extracts information 
Launches KPIs calculation 
Stores calculated KPIs 
Notifies results availability 
Retrieves report content 
Formats and sends reports User SMTP server
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through Java DataBase Connectivity (JDBC) set 

between the agent in the JADE platform and different 

databases (see figure 6).

4.3.2. Deployment in the industrial network

To reach a satisfactory degree of efficiency, the 

deployment of the proposed framework remains 

a crucial issue to be addressed by taking into account 

the technical constraints of the industrial network 

(both business departments and shop floor networks).

Hierarchical/edge-based computing is deployed as 

represented in figure 7. In this solution, data are pre- 

processed at each Emmatools, then the smart data 

obtained are generated and centralized at the middle 

part. The smart multi-agent system in charge of 

reporting is located at this level as well in order to 

maintain industrial network performances.

5. Industrial case study

The aim of this section is to show the feasibility of the 

proposed framework described in Section 4. For 

validation, the reporting framework has been tested 

on a real industrial use case from the aeronautic 

sector. These use cases are related to high-speed 

machining process with high added-value mechanical 

parts. These types of parts have thin walls and floors, 

generally very sensitive to vibration phenomena 

(which require costly manual finishing operations). 

Since the aeronautic domain is characterized by 

highly customized demands, a machine-tool almost 

never fabricates the same part twice consecutively. 

Hence, understanding the behaviour of the machine 

is critical.

To resolve these critical problems, several report-

ing scenarios can be proposed such as productive and 

stopping time tracking, Overall Equipment 

Effectiveness (OEE) evolution, spindle signature mon-

itoring, chatter, tool breakage, and collision reports, 

etc. In this section we focus on a reporting scenario 

for chatter phenomena. This scenario is conducted 

step by step to illustrate the functioning of the frame-

work. Chatter is one of the most undesirable phenom-

ena involving unacceptable quality defect on the 

Figure 6. Interoperability in development environment.
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work piece surface. Hence, it must be avoided in order 

to preserve machine life, improve surface quality, and 

increase tool life. For this reason, decision-making 

operators are prompted to restrict the occurrence of 

such phenomena by inspecting the performance of 

tools and programs designed to execute manufactur-

ing orders. In this context, the proposed reporting 

system provides assistance to the methods and pro-

grams departments in order to detect unstable pro-

grams and tools. It generates summarized feedback 

including chatter reports which enables detecting 

programs and tools to include the appearance of 

recurrent chatter. Based on these sensitive and tar-

geted reports, decision-making regarding harmful 

programs and tools will be more accurate.

5.1. Machining data acquisition

At present, abundant real-time process data are gen-

erated and available in an operating machine-tool, 

mainly for the motion control in relation to the 

G-code and the programmed tool path. In the

physical layer, the data acquisition device 

(EMMAtools) is connected to a machine-tool by 

a field bus to record around one hundred parameters 

(axes speed, position, power and temperature, the 

G-code name and line, tool reference, etc.). Data can

be retrieved from the NC, the axis drives, the PLC

(Programmable Logic Control) (Godreau et al. 2019).

Additional sensors are also embedded e.g. acceler-

ometers integrated into a Fischer high speed spindle,

on front and rear bearings, for an accurate measure of

the vibrations due to the cutting process and the

spindle condition.

Signals are measured with a National Instrument 

9234 acquisition card at a sampling frequency of 

25 kHz. Then, to avoid an excessively big database, 

online signal processing is carried out every 0.1 s, in 

frequency domains notably order tracking, and only 

relevant higher level information is recorded. As 

a result, about 200 MB is collected daily from each 

machine-tool. PostgreSQL is used for the manage-

ment of the HSM process database (EmmaTools DB) 

which consists of columns and rows. Each column 

Figure 7. Deployment of the proposed system in the industrial network.
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refers to a given parameter and each row corresponds 

to every 0.1s recording. These data were acquired 

during the entire spindle life cycle (426 days) where 

80 cutting tools and 346 programs have machined 

534 workpieces. After processing, smart data are gen-

erated and formatted in multiple CSV files.

5.2. Reporting scenario demonstration

The proposed scenario is to report the main tools and 

programs that caused chatter during the machining 

process. These reports are very important for deci-

sion-making and enable to change the type of tools 

and programs in similar machining processes in order 

to avoid chatter. MAS is used as a reporting solution. It 

communicates between agents and the whole system 

so to extract the right information about chatter and 

send it to the right person.

The interaction for such a report starts by the con-

figuration of interfaces using the HMI Agent as shown 

in figure 8. This agent communicates the user request 

with the Traceability Agent and the Reporting Agent. 

Data is processed/aggregated using matlab script and 

then stored as KPI in the traceability database 

(MySQL). The Reporting Agent extracts the results 

and send it to the user. The aim of this simple scenario 

is to show the feasibility of the proposed reporting 

framework.

5.3. Results

Two examples of customized reports are generated 

from this illustrated scenario to investigate chatter 

causes. In order to highlight the critical tools causing 

maximum chatter, the first type of reports provides 

decision makers with statistical results regarding tools 

performance including a table with the tool reference, 

chatter time, usage time and a pie chart of the tools 

contribution to chatter occurrences. For instance, it 

can be noticed from the report in figure 9(a) that tool 

number ID 10026 has induced more than half of the 

total chatter time. Such information is used as 

a decision aid KPI for improving tools cutting condi-

tions in future machining processes. The second 

Figure 8. Main GUIs of the Reporting system with JADE framework.
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reports presents the same results regarding programs 

(9(b)). To produce these results, chatter times are 

aggregated by each program and the most important 

ones are selected and presented in a pie chart. The 

results of this chart show that almost half of the 

chatter time (excessive vibrations) was caused by pro-

gram ID 193. The decision that can be made from 

these results is to update or code this program 

again to reduce chatter time.

6. Conclusion and future works

This paper proposes a reporting system devoted to assist 

operational management actors in manufacturing com-

panies in making effective decisions to improve the 

quality of their products. One idea behind this frame-

work is to adapt the paradigm of MAS as a solution for 

interoperability issues between heterogeneous cyber 

physical components. Agents cooperate with each 

other and interact with external applications to handle 

user requests and generate customized reports to be 

shared regarding the work context of the user.

Designed as a key function for ”industry 4.0” future 

applications, a reporting scenario has been proposed 

and tested in a real industrial use case where useful 

and synthesized decision-aid indicators are extracted 

from big data collected throughout the machining 

process. Disruption of the digital chain caused by 

less feedback from the manufacturing shop floor to the 

operational management is then reduced. Furthermore, 

the reporting system relies on an integrated data and 

knowledge management strategy that aims to optimize 

the size and usefulness of data generated from large 

databases. One of the complex problems within the 

paradigm of big data is their under exploitation in con-

crete industrial situations because indicators are difficult 

to interpret according to business needs. The Big Data 

issue is then solved by aggregating and generating 

smart and meaningful data.

The positive feedback from the industrial partners 

of the project provided a first validation of the results 

and the utility of such initiatives in the enterprise of 

the future. In this context, multi-agent technology is 

relevant in the deployment of flexible solutions where 

it is possible to dynamically integrate new behaviors 

to cover additional reporting scenarios. An example 

of future scenarios under development consists of 

generating periodic or automatic reports for health 

monitoring of spindles, tools, machines, parts, etc. 

This mechanism can be triggered by agents without 

any requests from users. Internal decisions that can be 

taken by agents in this situation consist of deciding 

when to start the reporting mechanism and what to 

do based on the results. An interesting situation is to 

warn the decision maker when an unplanned event 

occurs.

Figure 9. Chatter reports.
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However, some concerns still exist with these sce-

narios: firstly, decision needs are important and some-

times hard to obtain from the experts. In the same 

company, several points of view are possible on 

a given set of data that will make it hard to create all 

combinations of indicators for highly customized 

reports. Furthermore, the critical step is the config-

uration of the efficient data mining process in order to 

validate the useful types of information. Manual ana-

lysis of data is often requested before launching the 

automatic reporting system. Further studies integrat-

ing knowledge based approaches with MAS are under 

development.

Finally, those who are expert in this field focus 

primarily on the reporting mechanism. With the 

development of other complicated scenarios, other 

complementary agents can be proposed for other 

services and problems such as fault diagnosis, failure 

prediction and rescheduling. An example of ideas that 

are being studied is to monitor spindle health using 

multi-agent. In this situation, machining tasks can be 

reallocated to the available spindles based on task 

complexity (cutting conditions) so as to avoid risks 

such as spindle breakage.
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