
HAL Id: hal-03236703
https://hal.science/hal-03236703v1

Submitted on 14 Jun 2021 (v1), last revised 22 Feb 2022 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Narcissist! Do you need so much attention?
Gaëtan Caillaut, Nicolas Dugué, Nathalie Camelin

To cite this version:
Gaëtan Caillaut, Nicolas Dugué, Nathalie Camelin. Narcissist! Do you need so much attention?.
CAP : Conférence sur l’Apprentisage automatique, Jun 2021, Saint-Etienne (en distanciel), France.
�hal-03236703v1�

https://hal.science/hal-03236703v1
https://hal.archives-ouvertes.fr


Narcissist! Do you need so much attention?

Gaëtan Caillaut, Nicolas Dugué, et Nathalie Camelin

Université du Mans, LIUM

Abstract

After the rise of Word2vec came the BERT era, with
large architectures allowing to deal with polysemy by
taking into account the contextual information, lead-
ing to great performance improvement on classic nlp
tasks. BERT systems are considered universal: they
can be fine-tuned to address any task efficiently. How-
ever, these systems are huge to deploy, not trivial to
fine-tune, and may not be fitted to some corpora, e.g.
domain-specific and small ones. For instance, we con-
sider the deft 2018 corpus of tweets and show that
CamemBERT is not appropriate to this corpus and task.
According to the Occam’s razor principle, we thus de-
signed MiniBERT, a tiny BERT architecture that includes
a simplified self-attention mechanism and does require
neither pre-training, nor external data. We show that
this easily trainable and deployable system obtains
encouraging results on deft, whilst providing inter-
pretable results.

Mots-clef : BERT, MiniBERT, contextual embeddings,
explainable AI, deft.

1 Introduction

BERT-like architectures allowed a great rise of the per-
formances of nlp systems in many classic tasks. How-
ever, in this paper, we aim to question the systematic
use of these architectures in nlp. Indeed, even if there
is a claim that these architectures are universal, and
fine-tuning them is, most of the time, a good solution,
we argue that ad hoc systems specialized on the task
and corpora we consider may sometimes be more fit-
ted. Indeed, BERT systems are huge, fine-tuning and de-
ploying them is not trivial. Furthermore, the hugeness
of these systems makes them uninterpretable. Also,
generic systems may not be fitted to small domain-
specific corpora on which internal representations of
the pre-trained architectures are not relevant.

After having narrated the tale of contextual word

embedding in Section 2, we describe the BERT architec-
ture in Section 2.3 and in particular, the self-attention
mechanism. The usage of such huge architecture is
questioned in Section 3, in particular in the case of
small domain-specific corpora, and we detail accord-
ingly MiniBERT, our Occam’s razor system: a refined
architecture with only one head of a simplified self-
attention mechanism we introduce, low-dimensional
embeddings, fixed positional embeddings. By using
data of the deft 2018 contest [PGB+18], we show in
Section 5 that this refined architecture is relevant in
the case of this small and specific corpus. It obtains
encouraging results while being easy to train: it indeed
requires neither pre-training, nor external data.

2 From Word2vec to BERT

2.1 Word embeddings.

We choose to start this tale of word embeddings with
LSA (Latent Semantic Analysis), which is, as far as we
know, the first famous model to use an abstract vec-
tor space to represent meaning (in this case, mostly of
documents). This model is based on the matrix fac-
torization of the document-term matrix representing a
corpus, this factorization being based on SVD (Singu-
lar Value Decomposition). Then, with generalized LSA,
Matveeva et al. [MLFR05] introduced a similar model,
which allows to obtain word embeddings. The authors
proposed to apply PMI (Pointwise Mutual Information)
on a term-term co-occurrence matrix, extracted using
a sliding window, and to extract 200/300 dimensional
word vectors using SVD. Such work is closely related to
the Levy and Goldberg’s one ten years later [LGD15].
And, as one can see, the parameters that are commonly
used today, such as the size of the sliding window or
the size of the vectors, were the same in 2005.

In 2008, Mnih and Hinton [MH09] described a pio-
neer neural language architecture, a log-bilinear model
learning the probability of a word to appear in a con-
text. It can be seen as a precursor of the Word2vec

1



model detailed by Mikolov et al. [MCCD13], that is
also trained with a hierarchical approach. Finally, in
2014, Levy and Goldberg [LG14] related neural models
to matrix factorization, bridging the gap between neu-
ral models and SVD based approaches, and thus coming
full circle.

However, with these approaches, there is one and
only one vector to represent a word, while a word may
have distinct senses, e.g. bank can be a financial insti-
tution or a piece of land aside of the river.

2.2 Multi-prototype word embedding.

With Gaussian embeddings [VM14], a word is not only
represented by a vector, but also by its variance on
each dimension, thus mapping a word to an area in
the resulting space. This framework allows to take
into account the variety of contexts a word appears
in, and it is thus the first attemp to take into account
polysemy. However, this approach is not capable of
mapping a vector to each distinct sense of a word.
Multi-prototype approaches, that are then discussed,
allow to map each sense of a word to a distinct vector.
The first approach we discuss is the one proposed by
Huang et al. [HSMN12], which is based on a two-pass
algorithm. The first step consists in learning classic
single-prototype word embeddings. Then, in a second
step, authors introduced context vectors as follows: the
context vector of a word occurrence is the mean of the
vectors of its context. Then, all the context vectors of
the occurrences of a same word are provided as inputs
of a clustering algorithm to group occurrences sharing
similar contexts, and thus, according to the distribu-
tional hypothesis, the same meaning. This clustering
thus serves the purpose of a WSD (Word Sense Disam-
biguation) algorithm. Then, the corpus is annotated
so that occurrences of same (resp. distinct) senses can
be processed together (resp. separately). Finally, a
word embedding learning algorithm is executed, and
because the corpus is now annotated with the differ-
ent senses of each word, the algorithm maps a distinct
vector to each sense. In a same spirit, the Tian et
al. [TDB+14] paper introduced an EM (Expectation-
Maximization) algorithm that maps word occurrences
to senses, and learns embeddings for each sense. The
algorithm iterates through two steps until convergence:
learning word embeddings assuming a fixed occurrence
to sense mapping, and mapping occurrences to senses
assuming vectors for each sense. Li and Jurafski [LJ15]
introduced a one-pass algorithm based on the Chinese
restaurant process in the same spirit. However, all of
these multi-prototypes approaches suffer from the same

flaws as clustering: the research space is huge, the num-
ber of clusters is a critical parameter, and there are
a lot of local extrema. Thus, contextual embeddings
were then introduced to deal with the meaning of the
words according to their context, and thus deal, among
other things, with homonymy and polysemy.

2.3 Contextual word embedding.

In this framework, words are no longer associated
to a discrete, finite, number of senses. Instead, a
word’s meaning, its embedding, is tied to its context.
Since there is possibly an infinite number of occur-
rences of a same word, there is also a possibly infi-
nite number of vectors representing this same word,
but in different contexts. In the remaining, we con-
sider Transformers [VSP+17] based contextual embed-
dings, that were proven to be efficient in a wide va-
riety of downstream nlp tasks. The main concept of
the transformer-based contextual embeddings frame-
work, such as BERT [DCLT18], is related to the multi-
prototype learning process described by Huang et al.
They calculate, for each word, its context vector as the
mean of the vectors representing the words in its con-
text. Contextual embeddings are calculated according
to a function of the embeddings of their context too,
but this function is most-of-the-time NOT the mean
function. In transformers, this function is actually
learnt using supervision (masked language model), and
it is denominated as the self-attention mechanism.

Masked language model. The Masked Language
Model (mlm) is really similar to the Continuous bag
of words model (Cbow) of Word2vec. The idea is to
maximize the following likelihood for each token wi in
the ordered set of the n corpus tokens:

∏n
i=1 p(wi |

wi−sl, · · · , wi−1, wi+1, · · · , wi+sl), where sl is the se-
quence length, a model parameter. Basically, we aim
to predict the target word (or key word) wi considering
its context (the query). However, in the transformers
implementation, the model strongly relies on the self-
attention layer, the core of these architectures.

Self-attention mechanism. As far as we know,
self-attention was first introduced in [YYD+16] in a
simple way. The self-attention mechanism of [DCLT18]
takes an embedding matrix as input. Usually, posi-
tional information is injected by summing the input
word-embeddings matrix and a position-embeddings
matrix, which can be either trained or fixed (accord-
ing to an ad hoc mathematical function). Then, the
core of the self-attention mechanism is made of three

2



matrices (Fig 1), corresponding to three different pro-
jection functions, Q (Query), K (Key) and V (Value).
The first matrix is applied to the query, i.e. to
the embedding vectors of the words of the context
(wi−sl, · · · , wi−1, wi+1, · · · , wi+sl). The second one is
applied to the key word wi to predict. This allows to
obtain a vector of similarity between wi, as the key,
and all the query, or context, words. This is somehow
similar to the U embedding matrix and the V context
matrix of Skip-gram. Then, this vector of similarity
is normalized by applying the softmax function, pro-
ducing an attention vector, which are basically weights
indicating how much the key word attends to each word
of its context. The contextual vector of this key vector
is then calculated as the matrix product between the
attention vector and the embedding matrix projected
by V, which is similar to computing the average value
embeddings weighted by the attention. We argue that
the way Huang et al. calculate the context vector of
a word is similar to an attention mechanism attending
uniformly to each word of the context.

3 Too much attention

3.1 Questioning BERT architectures

The most common architectures, such as BERT-Base,
RoBERTa-Base or CamemBERT, encompass 12 attention
layers, each layer being made of 12 distinct attention
heads, with embeddings of size 768. Training 144 at-
tention heads surely requires a lot of data and GPU
time, thus a lot of power. It is a concern at the dawn of
a possible energy transition era. Moreover, resources
required to train today’s hugest models, for example
GPT-3, are not within range of everyone. However,
as shown by Clark et al. [CKLM19], training many
attention-heads allows each head to specialize itself by
attending to specific parts of the sentence. For in-
stance, some attention heads are trained such that di-
rect objects attend to their verbs, or prepositions at-
tend to their objects. Most of these mechanisms are
very useful to capture both syntactic and semantic as-
pects of a sentence. Such huge pre-trained models are
thus very powerful, since they allow to obtain state-of-
the-art results on a wide range of nlp tasks by relying
on one single model. Indeed, such pre-trained systems
can then be fine-tuned to be used on specific tasks
on corpora. However, one may wonder whether it is
necessary to fine-tune that many (144!) self-attention
heads: while it is a simpler task, it still requires a lot
of GPU time. Furthermore, fine-tuning such a huge
system is not straightforward: for instance, how many

epochs are actually required to specialize the system
to the new data? Also, such complex systems with
so many attention layers may not be relevant to deal
with specific tasks. For instance, an attention head
that makes passive auxiliary attending to the verb they
modify may not be necessary to disambiguate a word’s
meaning, or to do sentiment analysis. Actually, Clark
et al. [CKLM19] showed that many attention heads
are doing nothing on purpose, because they are not
required at all. Other work have shown that the ab-
lation of half of BERT’s attention heads results in a
very slight decrease in performances [GDA20], suggest-
ing that such models are oversized. De Wynter and
Perry [dWP20] even showed that significantly smaller
architectures could beat BERT-Large, indicating that
training smaller models could be beneficial at all lev-
els. Furthermore, we argue that the large corpora used
to pre-train these systems may not be adapted to train
models to deal with highly specific topics (different vo-
cabulary, or same vocabulary but different meanings),
where only few data is made available to fine-tune the
system. For example, a model trained on Wikipedia
may be irrelevant when applied on a medical dataset.
Finally, these huge systems lack interpretability, partly
because of their tremendous size [Rud19]. Meanwhile,
being able to understand, if necessary, how and why
the model produces its outputs seems crucial in criti-
cal fields where AI is involved, such as medical or legal
domains. Some work [CKLM19] have been carried out
to try to understand what BERT does, but it consists in
probing individual attention heads which only give an
insight on local behaviors of the model. For instance, it
is hard to tell how errors, or undesirable human biases
are propagated through the whole network.

These concerns raise various questions. One may ask
if the number of attention layers could be reduced while
preserving performance. Also, it is not clear whether
training three projection matrices (Q, Kand V) is truly
required. We investigate further these questions con-
sidering transformer based models in the next section.

3.2 MiniBERT’s architecture

MiniBERT is an attempt at refining the BERT architec-
ture. We experimented by removing, from BERT, ev-
erything that may not be necessary in our context in
order to keep only what is really useful.

We first removed dropout layers, as well as resid-
ual connections. In our experiments on dataset de-
scribed further, these layers seem unnecessary. But our
work mostly focuses on the encoding layers: from 12
self-attention layers, each made of 12 attention heads,

3



Input layer Embedding layer Projections layer Attention computation

w1

w2

w3

E

d

n

Q

d

h
× ET

n

d
= QET

n

h

K

d

h
× ET

n

d
= KET

n

h

V

d

d
× ET

n

d
= VET

n

d

QET

n

h
× (KET )

T

h

n = A

n

n

Softmax
(

A

n

n

)

× (VET )
T

d

n = E′

d

n

Figure 1: Computation of the attention for an input sequence of size n = 3, embedding dimension d = 4 and
hidden dimension h = 4. A is the attention weights matrix and E′ are the resulting contextualized embeddings.

we aim to converge to the lightest system. Our first
MiniBERT model hence consists of one embedding ma-
trix, the three projection matrices Q, K and V, and
some prediction layers, as in BERT. We wisely called
this architecture MiniBERT self-attention (MiniSA),
since it is a minimal version of BERT with only one
self-attention head. An overview of this architecture is
given in Figure 1.

The MiniBERT’s language model aims to maximize
the likelihood of a word given its context:

∏n
i=1 p(wi |

wi−sl, · · · , wi−1, wi+1, · · · , wi+sl), where n is the num-
ber of tokens in the corpus, and sl is the sequence
length. It can be written as follows if we consider the
transforming (with Q, K, V projections) attention:

argmax
E,C,Q,K,V

n∏

i=1

(
Oi

)
= argmax

E,C,Q,K,V

n∏

i=1

(
C (E′i)

)

= argmax
E,C,Q,K,V

n∏

i=1

(
C
(
αctx · VEctx

))

= argmax
E,C,Q,K,V

n∏

i=1

(
C
(
softmax(QEctx · KET

i ) · VEctx

))

with ctx = {wi−sl, · · · , wi−1, wi+1, · · · , wi+sl} the con-
text, i the target token, Oi the ith output of the final
linear layer, and C a classification function1, E′i the
resulting embedding matrix from the attention mecha-
nism, αctx the attention weights on the context words,
E the embedding matrix and ET its transposed.

1Often, multiple fully-connected linear layers.

But we also question the self-attention mechanism.
These three projection matrices may be unnecessary
in our case. So, we considered two other systems. In
the first one, we removed the three projection matrices
(Q, K and V) in order to refine even more our architec-
ture, in the same spirit of the system proposed by Yang
et al. [YYD+16]. We named this version MiniBERT

non-transforming attention (MiniNTA) since input
embeddings are not anymore transformed prior to the
computation of the attention. In this case, the lan-
guage model can be written as follows if we consider
the non-transforming attention:

argmax
E,C

n∏

i=1

(
Oi

)
= argmax

E,C

n∏

i=1

(
C
(
αctx · Ectx

))
=

argmax
E,C

n∏

i=1

(
C
(
softmax(Ectx · ET

i ) · Ectx

))

The second one consists in keeping only the projec-
tion matrix Q, to simplify the system while preserving
one degree of flexibility. We named it MiniBERT sim-
ple self-attention (MiniSSA).

We introduce MiniBERT in order to adapt the com-
plexity of the architecture to the task and dataset. It
allows to deal with small corpora while benefiting from
a powerful and interpretable self-attention mechanism.
We expect MiniBERT to achieve decent performances
regarding its simplicity while producing interpretable
outputs. We indeed expect the only attention head to
provide useful insights on the model behavior.

4



Labels Train Test

Positive 7328 857
Negative 13109 1525
Neutral 12611 1304
MixPosNeg 2420 255
NA 33448 3875

Total: 68916 7816

Table 1: The deft 2018 dataset.

4 Experimental setup

We evaluated our models on the two first tasks of the
deft 20182 challenge. We first describe the data and
then describe the systems we compare to.

Data. Organizers provided us a corpus of french
tweets, half of them annotated according to their po-
larities (Table 1). A test set was provided, but no
validation set, so we took 20% from the train dataset
to build one.

Task 1 is a binary classification task, whose aim is
to detect tweets about public transport. Polarity in-
formation have been given only on tweets about public
transport, so tweets’ topics can be deduced from labels
given in Table 1.

Task 2 is an opinion detection task: given a tweet
about public transport, the system must output the
opinion expressed in it. The four possible outputs are
Positive, Negative, Neutral and MixPosNeg.

Competing approaches. Twelve teams were com-
peting in the contest, but we compared our models only
with the five following: LIP6, IRISA, IRIT, CLaC and
LIS. Each team submitted several systems, but only
the one that performed the best will be presented here.

The LIP6 ’ system is a 2-layer GRU network with
attention applied on the output of each GRU layer.
The attention is computed by calculating the distance
between GRU’s outputs and an attention vector a, fol-
lowed by a softmax operator. Here, the attention vec-
tor can be seen as a filter preventing words not convey-
ing sentiments or opinions to alter the resulting em-
beddings. The IRISA’s system is a 2-layer biLSTM
followed by a softmax layer. They used fastText em-
beddings, pre-trained on a large scale corpus, as input
to their system. Finally, the IRIT ’s system is probably
the bigger one. They chose to train their own word em-
beddings and use fastText embeddings conjointly. So,

2https://deft.limsi.fr/2018

the input of their system is the concatenation of both
kinds of embeddings. Then, the input is processed in
parallel by three subsystems: a 1D convolutional net-
work, a biGRU network and a system computing an
average embedding followed by a relu layer. All three
outputs are finally concatenated and fed to a classifica-
tion layer. In the CLaC system, the corpus is cleaned
and encoded as bags of words before being classified
using SVM. Finally, the LIS system rely on two sets
of seed words often used, in the positive and negative
tweets of the corpus. They used Word2vec embeddings
pre-trained on a french corpus of tweets to compute
the distance between the words in a tweet and the seed
words to classify the tweets.

Our approaches. The main advantage of MiniBERT
over its competitors is its simplicity, making it easy
to train. Indeed, MiniBERT can be trained quickly, not
only because of its reduced number of trainable param-
eters, but also because multiple input sequences can
be processed simultaneously in one step, while LSTM-
based models require to read their inputs one token
at a time (no parallelization). We also did not rely on
additional data other than the deft corpus, mainly be-
cause our purpose was to evaluate MiniBERT on its own.
We conducted multiple experiments with different se-
tups. We followed the same training strategy as BERT,
that is to say MiniBERT was first pre-trained on the
mlm task, using only the deft corpus, then fine-tuned
on tasks one and two. For both tasks, we replaced the
mlm head by a classification head taking as input the
average embedding outputted by the attention head,
which is then fed to a 2-layers fully connected network
predicting the sentences’ labels. The embeddings’ size
is set to 32, bigger embeddings did not lead to bet-
ter results. Finally, we lemmatized the corpus since we
supposed that grammatical nuances are not relevant in
this context. Experiments with the raw corpus obtain
similar results.

5 Results

Performances (Micro-Fscore) of all MiniBERT3 vari-
ants, CamemBERT as well as the systems described in
Section 4, are presented in Table 2. We used the
CamemBERT-Base model available on PyTorch, and we
fine-tuned it on both Task 1 and Task 2.

On Task 1, all variants of MiniBERT perform on-par
with the best models submitted to the competition. It

3We kept the best performing model, amongst all our exper-
iments, for each MiniBERT variant.

5

https://deft.limsi.fr/2018


possible
pas

etre_1
n

sortir
etre

en
il

reste
odeur

bus
tellement

puer
qui

gens

ge
ns qu

i
pu

er

te
lle

m
en

t
bu

s

od
eu

r
re

ste
il en et

re
so

rti
r n

et
re

_1 pa
s

po
ss

ibl
e

(a) MiniSA.

possible
pas

etre_1
n

sortir
etre

en
il

reste
odeur

bus
tellement

puer
qui

gens

ge
ns qu

i
pu

er

te
lle

m
en

t
bu

s

od
eu

r
re

ste
il en et

re
so

rti
r n

et
re

_1 pa
s

po
ss

ibl
e

(b) MiniSSA.

possible
pas

etre_1
n

sortir
etre

en
il

reste
odeur

bus
tellement

puer
qui

gens

ge
ns qu

i
pu

er

te
lle

m
en

t
bu

s

od
eu

r
re

ste
il en et

re
so

rti
r n

et
re

_1 pa
s

po
ss

ibl
e

(c) MiniNTA.

Figure 2: Attention matrices extracted from all MiniBERT variants, fine-tuned on task 2.

seems that this task is too simple to discriminate be-
tween systems. However, it shows that CamemBERT does
not achieve decent performances (both on raw and lem-
matized tweets). These first results suggest that, huge
and generic models trained on mainstream documents
could be irrelevant to solve domain-specific tasks where
few data is available.

The very same trend can be observed on Task 2.
CamemBERT is clearly outperformed by all the other
models. MiniBERT systems are way ahead the systems
based on simpler classifiers but a bit behind the best
models submitted to the competition4. While we ac-
knowledge that increasing performances is a genuine
objective, the lower performances of MiniBERT may be
compensated by its interpretability and simplicity, pro-
viding a powerful and light alternative to big attention-
based models.

MiniBERT is explainable. MiniBERT was not in-
tended to out-perform its competitors, since it is a
simple architecture, and we trained it without rely-
ing on external data (such as pre-trained embeddings).
We focused on providing an easily trainable and de-
ployable model, but also easy-to-interpret. Attention
is a mechanism easy to grasp, but not within BERT,
since attention heads are interconnected to each oth-
ers, making hard to explain how, and why, its outputs
are computed. This is why we propose MiniBERT, the
smallest BERT-based architecture. Because it consists
in a single attention head, it is easy to understand how
its outputs are computed. We suppose that the way

4MiniBERT would have been ranked 7, behind the LIP6 sys-
tem, on Task 2.

Model Task 1 Task2

MiniSA 0.83 0.63
MiniSSA 0.83 0.64
MiniNTA 0.83 0.62

LIP6 0.83 0.66
IRISA 0.83 0.70
IRIT 0.82 0.70
CLaC 0.78 0.34
LIS N/A 0.48

CamemBERT 0.67 0.39

Table 2: Performances of MiniBERT and other systems.

attention is distributed could reveals insights on the
model behavior. As an example, let’s focus on the at-
tention matrix computed by MiniSA fine-tuned on Task
2, shown in Figure 2a. Rows indicate how the attention
of each word is distributed across the whole sentence.
The attention matrix indicates that the most impor-
tant word to classify the opinion of the tweet is “puer”
(to stink), which, indeed, tends to express a negative
opinion. The same model fine-tuned on Task 1 attends
mostly on the word “bus”, which is relevant to classify
the tweet as related to public transport. This behav-
ior is even more remarkable in the case of MiniSSA,
the mechanism we introduce, as shown in Figure 2b.
While being three times smaller (only Q to learn) than
MiniSA, MiniSSA obtained very similar results and its
attention is less scattered, leading to more legible at-
tention matrix, and thus more interpretable outputs.

On the other hand, MiniNTA is behaving differently.

6



Attention Task 1 Task2

without pre-training

MiniSA 0.83 0.63
MiniSSA 0.83 0.64
MiniNTA 0.83 0.62

with frozen embedding/attention layers

MiniSA 0.71 0.40
MiniSSA 0.70 0.42
MiniNTA 0.67 0.41

Table 3: Evaluation of pre-training in MiniBERT

Words attend only on themselves, as can be seen
in Figure 2c, which makes MiniNTA more similar to
Word2vec. But, since performances of MiniNTA are
similar to the two others variants, this may suggest
that attention, more specifically contextual informa-
tion, is not required to solve those tasks. However,
we think that attention is what enables explainabil-
ity of the MiniBERT architecture. So, we investigated
on what could prevent MiniNTA to capture attention.
We replaced the softmax function with the Taylor-
softmax [dBV15], which is basically a smoothed soft-
max operator. This resulted in less crisp, or more dis-
tributed, attention. Still, the attention given to other
words remains too low, and this model followed the
same trend as MiniNTA.

Is pre-training required? So far, MiniBERT was
first pre-trained on the mlm task, then fine-tuned on
the target tasks. In the case of BERT, pre-training aims
to produce a generic model capturing many syntactic
and semantic features that can be reused to solve down-
stream nlp tasks. Specializing this generic model is
done by transferring BERT’s knowledge in the new sys-
tem through fine-tuning. But we suppose that, in this
simple task, many syntactic features are not needed.
Hence, pre-training MiniBERT models may not be nec-
essary. We actually observe that fine-tuning MiniBERT

alters greatly the pre-trained attention parameters.
To verify further that pre-training is not required

in this context, we trained the same MiniBERT mod-
els, from scratch, directly on Task 1 and Task 2. To
check the relevance of knowledge gathered through
pre-training, we also fine-tuned MiniBERT after freez-
ing both the embedding and attention layers. Re-
sults shown in Table 3 indicate that, indeed, latent
features extracted by the MiniBERT’s attention head
pre-trained on the mlm task (the frozen models) are
not sufficient to solve Task 1 nor Task 2. Further-

MLM? L H Task 1 Task 2

No 1 2 0.40 0.36
Yes 1 2 0.82 0.57

No 2 1 0.48 0.39
Yes 2 1 0.82 0.60

Table 4: Performances of MiniSA with L layers and
H attention heads per layer. Models are either pre-
trained on the mlm task, or directly trained on the
target task.

more, models trained directly on the target task tend
to perform better, suggesting that, in this particularly
simple case, pre-training is counter productive, while
being more expensive. However, our experiments also
show that pre-training seems to be mandatory when
the model contains more than one attention heads, no
matter what kind of attention is employed. Indeed, we
trained MiniBERT models with two attention heads, in-
stead of only one, and we observe in Table 4 that their
performances were significantly degraded if they were
not pre-trained on the mlm task first.

6 Conclusion

We considered adapting the self-attention mechanism
introduced by Devlin et al. [DCLT18] to the context of
small domain specific corpora. To this aim, we propose
MiniBERT, a tiny architecture that refines the BERT

mechanisms in this context. We derived three mod-
els from this proposal: MiniSA, MiniSSA and MiniNTA.
MiniSA consists in a single self-attention head and the
two others are attempts at simplifying the attention
mechanism, to improve explainability [Rud19]. In par-
ticular, the simple self-attention mechanism we intro-
duce, as part of MiniSSA, has the double benefits of
improving explainability and reducing, by a factor of
3, the number of learnable parameters. Furthermore,
experiments showed that it did not compromise accu-
racy.

The reduced number of parameters allows MiniBERT
models to be trained quickly. Besides, when BERT re-
quires to be pre-trained on large scale corpora, our sim-
ple architecture can be trained directly on a small cor-
pus without requiring external data. Actually, our ex-
periments show that larger models have difficulties to
specialize to the deft corpus, while MiniBERT’s small
set of parameters is easily trained.

We showed experimentally that, despite its very

7



small size and low footprint, MiniBERT obtains re-
sults almost on par with its competitors. Even though
MiniBERT does not outperform them, its losses are com-
pensated by the simplicity of its training and the in-
terpretability of its outputs. Indeed, observing the at-
tention matrix produced by the model gives precious
insights on the model behaviour. In particular, most
important words are clearly highlighted, which is im-
portant to ensure that the model is behaving as ex-
pected. For example, in a sentiment analysis task, it
would be easy to detect if the model is gender biased by
analyzing if attention is put on gender specific words.

Of course, a lot of work remain to be done. For ex-
ample, it is not clear what are doing the Q, K and V
matrices, which explains our attempt at removing them
(MiniNTA). We showed that one of them is at least re-
quired to compute properly the attention (MiniSSA),
thus we do not plan anymore to remove them, but to re-
place them by more graspable transformations. For ex-
ample, replacing these matrices by a set of constrained
matrices, such as rotation, translation or scaling ma-
trices, may not degrade too much the expressiveness of
the model while helping us understand better what is
actually done. Future work will also be conducted to
assess MiniBERT’s capacity to scale up to harder prob-
lems on a variety of domain-specific corpus.

References

[CKLM19] Kevin Clark, Urvashi Khandelwal, Omer Levy,
and Christopher D. Manning. What Does
BERT Look At? An Analysis of BERT’s At-
tention. arXiv:1906.04341 [cs], June 2019.

[dBV15] Alexandre de Brébisson and Pascal Vincent.
An exploration of softmax alternatives belong-
ing to the spherical loss family. arXiv preprint
arXiv:1511.05042, 2015.

[DCLT18] Jacob Devlin, Ming-Wei Chang, Kenton
Lee, and Kristina Toutanova. Bert: Pre-
training of deep bidirectional transformers
for language understanding. arXiv preprint
arXiv:1810.04805, 2018.

[dWP20] Adrian de Wynter and Daniel J Perry. Opti-
mal subarchitecture extraction for bert. arXiv
preprint arXiv:2010.10499, 2020.

[GDA20] Mitchell A Gordon, Kevin Duh, and Nicholas
Andrews. Compressing bert: Studying the ef-
fects of weight pruning on transfer learning.
arXiv preprint arXiv:2002.08307, 2020.

[HSMN12] Eric H Huang, Richard Socher, Christopher D
Manning, and Andrew Y Ng. Improving word
representations via global context and multiple
word prototypes. In ACL, pages 873–882, 2012.

[LG14] Omer Levy and Yoav Goldberg. Neural word
embedding as implicit matrix factorization.
Neurips, 27:2177–2185, 2014.

[LGD15] Omer Levy, Yoav Goldberg, and Ido Dagan.
Improving distributional similarity with lessons
learned from word embeddings. Transactions of
the ACL, 3:211–225, 2015.

[LJ15] Jiwei Li and Dan Jurafsky. Do multi-sense
embeddings improve natural language under-
standing? arXiv preprint arXiv:1506.01070,
2015.

[MCCD13] Tomas Mikolov, Kai Chen, Greg Corrado, and
Jeffrey Dean. Efficient estimation of word rep-
resentations in vector space. arXiv preprint
arXiv:1301.3781, 2013.

[MH09] Andriy Mnih and Geoffrey E Hinton. A scal-
able hierarchical distributed language model.
In Neurips, pages 1081–1088. Citeseer, 2009.

[MLFR05] Irina Matveeva, G Levow, Ayman Farahat, and
Christian Royer. Generalized latent semantic
analysis for term representation. In Proc. of
RANLP, page 149, 2005.

[PGB+18] Patrick Paroubek, Cyril Grouin, Patrice Bellot,
Vincent Claveau, Iris Eshkol-Taravella, Amel
Fraisse, Agata Jackiewicz, Jihen Karoui, Laura
Monceaux, and Juan-Manuel Torres-Moreno.
Deft2018: recherche d’information et analyse
de sentiments dans des tweets concernant les
transports en ı̂le de france. In DEFT 2018,
volume 2, pages 1–11, 2018.

[Rud19] Cynthia Rudin. Stop explaining black box ma-
chine learning models for high stakes decisions
and use interpretable models instead. Nature
Machine Intelligence, 1(5):206–215, 2019.

[TDB+14] Fei Tian, Hanjun Dai, Jiang Bian, Bin Gao,
Rui Zhang, Enhong Chen, and Tie-Yan Liu.
A probabilistic model for learning multi-
prototype word embeddings. In COLING,
pages 151–160, 2014.

[VM14] Luke Vilnis and Andrew McCallum. Word rep-
resentations via gaussian embedding. arXiv
preprint arXiv:1412.6623, 2014.

[VSP+17] Ashish Vaswani, Noam Shazeer, Niki Par-
mar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Lukasz Kaiser, and Illia Polosukhin.
Attention is all you need. arXiv preprint
arXiv:1706.03762, 2017.

[YYD+16] Zichao Yang, Diyi Yang, Chris Dyer, Xiaodong
He, Alex Smola, and Eduard Hovy. Hierarchical
attention networks for document classification.
In NAACL, pages 1480–1489, 2016.

8


	Introduction
	From Word2vec to BERT
	Word embeddings.
	Multi-prototype word embedding.
	Contextual word embedding.

	Too much attention
	Questioning BERT architectures
	MiniBERT’s architecture

	Experimental setup
	Results
	Conclusion

