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A B S T R A C T

Urban road transportation performance is the result of a complex interplay between the network
supply and the travel demand. Fortunately, the framework around the macroscopic fundamental
diagram (MFD) provides an efficient description of network-wide traffic performance. In this
paper, we show how temporal patterns of vehicle traffic define the performance of urban road
networks. We present two high-resolution traffic datasets covering a year each. We introduce a
methodology to quantify the similarity of macroscopic traffic patterns. We do so by using the
concepts of the MFD and a dynamic time warping (DTW) based algorithm for time series. This
allows us to derive a few representative MFD clusters that capture the essential macroscopic
traffic patterns. We then provide an in-depth analysis of traffic heterogeneity in the network
which is indicative of the previously found clusters. Thereupon, we define a parsimonious
classification approach to predict the expected MFD clusters early in the morning with high
accuracy.

1. Introduction

Urban road transportation performance is the result of a complex interplay between the network supply and the travel demand.
The infrastructure’s upper (theoretical) performance is determined by the network topology and traffic control. The observed
network performance, however, also depends on the demand, in particular, the spatial and temporal distribution of vehicle flows.
Thus, the observed performance is typically lower than the upper limit (Çolak et al., 2016; Loder et al., 2019; Ji and Geroliminis,
2012).

Fortunately, the framework around the macroscopic fundamental diagram (MFD) provides an efficient description of the ideal
network-wide dynamic traffic performance (Geroliminis and Daganzo, 2008; Loder et al., 2019; Mahmassani et al., 1987) that is the
prime ingredient to the so-called bathtub models (Vickrey, 2020). Generally, the MFD links the network averages of the fundamental
traffic variables density and flow with a smooth and concave relationship. The two variables increase until they reach the critical
point of urban traffic. Thereafter, increasing vehicle density in a neighborhood leads to a decrease in vehicle flow. Then, it is
said that a neighborhood is congested at the macroscopic level. The network average journey speed results from flow divided by
density, i.e., every network has a critical speed that is below free flow speed at which congestion starts. In recent years three distinct
definitions of the MFD have emerged as summarized in Fig. 1:
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Fig. 1. Existing MFD definitions and corresponding literature examples.

I MFD as theoretical upper bound MFD (uMFD): This is the original notion of the MFD introduced by Daganzo (2007). Here,
the MFD is seen as a function of the network topology and traffic control only. It answers the question: ‘‘Given an urban road
network with its traffic control, what are the maximum feasible traffic states?’’. In other words, it tries to define the network’s
maximum traffic capacity under ‘‘optimal circumstances’’. As an example of a brute force approach to find such an upper bound,
we can imagine the following experiment: Once the network and traffic control are defined, we run a Monte-Carlo simulation
with many different demand patterns and calculate the MFD for each scenario. The scenario (or a combination thereof) with the
highest (steady-state) average flow (or travel production) for any average vehicle density (or accumulation) yields the upper
bound MFD. These exact demand properties are unlikely to be observed in reality, and thus it is the theoretically feasible upper
bound MFD. Even though slightly misleading, it is the common understanding that this upper bound is demand-independent
because it is essentially not a description of what is observed, but an upper bound to what could be observed.
Prominent analytical approximations for such upper bound are limited to approaches that require network reduction (or
mapping) to a single corridor, e.g. method of cuts (see Daganzo and Geroliminis (2008), Laval and Castrillón (2015), Leclercq
et al. (2015)). The inputs to such models are the network topology and traffic control details. Endogenously defined demands,
however, are not a required input. The method endogenously solves the demand selection process described by our above
brute force approach. This further fosters the notion that the upper bound MFD is independent of demand.
The static perspective offered by the upper bound MFD is useful for urban planning studies or defining the potential of the
traffic system.

II MFD as the observed daily macroscopic traffic performance: Here, the focus lies on the observed (or realized) shape in
the average flow and density plane.
With the first publications (see Geroliminis and Daganzo (2007) and Buisson and Ladier (2009)) on the empirical existence of
the MFD, the notion thereof altered as well. Empirical studies showed that relating the measured average traffic density and
flow in an urban neighborhood usually yielded, in general, a well-defined curve (but which still differed day after day in shape
and evolution). It was therefore natural to call these observed macroscopic traffic states the empirical MFD. Unfortunately,
these studies only had access to a few days, so the differences between the days were neither discussed nor further investigated.
Later studies showed that the observed daily macroscopic traffic states are (well) below the upper theoretical bound (see Tilg
et al. (2020), Ambühl et al. (2020) and Saffari et al. (2020)). Imagine a directed demand in an urban network, where vehicles
only travel from South to North, and this happens day after day. It is obvious that the observed MFD will not correspond to
the upper bound, because many links in the network (predominantly the ones from North to South) will not be used at their
maximum flow. Arguably, observing MFDs close to the uMFD necessitates homogeneously distributed traffic and slow-varying
demand that is hard to find in a real, regular network (Daganzo, 2007; Ambühl et al., 2020; Buisson and Ladier, 2009; Loder
et al., 2019), because of inefficient network loading and spillbacks due to given demand patterns that inevitably lead to a
heterogeneous distribution of traffic flow (Leclercq et al., 2015; Knoop et al., 2015; Geroliminis and Sun, 2011; Mazloumian
et al., 2011; Mahmassani et al., 2013). So far, most studies are limited to only a few observation days, so the differences
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between days were not further investigated. However, many real-world MFD applications rely on a repeatable and stable
MFD, making inter-day variation an important aspect to consider (Haddad and Geroliminis, 2012; Zheng et al., 2012; Yang
et al., 2019; Geroliminis et al., 2014). For the observed or realized MFD, it depends on the application, whether the temporal
evolution is considered or not, creating subsequently two different definitions: the static and dynamic MFD.

IIa In the static MFD, sMFD, the focus lies on the observed (or realized) shape of the average flow as a function of density,
only. The temporal aspects in the evolution of the macroscopic traffic performance are disregarded. This allows the
reduction of the complexity of the observed urban traffic dynamics. Therefore, the sMFD is a very helpful tool for
any application that requires a static view of the daily system’s performance, e.g. traffic control based on the static
critical point (see e.g. Geroliminis and Levinson (2009), Haddad and Geroliminis (2012), Knoop et al. (2014), Zheng and
Geroliminis (2016), He et al. (2019), Ramezani et al. (2015), Ampountolas and Kouvelas (2015), Keyvan-Ekbatani et al.
(2016) and Yang et al. (2018)).

IIb The dynamic MFD, dMFD, a definition introduced by Mahmassani et al. (2013), considers the MFD as a tool to observe,
understand, and model the loading and unloading of urban traffic. Tracking average flow and density over time allows
to clearly define when the traffic system becomes saturated, when it is recovering, etc. This definition also deals with
dynamic aspects of the observed MFD’s shape, e.g. hystereses and the reason why they might exist (see e.g. Ji et al. (2014),
Saeedmanesh and Geroliminis (2014), Mariotte et al. (2017), Saffari et al. (2020) and Gayah and Daganzo (2011)).
It is not astonishing that most applications around the MFD rely on tracking network performance over time. The classic
example is perimeter control, where traffic strategies are deployed to prevent the system from becoming macroscopically
congested. Similarly, other examples also require short-term traffic prediction. Therefore, the dynamic aspects of the
evolution of the macroscopic traffic conditions are paramount.

From Fig. 1 and the above definitions of the MFD it can be concluded that the uMFD uses network information and can be
considered demand-independent, while the dMFD and sMFD use vehicle measurements and are demand dependent. Estimating the
dMFD always allows to derive the sMFD, but not the other way around. Consequently, analyzing the performance patterns based on
the dMFD uses the full information provided by the measurements for applications that require either the dMFD or the sMFD. Until
now, the lack of longitudinal empirical data at a large urban scale, as well as a methodology to measure the similarity between
empirical dMFDs, prevented a detailed analysis.

Fig. 2 shows the empirical dMFDs over a year for Zurich (430’000 inhabitants) and Lucerne (80’000 inhabitants) in Switzerland,
for a region of roughly 10 km2 each in their respective downtowns. While the overall trends are clear, the dMFDs still exhibit a range
of flows for a given density. Highlighting two days in each dMFD emphasizes that there might be substantial variations between
different days of the year. Even within the same day, the dMFD does not follow the same path during the loading and unloading
phases, i.e. potentially reflecting hysteresis effects. Thus, these dMFDs raise a series of questions that this study aims to answer:
How can we establish and measure the repeatability of empirically observed dMFDs? How can we disentangle the differences in the
dMFDs shown in Fig. 2? What are the underlying drivers of such differences? How can we predict the expected dMFD shape and
its evolution well in advance, i.e. early in the morning?

We approach these research questions in two steps:

1. In a first step, we use the dMFD definition provided in definition IIb to compare its daily evolution over the course of a year.
We then measure the similarity between days and reduce the full-year dataset to a few representative clusters.

2. In a second step, we then explain the differences between these representative clusters as a result of the dynamic loading of
the network, measured by the evolution of the spatial heterogeneity in the network as well as the perimeter flows.

This allows us to introduce the following four contributions: (i) we present two very large empirical high-resolution traffic
datasets covering a year each; (ii) we introduce a methodology to quantify the similarity across dMFDs and identify clusters across
different days ; (iii) we explain the differences between the clusters as a result of the dynamic loading of the network, measured by
the spatial heterogeneity in the network, as well as the perimeter flows, which play a key role in the activation of traffic bottlenecks;
and (iv) we use a parsimonious classification approach to predict the expected clusters accurately early in the morning.

The remainder of this paper is organized as follows. In Section 2, we present the datasets. Then, in Section 3 we introduce a
novel method to measure the similarity across dMFDs. In Section 4, we then derive clusters of dMFDs, which show similar shapes
and macroscopic loading/unloading patterns. In Section 5, we investigate the reasons for the differences found between the clusters.
In Section 6, we define a surprisingly parsimonious way to accurately predict the expected dMFD cluster as early as possible within
a day. In Section 7, we close with the conclusions of this study.

2. Data

The empirical data from Fig. 2 originates from stationary traffic sensors (386 in Zurich, 131 in Lucerne) and covers a year (365
days) at a resolution of 3 min for each of the two cities. We use an advanced automated outlier detection algorithm based on
principal component analysis by Filzmoser et al. (2008) for large multivariate datasets to assure high quality of the data (see also R
package mvoutlier). Missing data points and outliers are then imputed using a k-Nearest Neighbor (kNN) methodology by Kowarik
and Templ (2016) (see also R package VIM). In addition, the time series is smoothed using a TBATS model, a fast exponential
3
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Fig. 2. Empirical dMFDs for Zurich and Lucerne, Switzerland.

Fig. 3. Loop detectors included in the analysis. Red squares indicate the perimeter loops, whereas black dots represent the loops used to derive dMFDs. The
maps are oriented towards the North.

Fig. 3 shows the considered regions and the detectors included in this study. Note that we also highlight detectors outside of the
regions. They serve as perimeter detectors (32 in Zurich, 19 in Lucerne) and measure the traffic into and out of our regions.

In Fig. 2, Zurich yields substantially lower flows than Lucerne, because the detectors in Zurich also cover roads with lower
priority (recall that Zurich has approximately three times as many detectors as Lucerne). Conversely, in Lucerne, most detectors
are located on arterials with relatively high green/red ratios. Interestingly, there are few signs of severe macroscopic congestion in
either city. This is due to the adaptive traffic signal control in both cities and a demand-responsive gating of vehicles, especially
4
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in the city of Zurich (see Ambühl et al. (2018b)). Nonetheless, the lowest average network speeds are approximately 4 − 6 km∕h -
roughly walking speed.

The coverage rate of links with a detector in Zurich is roughly 40% and in Lucerne 25% of the main road system (includes
primary–tertiary roads according to the definitions by OpenStreetMap). A threshold of 25% randomly distributed detectors allows
unbiased estimation of the MFD (Ortigosa et al., 2014; Saffari et al., 2020). Admittedly, the monitored links are not randomly
distributed in the network, but they cover mostly the important arterials with recurring congestion. For Zurich, a simulation
study has shown that the loop detector distribution yields an unbiased MFD (Ambühl et al., 2016). Thus, they are of prime
interest for an intervention. We acknowledge that there might be another measurement bias, insofar that we measure traffic on
roads that are monitored, and thus managed differently from roads without loop detectors. Note, we have no reported substantial
change (e.g. removal/construction of/on a bridge) to the network during the observation period. Also, there is no evidence of an
over-representation of certain clusters in certain months.

3. Measuring similarities of the dMFD

The dMFDs shown in Fig. 2 pool the individual dMFDs across 365 days. They show the length-weighted average of lane-flow
and occupancies. To disentangle the daily differences, we first need to understand how the (dis-)similarity between dMFDs can be
measured. Similar dMFDs should not only look similar with respect to the average flow and density but also in time, meaning that
similar trends in traffic conditions should happen within a narrow time frame. In the following, we introduce a time series based
solution which measures not only the difference in magnitude but also the evolution over time. This is especially important as
similar dMFDs could potentially benefit from a similar macroscopic control. Thus, identifying the (dis-) similarities between daily
dMFDs is not only important to understand the underlying traffic mechanisms, but also from an application point of view.

3.1. Dynamic time warping

In the following, we track the macroscopic traffic performance with two variables. Our approach makes sure that both, the
average flow and density, are included in the analysis simultaneously. Given that the dMFD itself (see also Fig. 1) consists of these
two variables, we believe it is natural to refer to our approach as MFD-based. Therefore, we consider the dMFD as a joint time series
of average flow 𝑄 (𝑡) and density 𝐾 (𝑡) for the day.

Thereby, the dMFD time series also captures the dynamics of the network loading and recovery process over time. This perspective
is useful to determine a reasonable number of daily dMFD clusters over a year. This would allow reducing the many dMFDs observed
to a few representative dMFD clusters. dMFDs contained in the same cluster, therefore, are candidates for the same macroscopic
control strategy.

A variety of time series similarity measures exist (Tormene et al., 2009; Bagnall et al., 2017). Given its low complexity
and widespread use, we resort to the dynamic time warping (DTW) algorithm, which was first used in speech and handwriting
recognition, but has also found applications in other fields, e.g. evolutionary genetics or crowd-sensing (Yuan and Raubal, 2012;
Bahlmann and Burkhardt, 2004; Berndt and Clifford, 1994). Existing transportation literature applies DTW for vehicle or pedestrian
trajectory matching (Sun et al., 2018; Taylor et al., 2015; Przybyla et al., 2015; Sharma et al., 2018). To the best of our knowledge,
this powerful metric has not been applied to the field of the MFD.

DTW measures the similarity between 𝑛-dimensional time series by warping the time axis within a specified time window (Berndt
and Clifford, 1994). In contrast to comparing the (euclidean) distance between sequences at the same time, DTW thus deforms the
time axis in both 𝑄 (𝑡) and 𝐾 (𝑡) within the allowed limits. The algorithm searches for a warping path that aligns the trajectories of
{𝑄𝐴(𝑡), 𝐾𝐴(𝑡)} and {𝑄𝐵(𝑡), 𝐾𝐵(𝑡)} so that their distance 𝛿 is minimized. The DTW framework is described schematically as follows:

1. Calculate the euclidean distance between the first time interval in MFD 𝐴 and every time interval in MFD 𝐵. Store the
minimum distance calculated (so-called time warping).

2. Move to the second interval and repeat 1. Then move to the next interval and repeat.
3. Repeat 1 and 2 but with MFD 𝐵 as a reference point.
4. The sum of the minimum distances stored in step 1–3 represents the DTW distance.

In mathematical terms, DTW searches for the warping path that minimizes the cumulative distance between sequences
{𝑞𝐴(𝑡), 𝑘𝐴(𝑡)} and {𝑞𝐵(𝑡), 𝑘𝐵(𝑡)}. This warping path is subject to some restrictions: (i) continuity: the alignment cannot jump; (ii)
boundary conditions: the full interval range is covered; (iii) warping window: guarantees that (probably unrelated) intervals very
far apart do not get aligned (Tormene et al., 2009).

Fig. 4(a) shows DTW schematically. In this example, we show the process for the univariate case, where the aim is to apply the
DTW algorithm on 𝑄 only. In the figure, we see two dMFD flows over time, one in the horizontal rectangle (𝐴), and one in the
vertical (𝐵). Standard DTW aligns each value of 𝑄𝐴(𝑡) to a value of 𝑄𝐵(𝑡) (or vice versa). This alignment is shown in the square in
the middle of Fig. 4(a). Note that if we had aligned the two patterns by comparing the dMFD flow values for identical time steps,
the alignment would be the square’s diagonal.

Measuring the similarity using DTW has two important implications for dMFDs: (i) If dMFD 𝐴 is shifted by some interval or
progresses faster, but otherwise results in a shape similar to dMFD 𝐵, 𝐴 and 𝐵 are deemed similar (within the limits of the warping
window). (ii) It allows us to capture the loading and the unloading of urban traffic networks (i.e. hysteresis). A simpler euclidean
distance measure or a functional form estimation would result in ambiguities in the multi-valued dMFD (e.g., hysteresis).
5
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Fig. 4. Schematic overview of dynamic time warping. Time is fictitious.

3.2. Calculating the distance matrix

We apply the above framework to the datasets described in Section 2. For the results to be scale-independent, we normalize the
average flow and average density as follows.

�̃�(𝑡) =
𝑄(𝑡) −𝑄𝑚𝑖𝑛
𝑄𝑚𝑎𝑥 −𝑄𝑚𝑖𝑛

; �̃�(𝑡) =
𝐾(𝑡) −𝐾𝑚𝑖𝑛
𝐾𝑚𝑎𝑥 −𝐾𝑚𝑖𝑛

(1)

𝑄𝑚𝑖𝑛 and 𝑄𝑚𝑎𝑥 are the global minimum and maximum dMFD flow over all 365 days, respectively. This holds analogously for 𝐾.
Notice that a similar approach was used by Ortigosa et al. (2014) to quantify differences across dMFDs.

We compute the DTW distance between all days with a warping time window of 3 h, which roughly represents the duration of
an extended loading and unloading period. A short sensitivity analysis is presented in the following subsection.

This process yields a distance matrix 𝑀𝑀𝐹𝐷 of 365x365 in size for each city. The lower the distance between two days, the more
similar their dMFDs are deemed. This matrix then serves as an input to the clustering algorithm described in Section 4 aiming to
find a set of representative dMFDs. In that section, we will investigate ways to further disentangle the distance matrix in a clustering
approach.

3.3. Warping time window

As defined above, we use a warping time window of 3 h, which roughly represents the duration of an extended loading and
unloading period. In the following, we investigate the sensitivity of the results with respect to reasonable changes to the time
warping window.

We aim at finding an acceptable compromise for the time window size. In a time window too rigid for small (random) delays in
the evolution of the observed MFD, we risk overfitting the data. In the extreme case of setting the time window to zero, the DTW
distance yields the Euclidean distance. Contrarily, when choosing a large time window, we might disregard important differences
between the observed MFDs. Therefore, we chose a time period similar to the duration of the rush-hour, i.e. the duration of an
extended loading and unloading period. This way, we allow for certain flexibility in the on- and offset of congestion but do not risk
missing a major change in the evolution of the macroscopic traffic performance.

With this in mind, we now investigate how similar the distance matrices become, once the DTW time window changes. For
that, we focus on four additional windows, 2 h, 2.5 h, 3.5 h, and 4 h. To that end, we compute the Mantel test statistic (Mantel,
1967), i.e. the original distance matrix with a time window of 3 h and the one of the sensitivity analysis. This test is frequently
applied in biology, more specifically in ecology, to compare distances between species, e.g. in terms of genetics, behavior, geographic
distribution (Van Schaik et al., 2003; Waddle, 1994). Its interpretation is similar to Pearson’s correlation coefficient with a range
of [−1, 1].

Table 1 summarizes the results. We can see that the Mantel test are very high, indicating that our approach is robust against
reasonable changes in the time window.
6
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Table 1
Sensitivity analysis for the DTW time window. The Mantel test is with
respect to the chosen 3 h window. All tests are significant at 0.01.

Window size 2 h 2.5 h 3.5 h 4 h
Mantel test statistics 0.996 0.999 0.999 0.997

Table 2
Agglomeration coefficient for different linkage criteria in hierarchical
clustering. The higher the coefficient the higher the strength of the
clustering structure.

Dataset Linkage criteria

Single Average Complete Ward

Zurich 0.866 0.959 0.972 0.994
Lucerne 0.781 0.898 0.961 0.991

4. Clustering empirical dMFDs

4.1. Agglomerative hierarchical clustering

To find similar dMFDs, we cluster the distance matrix from Section 3.2. We would like to stress that we investigate a very large
ongitudinal dataset (a full year). Thus the resulting clusters will reproduce and characterize almost all situations the networks
ay encounter. There are many different cluster algorithms that are suitable for our problem (see also Jain et al. (1999)). For

xample, graph-based methods (e.g. Saffari et al. (2020)) or vector quantization methods (e.g. Necula (2015)) were used in the
ast for clustering traffic patterns. Here, we resort to hierarchical clustering given that it is a simple, fast, standard, and widely
sed framework to cluster well-defined distance matrices. It is also the standard clustering algorithm for matrices derived from
TW (Sardá-Espinosa, 2019). Moreover, it is one of the very basic clustering techniques, and therefore very accessible, also to
ractice. The main advantage of the hierarchical clustering compared to other methods is that it only requires a distance matrix, in
ieu of the original data point. We choose the more commonly used agglomerative case, where each dMFD is initiated as a cluster on
ts own (Hastie et al., 2009). The clustering then merges (or agglomerates) similar dMFDs depending on a linkage criterion which
pecifies the dissimilarity of different cluster sets. This process is repeated until only 1 cluster is left. This successive agglomeration
esults in a nested association of all dMFDs.

inkage criteria
For each step in this successive agglomeration, we need to evaluate which clusters should be merged. For this, a multitude of

inkage criteria exist (for a complete overview, see also Kaufman and Rousseeuw (2009)). Essentially the criteria determines the
istance between two different clusters.

Here, we will analyze four common linkage criteria to decide which one is the most suitable. The single linkage defines the
luster dissimilarity as the distance between the closest elements in the clusters. The average linkage measures the average pair-wise
istance between all elements in the clusters. The complete linkage uses the distance between the points that are furthest away
etween the clusters. Ward’s criteria finds the pair of clusters that leads to a minimum increase in the total within-cluster variance
fter merging at each step (Ward, 1963).

The choice of the appropriate linkage criteria can be derived by the agglomeration coefficient, which describes the strength of
he clustering structure (Kaufman and Rousseeuw, 2009). For each observation 𝑖, we calculate the dissimilarity to the first cluster

with which it is merged and then divide this value by the dissimilarity of the merger in the final step of the algorithm. We denote
this as 𝑚(𝑖). The agglomeration coefficient is then the average of all 1−𝑚(𝑖). It is normalized to range between 0 and 1 where higher
alues indicate a better cluster outcome.

Table 2 shows the agglomeration coefficient for commonly used linkage criteria. It becomes clear that Ward’s minimum variance
ethod yields the highest agglomeration coefficient. Thus, for any further analysis, we rely on Ward’s linkage criteria.

umber of clusters
Similar to the chosen linkage method, we analyze the within-cluster variance to determine a suitable number of clusters. Fig. 5

hows the evaluation of the variability within each cluster, the within-cluster sum of squares, as a function of the potential number
f clusters. The optimal number of clusters is evaluated to be 6 for Zurich and 8 for Lucerne. This number is derived from the visual
nspection of the clusters and the ’’elbow method’’. The latter defines a reasonable cut-off for the explained variance captured by
7
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Fig. 5. Within-sum-squared as a function of the potential number of clusters. This measures the variability of the observations within each cluster. The dashed
line shows the optimal number of clusters.

Fig. 6. Daily sMFDs in Lucerne during October 2015 color-clustered. * indicates a weekend day (Saturday and Sunday).

4.2. Clusters

Fig. 6 shows the daily dMFDs for four consecutive weeks in October 2015 for the city of Lucerne. Note that the dMFDs shown
are not scaled, but correspond to the actual values of average flow (𝑄) and density (𝐾). The colors indicate the dMFD cluster. For
Lucerne, it is apparent that weekends (denoted by an asterisk) are well distinguished. Although it might be trivial to detect weekdays
from weekends and holidays, this clear identification in the data underlines the power of DTW.

Although Fig. 6 shows rather similar sMFDs for weekdays, the clustering reveals differences in the loading and unloading patterns
in the dMFD. This implies that the sMFD alone does not inform of the onset of network loading or the duration of congestion, but
the resulting dMFD clusters capture these aspects, while at the same time reducing the dimensions of the full dataset to a more
manageable scale.

Fig. 7 shows all clusters separately. Each one includes all observed dMFDs belonging to that specific cluster. Note that there is
a substantial difference between the maximum flow attained in different clusters for the same city. For example, Lucerne’s cluster
5 compared to cluster 6, exhibits a difference of roughly 50 veh/h or 10%. Moreover, for each of the clusters, although we still
observe some differences in the dMFD, this one is much lower than that shown in Fig. 2.

Similarly, Fig. 8 shows the clustered average flow and average density. This figure emphasizes the similarity within a cluster and
the differences between clusters. Recall that DTW captures not only differences in the magnitude of the observed dMFD but also its
evolution over time. These results further validate the chosen approach as well as the number of clusters from a visual perspective.
Clustering the observed dMFDs takes into account the loading and unloading profile of a network (within the limits of the DTW
warping window).
8
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Table 3
Properties of the medoid cluster.

Cluster 𝑄𝑚𝑎𝑥
(veh/h)

Hysteresis Size of
hysteresis
(veh/h)

Zurich 1 338 no –
Zurich 2 331 no –
Zurich 3 371 yes 40
Zurich 4 286 no –
Zurich 5 369 yes 40
Zurich 6 319 no –
Lucerne 1 413 no –
Lucerne 2 448 no –
Lucerne 3 522 yes 59
Lucerne 4 524 yes 62
Lucerne 5 491 yes 45
Lucerne 6 523 yes 58
Lucerne 7 440 no –
Lucerne 8 450 yes 56

To further extract the features of each cluster, we estimate each cluster’s medoid. Table 3 summarizes the properties of clusters’
edoids for Zurich and Lucerne.

From a broader perspective, the relatively low number of clusters identified in a full year confirms seminal findings on the
egularity of human mobility (González et al., 2008; Louail et al., 2015; Lopez et al., 2017). We can now confirm this from a
acroscopic traffic perspective. For example, most dMFDs on a Saturday are similar to each other. This is the first long-term study

onfirming that the observed dMFD is indeed a suitable instrument for the macroscopic modeling and control of traffic, as it repeats
tself over time. In other words, these clusters are of relevance for macroscopic traffic control, e.g., perimeter control. They allow
o potentially pre-determine a control scenario for each cluster found and thereby reduce the control complexity.

. Understanding similarities

In the previous sections, we have successfully clustered the dMFDs using DTW similarity. In this section, we will investigate
he reasons for the differences across clusters. First, we analyze the heterogeneity in the network and compare it to simulation
esults from the literature. Second, we compare the heterogeneity patterns and the clusters obtained in Section 4. Third, we include
erimeter flows into the analysis to stress better when differences are driven by the demand patterns.

.1. Empirical evidence on traffic heterogeneity (in density)

Existing literature connects spatial heterogeneity in traffic density and the observed dMFD. Among the first to investigate the
ffects of traffic heterogeneity was Buisson and Ladier (2009). In a dataset of three days, the authors attributed hysteresis loops in
he empirical dMFD from Toulouse to heterogeneity in the distribution of vehicles. Later, simulation studies further investigated the
ssue. Mazloumian et al. (2011) and Geroliminis and Sun (2011) discovered that the spatial distribution of vehicle density affects the
catter of an observed dMFD and its shape. It is postulated that two time intervals with the same number of vehicles in a network and
he same spatial distribution of vehicle densities lead to the same average flow. Similarly, Mahmassani et al. (2013) and Muhlich
t al. (2015) verified the effects of the heterogeneity in traffic density on the network flow and the size of the dMFD hysteresis
oops. Indeed, for a given average density, lower standard deviations in density lead to higher flows. Knoop et al. (2015) introduced

generalized notion of the MFD, where traffic heterogeneity in density is taken into account. The higher the heterogeneity in
ensity, the lower the average flow. Similarly, Ramezani et al. (2015) look into the relationship between the average flow and the
bserved heterogeneity. Based on a aggregated modeling approach the authors introduce a hierarchical perimeter flow control that
akes into account the neighborhood’s heterogeneity. In the search for well-defined empirical dMFDs, numerous studies focused on
partitioning of urban networks which minimizes the overall heterogeneity measured in 𝑠𝑑(𝑘) or 𝑣𝑎𝑟(𝑘) (Ji and Geroliminis, 2012;

Saeedmanesh and Geroliminis, 2016, 2017; Ambühl et al., 2019).
So far, however, no empirical study has verified the simulation-based findings where heterogeneity in traffic density describes

the dMFD’s flow accurately. Let us first investigate the heterogeneity in density for the dMFDs covering the whole year shown in
Fig. 9. We use the standard deviation in density as the heterogeneity measure and color the dMFDs accordingly. As expected, we
observe lower heterogeneities for lower average densities. Thus, it is more interesting to compare the heterogeneities for a given
average density. Here, we see that as the heterogeneity increases, the average flow decreases for any given average density. In other
words, we reach high average flows, when traffic is well distributed across the network. While these findings confirm previous
simulation studies, the figures also reveal another interesting phenomenon: a frontier for average flows — they cannot exceed a
certain upper bound. Although a similar graph was previously shown in Ambühl et al. (2018a), the analysis here emphasizes that
the existence of this upper bound is reinforced by the unstructured alignment of traffic states below this frontier. Note that this is
data from one whole year. Thus, arguably, we have found strong indications for the empirical existence of the upper bound of the

FD (as in Ambühl et al. (2018a) and we identify at least one reason why the observed dMFDs fall below it.
9
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Fig. 7. Observed clusters and their size (N).

Simulation studies by Mazloumian et al. (2011), Mahmassani et al. (2013), and Knoop et al. (2015) have shown the standard
deviation in density as a function of the average flow. Thus, we transform Fig. 9 into Fig. 10, to present further empirical evidence
confirming the prior simulation findings. Note that the 𝑥-axis is now the standard deviation of density as in Mazloumian et al.
(2011), Mahmassani et al. (2013), and Knoop et al. (2015) and the contour lines show the isolines of average density. To draw
iso-lines of the average density, we bin our data into 1 veh/km, and 10 veh/h. For each bin, we calculate the average standard
deviation. For a bin to be taken into account, it needed at least 5 observations.

It becomes clear that as the standard deviation in density increases for a given average density, the resulting average flow
decreases. The slope also becomes steeper for higher average densities. In other words, the higher the average density is, the more
traffic flow is governed by heterogeneity: a small change in the standard deviation has a drastic effect on the average flow. This
means that the higher the observed average density, the more fragile the average flow becomes (i.e., more sensitive to spatial
variations in density). Let us think of a perturbation (e.g. accident) as the cause for a change in standard deviation. In very
10
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Fig. 8. Observed clusters in dMFD flow and density and their size (N).

uncongested regimes such perturbation does not affect the average flow substantially. Drivers can adapt their routes quickly, and
find short detours. In congested regimes, however, this becomes much more complicated. It is hard to find a suitable detour when
much of the network is already congested. Thus, average flows react strongly to such a shock. It is clear that this understanding is
limited to the ranges of congestion that we observe empirically. It is important to note that we have not measured heavy macroscopic
congestion (i.e., states close to gridlock). Hence, we might not be able to extend these conclusions to such situations.

We further differentiate between the loading and the unloading part of the dMFD. We find that generally, the average flow is
slightly lower when unloading the network than during the loading phase. This is due to the hysteresis effects, which are discussed
in e.g. Gayah and Daganzo (2011) or Paipuri et al. (2019). The slopes, however, follow the same trends independent of the loading
or the unloading phase. Thus, the underlying mechanisms are the same.
11
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Fig. 8. (continued).

5.2. Quantitative assessment of the interplay between the heterogeneity and the observed dMFD

The results in Fig. 10 show a substantial influence of the heterogeneity in density on the dMFD’s flow. We expect that the
clustering of the evolution of the heterogeneity should yield similar results like the ones based on the dMFD in Section 4. Recall
that we clustered our dMFDs with respect to their evolution over time. Unfortunately, time is not represented in Fig. 10, making a
comparison with our previously derived clusters non-trivial. Thus, in the following, we resort to a more detailed analysis of traffic
heterogeneity over time.

For completeness, we will also include the heterogeneity in flow. We create a joint time series composed of the normalized
standard deviation of the vehicle flow and density in the network (normalization analog to Eq. (1)). Identical to the previous analysis
in Section 3.2, we apply the DTW similarity measure on this joint time series of heterogeneity. The time-warping window is again
3 h. As before, this yields a distance matrix.
12
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Fig. 9. All dMFDs over a year and the heterogeneity in density measured by the standard deviation (sd(k)) in density.

Fig. 10. Heterogeneity in density (sd(k)) and the average flow. The contours describe the isolines for the vehicle density in veh/km.

Table 4
Mantel statistics for the comparison between the dMFD and the
heterogeneity measures in flow and density. These statistics show
a high structural overlap between the observed patterns.

Dataset Heterogeneity

Flow and density Flow Density

Zurich 0.987 0.981 0.978
Lucerne 0.972 0.971 0.842

We then compare how similar this new heterogeneity based distance matrix is to the one obtained from the dMFDs in Section 3.2.
To that end, we compute the Mantel test statistic, whose interpretation we discussed in Section 3.3.

Table 4 presents the Mantel statistics for the cases where the dMFDs’ DTW matrix is compared with the DTW distance matrix
based on (i) the joint heterogeneity measures (normalized standard deviation of flow and density), (ii) only flow heterogeneity, (iii)
only density heterogeneity. Not surprisingly, the joint time series yields the highest Mantel statistic, indicating a very high structural
overlap between the two distance matrices. The statistic remains very high (≥0.97 − 0.98) if single heterogeneity measures are used
on their own, except for the case of the density heterogeneity in Lucerne (≥0.84). This indicates that the heterogeneity in flow and
density, are suitable predictors for the observed dMFD. Interestingly, we find that the heterogeneity in density alone is not the best
predictor of the dMFD.

These results imply that if we were to cluster daily traffic patterns using their heterogeneity indicators, we would retrieve almost
the same clusters. As a matter of fact, clustering the heterogeneities of flow and density yields the same clusters as before on 95%
(Zurich) and 94% (Lucerne) of the days.

These findings here are interesting for three reasons. First, even though we use a dataset from stationary detectors which neither
cover the whole network nor the full extent of the roads being monitored, the relationship holds at a higher level. Second, we
observe these strong correlations despite the complexity of real traffic with its many transportation modes and interactions. Third,
while the heterogeneity in density still yields reasonably high Mantel coefficients, the heterogeneity in flow only is a slightly better
predictor throughout the analysis. Interestingly, such heterogeneity in flow has neither been analyzed nor reported in the literature,
although in the case of Zurich flows have been used to inform the perimeter control strategies. Note that if the heterogeneity in
13
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Fig. 11. Congestion hotspots during morning and evening peaks for Zurich’s 6 clusters.

density describes the distribution of congestion over the network, we may claim that the heterogeneity in flow represents better
the demand distribution over the network. In particular, we note that different flow values in the free-flow part of the fundamental
diagram lead to close density values. So, in free-flow regimes, it is possible to observe a low heterogeneity in density, but high
heterogeneity in flow at the same time.
14



Transportation Research Part C 126 (2021) 103065L. Ambühl et al.

p
p

5

p
i
t
n
m

c
b
m

d
a
p

With the above analysis, we have quantitatively confirmed the interplay between the spatial heterogeneity patterns and system
erformance. Our results imply that the evolution of the spatial heterogeneity in flow and density predicts the observed traffic
erformance (or vice versa).

.3. Impact of the perimeter flow

Perimeter flows into the analyzed neighborhood are informative about the dynamic network loading process. Differences in
erimeter flows could lead to differences in the network loading process and thus bottleneck activation. Consequently, differences
n perimeter flow patterns could explain the observed differences in the dMFD. In other words, it is reasonable to assume that
he interaction between perimeter flows and network topology are the key determinants of the spatial heterogeneity inside a
eighborhood. To investigate this hypothesis, we use the detectors in Zurich and Lucerne shown in Fig. 3 that are located on
ain arterials leading into our previously investigated areas with a buffer of roughly 1 km.

Here, we define the distance matrix based on the flows measured on 32 (Zurich) and 20 (Lucerne) perimeter detectors. To
apture differences in the perimeter flow, we refrain from aggregating the flows. Instead, the flow of the 32 detectors in Zurich
uild a 32-dimensional time series that serves as input to the DTW process defined in Section 3. Therefrom we construct a distance
atrix for all 365 days. A similar approach is used for Lucerne.

Now, we can compare the obtained perimeter flow distance matrix and the one based on heterogeneity in flow and density
erived in Section 5.2. We find a high Mantel statistic of 0.976 (Zurich) and 0.973 (Lucerne). We claim that the effects measured
re the perimeter flows’ influence on the spatial traffic heterogeneity of the neighborhood and the observed dMFD. Depending on the
erimeter flow patterns, different bottlenecks are activated. To qualitatively validate this hypothesis we now analyze the congestion

hotspots in the two cities.
Figs. 11 and 12 show the congestion hotspots (i.e., active bottlenecks) in Zurich and Lucerne during the morning and evening

peaks. The intensity of a hotspot is defined by the average congestion duration of the detectors within that hotspot. A detector
is classified as congested according to its fundamental diagram. We observe that similar clusters, as seen in Fig. 7 and Table 3,
reveal similar, yet not identical, hotspot distributions. The morning and evening peaks differ substantially and indicate a clear shift
of congestion within the network. This confirms that different bottlenecks are active during different times of the day and their
activation depends on the traffic patterns represented by our clusters.

Unfortunately, the Mantel test statistics and the analysis provided in Figs. 11 and 12 do not offer information about the direction
of influence (i.e. causality). Therefore, in the following, we investigate the causality between the perimeter flow and the observed
heterogeneity.

We analyze the number of congested links in the perimeter as well as inside the neighborhood. It is clear that causality is generally
hard to establish with empirical data. Fig. 13 shows that perimeter detectors record congestion with a certain delay compared to
the ones inside the dMFD neighborhood. Hence, congestion seems to propagate from the neighborhood towards the perimeter and
not the other way around. We deduce that the perimeter detectors affect the neighborhood’s heterogeneity and not the other way
around. This is also consistent with the fact that traffic congestion propagates backward. Therefore, we find causal evidence that
the perimeter flow patterns indeed activate different bottlenecks, which in turn change the shape and evolution of the dMFD.

We have shown that the interaction between perimeter flow and network are the key determinants of the observed dMFD.
However, it is worth highlighting that the perimeter flows alone are sufficient to characterize the dMFD clusters (see the high
Mantel statistics presented in this section). This is an important finding as it simplifies potential cluster predictions substantially.

From a broader perspective, our perimeter detectors’ flow can be seen as a proxy for the traffic demand pattern. Thus, our
findings provide empirical evidence for the influence of traffic demand on the observed dMFD. Note that this is fundamentally
different, but not contradictory to the theoretical/ideal MFD originally introduced by Daganzo (2007). The latter is the upper bound
to the network, i.e. the maximum performance of a traffic network under perfect conditions. There is no evidence showing that this
one is affected by the traffic demand. The observed dMFD, on the other hand, is.

6. Predicting the observed urban traffic performance

In the previous sections, we found a relatively small number of representative clusters to describe the daily macroscopic traffic
patterns. We further showed that the perimeter flows are essentially linked to the observed shape and properties of the dMFD.
Consequently, in this section, we are interested in understanding whether monitoring the perimeter loop detectors allows us to
identify the correct cluster early in the day. The earlier we can predict the corresponding dMFD cluster, the better cities can deploy
the appropriate control. Limiting the observation to a few perimeter loops is reasonable as most cities’ traffic monitoring schemes
do not monitor all roads. That is to say, for control purposes, it is paramount to build a parsimonious early detection system.

Like most clustering algorithms, our hierarchical clustering method is not able to label new data instances. Hence, we resort to
the concept of classification. The core idea of our prediction routine is to use the clusters derived in Section 4 as labels in a supervised
learning model.

To that end, we split our empirical dataset into two. We use a classical 70/30 approach, where 255 days (70%) of our dataset
are used to train (or calibrate) our prediction, and the remaining 110 days (30%) are used to test (or validate) the prediction. The
15
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Fig. 12. Congestion hotspots during morning and evening peaks for Lucerne’s 8 clusters.

1. Create temporal subsets of the perimeter flow dataset (6 time slots: midnight–05:00; midnight–08:00; midnight–11:00;

midnight–14:00; midnight–17:00; midnight–20:00). As in Section 5.3, we refrain from aggregating the perimeter detectors

— instead we create a multi-dimensional time series, where each dimension represents a perimeter detector.
2. Run DTW on the datasets of step 1 and calculate the distance matrix across all days.
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Fig. 13. Number of congested links in the perimeter and the neighborhood covered by the dMFD. Notice that the perimeter loops exhibit congestion after the
dMFD neighborhood itself.

Fig. 14. Accuracy of our cluster prediction.

3. Find the k-nearest neighbor (kNN) (here k = 10) in the training dataset for every test date. Assign the most likely cluster
based on the frequency of the nearest clusters for each test day.

4. Compare the results to the original cluster assignment (labels) derived in Section 4.

Remember that the aim is to predict the correct cluster as early as possible. Therefore, to evaluate the prediction accuracy over
time, we repeat this approach for different time slots, e.g. midnight–05:00, midnight–08:00, etc (i.e., step 1).

Fig. 14 shows the fraction of correctly determined clusters over time. For example, running the prediction using data until
08:00, results already in a fraction of 88% correctly determined clusters for Zurich. To retrieve the 95th confidence interval of this
estimation, we repeat the prediction process by randomly assigning training and test days 100 times. It is shown as a range around
the prediction points in Fig. 14. This accuracy can be considered as very high, for two reasons. First, we only use a (small) subset
of the data (only perimeter detectors, and temporal limits) to predict. Second, some days are very difficult to predict, e.g., due to
an accident, that very much influences the dMFD’s trajectory suddenly. In such cases, the cluster found over the whole day might
substantially differ from the one found early in the morning and it remains almost impossible to correctly classify such special cases.

The cluster prediction is slightly less efficient for the case of Lucerne in Fig. 14. We can correctly estimate 84% of the clusters by
08:00 with our approach. The overall trend, however, is similar to the one of Zurich. Given the stochastic nature of empirical data,
there might be multiple reasons why we can estimate the clusters less accurately. Lucerne offers lower data quality and has a higher
number of clusters. Also, the morning patterns in Lucerne might be less decisive for the whole dMFD pattern. This is confirmed by
our hotspot analysis in Fig. 12, where the differences in the morning peak are less apparent.

Nonetheless, in most cases, we can predict the correct cluster early in the day. We can thus conjecture that the morning traffic
conditions are strongly related to those in the afternoon, especially in Zurich. This is intuitive, as most working trips have an inverse
OD pattern for morning and evening. This shows that the morning peak is decisive for much of the day’s traffic patterns. In addition
to the fact that there are relatively few dMFD clusters during a year, these findings are important for macroscopic control as they
allow to identify the prevalent macroscopic traffic pattern early in the day and simplify macroscopic traffic state estimations.
17
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Changes to the network will induce changes to the observed MFD. Our analysis shows that the underlying cause of this is a
ifferent bottleneck activation. However, this is not a limitation to our prediction algorithm. On the contrary, in an industrial
eployment (i.e. off-the-shelf type of deployment), where the classification is updated (or relaunched) regularly, this change will be
icked up naturally by our prediction algorithm. Therefore, we consider the algorithm to be robust by design. To further investigate
uch claim, we show the robustness of our prediction algorithm by using only the first 6 months to calibrate our prediction method
nd apply it in the following 3 months. If there were changes to the network in the second half of the year, predicting its daily MFDs
ased on the first half of the year would be harder. Fig. 14 also includes this sensitivity analysis. We see that the new prediction
rob. Zurich and rob. Lucerne) remains robust. In fact, we do not see a substantially lower prediction accuracy. This implies first
hat our prediction algorithm also works well with a lower number of days, and second that there were no substantial changes to
he network between the first and the second half of the year.

We also tested our framework using a support vector machine (SVM) and a random forest classifier. Interestingly, the resulting
ccuracy did not vary significantly. Given the simplicity of the kNN classifier, we refrained from showing the other results.

. Conclusions

The data-driven findings presented in this paper show how temporal patterns of vehicle flows define the performance of urban
oad networks. The contributions of this paper are five-fold.

First, we present two high-resolution traffic datasets covering a year each. This is one of the largest periods for which
igh-resolution traffic patterns have been analyzed so far.

Second, we introduce a methodology to quantify the similarity across multiple macroscopic traffic patterns. We do so by using
he concepts of the MFD and a DTW based algorithm for time series. This allows us to derive a few (6 for Zurich, 8 for Lucerne)
epresentative dMFD clusters that capture the essential macroscopic traffic features. The clusters clearly differ in the K-Q-space and
ith respect to the observed maximum flow, the critical density, and the presence of hysteresis (see also Table 3).

Third, we provide an in-depth analysis of traffic heterogeneity in the network. Thereby, we confirm, for the first time, previous
imulation results with empirical data, including analysis about the loading and the unloading of the network. We also find evidence
or an upper bound as outlined in the early theoretical studies on the dMFD. Further, our analysis reveals that not only heterogeneity
n traffic density is of importance, but even more so the heterogeneity in traffic flow. We then show that the evolution of the spatial
eterogeneity is a good predictor for the clusters found.

Fourth, using a quantitative approach, we find that perimeter flows are closely linked to the evolution of the spatial heterogeneity
n a network. Depending on the perimeter flow distribution, different bottlenecks are activated. Using a congestion hotspot analysis,
e further confirm that our clusters indeed yield different traffic states. Coupled with an analysis of the number of congested links

n the perimeter and the dMFD neighborhood, we find that perimeter flows affect the observed spatial heterogeneity and are thus
lso linked to the dMFD clusters found.

Fifth, we use a parsimonious classification approach to predict the expected clusters early in the morning. This indicates that,
or the two cities investigated, the morning traffic patterns are closely linked to the evening patterns. It is clear that special cases,
ike accidents, lower the accuracy of our methodology as they create unpredictable patterns. In reference to our introductory Fig. 1,
ny application requiring the definitions described in points IIa and IIb will benefit from our approach. As explained previously, a
acroscopic control will not only benefit from an accurate estimation of the observed dMFD’s shape but also from knowledge about

he network loading process, i.e. when and how fast do we reach the maximum flow, whether a hysteresis is expected, etc.
Our findings have practical implications for traffic monitoring and traffic control for cities around the world. We show that

he observed (or realized) MFD (dMFD or sMFD) is demand-dependent. Thus, applications relying on the observed MFD require a
thorough online calibration. Furthermore, we find further evidence for the regularity of human mobility by clustering the observed
macroscopic traffic conditions. We show that it is enough to monitor the traffic performance of a few roads only to classify daily
patterns. This allows not only to reduce monitoring requirements (and costs), but also provides opportunities for enhanced traffic
control. We show how the revealed relationships can be used in an early pattern detection for the expected dMFD, providing
opportunities to counteract congestion early and apply macroscopic traffic control accordingly. Our framework is flexible and
adaptive: if the level of detail is regarded as too high, it is easily possible to reduce the number of clusters chosen. The number of
clusters shown in this paper is the one deemed optimal by statistical methods, but it might not necessarily be the one that satisfies
the specific application requirements. If changes to the network occur, they will induce changes to the bottleneck activation, and
they will automatically be picked up by our prediction algorithm. In an industrial deployment (i.e. off-the-shelf type of deployment),
it is clear that the algorithm would automatically update regularly based on the new days observed.

From a broader perspective, our study allows to predict average travel times in a region accurately, and is thus suitable for
any models that require such dynamic estimation of macroscopic travel times, e.g., pick-up and drop-off modeling of on-demand
mobility.

Nonetheless, our study bears some limitations. First, similar to many empirical studies, and despite our care when dealing with
the empirical datasets, there might still be uncaught measurement errors and outliers. Second, causality is difficult to prove with
empirical data only. Nonetheless, we show the first evidence for the causality between perimeter flows, spatial traffic heterogeneity,
and the dMFD itself. Still, this understanding needs a more thorough investigation. Third, the generality of the findings are also
subject to discussion. The methodology applies globally, while the results inferred from data, i.e. the number and characteristics of
18
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effect expected in most cities worldwide. Consequently, cities have to identify their clusters with the proposed methodology, which
becomes more and more feasible with the increase in data availability, e.g. floating car data.

This study lays the groundwork for future research aiming at deepening the understanding of the effects that demand patterns
have onto the dMFD. For example, some dMFDs exhibit clear hysteresis, while others do not. Once such effects are understood, we
could potentially determine ways to reduce detrimental hysteresis effects. Similarly, an avenue of research is the analysis of the clear
upper bound that we found in our dMFDs. What are the key factors affecting such upper bound, how can we shift traffic towards
such upper bound? The purpose of this study is to demonstrate that it is conceptually possible to define a framework capable of
disentangling, clustering, and predicting the observed daily MFDs. From an algorithmic perspective, future research could further
refine the techniques used in this paper, be it the clustering algorithm or the prediction mechanism.
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