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The effect of a counter-current gas flow on the linear stability of an 
inclined falling liquid film switches from destabilizing to stabilizing, as the 
flow confinement is increased. We confront this linear effect with the 
response of nonlinear surface waves resulting from long-wave interfacial 
instability. For the strongest confinement studied, the gas flow damps 
both the linear growth rate and the amplitude of nonlinear travelling 
waves, and this holds for waves of the most-amplified frequency and for 
low-frequency solitary waves. In the latter case, waves are shaped into 
elongated humps with a flat top that resist secondary instabilities. For 
intermediate confinement, the linear and nonlinear responses are 
opposed and can be non-monotonic. The linear growth rate of the most-
amplified waves first decreases and then increases as the gas velocity is 
increased, whereas their nonlinear amplitude is first amplified and then 
damped. Conversely, solitary waves are amplified linearly but damped 
nonlinearly. For the weakest confinement, solitary waves are prone to 
two secondary instability modes that are not observed in unconfined 
falling films. The first involves waves of diminishing amplitude 
slipstreaming toward their growing leading neighbours. The second 
causes wave splitting events that lead to a train of smaller, shorter 
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The effect of a counter-current gas flow on the linear stability of an inclined falling liquid film9

switches from destabilizing to stabilizing, as the flow confinement is increased. We confront10

this linear effect with the response of nonlinear surface waves resulting from long-wave11

interfacial instability. For the strongest confinement studied, the gas flow damps both the12

linear growth rate and the amplitude of nonlinear travelling waves, and this holds for waves13

of the most-amplified frequency and for low-frequency solitary waves. In the latter case,14

waves are shaped into elongated humps with a flat top that resist secondary instabilities.15

For intermediate confinement, the linear and nonlinear responses are opposed and can be16

non-monotonic. The linear growth rate of the most-amplified waves first decreases and then17

increases as the gas velocity is increased, whereas their nonlinear amplitude is first amplified18

and then damped. Conversely, solitary waves are amplified linearly but damped nonlinearly.19

For the weakest confinement, solitary waves are prone to two secondary instability modes20

that are not observed in unconfined falling films. The first involves waves of diminishing21

amplitude slipstreaming toward their growing leading neighbours. The second causes wave22

splitting events that lead to a train of smaller, shorter waves.23

Key words: Thin films24

1. Introduction25

We consider a gravity-driven two-dimensional liquid film falling down a plane tilted at an26

angle q w.r.t. the horizontal, in contact with a counter-current gas flow that is strongly27

confined by an upper wall placed at H=� (figure 1). Both fluids are Newtonian with28

constant fluid properties and the flow is laminar. Confined falling liquid films occur in29

rectification columns for cryogenic air separation, which contain structured packings that30

subdivide the column cross-section into millimetric channels (Valluri et al. 2005). Even31

stronger confinement is realized in compact reflux condensers (Vlachos et al. 2001), falling32

† Email address for correspondence: dietze@fast.u-psud.fr
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Figure 1: Problem sketch: gravity-driven falling liquid film (lower blue streamlines) in contact with a
counter-current gas flow (upper red streamlines) flowing through a channel of dimensional gap height �★

inclined at an angle q w.r.t. the horizontal. Streamlines (separated by constant stream function increments)
are shown in the wall-fixed reference frame, and Λ is the wavelength.

film microreactors (Zhang et al. 2009), and micro-gap coolers (Kabov et al. 2011). We are33

interested in nonlinear waves that form on the surface of the falling liquid film due to the34

long-wave Kapitza instability (Kapitza 1948), and, in particular, how these are affected by the35

gas velocity in a strongly-confined setting. Such waves are known to trigger flooding events,36

either by local obstruction of the channel, flow reversal, or wave reversal (Vlachos et al.37

2001; Trifonov 2010a; Tseluiko & Kalliadasis 2011).38

For weak confinements, flooding seems to be favoured by decreasing the gap height and/or39

increasing the gas flow rate. Experiments (Kofman et al. 2017) and numerical simulations40

(Trifonov 2010a,b) alike have shown that the amplitude of nonlinear waves increases with41

increasing counter-current gas flow and that this growth diverges in the vicinity of the42

flooding point (Drosos et al. 2006). Moreover, actual flooding experiments have shown43

that the critical gas flow rate decreases with diminishing gap height (Sudo 1996). Linear44

stability investigations, which demonstrate an increase in the maximal linear growth rate45

with increasing gas velocity, tend to confirm this nonlinear picture (Alekseenko et al. 2009;46

Vellingiri et al. 2015; Schmidt et al. 2016; Trifonov 2017).47

On the other hand, recent investigations suggest that strong confinements may, in fact,48

lower the risk of flooding. Lavalle et al. (2019) have shown that the Kapitza instability can49

be entirely suppressed by sufficiently confining the gas, as suggested by Tilley et al. (1994)50

and confirmed by Kushnir et al. (2021), and that this is facilitated by low tilt angles. Further,51

the authors observed that the linear stabilization, which they confirmed experimentally, is52

amplified by increasing the counter-current gas flow rate. Recent nonlinear direct numerical53

simulations (DNS) of inclined falling liquid films (Trifonov 2020) have identified a non-54

monotonic variation of the interfacial velocity, mean film thickness, and inter-phase friction55

coefficient with increasing counter-current gas velocity, although the trend of the wave56

amplitude remained monotonic and increasing.57

These investigations have motivated us to take a closer look at strongly-confined inclined58

falling liquid films, in contrast to Dietze & Ruyer-Quil (2013) and Lavalle et al. (2020), who59

studied the vertical configuration, where the gas-induced linear stabilization is relatively60

weak. This is because the inertia-induced destabilizing mechanism of the Kapitza instability61

is weakened less and less by the stabilizing effect of normal gravity as the tilt angle is62

increased, and thus the relative weight of the gas effect diminishes (Lavalle et al. 2019).63

We aim to confront linear stability predictions with the response of nonlinear surface waves64

to an increasingly strong counter-current gas flow. In particular, we wish to know whether65

nonlinear travelling waves can be damped under the effect of the gas flow, in line with the66
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linear observations, and, if so, whether they may resist secondary instability. Such a situation67

would amount to a reduced flooding risk. By secondary instability we mean the loss of68

stability of travelling-wave solutions (TWS) produced by the primary Kapitza instability69

(Liu & Gollub 1993; Lavalle et al. 2020), and our analysis is restricted to two-dimensional70

such instability modes.71

An enticing preliminary result was obtained by Samanta (2014), who showed that applying72

a constant interfacial shear stress to an inclined wavy falling liquid film can strongly reduce73

the amplitude of nonlinear surface waves. However, for the strong confinement studied here,74

variations of the shear stress with wave height play an important role (Lavalle et al. 2019),75

and the gas pressure gradient, which was also neglected in the model of Samanta (2014),76

needs to be accounted for (Dietze & Ruyer-Quil 2013).77

To tackle this problem, we use the two-phase weighted residual integral boundary layer78

(WRIBL) model of Dietze & Ruyer-Quil (2013) to construct TWS, with the continuation79

software Auto07P (Doedel 2008), and to compute spatially evolving wavy falling liquid films,80

with our own finite-difference code (Lavalle et al. 2020). These nonlinear computations are81

confronted with linear stability calculations based on the WRIBL model, and solutions of82

the full Orr-Sommerfeld (OS) eigenvalue problem (Tilley et al. 1994), whereby we have83

employed a spatial stability formulation (Barmak et al. 2016). Also, we check for periodic84

secondary instabilities via transient periodic computations started from TWS (Lavalle et al.85

2020), and confront our model with a direct numerical simulation (DNS) based on the full86

Navier-Stokes equations, using the finite-volume solver Basilisk (Popinet 2015).87

Our manuscript is structured as follows. The mathematical description and numerical88

methods are introduced in §2, followed by section 3, which reports results of our linear and89

nonlinear computations. Subsection 3.1 is dedicated to surface waves of the linearly most-90

amplified frequency, whereas subsection 3.2 concerns low-frequency solitary waves (here,91

we will also introduce our DNS data). Conclusions are drawn in section 4.92

2. Mathematical description93

The flow in figure 1 is governed by the Navier-Stokes and continuity equations, written in94

Einstein notation using the directional indices 8=1,2 and 9=1,2 (G1=G, D1=D, G2=H, and D2=E),95

and the phase indicator <, which identifies liquid (<=;) and gas (<=6):96

-<mCD8 + D 9 mG 9
D8 = −mG8 ?< + Re−1

< mG 9 G 9
D8 + -

2
<Fr−2 {X81 sin(q) − X82 cos(q)} , (2.1a)97

mG 9
D 9 = 0, (2.1b)98

where lengths have been scaled with the channel height L=�★ (stars denote dimen-99

sional quantities throughout), velocities with the phase-specific signed superficial velocities100

U<=@★
<0

/�★, time with T=L/U;, and the phase-specific pressure ?< with d<U
2
<. Further,101

X8 9 is the Kronecker symbol, -;=1, and -6=U;/U6. The gravitational acceleration 6 enters102

through the Froude number Fr=U;/
√
6L, and the Reynolds numbers Re<=U<L

d<
`<

=@★
<0

d<
`<

103

are based on the phase-specific signed nominal flow rates @★
<0

of the flat-film primary flow,104

@★
60

and Re6 being negative for a counter-current gas flow. The boundary conditions are:105

D; |H=0 = E; |H=0 = D6
��
H=1

= E6
��
H=1

= 0, (2.1c)106

and the kinematic and dynamic coupling conditions at the film surface H=ℎ(G, C):107

D; = -
−1
6 D6, E; = -

−1
6 E6 = mCℎ + D; mGℎ, (2.1d)108
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109

?; +
[
(;8 9 = 9

]
=8 = -

−2
6 Πd ?6 + -

−1
6 Π`

[
(
6

8 9
= 9

]
=8 + We ^, (2.1e)110

[
(;8 9 = 9

]
g8 = -

−1
6 Π`

[
(
6

8 9
= 9

]
g8 , (2.1f )111

where (<
8 9

= 1
2

(
mG 9
D8 + mG8D 9

)
denotes the strain rate tensor, Π`=`6/`; and Πd=d6/d; are the112

dynamic viscosity and density ratios, and the surface tension f enters through the Weber113

number We=fd−1
;
U−2

;
L−1. The orthonormal surface coordinate system is constructed by114

n=[−mGℎ, 1] (1 + m2
Gℎ)

−1/2 and 3=[1, mGℎ] (1 + m2
Gℎ)

−1/2, from which we obtain the film115

surface curvature ^=−∇ · n.116

We perform two types of calculations based on the first principles (2.1) to validate our117

low-dimensional model. First, we solve the OS linear stability problem (Tilley et al. 1994),118

assuming spatially growing normal modes (Barmak et al. 2016):119



ℎ

Φ

Ψ

?<



=



ℎ0

Φ0(H)
Ψ0(H)
?<0 (G, H)



+



ℎ̂

q(H)
k(H)
?̂<(H)



exp {8(:G − lC)} , (2.2)120

where Φ and Ψ designate the stream functions in the liquid and gas, the subscript 0 denotes121

the flat-interface base flow, : ∈ C is the complex wave number of the perturbation, and122

l ∈ R its angular frequency. We focus on long-wave instability modes, which we track123

through numerical continuation using Auto07P (Lavalle et al. 2019), having checked with124

a Chebyshev collocation code (Barmak et al. 2016) that short wave modes remain stable125

throughout the studied parameter range. Second, we perform a DNS with the finite-volume126

solver Basilisk (Popinet 2015), based on the volume of fluid (VOF) and the continuum127

surface force (CSF) methods, following Dietze (2019). Here, we impose periodic conditions128

on a domain spanning the wavelength Λ.129

Our low-dimensional model is based on the weighted residual integral boundary layer130

(WRIBL) approach (Ruyer-Quil & Manneville 1998; Kalliadasis et al. 2012), which de-131

scribes the flow via evolution equations for the flow rate @ and film height ℎ. We employ the132

two-phase formulation of Dietze & Ruyer-Quil (2013) written in Einstein notation (<=;,6133

and ==;,6):135

{(< mC@< + �<= @<mG@= + �<= @ 9@<mGℎ
}
= −We mGGGℎ

+ Fr−2
(
1 − Πd

)
{sin(q) − cos(q)mGℎ} + Re−1

< �<@<

+ Re−1
<

{
�< @< (mGℎ)

2 +  < mG@<mGℎ + !< @<mGGℎ + "< mGG@<
}
,

(2.3a)136

137

mG@; + mCℎ = 0, mG@6 − -6mCℎ = 0, (2.3b)138

where @; and @6 denote the liquid and gas flow rates (per unit width) and the coefficients139

(<, �<=, �<=, �<=, �=,  =, !=, and "= are known functions of the film height ℎ140

(Dietze & Ruyer-Quil 2013).141

We perform linear stability calculations by solving the dispersion equation DR(l, :)=0,142

obtained by linearizing (2.3) around
[
ℎ0, @;0, @60

]
, for :=:A+8: 8 at a given l ∈ R:143

[
ℎ, @; , @6

])
=
[
ℎ0, @0; , @06

])
+
[
ℎ̂, @̂; , @̂6

])
exp {8(:G − lC)} , (2.4a)144
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Page 4 of 12

Cambridge University Press

Journal of Fluid Mechanics



Superconfined falling liquid films 5

145

DR = 8l2
{
(6 − (;

}
+ 8:l

{
�<;@< − �<6@<

}
+ 8:2�<=@<@= (2.4b)146

+ 8:2Fr−2
{
cos(q) − Πd cos(q)

}
− 83:4We + l

{
Re−1

6 �6 − Re−1
; �;

}
147

− :Re−1
< mℎ�<@< − 82:3Re−1

< !<@< + 82:2l
{
Re−1

6 "6 − Re−1
; ";

}
.148

149

We also compute nonlinear travelling-wave solutions (TWS), which remain unaltered in a150

reference frame moving at the wave speed 2, through numerical continuation based on (2.3),151

using Auto07P (Doedel 2008). Our code allows to track TWS at the linearly most-amplified152

angular frequency l=lmax, via the following constraints (Dietze et al. 2020):153

DR(lmax, :) = 0, ml: 8 |l=lmax
= 0. (2.5)154

Finally, we check the stability of nonlinear TWS via transient computations based on (2.3),155

using either periodic or inlet/outlet boundary conditions (Lavalle et al. 2020).156

3. Results157

We set the tilt angle to q=10◦ and focus on a single fluid combination, a 83% by weight158

aqueous dimethylsulfoxide (DMSO) solution used in experiments (Dietze et al. 2009), where159

d;=1098.3 kg/m3, `;=3.13 mPas, and f=0.0484 N/m, in contact with ambient air. The160

Kapitza number for this combination is Ka=fd
−1/3

;
6−1/3`

−4/3

;
=509.5. The channel height161

�★ is varied as �★=1.2, 1.7, 1.8, 1.9, 2.1, and 2.4 mm, which corresponds to values of [=2,162

2.8, 3, 3.1, 3.4, and 3.9 for the relative confinement:163

[ = �★/ℎ★0

��
"=1

= 1/ℎ0 |"=1 , (3.1)164

where ℎ0 |"=1 is the primary flow film thickness for an aerostatic gas pressure gradient, i.e.165

"=mG?6/sin(q)=1. We wish to confront the linear and nonlinear implications of increasing166

the counter-current gas flow rate at fixed Re;. In particular, we wish to know whether nonlinear167

waves can be damped via increasing
��Re6

��.168

3.1. Most-amplified waves169

Figure 2 demonstrates the effect of increasing the counter-current gas flow rate on the linearly170

most-amplified waves (l=lmax) at fixed Re;=15 for different [ values. Along each curve171

in panels 2a and 2c, the channel height �★ remains fixed while ℎ0 increases (between172

10% for the strongest and 20% for the weakest confinement), and so [ (3.1) specifies a173

representative confinement for each case, corresponding to the rightmost point of each curve174

(where "=1). Curves in panel 2a track the maximum linear spatial growth rate −:max
8

in175

terms of Re6, dashed lines corresponding to OS and solid lines to WRIBL calculations.176

At the largest [ (filled squares, [=3.9), the growth rate increases monotonically with
��Re6

��,177

implying a gas-induced destabilization, up to the onset of absolute instability (AI), where178

−: 8max diverges (Vellingiri et al. 2015). Conversely, at very small [ values (open squares179

and pentagons, [=2, 2.8), the effect of the gas is monotonically stabilizing, up to the point180

of fully suppressing (S) the long-wave Kapitza instability (Lavalle et al. 2019; Kushnir et al.181

2021). In the intermediate range (crosses, asterisks, and diamonds, [=3, 3.1, and 3.4), the182

behaviour is non-monotonic, stabilization occurring at low and destabilization at large values183

of
��Re6

��. Panels 2b ([=3.1) and 2d ([=2) represent dispersion curves for the non-monotonic184

and fully-stabilizing cases. Overall, there is quantitative agreement for
��Re6

��<150 between185

linear OS and WRIBL predictions in panels 2a, 2b, and 2d, whereas qualitative agreement186

is retained when approaching the AI limits.187
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Figure 2: Most-amplified waves: q=10◦ , Re;=15, Ka=509.5. Linear (panels a, b, d) versus nonlinear (panel c)
predictions. Filled squares: [=3.9, diamonds: [=3.4, asterisks: [=3.1, crosses: [=3; pentagons: [=2.8; open
squares: [=2. (a) Maximal linear growth rate −:max

8
versus Re6, related to the aerostatic limit

{
−:max

8

}
"=1

,

where "=mG ?6 /sin(q). Solid: WRIBL, dashed: OS; (b,d) dispersion curves −:8 (l) for two cases from panel
a. Red curves trace −:max

8
(lmax) up to absolute instability (AI) or full stabilization (S). (b) [=3.1; from

right to left: "=1, Re6=-60, -100, -145, -170, and -184; (d) [=2; from right to left: "=1, Re6=-4, -7, and
-10; (c) amplitude of nonlinear TWS (WRIBL) at l=lmax. PH denotes period-halving bifurcations and
dot-dashed green lines identify periodically unstable TWS.

Panel 2c plots the upper and lower relative film height deflections ℎmax/ℎ̄−1 and ℎmin/ℎ̄−1188

for nonlinear TWS at l=lmax, where ℎ̄=Λ−1
∫

Λ

0
ℎ 3G is the film height averaged over one189

wavelength, with ℎ̄ ≠ ℎ0 in the case of nonlinear waves. For [=3, 3.1, and 3.4, TWS display a190

non-monotonic trend that is opposed to the linear one. That is, ℎmax/ℎ̄−1 in panel 2c, which191

we will refer to as the wave amplitude, first increases and then decreases with increasing192 ��Re6
��, whereas−:max

8
/
{
−:max

8

}
"=1

in panel 2a first decreases and then increases. Conversely,193

for [=2 and 2.8, the nonlinear and linear trends both imply stabilization, and, for [=3.9, they194

both imply destabilization, at least up to the amplitude maximum in panel 2c. Except for195

the two weakest confinements ([=2, 2.8, 3, 3.1), TWS are bounded by a nonlinear wave196

suppression, where ℎmax=ℎmin, resulting from period-halving (PH) bifurcations (marked by197

symbols), which sets in before the linear AI and S thresholds in panel 2a. Panel 3a shows198

wave profiles leading up to such a PH bifurcation ([=3). The sole precursory capillary ripple199

is seen to grow until splitting the wave into two identical halves. Conversely, for [=3.9 (panel200

3b), the capillary ripple disappears when increasing
��Re6

�� toward the AI limit.201

We conclude from figure 2 that linear stability predictions can be misleading. In particular,202
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Figure 3: Wave profiles of TWS from panel 2c. (a) [=3 (cross in panel 2c). Approaching the PH bifurcation:
Re6=-37 (thick solid) to Re6=-88 (green); (b) [=3.9 (filled square in panel 2c). Suppression of the capillary
ripple while approaching the AI limit: Re6=-79 (thick solid) to Re6=-348 (green).

the amplitude of nonlinear waves may grow with increasing counter-current gas velocity,203

even though the linear growth rate decreases. Further, TWS become unstable to periodic204

secondary instability modes (dot-dashed lines in panel 2c) beyond a threshold Re6, which205

we have determined via transient periodic computations started from TWS. These periodic206

modes do not lead to dangerous events, but TWS are also prone to a subharmonic instability207

in the case of a spatially-evolving film (Movie1.avi). Originally identified in unconfined208

films (Liu & Gollub 1993), this instability triggers wave coalescence events (Chang et al.209

1996a) that can lead to intermittent flooding in long channels (Dietze & Ruyer-Quil 2013).210

3.2. Solitary waves211

We focus now on low-frequency solitary waves at a fixed wavelength Λ=4.5Λ̃max, where212

Λ̃max denotes the linearly most-amplified wavelength for a passive outer phase, all other213

parameters remaining as in figure 2. These waves lie on the ascending branch of the linear214

dispersion curves in panels 2b and 2d, and thus the linear effect of increasing the gas flow215

is monotonous, either destabilizing ([=3, 3.1, 3.4, 3.9) or stabilizing ([=2, 2.8). Panel 4a216

represents the nonlinear response of solitary TWS, evidencing a monotonous gas-induced217

attenuation of the wave amplitude for [=2, 2.8, 3, and 3.1. For [=3 and 3.1, this nonlinear218

effect is opposed to the linear amplification, and both effects are inverted w.r.t. the initial219

response of the most-amplified waves (panels 2a, 2c). Solution branches of solitary TWS in220

panel 4a are bounded either by the linear thresholds of absolute instability (AI, [=3, 3.1, and221

3.4) and full stabilisation (S, [=2 and 2.8) from panel 2a, or by a nonlinear limit point (LP,222

[=3.9) that occurs slightly before (about 2% in terms of Re6) the AI bound.223

For the strongest confinement, [=2 (open squares in panel 4a), linear and nonlinear effects224

are aligned and stabilizing. In that case, the gas shapes the wave hump into an elongated225

flat-top form (panel 4d). In panel 4e, we compare this solution (solid line) with TWS in the226

limits Πd=0 (red dot-dot-dashed) and Π`=0 (blue dashed), which respectively deactivate the227

gas pressure and the gas-side viscous stresses in (2.1e) and (2.1f). From this comparison, we228

can conclude that the gas pressure gradient and not the gaseous viscous stresses are the cause229

for wave flattening. The flat-top TWS (also shown in figure 1), which we have reproduced230

with a DNS at slightly greater Re;=15.7 (open circles in panel 4e), is stable in periodic231

transient computations, and undergoes only weak modulations in a spatially-evolving film232

(Movie2.avi).233

For the weakest confinement, [=3.9, solitary TWS are more susceptible to secondary234

instability modes. We discuss this based on the wave profiles in panel 4b, which correspond235

to the TWS marked by open circles in panel 4a. The TWS at Re6=-145 (thick solid profile in236
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Figure 4: Solitary waves: q=10◦ , Re;=15, Ka=509.5, Λ=4.5Λ̃max . (a) Amplitude of nonlinear TWS
(WRIBL). Right to left: [=2, 2 (Π`=0), 2 (Πd=0), 2.8, 3, 3.1, 3.4, and 3.9. Dot-dashed green lines highlight
periodically unstable solutions; (b) wave profiles corresponding to open circles ([=3.9) in panel a. Bottom
to top: Re6=-10, -100, -145, and -149; (c) transient periodic computation started from thick-solid TWS in
panel b. Black: local film height, green: wave height; (d) flat-top wave corresponding to black filled circle in
panel 4a: [=2, Re6=-7. Streamlines in the wave-fixed reference frame; (e) different limits of the [=2 solution
in panel d (filled circles in panel a). Solid black: full inter-phase coupling; dashed blue: Π`=0 in (2.1e) and
(2.1f); dot-dot-dashed red: Πd=0 in (2.1e); open circles: DNS at "=mG ?6/sin(q)="TWS=84.8, Re;=15.7.

panel 4b, second from left open circle in panel 4a) still lies on the periodically-stable solution237

branch (solid curve in panel 4a). For this case, secondary instability can only arise through238

wave interactions. Pradas et al. (2013) showed, for the case of a passive atmosphere, that239

solitary waves can develop such interactions via the precursory capillary ripples, leading to240

oscillations around bound states, where neighbouring waves repeatedly approach and recoil241

from one another. Thereby, the approaching wave always grows, whereas the slowing wave242

always diminishes in amplitude. In the presence of a counter-current gas flow, we observe243

a secondary instability mode that involves a different wave interaction. We demonstrate244

this through an open-domain computation with coherent inlet forcing at the TWS frequency245

5 = 2c
l

= 5TWS=0.20. Panels 5aand 5b (see also Movie3.avi) show that the instability produces246

solitary waves of diminishing amplitude that accelerate in the slipstream of their growing247

leading neighbours. This clearly differs from the behaviour of unconfined falling films, such248

as the above-mentioned oscillations around bound states (Pradas et al. 2013) or the well-249

known coarsening dynamics (Chang et al. 1996b), where larger-amplitude waves catch up250

with and accumulate the smaller ones travelling in front. The slipstreaming occurs in concert251

up- and downstream of a leading wave, and thus the latter is increasingly exposed to the252

counter-current gas flow, leading eventually to its destruction through a wave breaking event,253

before coalescence can occur.254

When increasing the counter-current gas velocity further, TWS become periodically255
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Figure 5: Slip streaming (panels a, b) and wave splitting (panels c, d) in solitary wave trains. Spatio-temporal
computations with our WRIBL model (2.3) on an open domain of length !=31.4ΛTWS, applying coherent
inlet forcing at 5 = 5TWS: q=10◦ , [=3.9, Re;=15, Ka=509.5. Space-time plots of the film height ℎ (panels
a, c), and wave profile snapshots (panels b, d). Parallel green dashed lines indicate initial TWS celerity.
(a,b) Re6=-145, 5TWS=0.20; (c,d) Re6=-149, 5TWS=0.19. Red symbols identify primary/secondary wave
maxima.

unstable (dot-dashed branches in panel 4a). For the TWS at [=3.9 and Re6=-149 (thin256

solid profile in panel 4b, leftmost open circle in panel 4a), the instability leads to a self-257

sustained repeated breaking and reconstructing of the wave crest, as shown in panel 4c via258

a transient computation with periodicity conditions started from the TWS. In a spatially259

evolving film, which we have mimicked through an open-domain computation with inlet260

forcing frequency 5 = 5TWS=0.19 (panels 5c and 5d, and Movie4.avi), the instability leads261

to ubiquitous wave splitting events that refine the solitary wave train into a train of shorter and262

smaller daughter waves. This gas-induced refining dynamics can be viewed as the opposite263

of the coarsening dynamics observed in unconfined films (Chang et al. 1996b). We point out264

that isolated wave splitting events have been observed in noise-driven wave regimes, both265

experimentally (Kofman et al. 2017) and numerically (Dietze & Ruyer-Quil 2013).266

4. Conclusion267

In this work, we have demonstrated that linear stability predictions of strongly-confined268

falling liquid films can mislead in estimating the effect of a counter-current gas flow on269

the film’s waviness. Both for waves of the most amplified frequency and for low-frequency270

solitary waves, we have identified situations where the linear and nonlinear responses are271
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opposed, i.e. linear waves are damped while nonlinear ones are amplified, or vice-versa. In272

some cases, linear waves are bounded by absolute instability, whereas nonlinear waves are273

fully suppressed via a period-halving bifurcation. Nonetheless, at very strong confinement,274

both the linear and nonlinear responses imply stabilization and travelling-wave solutions275

(TWS) resist secondary instability. This suggests that the risk of wave-induced flooding can276

be lowered by strongly confining the flow. At weaker confinement, we have found two new277

secondary instability modes not observed in unconfined films. The first tends to coarsen278

the wave train, via smaller waves accelerating in the slipstream of their leading neighbours.279

The second causes wave splitting events that refine the wave train into a sequence of less280

dangerous shorter and smaller daughter waves.281

Our two-dimensional analysis cannot account for the spanwise destabilization of TWS,282

which entails the formation of three-dimensional waves in the downstream portion of283

a spatially-evolving falling liquid film (Chang 1994; Liu et al. 1995; Scheid et al. 2006;284

Kofman et al. 2014; Dietze et al. 2014; Kharlamov et al. 2015). Nonetheless, we expect our285

conclusion on the stabilizing effect of strong confinement to extend to that situation. Firstly,286

the inertia-driven three-dimensional secondary instability mode (Kofman et al. 2014) is287

known to weaken at the small tilt angles considered here. In experiments, this translates288

to quasi-two-dimensional wave fronts with only weak spanwise modulations, which are289

maintained up to large gas velocities (Kofman et al. 2017). Secondly, the spanwise instability290

mode is dictated by the wall-normal acceleration of liquid within the initially two-dimensional291

wave hump. Thus, the gas-effect on the amplitude of two- and three-dimensional wave292

humps is expected to be concurrent. This is supported by the weakly-confined experiments293

of Kofman et al. (2017), where the counter-current gas flow amplified both instability modes.294

In our strongly-confined setting, we expect the opposite, i.e. a damping of both modes.295

The channel heights considered here (1.2 mm 6 �★ 6 2.4 mm) lie in between the range296

of classical (Vlachos et al. 2001) falling-film experiments (�★ > 5 mm) and micro-channel297

(Zhang et al. 2009; Hu & Cubaud 2018) falling-film experiments (�★ 6 1 mm). Also,298

strongly-confined experiments have generally not considered small tilt angles. Our numerical299

computations suggest that this uncharted part of the regime map deserves experimental300

attention. Should experiments confirm our findings, it would mean that surface waves301

can be maintained in very compact liquid/gas exchangers without the risk of flooding.302

Current microreactor designs consist of arrays of narrow grooves, where the film surface is303

pinned laterally (Al-Rawashdeh et al. 2008), and this effectively suppresses surface waves304

(Pollak et al. 2011), solving the flooding problem, but at the cost of waiving the substantial305

wave-induced intensification of heat/mass transfer (Yoshimura et al. 1996). Our results306

suggest relaxing the lateral confinement in such devices to allow for the development of307

surface waves. Experiments in horizontal wavy liquid-film/gas flows through mini-gaps308

(Kabov et al. 2007, 2011) have shown that it is possible to produce the strong crosswise309

confinement levels studied here (�★=2 mm) at weak spanwise confinement (,★=40 mm).310
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