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Abstract

One of the main challenges for multi-regional application of the aggregated traffic models based on the Macroscopic
Fundamental Diagram, lies in the identification and characterization of the most prevailing paths chosen by drivers.
In this paper, we propose a methodological framework, based on two distinct methods, to determine these prevailing
paths. The first method requires the information about travel patterns in the urban network as well as the information
about the city network partitioning. The second method is more parsimonious, and consists on the direct calculation of
shortest-cost paths on the aggregated network. For this, we propose four impedance functions that utilize topological
features of the urban network and its partitioning. We test the performance of this methodological framework for
determining the most prevailing paths on a network representing the metropolitan area of Lyon (France). We consider
a set of real trajectories (i.e. GPS data) of drivers in this network as a benchmark. We show that the proposed methods
are able to identify the most prevailing paths as the ones chosen by drivers, as evidenced by a large similarity value
between the sets of paths. Based on a maximum likelihood estimation, we also show that the Weibull distribution is
the one that better reproduces the functional form of the network-wide distribution of travel distances. However, the
characterization of the functional form of such distributions characteristic to each region defining a path is not trivial,
and depends on the complex topological features of the urban network concerning the definition of its partitioning. We
also show that the Euclidean distance metrics provides good estimates of the average travel distances. Interestingly,
we also show that the most prevailing paths are not necessarily the ones that have the lowest average travel distances.

Keywords: Prevailing paths, Urban network, Regional Choice set, Trips, MFD models.

Highlights1

• We distinguish between internal and regional paths.2

• We propose two methods to determine paths on regional networks.3

• We investigate if these methods are able to identify the prevailing paths chosen by drivers.4

• We investigate the functional form of the network-wide trip length distribution.5

• We investigate the characterization of the travel distances of paths.6

1. Introduction7

Traffic congestion remains a problem in large metropolitan areas worldwide. One attractive tool, for studying and8

designing innovative strategies to alleviate congestion, is the aggregated traffic models based on the Macroscopic Fun-9

damental Diagram. The pioneering works on these kind of traffic models are Godfrey (1969), Herman and Prigogine10
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(1979), Mahmassani et al. (1984) and Vickrey (2020). However, they only attracted more attention after the works of11

Daganzo (2007) and Geroliminis and Daganzo (2008). In the past decade, the MFD-based traffic models (Mariotte12

et al., 2017; Mariotte and Leclercq, 2019; Jin, 2020) have been used in a broad spectrum of applications, ranging from13

the test and design of control strategies (e.g. Aboudolas and Geroliminis, 2013; Geroliminis et al., 2013; Ekbatani14

et al., 2013; Ramezani et al., 2015; Haddad, 2017; Haddad and Mirkin, 2017; Zhong et al., 2017; Kouvelas et al.,15

2017; Yang et al., 2018; Haddad and Zheng, 2018; Mohajerpoor et al., 2019; Haitao et al., 2019; Sirmatel and Geroli-16

minis, 2019), to perimeter control implementations with route guidance (e.g. Yildirimoglu et al., 2015, 2018; Sirmatel17

and Geroliminis, 2018; Ingole et al., 2020b), traffic management (Yildirimoglu and Geroliminis, 2014; Laval et al.,18

2018; Batista and Leclercq, 2019), pricing schemes (e.g. Zheng et al., 2016; Gu et al., 2018; Yang et al., 2019; Zheng19

and Geroliminis, 2020), multi-modal transportation networks (e.g. Loder et al., 2017; Loder et al., 2019; Paipuri and20

Leclercq, 2020a,b), and studying the effects network hysteresis during network loading (e.g. Leclercq and Paipuri,21

2020), the effects of parking on urban traffic dynamics (e.g. Cao and Menendez, 2015; Leclercq et al., 2017; Cao22

et al., 2019), environmental applications (Amirgholy et al., 2017; Ingole et al., 2020a; Saedi et al., 2020), the dynamic23

modeling and control of taxi services (e.g. Ramezani and Nourinejad, 2018), or ride-sourcing services in multi-modal24

networks (e.g. Wei et al., 2020; Beojone and Geroliminis, 2020).25

The aggregated traffic models require the partitioning of the city network into regions, where the traffic conditions26

are approximately homogeneous, i.e. all vehicles traveling in the same region experience similar mean speeds that27

are defined by the Macroscopic Fundamental Diagram (MFD). It defines the relation between the average circulating28

flow in a region and its accumulation of vehicles at a given time instant. The partition of the city network can be29

done using any technique described in the literature (Saeedmanesh and Geroliminis, 2016, 2017; Lopez et al., 2017;30

Casadei et al., 2018; Ambühl et al., 2019). This allows to define the regional network, where the connections between31

adjacent regions depend on the allowed travel directions in the city network. We note that the nodes of the city32

network serve as the borders between adjacent regions. Let G(E, X) be the graph that defines the regional network,33

with E edges and X nodes representing by the regions. In this paper, we assume that the regions obtained from the34

partitioning, are well-defined, compact and fully connected. The main challenge lies on the differences between trips35

in the city network, and paths on the regional network. Fig. 1 depicts the scaling of trips into paths in the regional36

network, following the definition of the partitioning. One can observe that the four trips in the city network cross a37

different sequence of regions. The two green trips are then associated to a different path on the regional network, than38

the blue trip as well as the purple one. In this paper, we distinguish between two kind of paths on regional networks:39

• Regional path: is the ordered sequence of regions crossed by the trips from their Origin (O) to their Destination40

(D) regions. Two examples are represented by the green and blue paths in Fig. 1.41

• Internal path: represents internal trajectories of vehicles inside the same region. One example is represented42

by the purple path in Fig. 1.43

This distinction between internal and regional paths is of crucial importance. In the application of MFD-based44

traffic models, regional paths carry exchange flows between adjacent regions. Internal paths carry internal flows. In45

fact, internal circulating flows can act as active bottlenecks (Mariotte and Leclercq, 2019), that block the traversing46

flows, traveling on regional paths, at the borders of a given region. This plays a crucial role on how congestion47

propagates throughout the network, and therefore on the system’s performance.48

Generically, we define a path p on the regional network as:49

p = {O} ∪
i=1,...,|p|−1

{{r · δrp,∀r ∈ Λi}\{0}
}

(1)

where δrp is a binary variable that equals 1 if region r is part of path p, or 0 otherwise; Λi is the set of adjacent regions50

to the region listed in the i-th position of the path p; and |.| represents the total number of regions defining path p.51

To better understand how this mathematical definition works, we showcase its application to define the sequence of52

regions of the blue and purple regional paths depicted in Fig. 1. We can observe that the purple path is an internal53

path. The second condition in Eq. 1 is an empty set, i.e.
{{r · δrp,∀r ∈ Λ5}\{0}

}
= ∅, since |p| = 1. The purple54

path is then defined as p = {5}∪{∅} = {5}. We now discuss the case of the blue regional path. In this case, we55

iteratively add the next adjacent regions to be traveled until the Destination region is reached. First, the set of adjacent56
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Figure 1: The scaling-up of trips in the city network to paths in the regional network.

regions to the Origin region 1 is Λ1 = {2, 4, 5}. The next adjacent region to be traveled is region 4, then the set57 {{r · δrp,∀r ∈ Λ1}\{0}
}
= {4}. Second, the set of adjacent regions to region 4 is Λ4 = {1, 2, 3, 5, 7}. The next region58

to be traveled is region 7, and then the set
{{r · δrp,∀r ∈ Λ4}\{0}

}
= {7}, which is the Destination region. The blue59

regional path is then defined as p = {1}∪{4}∪{7} = {147}.60

The main difference between trips and regional paths lies in the characterization of travel distances. Fig. 1 shows61

two green trips that are linked to the same regional path. These trips travel on a sequence of links with a fixed62

physical length, from their origin to destination nodes. But, one can observe that these two trips have different travel63

distances inside each region they cross. Regional paths are then characterized by trip length distributions (TLD)64

(Batista et al., 2019), instead of a fixed physical length as it is the case of trips in the city network. On the other hand,65

the total number of trips linked to a regional path defines its prevalence (or significance) level. This means that the66

most prevailing regional path connecting one OD pair, is the one with the largest number of trips associated. As one67

example, the green and blue paths have two and one trips associated, respectively. Therefore, the green regional paths68

is more prevalent. Yildirimoglu and Geroliminis (2014) and Batista et al. (2019) propose different methodological69

frameworks for estimating the TLD to characterize regional paths. Yildirimoglu and Geroliminis (2014) discusses a70

methodology for estimating implicit traffic-dependent TLD, and regional paths. Batista et al. (2019) goes one step71

further. The authors discuss a methodology to determine explicit TLD based on a set of trips and different levels of72

information regarding the sequence of regions crossed by the trips. In both studies, the regional paths are the result of73

scaling-up the trips according to the definition of the regions.74

Most of the MFD-based applications discussed in the literature require the use of paths on regional networks. For75

example, in the paper of Daganzo (2007), the case study is one hypothetical region, where vehicles travel an average76

travel distance of 1000 meters on an implicit internal path (according to our definition). While, in Yildirimoglu and77

Geroliminis (2014) and Batista et al. (2019), the authors consider a regional network with multiple paths. Recently,78

Mariotte et al. (2020) discusses the calibration and validation of the MFD traffic models on the city of Lyon, which is79

partitioned into several regions. The estimated accumulations from the MFD models are compared with real data from80

loop and probe detectors. The authors show that the correct identification and characterization of paths on regional81

networks is one of the main critical elements for an accurate prediction of the accumulations in the regions.82

In this paper, we propose two dedicated methods for determining the paths on regional networks. The first method83

is based on the aggregation of a set of trips in the city network into paths on the regional network, following the defini-84

tion of the partitioning. For this, we propose to construct a set of virtual trips by randomly sample trips in city network.85

We differentiate between two variants of this method, where the sampling might or not be done concerning the defini-86

tion of the partitioning. This set of virtual trips is useful when real trip patterns in the city network are not available.87

The second method is more parsimonious and consists in directly determining the paths on the regional graph. We set88

different impedance functions based only on topological features of the network, to determine the shortest-cost paths.89

For this, we consider the exchange flow capacity between borders of adjacent regions, the Euclidean distance or an90

3



average shortest-distance between borders of regions and/or their centroids. We test these methods on the network of91

Lyon metropolitan area (France). We analyze the performance of both methods against simulated data as well as real92

data gathered from Global Positioning System (GPS) trajectories. We investigate the following hypothesis/research93

questions:94

1. Which is the best approach to sample virtual set of trips for determining paths?95

2. Is the second method able to efficiently estimate similar paths as the ones determined from a simulated and a real96

dataset of trips?97

3. Is the assumption to calculate a set of virtual-trips in distance a good proxy to capture the paths chosen by drivers?98

4. How does the partitioning of the city network influences the performance of both methods to estimate the paths99

chosen by drivers?100

5. What is the functional form of the network-wide TLD?101

6. Is there a general functional form for the TLD of the regions defining a regional path?102

7. Do the Euclidean distance and the average shortest distance between borders and centroids, provide a good ap-103

proximation of the travel distances in the regions or the total travel distance of a path?104

8. How different are the travel distances of paths, determined based on a set of shortest-trips in distance and based on105

a set of real data?106

9. Is there a relationship between significance level of paths and their travel distances?107

The remainder of this paper is organized as follows. In Sect. 2, we provide a brief literature review about the108

methods used to determine trips in the city network. We also introduce the two methods for determining the regional109

paths. We then discuss the advantages and disadvantages of each method. In Sect. 3, we analyze the application110

of both methods for determining regional paths on a large city network. We also analyze the performance of both111

methods against both simulated and real data. In Sect. 4, we discuss the characterization of regional paths through the112

TLD. In Sect. 5, we outline the main conclusions of this paper. In Sect. 6, we provide a critical assessment about both113

the proposed methodological framework stressing its main advantages and limitations, and the results of this paper.114

2. Methodological framework115

In this section, we start by providing a brief literature review about methods used for determining trips on a city116

network. We also discuss the different challenges related to determining trips in city networks in comparison to117

paths on the regional network. We then introduce the methodological framework of the two different methods for118

determining paths on regional networks, and discuss the main advantages and limitations of each one.119

In Table A.1, we summarize the notation used in this paper.120

2.1. Literature review on choice set generation methods on city networks121

The modeling of drivers’ trip choices consists in determining a set of routes in the city network that travelers might122

choose. The goal is to determine the route choice set Ωod,∀(o, d) ∈ Ξ for all origin (o) and destination (d) nodes of123

the city network. Let Ξ be the set of all od pairs of the city network, and G(A,Z) the city network graph where A and124

Z represent the set of links and nodes, respectively. In this paper, we use lowercase letters for referring to od pairs in125

the city network. While, the capital OD refer to Origin-Destination regions in the regional network. We also denote126

W as the set of all OD pairs of the regional network.127

The simplest and most commonly used approach in the literature for determining Ωod, is the Dijkstra algorithm. It128

can be used to compute the K-shortest trips (Eppstein, 1998; Hadjiconstantinou and Christofides, 1999) that minimize129

the total cost (e.g. travel distance and/or travel time), without considering travelers’ preferences. To name a few130

examples, the travelers might have specific preferences for choosing highways or main roads, or to avoid traffic lights131

or traffic jams. The computed trips show, in general, a high degree of similarity, differing from each other only on132

small detours. As an alternative, van der Zijpp and Catalano (2005) discusses an algorithm that computes the K-133

constrained shortest trips. The idea is to only compute trips that satisfy a pre-defined set of constraints. Azevedo et al.134

(1993) discusses a different approach that consists of a route search and then a link elimination. First, the algorithm135

computes the trip with the minimal travel cost and adds it to Ωod. Then, it eliminates from a few to all links of the136
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computed trip, from the city network graph. This process is repeated until there are no more trips connecting the od137

pair. The question is how to properly set the elimination rule. Instead, de la Barra et al. (1993) proposes to increase138

the link costs that define the computed trips. This process is iteratively repeated until two similar trips are found. The139

method has a bad performance when the link costs are either low, and the same trip is repeatedly identified, or high140

and less attractive trips are computed. Ben-Akiva et al. (1984) proposes a method that determines trips based on labels141

corresponding to travelers’ preferences. However, the good performance of this methods relies on the proper setting of142

the drivers’ preferences set (Ramming, 2002; Prato and Bekhor, 2006). Prato and Bekhor (2006) proposes a branch-143

and-bound algorithm to explicitly solve a constrained route-enumeration problem. While this technique improves144

the heterogeneity of the choice set, the computational costs strongly depend on the number of computed trips. The145

simulation approach consists in simulating the generalized link costs from probability distributions (see e.g. Nielsen,146

1997; Ramming, 2002; Nielsen et al., 2002; Bierlaire and Frejinger, 2005; Prato and Bekhor, 2006; Bliemer et al.,147

2007), and then perform a shortest-trip search. The process is repeated until the number of desired routes is reached.148

Instead, the doubly stochastic approach (Nielsen, 2000) simulates both the generalized link costs and link attributes.149

The computed routes are filtered according to a set of preference constraints of drivers. More recently, Flötteröd and150

Bierlaire (2013) proposed a methodology based on the Metropolis-Hastings algorithm for sampling trips. As stressed151

by the authors, this method is computationally expensive since it may require the calculation of several shortest-trips.152

Prato (2009) provides a literature review about choice set generation models.153

The generation of the choice set Ωod,∀(o, d) ∈ Ξ is extremely challenging. First, there are a large number of154

possible routes connecting each od pair, in addition to the large number of od pairs in the city network. In general,155

the choice sets are calculated based on shortest-trip calculations. This is computational costly for large-scale city156

networks. Second, many of the previous methods yield a choice set composed by trips with a large level of correlation,157

i.e. trips with a large fraction of overlapping links. The third challenge lies on the appraisal of travelers’ preferences.158

Zhou et al. (2014) shows that travelers do not necessarily choose the shortest-trips. The question is how to determine159

a choice set of routes that correspond to the travelers’ preferences.160

2.2. The determination of paths on regional networks161

In this paper, we focus on the calculation of paths on the regional network. In the follows, we propose two methods162

for determining paths on regional networks. The first method relies on exhaustive calculations of shortest-trips in the163

city network. The second method relies on the calculation of paths directly on the regional network, considering164

different settings of aggregated impedance functions, that are established based on topological features of the network165

as well as its partitioning.166

2.2.1. Method 1167

This method is somehow similar to traditional choice set generation models for city networks, as discussed in168

the previous section. These models rely on shortest-trip calculations. It consists in the scaling-up of a set of trips in169

the city network, following the definition of its partitioning. In the ideal scenario, one can use vehicles trajectories170

gathered from GPS trajectories. For example, Paipuri et al. (2020) calibrates regional paths and their travel distances171

based on mobile phone data gathered for the city of Dallas (USA). The authors filter the trips according to the specific172

sequence of traveled distances for identifying and characterizing the paths on the regional network. However, the173

main challenge is here to evaluate if this set of trips is representative of the full trip patterns in the city network. On174

the other hand, the information about real trips patterns is usually unknown. As an alternative, one can construct a set175

of virtual trips (Batista et al., 2019). This is achieved by randomly sample Nod od pairs in the city network (i.e. all176

nodes are equally probable of being sampled), and then determine the shortest-trip in distance connecting each one.177

Let Θ be the set of virtual trips.178

There are two alternatives for performing the sampling of the od pairs in the city network (see Fig. 2):179

• Variant 1.1 (V1.1): the sampling of the od pairs is performed independently of the city network partitioning180

(Fig. 2 (a)).181

• Variant 1.2 (V1.2): for each regional OD pair, we do the sampling of Nod/|W | od pairs in the city network,182

where |.| represents the total number of regional OD pairs, inside the specific Origin and Destination regions183

(Fig. 2 (b)).184
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We then determine the shortest-trips in distance for all sampled od pairs. The regional paths are determined by185

scaling-up these trips following the definition of the city network partitioning. We emphasize that this scaling set is186

valid for both a set of real trajectories and a set of virtual trips, calculated as previously discussed. For each regional187

choice set ΩOD,∀(O,D) ∈ W, we consider the K most representative regional paths.188

(a) (b)

Figure 2: Sampling of od pairs: (a) independent of the city network partitioning (Variant 1.1); and (b) focusing on each regional OD pair (Variant
1.2).

In this paper, we focus on the calculation of static regional paths, i.e. we do not consider the effects that traffic189

dynamics have on the path selection by drivers. This will be subject to future research.190

2.2.2. Method 2191

This method consists in directly determining the paths on an aggregated graph, that is gathered based on topologi-192

cal features of the city network and its partition. It determines the internal and regional paths differently. In this paper,193

we filter the paths that cross more than one time the same region. This is to avoid potential problematic paths for194

the application of the MFD-based traffic models (Mariotte and Leclercq, 2019), such as paths that travel on the same195

region more than one time. Then, when the Origin and Destination regions match, we consider that there is only one196

possible internal path to be traveled. While, for determining the regional paths, we distinguish between two different197

variants of this graph.198

In the first variant, we consider a regional graph. Fig. 3 (a) shows one example of a partitioned city network.199

We define ρi j as the set of the city network nodes that are located at the partition (or border) between two generic200

adjacent regions i and j. Fig. 3 (b) depicts the regional graph, where the nodes represent the regions. The question is201

how to define the gray edges connecting the nodes. These connections are dictated by the allowed travel directions202

of the nodes located at the borders between adjacent regions. For example, it is possible to travel in both directions203

between the yellow and blue regions. However, it is only possible to travel from the blue to the green region. This204

happens because the two border nodes only allow to travel in this direction. One possibility for determining the205

regional choice set ΩOD,∀(O,D) ∈ W is to calculate all regional paths, but even on a regional network this might lead206

to large computational costs. The computational cost increases exponentially with the number of regions. Instead,207

we determine only the K-shortest paths on the regional graph for reducing the length of the regional choice set208

ΩOD,∀(O,D) ∈ W. To determine the shortest-paths on the regional graph, we assign the edge costs based only on209

topological features of the city network and its partitioning. We consider two cost functions for assigning the edge210

costs:211

• Variant 2.1: We propose a capacity-oriented cost function, that accounts for the flow capacity (qc
a f ) of each lane212

f of the incoming link a to each border node listed in ρi j, and that allows to travel from the generic region i to213
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(a) (b) (c)

Figure 3: (a) Partitioning of the city network. (b) Regional graph representing the regional network. (c) Variant of the regional graph, including the
borders between adjacent regions as nodes.

j. The edge cost Ci j is determined as:214

Ci j =
∑

a

Nlanes∑
f=1

1
qc

a f δai j
,∀a ∈ A ∧ ∀i ∈ X ∧ ∀ j ∈ Λ (2)

where Nlanes is the total number of lanes of each incoming link a to each border node listed in ρi j; Λ is the set215

of adjacent regions to region i; and δai j is a binary variable that equals 1 if link a allows to travel from region216

i to region j. We consider a standard value of qc
a f = 1800 [veh/h], which is a fair assumption for a single217

link. We recall the reader that the border Bi j between two adjacent regions i and j, is located at nodes (i.e.218

intersections) of the city network. This value may be an overestimation of the real capacity of a given border219

node (or intersection), if traffic lights or stop signs are present. In this paper, we do not focus on the dynamic220

influence of the traffic signals or signal stops, and rather focus only on topological features of the network (i.e.221

static regional paths). Moreover, we consider a similar flow capacity qc
a f for each lane of each link. Then,222

from Eq. 1, the edge cost Ci j only depends on the total number of lanes of all incoming links to the border Bi j223

between two adjacent regions i and j. But, we emphasize that the edge cost defined in Eq. 1 is general. It can224

also account for the effects of traffic lights or stop signs by properly calibrating the flow capacity qc
a f per lane.225

• Variant 2.2: We propose to define the edge costs (Ci j) based on the Euclidian distance between the centroids of226

two generic adjacent regions i and j:227

Ci j =

√
(xi − x j)2 + (yi − y j)2,∀i ∈ X ∧ j ∈ Λ ∧ i , j (3)

where (xi, yi)) and (x j, y j)) represent the cartesian coordinates of the centroids of regions i and j, respectively.228

The closest city network node to the geometric center of a generic region i ∈ X represents its centroid.229

In the second approach, we consider a more detailed definition of the regional graph, where the nodes represent230

the regions as well as the borders Bi j between two adjacent regions i and j. Fig. 3 (c) depicts one example of the231

more detailed regional graph. It has a total of R+Nborders nodes, where Nborders represents the total number of borders232

between adjacent regions of the network, and R is the total number of regions defining the regional network. While,233

the maximum number of edges is given by
∑

r∈X Nborders(Nborders + 1) + R. This value is only a maximum indicator234
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since the edges between the nodes depend on the allowed travel directions in the city network. For example, the235

topology of the city network only allows to travel from the blue to the green regions (Fig. 3 (a)). Then, it is only236

allowed to travel from the blue region 2 to the border node B24 and then to region 4, in the graph as depicted in Fig. 3237

(c). There are three kind of edges in this variant of the regional graph:238

i. the internal edges, that for simplicity of the illustration, we just show one example represented by the dashed gray239

line on the top of region 1;240

ii. the edges connecting the centroids of the regions to the borders Bi j, and vice-versa. These are shown in Fig. 3 (c)241

by the full gray lines between the borders Bi j and the centroids of the regions.242

iii. the edges connecting two adjacent regions i and j to region m, i.e. the connection between Bi j to B jm. For243

simplicity of the illustration purposes, we just show one example of this kind of edges in Fig. 3 (c), that is244

represented by the dotted gray line between the borders B15 and B54, traveling through region 5.245

This induces differences on the regional path construction on both variants of the regional graphs depicted in Fig. 3246

(b-c). Consider as an example the regional path p = {154}. In the case of the regional graph shown in Fig. 3 (b), this247

path would only contain the edges connecting regions 1 to 5 and then 5 to 4. While, in the variant of the regional248

graph shown in Fig. 3 (c), this path contains the edge connecting region 1 to the border B15, then the edges connecting249

the border B15 to B54 passing through region 5, and finally the edge connecting the border B54 to region 4. Once this250

sequence is identified, we determine the regional path following the regions traveled.251

The regional choice set ΩOD,∀(O,D) ∈ W is also determined by the computation of the K-shortest paths in this252

graph. We also consider two different ways of assigning the edge costs:253

• Variant 2.3: We propose to use the average travel distances between the centroid node of region i and the border254

nodes with the adjacent region j, and vice-versa; and the average travel distance to cross region m, by traveling255

from the border with adjacent region i to the border with adjacent region j. We define Li,ρi j = {lk} as the set256

of trip lengths between the centroid node of region i and all border nodes listed in ρi j. Similarly, we define257

Lρi j, j = {lk} as the set of trip lengths between all border nodes listed in ρi j and the centroid node of region j.258

These sets are determined by the computation of all possible shortest-trips in distance between the centroid259

node of region i and all border nodes listed in ρi j, and vice-versa. For the edges connecting two borders, we260

define Lρim,ρm j = {lk} as the set of trip lengths connecting all border nodes between region m and adjacent region261

i (i.e. all nodes listed in ρim), to all border nodes between region m and adjacent region j (i.e. all nodes listed in262

ρm j). We also determine these sets by calculating all possible shortest-trips in distance that connect all border263

nodes listed in ρim to the ones listed in ρm j. From these sets of trip lengths, we determine the average travel264

distances, and update the edge costs as:265

Ci j =


Li,ρi j if travel from i to border ρi j

Lρi j, j if travel from border ρi j to j
Lρim,ρm j if region m is crossed, when traveling from regions i to j.

,∀i ∈ X ∧ ∀ j ∈ Λ ∧ i , j (4)

• Variant 2.4: We propose to use as a metric, the Euclidian distance between the centroid node of region i and266

the centroid node ni j of the border Bi j; between the same ni j and the centroid of region j; and between the267

centroid nodes nim and nm j of the borders Bim and B jm, respectively, when region m is crossed. We also assign,268

by default, a unitary cost for internal edges. The edge costs are then updated as:269

Ci j =


Li,ni j if travel from centroid node of region i to ni j

Lni j, j if travel from ni j to centroid node of region j
Lnim,nm j if region m is crossed, when traveling from regions i to j.

,∀i ∈ X ∧ ∀ j ∈ Λ ∧ i , j (5)
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2.3. A comparative analysis between both methods270

We briefly describe in this section, the advantages and limitations of each of the two methods. The first method271

is computationally expensive since it requires the computation of a set of virtual trips, i.e. including the calculation272

of several shortest-trips in distance, if real data is not available. Moreover, the main challenge of this method lies273

on the optimal calibration of Nod. The computation of a large set of virtual trips on large city networks can become274

unfeasible. The main advantage of this method lies on the fact that it allows to directly determine the TLD of regional275

paths, as well as their level of significance, for the application of the MFD-based traffic models (Batista et al., 2019).276

In the next section, we discuss how to properly calibrate Nod.277

The second method is more parsimonious and computes the K-paths with much lower computational costs. The278

scaling of the city into the regional network allows to have a tractable number of regions, reducing the complexity of279

the problem and the computational power required for the calculation of paths. The calibration of the edge costs of280

the regional graph only relies on topological features of the city network as well as of its partition. But, despite being281

computationally lighter and tractable, this method does not allow to determine the TLD. One may use the Euclidian282

distance as a proxy to characterize the trip lengths of the paths. However, the Euclidian distance is not necessarily283

representative of the TLD determined from the set of virtual trips, that captures the topology of the city network, and284

which are recognized to play an important role in MFD-based applications (Batista et al., 2019). In the next section,285

we investigate the similarities of the paths calculated by both methods. The question is if this method finds similar286

paths as the most prevailing ones found by the first method.287

3. Regional paths and choice sets analysis288

In this section, we discuss the implementation of the two methods previously introduced for calculating paths on289

regional networks. We start by introducing the test network. We then show how to properly calibrate the set of virtual290

trips required for Method 1. We also analyze and discuss the similarities between the choice sets calculated through291

the different variants of Methods 1 and 2.292

3.1. Test scenario and network definition293

The test network is depicted in Fig. 4, and corresponds to the metropolitan area of Lyon (France). The network294

has 19697 nodes and 19967 links. It is partitioned into 10 regions, based on administrative regions defined by the295

municipality. In this paper, we consider two different definitions of the network partitioning as depicted in Fig. 4 (a)296

(Partitioning 1) and (b) (Partitioning 2).297

We construct a set of virtual trips Θ, where each node in the city network is a possible origin or destination of a298

travel. We consider all possible combinations of origin and destination nodes in the city network, for defining Θ. This299

yields a total of 108,529,021 virtual trips, i.e. Nod = 108, 529, 021. Of course, constructing such a large set of virtual300

trips requires large computational resources. In the case of the Lyon network, these calculations took approximately301

10 days. The data reduction also took approximately one week. In this paper, we determined this full set of virtual302

trips to set it as the reference and for the purpose of our analysis. In the next section, we discuss in more detail the303

calibration of the virtual set of trips.304

The full set of paths Φ is determined by scaling-up all of these virtual trips listed in Θ, according to the city305

network partitioning. We obtain a total of 2423 and 3355 paths, concerning Partitioning 1 (Fig. 4 (a)) and 2 (Fig. 4 (b)),306

respectively. We filter the paths that cross more than one time the same region. This allows to avoid meaningful paths307

for the application of the aggregated multi-regional MFD models. We are left with a total of 689 paths determined308

from 91,342,632 valid trips, for Partitioning 1 (Fig. 4 (a)). While for Partitioning 2 (Fig. 4 (b)), we have a total of 564309

paths determined from 87,799,074 valid trips. This means that there are approximately ∼ 84% and 81% of valid trips310

for Partitioning 1 and 2, respectively. We define Φ1 as this set of valid paths.311

We also define a set ζ that contains all real trips of drivers in the city network. We refer hereafter to this set as312

the real data, that comes from a GPS data set provided by an European navigation system operation. We consider313

the full month of March 2018 in our analysis. We would like to emphasize that most of the GPS trajectories in314

our dataset correspond to trips of drivers that are located in our study area. These trips represent the morning and315

evening commute of people in the city center. The trajectories of drivers are map-matched with the Lyon network316

depicted in Fig. 4. The real data set covers a larger area than the Lyon metropolitan area. Each entry on the original317
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Figure 4: Metropolitan network of Lyon (France), divided into 10 regions and considering two distinct definitions of the partitioning as shown in
panels: (a) Partitioning 1; (b) Partitioning 2.

database characterizes the passage of a given vehicles in one specific link of the city network, that defines its trajectory.318

Each entry contains the information about the vehicle label, the identification of the link traveled, a timestamp at the319

entrance of the link, an estimation of the travel speed, and the coverage percentage of the link. By relating the coverage320

information with the link geometry, we compute the distance traveled by each vehicle on each link. We also need to321

do a pre-processing of the data for detecting potential static phases from the individual GPS tracks, and then parse322

them into separate trips. We have filtered from our analysis, the trips that have an origin and/or destination outside323

the city network depicted in Fig. 4, as well as the trips that are excessively fragmented. Additionally, we have also324

filtered out redundant vehicles from our analysis. We are left with a set ζ containing 101,729 trips. These trips are325

scaled-up concerning the two definitions of the city network partitioning. We are left with a total of 2470 and 2226326

paths regarding Partitioning 1 (Fig. 4 (a)) and 2 (Fig. 4 (b)), respectively. We have then filtered the trips that cross327

more than one time the same region. This leads to a final set of 86,114 and 87,694 trips, yielding 473 and 335 valid328

paths, for Partitioning 1 (Fig. 4 (a)) and 2 (Fig. 4 (b)), respectively. We define Φ3 as the set of all regional paths329

gathered from the real trajectories of drivers listed in ζ.330

3.2. Calibration of Method 1331

The application of Method 1 requires the proper definition of a set of virtual trips Θ, that should provide a good332

city network coverage. In order words, the question relies on finding the value of Nod that provides an optimal city333

network coverage, where the calculation of the regional paths will no longer be influenced by the bias introduced334

by the random sampling of od pairs. We define a criterion that estimates the percentage of the city network links335

(N links
cov (Nod)) that are traveled by virtual trips in the set Θ, with length Nod. Mathematically, we determine N links

cov (Nod)336

as:337

N links
cov (Nod) =

Nlinks∑
i=1

N links
used (Nod)
Nlinks

(6)
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where N links
used (Nod) is the total number of links traveled by the trips listed in Θ; and Nlinks is the total number of links338

defining the city network, i.e. 19967 for the Lyon network depicted in Fig. 4.339

In this analysis, we focus on Partitioning 1 (see Fig. 4 (a)). We consider ten different settings of Nod: 1×102,340

5×102, 1×103, 5×103, 1×104, 5×104, 1×105, 5×105, 1×106 and 1,085×109. Note that, Nod = 1, 085.109 represents341

all possible combinations of od pairs of nodes in the city network, i.e. the full enumeration of possible virtual trips.342

For each setting of Nod, we run fifteen trials to determine the set of virtual trips Θ, and then derive the city network343

coverage using Eq. 6. In the V1.1, we sample the od pairs of nodes independently of the city network partitioning. In344

V1.2, for each setting of Nod, we sample Nod/100 od pairs of nodes in the city network that are located inside each345

of the possible 100 Origin and Destination pairs of regions. Fig. 5 depicts the N links
used (Nod) distributions determined346

based on all fifteen trials for each setting of Nod, and both variants of Method 1. The red dots represent the outliers of347

the distributions. Larger values of Nod ensure a better coverage of the city network, and reduce the variability of the348

regional paths determined for the different regional OD pairs.349
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Figure 5: Evolution of Nnodes
cov (Nod) as function of Nod , for the two variants of Method 1.

Table B.1 and Table B.2 show how the regional choice sets ΩOD, for several OD pairs, vary with the increase of350

Nod. We consider a total of eight OD pairs: 42; 24; 75; 57; 25; 52; 37; and 73. This choice allows to investigate351

simple tests (i.e. OD pairs where the regions are close, such as regions 2-4 and 5-7), as well as harder tests of longer352

paths (i.e. Origin and Destination regions which might lead to paths with more than four regions, like the regions 2-5353

and 3-7). The results are listed for both variants of Method 1, and only for one trial for each of the Nod values. The354

regional paths are listed from the first to the third most prevailing one, for both regional OD pairs. We recall the reader355

that the total number of virtual trips linked to a regional path defines its level of significance.356

We first analyze the regional choice sets determined for V1.1. For a low Nod = 100, we only have one regional357

path connecting the OD pairs 42 (i.e. p = {4, 9, 2}), 24 (i.e. p = {2, 3, 4}), 57 (i.e. p = {5, 6, 7}) and 37 (i.e.358

p = {3, 4, 9, 10, 7}). However, there are no paths for the remaining OD pairs. As Nod increases, more paths are found359

connecting several of the OD pairs. While Nod is still low, i.e. when it still does not yet ensure a good city network360

coverage as depicted in Fig. 5, we can find the same regional paths, but listed with a different level of significance.361

This is observed for the OD pairs 42, 24, 75 and 57. One example is the regional choice set Ω42 determined for362

Nod = 1 × 103 and Nod = 5 × 103. In the first case, we find p = {4, 3, 2} and p = {4, 9, 3, 2} as the first and second363

most prevailing regional paths, respectively. While, in the second case, we also find these two regional paths but with364

different levels of significance. For Nod > 1× 105, we find similar Ω75 independently of Nod, where the regional paths365

are listed with the same level of significance. This is verified when we have ensured a good city network coverage,366

and the calculation of the regional choice set ΩOD,∀(O,D) ∈ W becomes independent of Nod. While, the other OD367
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pairs require a larger Nod. For example, regions 2-5 and 3-7 are located on opposite directions of the network. We368

emphasize to the reader that the city of Lyon is crossed by the rivers Saône and Rhône, which merge at the bottom369

of region 10 (see Fig. 4 (a)). These two rivers act as natural borders between regions, for the partitioning depicted370

in Fig. 4 (a). To travel between regions 2-5 and 3-7, one has to cross at least one of the two rivers. There are only371

a few bridges that allow to cross the rivers, which naturally increases the difficulty on finding the regional choice372

set ΩOD for the OD pairs 25, 52, 37 and 73. This highlights a strong limitation of the variant V1.1, where trips are373

sampled independently of the city network partitioning, thus not ensuring that all paths are found for harder test cases.374

Another intriguing case are the OD pairs 42 and 24. For OD 42, we are able to find the same paths with the same375

level of significance for Nod > 1 × 105. However, the OD 24 requires almost full enumeration to find the three most376

prevailing paths. This happens because, and as previously discussed, variant V1.1 samples trips independently of the377

city network partitioning, not ensuring that all paths are found. The complex topological features of the city network378

(e.g. the presence of several one-way streets) concerning its partitioning plays an important role. This is a limitation379

of variant V1.1, putting in evidence the importance of constructing the set of virtual trips concerning the definition of380

the partitioning (i.e. V1.2). In fact, for variant V1.2, we are able to find all three paths of the regional choice set Ω24,381

for a lower Nod = 5 × 105. This is also a general trend for the other OD pairs, where a lower city network coverage is382

required such that ΩOD becomes independent of Nod.383

Overall, the sampling of od pairs of nodes in the city network accounting for the definition of the partition, allows384

to determine similar regional choice sets ΩOD for a lower Nod, than in the case of variant V1.1. This answers our first385

conjecture in the Introduction, showing that variant V1.2 is a better approach for determining the set of virtual trips.386

3.3. Calculation of paths in regional networks: a comparative analysis between the methods387

In this section, we analyze the similarity between the sets of paths determined by Method 2 and Method 1 against388

each other, as well as against the set of paths gathered from real data, i.e. GPS trajectories. We consider the two389

definitions of the partitioning of the city network as depicted in Fig. 4. We focus our analysis on the regional choice390

sets encompassing the three most significant paths.391

We apply Method 2 as follows. In the case where the Origin and Destination regions match, the regional choice392

set only consists of one internal path. When the Origin and Destination regions are different, we determine the393

regional choice set ΩOD for all (O,D) ∈ W, based on the three shortest-cost paths. The path costs are updated for394

the four variants of Method 2, following Equation 2 to Equation 5 (see Sect. 2.2.2 for more details). We define395

ϕV2. j, j = 1, . . . , 4, as the set of calculated paths for the j−th Variant of Method 2. This set can be mathematically396

expressed as:397

ϕV2. j =

{ ∪
(O,D)∈W

ΩOD
}
, j = 1, . . . , 4 (7)

In the case of Method 1, we focus on the set of virtual trips with Nod = 1, 085 × 109, where Φ1 is this set of all398

paths. We define ϕ1 ∈ Φ1 as the set containing the three most prevailing paths for each regional (O,D) ∈ W. This set399

can be mathematically defined in a similar way as ϕV2. j, j = 1, . . . , 4. We also define ϕ3 as the set containing the three400

most prevailing paths for each regional OD pair, determined from the real GPS trajectories. Mathematically, we can401

define ϕ3 in a similar way as ϕ1, where in this case, the regional choice set ΩOD is defined from paths gathered from402

the real trajectories of drivers.403

Our analysis between the sets ϕ1 and ϕ3 against ϕV2. j, j = 1, . . . , 4, is based on a similarity and strict similarity404

criteria. The similarity criterion only evaluates how alike are the sets of paths, without looking into their significance405

rank. The strict similarity criterion counts the number of paths that are found in both sets with the same significance406

level. However, we would like to reinforce that the most important aspect is that our Methods 1 and 2 are able to407

determine similar sets of paths, also in comparison with the real GPS trajectories.408

We determine the similarity criterion αϕiϕV2. j as:409

αϕiϕV2. j =
|ϕi ∩ ϕV2. j|
|ϕV2. j|

, i = 1, 3 ∧ j = 1, . . . , 4 (8)
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Figure 6: Similarity and strict similarity criteria between the four variants of Method 2 and Method 1, and the real data. The left panels show the
results for Partitioning 1, while the right panels show the results for Partitioning 2.

where |.| represents the length of the set.410

The strict similarity criterion βϕiϕV2. j is:411

βϕiϕV2. j =

∑
(O,D)∈W

∑
p δ

OD
p

|ϕV2. j|
, i = 1, 3 ∧ j = 1, . . . , 4 (9)

where δOD
p is a binary variable that equals 1 if path p that connects the regional OD pair is ranked with a similar level412

of significance in ϕi, i = 1, 3, and ϕ2, or 0 otherwise.413

Fig. 6 depicts the similarity and strict similarity results of the four variants of Method 2 (i.e. ϕV2. j, j = 1, . . . , 4),414

compared to Method 1 (i.e. ϕ1) as well as the real data (i.e. ϕ3). The left panels depict the results for Partitioning415

1, while the right panels show the results for Partitioning 2. We observe that the similarity values range between416

∼ 70-80%, for Partitioning 1. The performance of these three variants are similar to some extent. However, the417

similarity values drop to ∼50-60% for V2.1 and Partitioning 2. The similarity values for the variants V2.2 to V2.4418

are maintained around ∼80% when compared to the simulated data, i.e. Method 1. While, they slightly decrease419
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for the variants V2.3 and V2.4 when compared to the real data. On the other hand, we also observe that Method 2420

provides low strict similarity values of ∼10-30% for Partitioning 1 and ∼10-40% for Partitioning 2, when compared421

to the simulated (Method 1) and the real data. This means that the shortest-cost paths, where the costs are updated422

according to Equation 2 to Equation 5 (i.e. V2.1 to V2.4), do not correspond in general to the most prevailing regional423

paths determined by Method 1, or from the real data. Despite this fact, we emphasize that the most important factor424

is the ability of Method 2 in finding similar paths as both Method 1 and the real data. This is enhanced by the large425

similarity values, where the Euclidean distance between the centroids of the regions (i.e. variant V2.2) is the best426

proxy to calibrate Method 2, and determine paths. Moreover, variant V2.2 requires a simpler definition of the regional427

network (see Fig. 3 (b)) and is also based on a simpler Euclidean distance metrics between the centroids of the regions.428

This answers our second conjecture listed in the Introduction.429

We also analyze the similarity and strict similarities between the sets ϕ1 (Method 1) and ϕ3 (real data). The430

similarity results are 80% and 80% for Partitioning 1 and 2, respectively. While, the strict similarity results are 19%431

and 28% for Partitioning 1 and 2, respectively. The large similarity values show that the assumption of shortest-trips432

in distance to calibrate Method 1 represent a good proxy for determining the actual paths chosen by drivers. It is433

known that drivers do not necessarily choose the shortest-trips in distance for their travels in the city network (Zhou434

et al., 2014). However, these trips represent similar paths in the regional network as the ones determined by Method435

1. On the other hand, the low strict similarity values can be explained by the different weights associated to each436

path, as both set of trips represent different travel patterns in the city network. Overall, these results answer our437

third conjecture listed in the Introduction. The set of virtual trips in distance is a good proxy to determine the most438

prevailing paths chosen by drivers.439

We also analyze the influence of the partitioning on the similarity and strict similarity results between both methods440

1 and 2 as well as the real data. The regions of Partitioning 2 (Fig. 4 (b)) are more compact than in the case of441

Partitioning 1 (Fig. 4 (a)). We observe similar similarity values between Method 1 and 2 as well as between Methods442

1 and 2 and the real data. While, there are some differences in terms of the strict similarity. It is in general larger for443

the four variants of Method 2 concerning Method 1, for the case of Partitioning 2 when compared to Partitioning 1.444

However, these values are much lower when looking at Method 2 concerning the real data, for Partitioning 2. The445

strict similarity is also larger for Partitioning 2, when we compare Method 1 and the real data. These results answer446

our fourth conjecture listed in the Introduction. The definition of the partitioning does not appear to have an influence447

on the similarity results between the sets, as it does on the strict similarity. Therefore, we conclude that the definition448

of the partition does not influence the performance of both Methods 1 and 2 for identifying the most prevailing paths449

chosen by drivers.450

We also would like to briefly comment on the computational costs of Methods 1 and 2. Method 1 requires the451

knowledge about a set of trip patterns in the city network, which can come from real or simulated data. If one utilizes452

a set of real GPS data patterns, there is the need to do a curation of the raw data, which includes the map-matching of453

the data as well as the elimination of invalid trips (i.e. trips with missing information about the sequence of traveled454

links, unknown origin and/or destinations, etc.). In our paper, the reduction of the raw GPS data, for the whole month455

of March, to the final valid set of trips, took approximately two months. On the other hand, the construction of a set456

of virtual trips can also be a cumbersome task, as discussed in the previous section. However, we focus our attention457

on the computation of the full enumeration of trips, which took approximately one month of computations. Then, we458

need to reduce this data by filtering the trips concerning the sequence of traveled regions, following the definition of459

the city network partitioning. In our case, this process took approximately 2 weeks, to loop over all trips and determine460

their corresponding path on the regional network as well as its travel distances. Method 2 is much lighter in terms461

of computational power required. Once we have the definition of the partitioning, we can determine the regional462

network. We then determine shortest-cost paths directly on the regional graph, where the edge costs are assigned463

based on simple metric that utilize topological features of the city network as well as its partitioning. Once we have464

gathered the definition of the regional graph and set the edge costs, the calculation of the shortest-cost paths is almost465

instantaneous. In our test case, this takes approximately less than 2 minutes. The results discussed in this section,466

show the efficiency of Method 2 to determine the most prevailing paths as the ones determined from both simulated467

and real trip patterns in the city network.468
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4. Characterization of paths on regional networks469

In this section, we discuss the characterization of paths through their TLD. We first investigate the characterization470

of an internal path for the whole metropolitan area of Lyon, using the set of virtual trips as well as the real data. We471

then investigate the characterization of regional paths, when the city network is partitioned into regions. Lastly, we472

investigate the relationship between the level of significance of a path and its average travel distance.473

4.1. Trip Length Distribution of the whole network474

In this section, we focus on the characterization of an internal path for the whole metropolitan area of Lyon,475

depicted in Fig. 4, using both the simulated (i.e. the set of virtual trips) and real data. The full city network is476

considered as a single region, where all vehicles travel on the same internal path. Fig. 7 depicts the trip length477

distributions, TLDs, for this internal path determined from the set of virtual trips and from the real data. We would478

like to emphasize that these trip length distributions are unimodal. While the simulated data shows to be a good479

approximation of a skewed normal distribution, the functional form of the TLD determined from real data is more480

difficult to infer. The real trips of drivers gathered from GPS traces favor longer trips than the shortest-one in distance.481

For example, the observed peaks at ∼ 2, 4 and 7 kms, in the TLD of the real data are due to trips of drivers on the ring482

road that goes around the city of Lyon. These trips correspond to a large fraction of the dataset.483

0 5 10 15 20
 L [km]

0

0.02

0.04

0.06

0.08

0.10

F
re

qu
en

cy

 (a)

0 5 10 15 20
 L [km]

0

0.02

0.04

0.06

0.08

0.10

F
re

qu
en

cy

 (b)

Figure 7: Unimodal trip length distribution (TLD) of the internal path, determined from: (a) the simulated data (i.e. set of virtual trips); (b) the real
data. The red solid line represents the fitted Weibull distributions.

The functional form of the TLD has been subject of debate in many seminal works in the literature. Many of484

these studies focus on the home-based trips since they are an important part of our daily routine. The challenge lies in485

finding the best statistical distribution to fit the empirical data. Some authors utilize a Gamma or Weibull distributions486

(Ortuzar and Willumsen, 2011; Yang et al., 2013; Moeckel, 2017), while others focus on a log-normal (Katsis et al.,487

2014) or a negative exponential distributions (Yang et al., 2013). In the case of MFD-based applications, some authors488

consider constant TLD (e.g. Arnott, 2013; Mariotte et al., 2017), or a either an implicit (e.g. Daganzo, 2007) or explicit489

(e.g. Vickrey, 2020) negative exponential distribution. Lamotte and Geroliminis (2016) showed that the trip-based and490

accumulation-based MFD traffic models predict similar traffic dynamics if the TLD follow a negative exponential. In491

this paper, we focus on these unimodal four distributions, and investigate which is the best one that fits the TLDs492

determined from the simulated and real data (see Fig. 7). We utilize a maximum likelihood estimation (MLE) as a493

measure to estimate the parameters of these four distributions by maximizing their likelihood function. The fitted494

parameters and the values of the maximum log-likelihood functions of these four distributions are listed in Table 1.495
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The maximum log-likelihood estimation shows that the Weibull distribution is the one that better fits both TLDs. The496

fitted Weibull distributions are depicted by the red solid lines in Fig. 7. It is interesting to observe that the Weibull497

distribution is the one that better reproduces the functional form of both TLD, determined from the simulated and real498

data, despite both histograms being quite alike.499

Distribution Parameters of the Simulation Data Real datalog-likelihood estimation

Gamma
kGa 15 3.9
θ [m] 2855 1400

log(L(kGa, θ)) −6.2581 × 106 −1.0033 × 109

NE λNE [m] 2.41 × 10−4 1.83 × 10−4

log(L(λNE)) −6.2838 × 106 −1.0416 × 109

Log-normal
µ [m] 7.95 8.47
σ2 [m] 0.9159 0.5744

log(L(µ, σ2)) −5.3212 × 1012 −4.1175 × 1015

We
λWe [m] 4433 6174
kWe [m] 1.2 2.3

log(L(λWe, kWe)) −7.359 × 105 −1.450 × 108

Table 1: Fitted parameters of the Gamma (Ga), Negative Exponential (NE), log-normal and Weibull (We) distributions, for both the simulated and
real data. The values of the maximum log-likelihood functions are also listed.

These results answer our fifth conjecture listed in the Introduction. The best functional form to represent the500

network-wide TLD is a Weibull distribution, based on the maximum likelihood estimation results.501

4.2. Trip Length Distributions and regional paths502

In this section, we focus on the characterization of paths on regional networks. First, we discuss a major difference503

between regional paths. For this, we focus on the regional paths p = {1, 9, 4} and p = {4, 9, 1}, and investigate the504

differences between their trip length distributions, based on Partitioning 1. By definition, these paths are distinct from505

each other since they cross a different ordered sequence of regions. For example, region 1 is the Origin for path506

p = {1, 9, 4}. But, it represents the destination region for path p = {4, 9, 1}. The main question is how alike are507

the trip length distributions that characterize each region of these two regional paths. Fig. 8 depicts the trip length508

distributions for these two regional paths, determined from the simulated data for Partitioning 1. The horizontal black509

dashed lines represent the average trip lengths of each region. We can observe that the average trip length for regions510

1 and 4 are close for both regional paths, however, the shape of the trip length distribution is completely different.511

The trip length distributions of Origin and Destination regions of paths are influenced by: (i) the spatial distribution512

of origin and destination nodes of the city network inside these regions; and (ii) the city network topology. The case513

of the intermediate regions of paths, such as region 9 of p = {1, 9, 4} and p = {4, 9, 1}, is different. The trip length514

distributions of these regions are only influenced by the city network topology, to go from one border to another. This515

is true only because the TLD is determined from a set of shortest-trips in distance (i.e. static trips). As evidenced by516

the trip length distribution peak of region 9 and p = {1, 9, 4}, the preferential sequences of links to go from regions 1517

to 4 have similar travel distances. However, the preferential sequence of links to go from regions 4 to 1 have different518

travel distances, as shown by the two predominant peaks. This happens thanks to the allowed travel directions of the519

city network links, to go from one the border with region 1 to the one with region 4, and vice-versa. These results520

prove that the ordered sequence of regions to go from an Origin to a Destination region matter, agreeing with our521

definition of regional path. On the other hand, these results clearly reinforce the fact that one should not make any522

prior assumptions about the functional form of the TLDs of regional paths, as they can differ from region to region523

and among paths. This answers our sixth conjecture listed in the Introduction. A more detailed analysis about the524

time-dependence of the TLD of a regional path is left for future work.525

We also investigate how different are the trip length distributions determined from the simulated data, i.e. the526

set of virtual trips, and the real data gathered from the GPS trajectories. For this purpose, we focus on regional527
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Figure 8: Trip length distributions for the regional paths p = {1, 9, 4} (left panel) and p = {4, 9, 1} (right panel). The horizontal black dashed lines
represent the average trip length of each distribution. These distributions are determined from the simulated data, i.e. the set of virtual trips, for
Partitioning 1.
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path p = {4, 3, 2} and Partitioning 1. Fig. 9 depicts the trip length distributions for the regions of this regional path,528

determined from the simulated and real data. The average travel distances calibrated for the variants V2.3 and V2.4 are529

also depicted in the figure. We note that V2.2 is not considered in this analysis, since the travel distance corresponds to530

the Euclidean distance between the centroids of the regions, and the distance traveled in each region is unknown. The531

horizontal black dashed lines also represent the average of the distributions. The horizontal red dashed lines represent532

the average shortest travel distance between the centroid node of region 4 and the border with region 3 B43, between533

the borders B43 and B32, and between the border B32 and the centroid node of region 2. The horizontal cyan dashed534

lines represent the Euclidean distances between the centroid node of region 4 and the centroid node n43 of the border535

B43, between the centroids n43 and n32 of the borders B43 and B32, respectively, and between the centroid node n32536

and the one of region 2. As one can observe, the average trip lengths and the shape of the distributions are different.537

There are two factors that may explain these differences. First, drivers do not necessarily choose the shortest-trips in538

distance (e.g. Zhou et al., 2014), to travel from their origin to the destination node in the city network. Second, the539

uniform sampling of origin-destination pairs of nodes in the city network might not yield a representative set of the540

real travel patterns of drivers. We can also observe that the shortest average travel distance between centroid nodes541

of regions and their borders and between borders (i.e. the variant V2.3), seems to be a good proxy of the average542

travel distances of regions 3 and 2, for both the simulated and real data cases. This fact is also true for the Euclidean543

distance between the centroid nodes of the regions and the ones of the borders, as well as between the centroid nodes544

of borders (i.e. the variant V2.4).545

In the follow-up of this analysis, we investigate how the calculated average trip lengths for the regions, change546

between the common paths listed in Φ1 (i.e. set of paths gathered from the simulated data SD) and in Φ3 (i.e. set of547

paths gathered from the real GPS trajectories). In this analysis, we focus on both Partitioning 1 and 2. We define Lrp548

as the average travel distance in a generic region r that defines a generic regional path p. In this analysis, we focus549

on the Origin, Intermediate and Destination regions of the paths separately. We determine the relative differences ϵ550

between the average travel distances L
Φ1

rp and L
Φ3

rp of the common regional paths in the sets Φ1 and Φ3:551

ϵ =
L
Φ1

rp − L
Φ3

rp

L
Φ3

rp

× 100%,∀r ∈ p ∧ ∀p ∈ (Φ1 ∩ Φ3) (10)

Note that this equation is valid to determine ϵ for the Origin, Intermediate and Destination regions of paths.552

We also do a similar analysis between the trip lengths determined for the common paths in ϕV2.3 and ϕV2.4, i.e. the553

sets of paths gathered through the variants V2.3 and V2.4, and Φ1 and Φ3. The question here is if the shortest average554

trip lengths (V2.3) and the Euclidean distance (V2.4) proxies provide similar average travel distances in the regions,555

as the ones determined from the simulated and real data, and for the common regional paths. In a similar way as in556

Eq. 10, we also determine the relative differences ϵ between the travel distances as:557

ϵ =
L

V2. j
rp − L

Φi

rp

L
Φi

rp

× 100%,∀r ∈ p ∧ ∀p ∈ (Φ1 ∩ Φ3) ∧ ∀i = 1, 3 ∧ ∀ j = 3, 4 (11)

where L
V2. j
rp is the trip length determined for the generic region r of regional path p, by the j-th variant of Method 2.558

In this case, we focus on the variants V2.3 and V2.4.559

Fig. 10 depicts the box-and-whisker diagrams of the relative differences ϵ for the Origin, Intermediate and Des-560

tination regions of the common paths found in the different combination of sets: Φ1 and Φ3 (case SD-GPS); Φ1 and561

ϕV2.3 (case SD-V2.3); Φ3 and ϕV2.3 (case GPS-V2.3); Φ1 and ϕV2.4 (case SD-V2.4); andΦ3 and ϕV2.4 (case GPS-V2.4).562

The red dots represent the outliers of the distributions. The left panels represent the results for Partitioning 1. While,563

the right panels depict the results for Partitioning 2.564

We first analyze the relative differences of the average trip lengths Lrp of the common regional paths in the sets Φ1565

and Φ3, i.e. case SD-GPS. The median of the box-and-whisker diagrams of ϵ are close to 0, meaning that L
Φ3

rp ≈ L
Φ1

rp .566

This is observed for both Partitioning 1 and 2. We also observe that the distribution is slightly skewed towards567

positive values. This means that L
Φ3

rp � L
Φ1

rp . The latter is explained by the difference in the travel patterns between568
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Figure 9: Trip length distributions for the regional path p = {4, 3, 2}, determined from the simulated data (left panel) as well as from the real data
(right panel). The horizontal black dashed lines represent the average trip length of each distribution. The horizontal red and cyan dashed lines
represent the average travel distances determined for the variants V2.3 and V2.4.
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Figure 10: Box-and-whisker diagrams of the relative differences ϵ for the Origin, Intermediate and Destination regions of the common regional
paths in the sets Φ1 (SD), Φ3 (GPS), ϕV2.3 (V2.3) and ϕV2.4 (V2.4).Left: Partitioning 1. Right: Partitioning 2.

the set of virtual trips and the real ones actually chosen by drivers, which tend to be longer than the shortest-trip569

in distance between their origin-destination pair. In particular, in the data-set of the real trajectories, drivers show a570

clear preference to take the ring road that bypasses the city of Lyon, therefore traveling longer distances. Recently,571

Yang et al. (2018) has proved the existence of a universal law for the trip detour ratios, i.e. a measure of how much a572

driver detours its trip concerning the shortest-route. It is possible to utilize this tool to calibrate the real travel distance573

of drivers, based on the information on the set of real trips, and therefore correct for this bias observed in Fig. 10.574

Therefore, if the information about a real set of trip patterns in the network is not available, we can utilize the set of575

virtual trips to: (i) identify the most prevailing paths chosen by drivers, as discussed in Section 3, with a large level576

of similarity; and (ii) have a good estimation of the traveled distances through the universal law proxy discussed by577

Yang et al. (2018).578

The Euclidean distance used in V2.4 represents a good proxy for estimating mean trip lengths for the Intermediate579

regions. This is true for both Partitioning 1 and 2. For the SD-V2.4 case, the box-and-whisker diagram is narrow and580
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the median is close to 0%, despite the presence of several outliers. This means Euclidean distance proxy provides a581

good approximation to the average trip lengths estimated from the simulated data, i.e. L
ϕV2.4

rp ≈ L
Φ1

rp . In the GPS-V2.4582

case, the interquartile range of the box-and-whisker diagram is larger than in the previous SD-V2.4 case, despite the583

median being also close to 0%. This means that the Euclidean distance is a better proxy for estimating trip lengths584

closer to the ones determined based on the simulated data. On the other hand, the box-and-whisker diagrams for the585

SD-V2.3 and GPS-V2.3 cases, show larger median values and interquartile ranges than the ones of the V2.4 case.586

This shows that the Euclidean distance is also a better proxy than the average shortest-trip used in V2.3, for estimating587

trip lengths closer to the ones determined from the simulated and real GPS data.588

For the Origin and Destination regions, the medians of the box-and-whisker diagrams are in general larger than589

0%. This is observed for both Partitioning 1 and 2. The interquartile ranges are also larger than in the case of the590

Intermediate regions. However, the interquartile ranges are, in general, slightly lower for Partitioning 2 than 1. In the591

cases of the Origin and Destination regions, the relative differences ϵ increase since the calculation of the trip lengths592

Lrp for V2.3 and V2.4 is insensitive to the spatial distribution of the origin-destination nodes inside the Origin and593

Destination regions, respectively. We recall the reader that in the case of V2.3, we determine the trip lengths based on594

the calculation of shortest-trips in distance between the centroid node of the Origin and Destination regions and their595

border nodes, and between the border nodes of Intermediate regions of paths. While, in the case of V2.4, we determine596

the travel distances based on the Euclidean distance between the centroid node of the Origin and Destination regions597

and the centroid node of their borders, and between the centroid nodes of the borders of Intermediate regions of paths.598

For Partitioning 1, the interquartile ranges of the box-and-whisker diagrams of V2.4 are in general smaller than the599

ones of V2.3. These differences are smaller for Partitioning 2. The medians of these diagrams for V2.3 are also closer600

to 0% than the ones of V2.3.601

Overall, the results of this section partially answer the seventh and eight conjectures listed in the Introduction.602

First, we show that the Euclidean distance is a better proxy for estimating trip lengths in the regions, that are closer603

to the ones determined from the simulated and real GPS trajectories data for the regional paths. Second, the average604

travel distances determined from the real data are slightly superior than the ones determined from the simulated data.605

4.3. Analysis of the total travel distances of paths606

In this section, we investigate the relative differences of average travel distances of paths. As in the previous607

section, we focus on both Partitioning 1 and 2. First, we focus on the common regional paths determined from the608

simulated data (i.e. listed on Φ1) and the real GPS trajectories data (i.e. listed on Φ3). Let Lp be the average travel609

distance of a generic regional path p, and is determined as:610

Lp =
∑
r∈p

Lrpδrp,∀p ∈ (Φi ∪ ϕV2. j) ∧ ∀i = 1, 3 ∧ ∀ j = 3, 4 (12)

The average travel distance in a generic region r that defines a generic path p is determined based on the set of611

virtual or real trips, or using any of the edge cost functions defined in Equation 4 to Equation 5. In this analysis, we612

discard the internal paths as Method 2 does not assign an edge cost. We recall that, in this method, the internal paths613

are assigned by definition when the Origin and Destination regions are the same. Furthermore, we note that the variant614

V2.2 only allows to determine a travel distance for the entire regional path, since we determine the Euclidean distance615

between the centroid nodes of the regions. For this reason, we also include this variant in our analysis in this section.616

In this case, we determine the average travel distance Lp as:617

Lp =

|p|−1∑
r=1

Cpr ,pr+1 ,∀p ∈ ϕV2.2 (13)

where |.| represents the total number of regions defining regional path p; and Cpr ,pr+1 represents the Euclidean distance618

between the centroid nodes of regions pr and pr+1 that define the regional path p (see Equation 4).619
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Similarly to the previous section, we also determine the relative differences ϵ as:620

ϵ =
L
Φ1

p − L
Φ3

p

L
Φ3

p

× 100%,∀p ∈ (Φ1 ∩ Φ3) (14)

where L
Φ1

p and L
Φ3

p are the average travel distances of path p, determined from the simulated and real GPS trajectories621

data, respectively.622

We also investigate which proxy used to calibrate Method 2 is the best for determining average travel distances623

Lp, that are close to the ones derived simulated data and real GPS trajectories data, for the regional paths. We then624

also determine the relative differences ϵ as:625

ϵ =
L

V2. j
p − L

Φi

p

L
Φi

p

× 100%,∀r ∈ p ∧ ∀p ∈ (Φ1 ∩ Φ3) ∧ ∀i = 1, 3 ∧ ∀ j = 3, 4 (15)

where L
V2. j
p is the travel distance determined based on Equation 3 to Equation 5, for each of the j-th variant of Method626

2 considered; and L
Φi

p is the average travel distance determined for regional path p based on either the simulated or627

real GPS trajectories data.628
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Figure 11: Box-and-whisker diagrams of the relative differences ϵ for the common regional paths in the sets Φ1 (SD), Φ3 (GPS), ϕV2.2 (V2.2),
ϕV2.3 (V2.3) and ϕV2.4 (V2.4). Top: Partitioning 1. Bottom: Partitioning 2.
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Fig. 11 depicts the box-and-whisker diagrams of the relative differences ϵ for common paths found in the different629

combination of sets: Φ1 and Φ3 (case SD-GPS); Φ1 and ϕV2.2 (case SD-V2.2); Φ3 and ϕV2.2 (case GPS-V2.2); Φ1 and630

ϕV2.3 (case SD-V2.3); Φ3 and ϕV2.3 (case GPS-V2.3); Φ1 and ϕV2.4 (case SD-V2.4); andΦ3 and ϕV2.4 (case GPS-V2.4).631

The red dots represent the outliers of the distributions. The top panel depict the results for Partitioning 1, while the632

bottom panel shows the results for Partitioning 2. One can observe that the average travel distances Lp determined633

from the simulated data, slightly underestimates the real average distances traveled by drivers on the paths. This634

happens because in the dataset of trajectories, there is a clear preference of drivers to take the ring road around the city635

of Lyon, and therefore travel longer distances than the shortest one between their origin-destination points in the city636

networks. This is then reflected on the actual distances traveled on the regional paths. On the other hand, one can also637

observe that the Euclidean distance used to calibrate the variant V2.4, is the best proxy for determining average travel638

distances for the regional paths with respect to the ones determined from both the simulated and real GPS trajectories639

data. The medians are both close to 0%, and the interquartile range of the box-and-whisked diagrams are in general640

narrower than in the case of the other variants.641

The results of this section complete the answers to the the seventh and eight conjectures listed in the Introduction.642

First, the average travel distances of paths determined from the real data is slightly superior than the ones determined643

from the simulated data. Second, the Euclidean distance proxy used to calibrate variant V2.4 provides a closer644

estimation of the average travel distance of paths, than the other two variants.645

4.4. Significance level of paths and their travel distance646

In this section, we investigate the relationship between the level of significance of a regional path and its average647

travel distance. The question is do the most prevailing regional paths, connecting one OD pair, have the lowest average648

travel distances. We recall the reader that the significance level of a regional path is related to the number of trips,649

in the city network, it has associated. The most prevailing regional path connecting one regional OD pair, is the one650

that has the largest number of trips associated. In this section we focus on Partitioning 1. The test network depicted651

in Fig. 4 (a) has 10 regions, which yields a total of 100 possible regional OD pairs. For each regional OD pair, we652

rank the existent regional paths according to their level of significance. We note that for each regional OD pair, we653

have only one most prevailing regional path. This is also true for the second and third most prevailing paths. We654

determine the fractions of the first, second and third most prevailing paths that have the first, second and third lowest655

average travel distances. We also determine the same fraction for the less prevailing regional paths. This analysis is656

done for both the simulated and real data. Fig. 12 depicts the bar plot that summarizes the fraction of the i−th most657

prevailing (MS) regional paths, and their average travel distance (ATD). The colored bars depict the fraction of paths658

that are labeled as the i−th most prevailing ones with respect to their average travel distance. As an example, the blue659

percentage of the first colored bar in Fig. 12 (a) shows that ∼ 40% of the paths with the lowest travel distances are also660

labeled as the most prevailing ones. This means that out of 100 most prevailing regional paths in our test scenario,661

only ∼ 40 % have the lowest average travel distance.662

We first analyze the results obtained from the simulated data. We observe that ∼ 40% of the paths with the lowest663

average travel distances, are also the most prevailing ones. The surprising fact is that also ∼ 40% of the most prevailing664

paths have the longest average travel distances. While, only ∼ 15% and ∼ 5% of the most prevailing regional paths665

have the second and third lowest average travel distances, connecting the OD pairs. In general, the less prevailing666

regional paths regional paths also have the longer average travel distances. The results gathered from the real data667

also show similar trends, where only ∼ 25% of the most prevailing regional paths are also the ones with the lower668

average travel distance. We also observe the similar trend that paths with longer average travel distances are also less669

prevailing. These results answer our ninth conjecture listed in the Introduction. Overall, the most prevailing regional670

paths, i.e. the ones that have the largest number of trips associated, are not necessarily the ones have the lowest671

average travel distances.672

5. Conclusions673

In this paper, we focused on the identification and characterization of the most prevailing paths on regional net-674

works. We distinguish between internal paths, i.e. a path that only travels inside one region, and regional paths, i.e. a675

path that crosses an ordered sequence of regions. We propose two dedicated methods to determine paths on regional676
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Figure 12: Bar graph of the fraction that relate the level of significance of regional paths with their average travel distance. The results are depicted
for the (a) simulated data and (b) real data. The first three bars represent the three most prevailing regional paths, while the fourth bar represents the
other less prevailing regional paths. The colors of the bars are related with the average travel distance of the paths. The color bars refer to the paths
with the lowest (blue), second lowest (orange), third lowest (yellow) and longer (purple) travel distances. The acronym LATD stands for lowest
average travel distance.

networks. The first method requires the complex calibration of a set of virtual trips, that are then scaled-up according677

to the city network partitioning. We discuss two variants of this method, where the sampling of the origin-destination678

pairs of nodes can be performed independently or not of the definition of the city network partitioning. The second679

method is more parsimonious and computationally lighter. It consists in directly determining the shortest-cost paths680

on the regional network. The challenge lies on the calibration of the edge costs of the regional network. We propose681

four variants of impedance cost functions, where we consider the following proxies: (i) the border flow capacity; (ii)682

the Euclidian distance between the centroids of the regions; and (iii) the average shortest distance or (iv) the Euclidian683

distance between the centroids of the regions and their borders.684

We test the implementation of these two methods for determining the most prevailing paths on a city network that685

consists of the metropolitan area of Lyon (France). We have considered two different definitions of the partitioning.686

The test results answered our nine conjectures listed in the Introduction.687

1. We show that sampling trips in the city network concerning the definition of its partitioning is a better approach to688

construct a set of virtual trips.689

2. The second method is able to determine the most prevailing paths from both the simulated and real data, with a690

large level of similarity, being the variant V2.2 (i.e. Euclidean distance between the centroids of the regions) the691

best one to calibrate this method to determine paths.692

3. The set of virtual trips in distance is a good proxy to determine the most prevailing paths chosen by drivers.693

4. The definition of the partitioning does significantly influence the performance of Methods 1 and 2 to determine the694

real paths chosen by drivers, as evidenced by the large similarity levels of the sets.695

5. The functional form of the network-wide TLD is better reproduced by a Weibull distribution. This is true for both696

the simulated and real data. The scale λWe and shape kWe parameters of the Weibull distribution fitted for the697

trip length distribution from the simulated data are 4443 [m] and 1.2 [m], respectively. While for the trip length698

distribution from the real data are λWe = 6174 [m] and shape kWe = 2.3 [m]. Note that, these distributions are699

unimodal.700

6. We show that the complex topological features of the city network strongly influence the shape of the TLDs of701

the regions defining a path. This strengths the fact the one should not make any prior assumptions regarding the702
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functional form of these TLD for MFD-based applications.703

7. The Euclidean distance proxy utilized to calibrated the variant 2.4 is a better proxy to determine closer average704

travel distances as the ones determined from both the real and simulated data.705

8. The average travel distances determined from the real data are slightly superior than the ones determined from the706

simulated data. This is true at both the region and path levels.707

9. We also show that the most prevailing paths are not necessarily the ones that have the lowest average travel distance.708

We stress that these results might be specific to the test network. The performance of both methods for identifying709

the most prevailing paths might change for a different network. However, the performance of both methods is not710

significantly influenced by the two studied definitions of the partitioning. Note that, we assume that the definition of711

the partitioning yields well-defined, fully connected and compact regions. The testing of the performance of these two712

methods to determine the most prevailing paths on other city networks is needed.713

6. Discussion714

In this paper, we discuss a methodological framework to determine the most prevailing paths chosen by drivers.715

This methodology is valid for any city network, given the definition of its partitioning. Method 2 is computationally716

lighter than Method 1, and is able to identify the most prevailing paths with a large level of similarity. It presents717

a promising tool to determine paths for applications of accumulation-based MFD models. The proxies utilized to718

calibrate Method 2, also provide good estimation of the average travel distances in the regions as well as of paths.719

Method 1 requires the knowledge of a set of trips in the city network. One possibility is to utilize a set of real GPS720

trajectories. However, it requires a complex task of map-matching the trajectories in the network, filtering invalid trips721

(e.g. with unknown or uncertain origins and/or destinations, or missing information about the sequence of traveled722

links which happens when two links are very close). In this paper, we discuss one alternative by constructing a set of723

shortest-trips in distance. This requires a complex calibration, which is unrealistic for large city networks. Moreover,724

the sampling of trips is completely random or naive. This means that all origin-destination pairs in the city network725

are equally probable of being selected. In reality, the selection of the origin-destination pairs should rely on how726

the demand is distributed over the network, i.e. some pairs should be more likely of being selected. This limitation727

presents an interesting line of future research, where we plan to develop a more robust and intelligent sampling728

methodology of the origin-destination pairs of nodes in the city network. The first challenge is to identify a subset of729

representative od pairs od nodes from the set of all possible travels in the city network. The second challenge is to730

link this prediction to real trip patterns of drivers.731

In this paper, we focused on the calculation of static paths, i.e. we do not consider how changes in the traffic732

dynamics in the regions influence the calculation of paths. For example, the inclusion of traffic lights and stop signs733

in the calculation of paths by both methods would influence their level of significance and therefore their ranking on734

the choice set. In the case of Method 1, this would clearly influence the calculation of the set of virtual trips. The735

inclusion of traffic lights and stop signs lead to the emergence of congestion patterns and spill-back effects, which lead736

drivers to detour their trips. This means that the calculation of the set of virtual trips would be based on the calculation737

of shortest-trips in time instead of distance. This would probably lead to the emergence of new prevailing paths in the738

choice set. The ranking of paths determined by both variants V1.1 and V1.2 would be different. In the case of Method739

2, this would not influence the proxy based on the Euclidean distance (which corresponds to the variants V2.2 and740

V2.4). However, the flow capacity of each lane qc
a f changes, and the paths determined by variant V2.1 might change741

concerning the evolution of the traffic dynamics in the regions. The same is true for the calculation of the shortest742

average travel distances between the centroids and the borders as well as between borders. This proxy is utilized to743

calibrated variant V2.3. The time-dependence of paths in regional networks presents another interesting line for future744

research.745

One of the most important highlights of this paper regards the functional form of the TLD. We showed that a746

Weibull distribution is the one that better produces the network-wide TLD determined from both the simulated and747

real data. However, the characterization of the functional form of the TLD of the regions that define each path is748

much more complex. In fact, the functional form of such TLD depend on the complex topological features of the749

city network concerning the definition of its partitioning. Gaussian Mixture Models present a promising tool to750

characterize these trip length distributions. This is especially true to account for dynamic effects such as congestion,751
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which leads vehicles to detour their trips (Yang et al., 2018) and therefore influencing the functional form of the trip752

length distributions. This presents another interesting line for future research.753
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Appendices764

A. Table of notations765

Table A.1 summarizes the notation used in this paper.766

Table A.1: Nomenclature used in this paper.

City network:
o Origin node.
d Destination node.
Ωod Route choice set.
Ξ Set of all origin-destination pairs of nodes of the city network.
A Set of links defining the city network.
a Generic link of the city network.
la Length of link a.
Z Set of nodes defining the city network.
Nod Total number of origin-destination pairs sampled in the city network.
Θ Set of virtual trips.
ρi j Set of the city network nodes that are located at the partition (or border) between two

generic adjacent regions i and j.
qc

a f Flow capacity of each lane f of the incoming link a to each border node.
Nlanes Total number of lanes of each incoming link a to each border node listed in ρi j.
δai j Binary variable that equals 1 if link a allows to travel from region i to region j.
(xi, yi)) Cartesian coordinates of the centroid node of a generic region i.
ζ Set of all real trips traveled by drivers, determined from GPS trajectories.
N links

used (Nod) Total number of links traveled by the trips listed in Θ.
Nlinks Total number of links defining the city network.
N links

cov (Nod) Percentage of the city network links that are traveled by virtual trips in the set Θ.

Regional network:
O Origin region.
D Destination region.
E Edges of the regional graph.
X Set of regions that define the regional network (or set of nodes of the regional graph).
p Regional path.
r Region.
Lrp Trip length distribution of a generic region that defines a generic path p.
Lrp Average travel distance in a generic region r that defines a generic regional path p.
Lp Average travel distance of a generic regional path p.
ΩOD Regional choice set.
W Set of regional OD pairs.
δrp Binary variable that equals 1 if region r defines path p.
Ci j Edge cost of the regional network graph.
Λ Set of adjacent regions to a generic region i.
Bi j Border between two generic adjacent regions i and j.
Nborders Total number of borders between adjacent regions of the network.
R Total number of regions in X.
lk Trip length or travel distance of a virtual trip k.

Continued on next page
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Table A.1 – Continued from previous page
Li,ρi j Set of trip lengths between the centroid node of region i and all border nodes listed in

ρi j.
Lρi j, j Set of trip lengths between all border nodes listed in ρi j and the centroid node of region

j.
Lρim,ρm j Set of trip lengths connecting all border nodes between region m and adjacent region

i, to all border nodes between region m and adjacent region j.
ni j Centroid node of the the border Bi j between two generic regions i and j.
Li,ni j Euclidian distance between the centroid node of generic region i and the centroid node

ni j of the border Bi j.
Lni j, j Euclidean distance between ni j and the centroid node of generic region j.
Lnim,nm j Centroid nodes nim and nm j of the borders Bim and B jm, respectively, when region m is

crossed.
Φ1 Set of all regional paths gathered from the simulated data.
ϕ1 Set containing the three most prevailing regional paths for each regional (O,D) ∈ W,

determined from the simulation data.
Φ3 Set of all regional paths gathered from the real trajectories of drivers.
ϕ3 Set containing the three most prevailing regional paths for each regional OD pair,

determined from the real GPS trajectories.
ϕV2. j, j = 1, . . . , 4 Full set of calculated paths for the j−th variant of Method 2.
αΦiϕV2. j Similarity criterion between the sets Φi and ϕV2. j.
βΦiϕV2. j Strict similarity criterion between the sets Φi and ϕV2. j.
δOD

p Binary variable that equals 1 if regional path p that connects the regional OD pair is
ranked with a similar level of significance in Φi, i = 1, 3, and ϕ2, or 0 otherwise.

ϵ Relative differences between trip lengths determined for the same generic regional
path, from different sets.

Parameters of the statistical distributions:
li Sample/observation of the trip length distribution Lrp.
I Length of the set Lrp.
Γ Gamma function.
kGa Shape parameter of the Gamma distribution.
θ Scale parameter of the Gamma distribution.
λNE Rate or inverse parameter scale of the negative exponential distribution.
µ Mean of the log-normal distribution.
σ2 Standard deviation of the log-normal distribution.
λWe Shape parameter of the Weibull distribution.
kWe Scale parameter of the Weibull distribution.

767

28



B. Table of paths determined for Method 1768

O D
Method 1: V1.1

Nod
1.102 5.102 1.103 5.103 1.104

4 2
4,9,2 4,3,2 4,3,2 4,9,3,2 4,3,2
∼ ∼ 4,9,3,2 4,3,2 4,9,3,2
∼ ∼ ∼ 4,9,2 ∼

2 4
2,3,4 2,3,4 2,3,4 2,3,4 2,3,4
∼ ∼ ∼ ∼ ∼
∼ ∼ ∼ ∼ ∼

7 5
∼ 7,5 7,5 7,5 7,5
∼ 7,6,5 7,6,5 7,6,5 7,6,5
∼ ∼ ∼ ∼ ∼

5 7
5,6,7 5,7 ∼ 5,6,7 5,7
∼ 5,6,7 ∼ ∼ 5,4,9,10,7
∼ ∼ ∼ ∼ ∼

2 5
∼ ∼ 2,9,10,7,6,5 2,9,10,5 ∼
∼ ∼ ∼ 2,9,10,7,6,5 ∼
∼ ∼ ∼ 2,9,10,7,5 ∼

5 2
∼ 5,10,9,2 ∼ 5,6,7,10,9,2 5,6,7,10,9,2
∼ 5,7,10,9,2 ∼ 5,6,7,10,9,1,2 5,6,7,10,9,1,2
∼ 5,6,7,10,9,2 ∼ 5,10,9,2 ∼

3 7
3,4,9,10,7 3,9,10,7 ∼ 3,9,10,7 3,9,10,7
∼ 3,4,9,10,7 ∼ ∼ 3,2,9,8,7
∼ 3,2,9,8,7 ∼ ∼ ∼

7 3
∼ 7,10,9,4,3 ∼ 7,10,9,4,3 7,10,9,3
∼ 7,10,9,3 ∼ 7,8,10,9,3 7,10,9,2,3
∼ 7,10,9,2,3 ∼ 7,10,9,3 7,10,9,4,3

O D Nod
5.104 1.105 5.105 1.106 1,085.109

4 2
4,3,2 4,3,2 4,3,2 4,3,2 4,3,2
4,9,2 4,9,2 4,9,3,2 4,9,3,2 4,9,3,2

4,9,3,2 4,9,3,2 4,9,2 4,9,2 4,9,2

2 4
2,3,4 2,3,4 2,3,4 2,3,4 2,3,4
∼ ∼ ∼ 2,9,4 2,9,4
∼ ∼ ∼ ∼ 2,1,9,4

7 5
7,5 7,5 7,5 7,5 7,5

7,6,5 7,6,5 7,6,5 7,6,5 7,6,5
7,8,10,5 7,10,5 7,10,5 7,10,5 7,10,5

5 7
5,7 ∼ 5,6,7 5,6,7 5,6,7

5,6,7 ∼ 5,7 5,7 5,7
∼ ∼ 5,10,9,1,7 5,10,9,1,7 5,10,9,1,7

2 5
2,9,10,7,6,5 ∼ 2,9,10,5 2,9,10,7,6,5 2,9,10,7,6,5

∼ ∼ 2,9,10,7,6,5 2,9,10,5 2,9,10,5
∼ ∼ 2,3,4,5 2,3,4,5 2,3,4,5

5 2
5,6,7,10,9,2 5,6,7,10,9,2 5,6,7,10,9,2 5,10,9,2 5,10,9,2
5,10,9,1,2 ∼ 5,10,9,2 5,6,7,10,9,2 5,6,7,10,9,2
∼ ∼ 5,6,7,10,9,1,2 5,10,9,1,2 5,10,9,1,2

3 7
3,9,10,7 ∼ 3,9,10,7 3,9,10,7 3,9,10,7

3,4,9,10,7 ∼ 3,4,9,10,7 3,4,9,10,7 3,4,9,10,7
3,2,9,8,7 ∼ 3,2,9,8,7 3,2,9,8,7 3,2,9,8,7

7 3
7,8,10,9,3 7,10,9,3 7,10,9,3 7,8,10,9,2,3 7,8,10,9,2,3
7,10,9,3 7,10,9,4,3 7,8,10,9,3 7,10,9,3 7,10,9,3

7,10,9,4,3 7,10,9,2,3 7,10,9,4,3 7,10,9,4,3 7,10,9,4,3

Table B.1: Evolution of the regional choice set for the OD pairs 42, 24, 75, 57, 25, 52, 37 and 73, as function of the network coverage (Nod). The
results are listed for the two variants of Method 1. The regional paths are sorted by their level of significance.
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O D
Method 1: V1.2

Nod
1.102 5.102 1.103 5.103 1.104

4 2
4,9,3,2 4,3,2 4,3,2 4,3,2 4,3,2
∼ 4,9,2 4,9,2 4,9,3,2 4,9,3,2
∼ 4,9,3,2 4,9,3,2 4,9,2 4,9,2

2 4
2,3,4 2,3,4 2,3,4 2,3,4 2,3,4
∼ ∼ ∼ 2,1,9,4 ∼
∼ ∼ ∼ ∼ ∼

7 5
7,6,5 7,5 7,5 7,5 7,5
∼ 7,6,5 7,6,5 7,6,5 7,6,5
∼ 7,10,9,4,5 ∼ 7,8,10,5 7,10,5

5 7
5,7 5,6,7 5,7 5,6,7 5,6,7
∼ 5,7 5,6,7 5,7 5,7
∼ ∼ ∼ ∼ ∼

2 5
∼ 2,9,10,5 2,9,10,5 2,9,10,7,6,5 2,9,10,7,6,5
∼ 2,9,10,7,6,5 2,9,10,7,6,5 2,9,10,5 2,9,10,5
∼ 2,9,10,7,5 2,9,10,7,5 2,3,4,5 2,3,4,10,5

5 2
5,10,9,2 5,6,7,10,9,1,2 5,6,7,10,9,2 5,10,9,2 5,10,9,2
∼ 5,6,7,10,9,2 5,10,9,2 5,6,7,10,9,2 5,6,7,10,9,2
∼ ∼ 5,10,9,1,2 5,10,9,1,2 5,6,7,10,9,1,2

3 7
3,2,9,8,7 3,9,10,7 3,9,10,7 3,9,10,7 3,9,10,7
∼ 3,4,9,10,7 3,4,9,10,7 3,4,9,10,7 3,4,9,10,7
∼ 3,2,9,8,7 ∼ 3,2,9,8,7 3,2,9,8,7

7 3
7,10,9,4,3 7,10,9,3 7,10,9,4,3 7,10,9,3 7,8,10,9,2,3
∼ 7,10,9,4,3 7,8,10,9,2,3 7,8,10,9,2,3 7,10,9,4,3
∼ 7,8,10,9,3 7,8,10,9,3 7,8,10,9,3 7,8,10,9,3

O D Nod
5.104 1.105 5.105 1.106 1,085.109

4 2
4,3,2 4,3,2 4,3,2 4,3,2 4,3,2

4,9,3,2 4,9,3,2 4,9,3,2 4,9,3,2 4,9,3,2
4,9,2 4,9,2 4,9,2 4,9,2 4,9,2

2 4
2,3,4 2,3,4 2,3,4 2,3,4 2,3,4
2,9,4 2,9,4 2,9,4 2,9,4 2,9,4
∼ ∼ 2,9,1,4 2,9,1,4 2,9,1,4

7 5
7,5 7,5 7,5 7,5 7,5

7,6,5 7,6,5 7,6,5 7,6,5 7,6,5
7,10,5 7,10,5 7,10,5 7,10,5 7,10,5

5 7
5,6,7 5,6,7 5,6,7 5,6,7 5,6,7
5,7 5,7 5,7 5,7 5,7

5,10,9,1,7 5,10,9,1,7 5,4,9,10,7 5,4,9,10,7 5,10,9,1,7

2 5
2,9,10,7,6,5 2,9,10,7,6,5 2,9,10,7,6,5 2,9,10,7,6,5 2,9,10,7,6,5

2,9,10,5 2,9,10,5 2,9,10,5 2,9,10,5 2,9,10,5
2,9,10,7,5 2,3,4,5 2,3,4,5 2,3,4,5 2,3,4,5

5 2
5,6,7,10,9,2 5,10,9,2 5,10,9,2 5,10,9,2 5,10,9,2

5,10,9,2 5,6,7,10,9,2 5,6,7,10,9,2 5,6,7,10,9,2 5,6,7,10,9,2
5,10,9,1,2 5,10,9,1,2 5,10,9,1,2 5,10,9,1,2 5,10,9,1,2

3 7
3,9,10,7 3,9,10,7 3,9,10,7 3,9,10,7 3,9,10,7

3,4,9,10,7 3,4,9,10,7 3,4,9,10,7 3,4,9,10,7 3,4,9,10,7
3,2,9,8,7 3,2,9,8,7 3,2,9,8,7 3,2,9,8,7 3,2,9,8,7

7 3
7,8,10,9,2,3 7,8,10,9,2,3 7,8,10,9,2,3 7,8,10,9,2,3 7,8,10,9,2,3
7,10,9,4,3 7,10,9,3 7,10,9,3 7,10,9,3 7,10,9,3
7,8,10,9,3 7,10,9,4,3 7,10,9,4,3 7,10,9,4,3 7,10,9,4,3

Table B.2: Same as in Table B.1, but for V1.2 of Method 1.
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